Research talk: Making deep reinforcement learning industrially applicable
- Jiang Bian, Tie-Yan Liu | Microsoft Research Asia
- Microsoft Research Summit 2021 | Reinforcement Learning
Deep reinforcement learning has achieved remarkable success, especially in gaming and other applications whose environments are artificial or are associated with low exploration costs. However, for most critical industrial applications, interactions with the environments are very costly—and bad explorations might lead to a disaster. In this situation, a new paradigm of deep reinforcement learning is greatly needed. In this talk, the researchers will introduce a new framework called continual offline reinforcement learning and discuss how to better trade off between policy improvement and global convergence in this framework. They will also discuss how to evaluate an offline learned policy in a more accurate manner before deploying it into real environments. After that, they will introduce several real examples, in which continual offline reinforcement learning was applied to solve difficult problems in the industrial domains of logistics and supply chain. At the end, the researchers will discuss remaining challenges and technical trends in this important space.
Learn more about the 2021 Microsoft Research Summit: https://Aka.ms/researchsummit (opens in new tab)
-
-
Jiang Bian
Partner Research Manager
-
Tie-Yan Liu
Distinguished Scientist, Microsoft Research AI for Science
-
-
Reinforcement Learning
-
Opening remarks: Reinforcement Learning
- Katja Hofmann
-
-
-
-
Research talk: Evaluating human-like navigation in 3D video games
- Raluca Georgescu,
- Ida Momennejad
-
Research talk: Maia Chess: A human-like neural network chess engine
- Reid McIlroy-Young
-
Fireside chat: Opportunities and challenges in human-oriented AI
- Ashley Llorens,
- Katja Hofmann,
- Siddhartha Sen
-
Research talk: Making deep reinforcement learning industrially applicable
- Jiang Bian,
- Tie-Yan Liu
-
Panel: Generalization in reinforcement learning
- Mingfei Sun,
- Roberta Raileanu,
- Wendelin Böhmer
-
Research talk: Project Dexter: Machine learning and automatic decision-making for robotic manipulation
- Andrey Kolobov,
- Ching-An Cheng
-
-
-
Research talk: Breaking the deadly triad with a target network
- Shangtong Zhang
-
Panel: The future of reinforcement learning
- Geoff Gordon,
- Emma Brunskill,
- Craig Boutilier
-
Closing remarks: Reinforcement Learning
- John Langford