
RenderFormer: Transformer-based Neural Rendering of Triangle Meshes
with Global Illumination
CHONG ZENG, State Key Lab of CAD & CG, Zhejiang University and Microsoft Research Asia, China
YUE DONG,Microsoft Research Asia, China
PIETER PEERS, College of William & Mary, USA
HONGZHI WU, State Key Lab of CAD & CG, Zhejiang University, China
XIN TONG,Microsoft Research Asia, China

Fig. 1. Examples of triangle-mesh based scenes rendered with RenderFormer without per-scene training or fine-tuning that include (multiple) specular
reflections, complex shadows with details finer than a triangle, diffuse indirect lighting, glossy reflections, soft and hard shadows, and multiple light sources.

We present RenderFormer, a neural rendering pipeline that directly renders
an image from a triangle-based representation of a scene with full global illu-
mination effects and that does not require per-scene training or fine-tuning.
Instead of taking a physics-centric approach to rendering, we formulate
rendering as a sequence-to-sequence transformation where a sequence of
tokens representing triangles with reflectance properties is converted to a se-
quence of output tokens representing small patches of pixels. RenderFormer
follows a two stage pipeline: a view-independent stage that models triangle-
to-triangle light transport, and a view-dependent stage that transforms a
token representing a bundle of rays to the corresponding pixel values guided
by the triangle-sequence from the the view-independent stage. Both stages
are based on the transformer architecture and are learned with minimal
prior constraints. We demonstrate and evaluate RenderFormer on scenes
with varying complexity in shape and light transport.

CCS Concepts: • Computing methodologies → Rendering.

Additional KeyWords and Phrases: Rendering, Global Illumination, Sequence-
to-Sequence, Transformer

Authors’ Contact Information: Chong Zeng, State Key Lab of CAD & CG, Zhejiang
University andMicrosoft Research Asia, Hangzhou, China, chongzeng2000@gmail.com;
Yue Dong, Microsoft Research Asia, Beijing, China, yuedong@microsoft.com; Pieter
Peers, College of William & Mary, Williamsburg, USA, ppeers@siggraph.org; Hongzhi
Wu, State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China, hwu@acm.org;
Xin Tong, Microsoft Research Asia, Beijing, China, xtong@microsoft.com.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1540-2/2025/08
https://doi.org/10.1145/3721238.3730595

ACM Reference Format:
Chong Zeng, Yue Dong, Pieter Peers, Hongzhi Wu, and Xin Tong. 2025.
RenderFormer: Transformer-based Neural Rendering of Triangle Meshes
with Global Illumination. In Special Interest Group on Computer Graphics and
Interactive Techniques Conference Conference Papers (SIGGRAPH Conference
Papers ’25), August 10–14, 2025, Vancouver, BC, Canada. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3721238.3730595

1 Introduction
Traditional graphics pipelines render virtual scenes by simulating
the physical process of light transport through the scene. Recently,
neural rendering has endeavored to bypass the simulation process,
and instead learn to predict the effects of light transport. However,
most neural rendering methods often accomplishes this by overfit-
ting the model to a fixed scene. This raises the intriguing question
whether it is possible to learn a rendering pipeline rather than a
rendering model.
In this paper, we take a first step towards a fully neural ren-

dering pipeline, named RenderFormer, that (a) does not require
per-scene training, (b) takes a classic triangle-mesh based scene
description as input, and (c) that renders the scene with full global
illumination. To achieve these goals, we offer a new perspective on
resolving light transport in a virtual scene, and formulate rendering
as a sequence-to-sequence transformation, where each token in the
sequence represents a triangle with reflectance properties that is
subsequently transformed to a triangle with the converged radiance
distribution of the light transport equilibrium. Rather than explic-
itly describing the resulting radiance distribution and following the
flow of light through the virtual scene as dictated by the Rendering
Equation [Kajiya 1986], RenderFormer learns a neural rendering

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

HTTPS://ORCID.ORG/0009-0004-6373-6848
HTTPS://ORCID.ORG/0000-0003-0362-337X
HTTPS://ORCID.ORG/0000-0001-7621-9808
HTTPS://ORCID.ORG/0000-0002-4404-2275
HTTPS://ORCID.ORG/0000-0001-8788-2453
https://orcid.org/0009-0004-6373-6848
https://orcid.org/0000-0003-0362-337X
https://orcid.org/0000-0001-7621-9808
https://orcid.org/0000-0001-7621-9808
https://orcid.org/0000-0002-4404-2275
https://orcid.org/0000-0002-4404-2275
https://orcid.org/0000-0001-8788-2453
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3721238.3730595
https://doi.org/10.1145/3721238.3730595


2 •

pipeline directly from data with minimal prior constraints. Com-
pared to conventional rendering paradigms: RenderFormer directly
‘solves’ the rendering equation without Monte-Carlo integration
noise and without requiring complex algorithmic modification as in
rasterization. In contrast to existing neural rendering methods for
synthetic scenes, RenderFormer does not require per-scene/object
training (e.g., the objects in Figure 1 are not part of the training set).

RenderFormer follows a two-stage architecture: a view-indepen-
dent stage that models triangle-to-triangle light transport, and a
view-dependent stage that evaluates the transformed sequence of
triangle tokens into an image. Both stages are based on the pow-
erful transformer architecture [Vaswani et al. 2017] known for its
capability to model long-range relations (e.g., light transport from
one triangle to all other triangles). However, in contrast to typical
transformer architectures, RenderFormer utilizes a (relative) posi-
tional encoding based on the 3D spatial position of the triangles
rather than the 1D index position in the sequence. Similar to most
neural rendering techniques, RenderFormer does not require recur-
sive computations and directly solves global illumination transport
in a single pass. Moreover, RenderFormer is fully based on learnable
neural components, and thus naturally fully differentiable, without
relying on existing fixed (i.e., non-learnable) rendering algorithms
such as rasterization, ray tracing, or ray marching.
In this paper, we present an initial step towards a full neural

rendering pipeline on a constrained set of scene types. First, due
to the computational costs of transformers, RenderFormer is cur-
rently limited to triangle meshes of at most 4,096 triangles. Second,
RenderFormer is also constrained by the variations seen during train-
ing: currently our training data only includes a single reflectance
model [Walter et al. 2007], with its parameters assigned on a per-
triangle basis (i.e., no textures). The training scenes include at most
8 diffuse light sources, and the camera (with fixed 512 × 512 reso-
lution) is placed outside the scene’s bounding box. We believe that
RenderFormer, with further development and optimization, can po-
tentially offer an alternative rendering paradigm for both forward
and inverse rendering applications while leveraging current (and
future) advances in transformer-optimized tensor cores.

2 Related Work
Rendering Equation. The Rendering Equation [Kajiya 1986] for-

mally describes light transport in virtual scenes defined by its ge-
ometry (often modeled by a triangle mesh), the associated material
properties in the form of Bidirectional Reflectance Distribution Func-
tions (BRDFs) [Nicodemus et al. 1992], light sources, and a virtual
camera. Over the past four decades a rich variety of methods have
been proposed for accurately and efficiently solving the Render-
ing Equation. Monte Carlo path tracing and variants [Dutré et al.
2018; Pharr et al. 2023] are among the most popular and effective
methods for solving the rendering equation. Recently, to offset the
significant computational cost, path tracing algorithms have been
augmented by machine learning techniques [Wang et al. 2023] (e.g.,
filtering [Bako et al. 2017] or caching [Coomans et al. 2024; Müller
et al. 2021]). All of the above methods explicitly encode the render-
ing equation as part of the solution method, and hence due to the
recursive nature of the Rendering Equation, these methods are also

recursive. RenderFormer does not rely explicitly on the Rendering
Equation, and directly computes light transport without recursion.
An alternative class of mathematical techniques for solving the

Rendering Equation are finite element methods, and the resulting
class of rendering algorithms are called radiosity methods [Cohen
et al. 1988; Goral et al. 1984]. However, classic radiosity methods
are mostly limited to isotropic scattering from diffuse surfaces. In
the spirit of radiosity, Hadadan et al. [2021] introduce a learning-
inspired neural radiosity variant that decouples solving the Ren-
dering Equation (i.e., training) and rendering (i.e., inference) that
can effectively synthesize arbitrary views of a scene without ma-
terial restrictions. Neural radiosity (and its extension to dynamic
scenes [Su et al. 2024b]) shares similarities to Precomputed Radiance
Transfer (PRT) [Sloan et al. 2023] that formulates light transport as
an inner-product between the light transport matrix of a scene and
the lighting expressed in a suitable basis (e.g., Spherical Harmonics).
Inspired by PRT, Rainer et al. [2022] and Gao et al. [2022] lever-
age neural networks to learn a suitable embedding of the incident
lighting instead of a predefined lighting basis. Neural radiosity and
PRT methods incur a large precomputation overhead for each scene.
While training RenderFormer is expensive, training only happens
once, after which scenes can be rendered without further training.

Neural Rendering. Neural rendering methods [Tewari et al. 2022]
replace the simulation of light transport by a learned neural process,
and hence the Rendering Equation is never explicitly imposed and
instead an implicit representation of light transport is learned, Neu-
ral Radiance Fields (NeRFs) [Mildenhall et al. 2021] is a well known
example of such an implicit representation of light transport. Neural
rendering in general employs a neural scene representation which
requires specialized methods [Granskog et al. 2020, 2021; Haque
et al. 2023; Yuan et al. 2022; Zheng et al. 2024] for making scene
modifications. In contrast, RenderFormer takes a regular triangle-
mesh based scene description as input, and thus is compatible with
existing tool-chains for authoring virtual scenes.
Sanzenbacher et al. [2020] perform screen-space neural shading

augmented with global neural light transport computed on a point-
cloud representation of the scene. While the point-cloud helps to
generalize the light transport computations, the two stage network
is trained per scene (either static or dynamic). In contrast Render-
Former does not require per scene training. RenderNet [Nguyen-
Phuoc et al. 2018] and Neural Voxel Rendering [Rematas and Ferrari
2020] learn a convolutional neural rendering pipeline. However, in-
stead of triangle meshes, both methods take a 3D voxel grid as input,
and only learn local shading under a single point light. In contrast,
RenderFormer renders the scene with full global illumination.

Transformers for Rendering. The key building block in Render-
Former is the transformer architecture [Vaswani et al. 2017] which
is built around multi-head attention blocks and that maps a se-
quence of tokens to another sequence of tokens while handling
long-range dependencies. Transformers have proven to be effec-
tive architectures for vision tasks [Dosovitskiy et al. 2020] and for
driving large language models [Kenton and Toutanova 2019]. In
rendering, Ren et al. [2024] leverage the cross-attention mechanism
in transformers for accelerating the gather step in neural reflective
shadow maps. In the context of NeRFs, NerFormer [Reizenstein

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



RenderFormer: Transformer-based Neural Rendering of Triangle Meshes with Global Illumination • 3

et al. 2021] leverages epipolar constraints and attention to construct
feature volumes. IBRNet [Wang et al. 2021a] estimates density along
rays with transformers. Recent view-interpolation methods [Liang
et al. 2024; Sajjadi et al. 2022; Suhail et al. 2022; Varma et al. 2022],
not only employ transformers to compute features along rays, but
also use a transformer to aggregate features along rays. LVMS [Jin
et al. 2024] takes a different approach, and directly transforms pixel
patches from the input images to view-interpolated images. Jin et
al. encode the poses of the input and output cameras by tokeniz-
ing each pixels’ view ray; RenderFormer uses a similar strategy for
tokenizing the pose of the virtual camera.

3 RenderFormer
RenderFormer is composed of two stages: a view-independent stage
and a view-dependent stage. Both stages utilize the transformer
architecture. The view-independent stage (subsection 3.1) takes a
sequence of triangles with corresponding properties as input, and
transforms it to a sequence of per-triangle features that store a
neural encoding of the triangle’s overall outgoing radiance. The
view-dependent stage (subsection 3.2) takes the transformed trian-
gle sequence as input as well as tokens that represent bundles of
rays corresponding to 8 × 8 pixel patches in the target image and
transforms the latter to outgoing radiance values corresponding to
each ray in the bundle. We train RenderFormer end-to-end (subsec-
tion 3.3) once, after which a triangle-based scene can be fed into
RenderFormer without any fine-tuning or training.

3.1 View-independent Stage
Transformer Architecture. The view-independent stage closely

follows the original transformer architecture [Vaswani et al. 2017]
with full bidirectional self-attention. The transformer takes as input
a sequence of triangle embeddings (i.e., tokens). Each triangle to-
ken encodes all relevant information for rendering such as surface
normal and reflectance. In addition we add 16 register tokens to
the input sequence that can be used by the transformer to store
global information and potentially remove high-frequency noise
in the embedding [Darcet et al. 2024]. Each triangle and register
token is a 768-dimensional vector. The view-independent stage is
composed of 12 transformer layers, where each layer has 6 heads
and 768 hidden units, followed by a 768 × 4 feed-forward fully
connected network. We follow LLaMA [Touvron et al. 2023] and
apply pre-normalization using RMS-Normalization [Zhang and Sen-
nrich 2019] and use SwiGLU as activation function [Shazeer 2020].
Furthermore we leverage QK-Normalization [Henry et al. 2020] to
stabilize training. Figure 2 (top) summarizes the architecture of the
view-independent stage.

Relative Spatial Positional Embedding. A key difference between
RenderFormer and typical uses of transformers (e.g., large language
models) is that the index position of the token (i.e., triangle) in the se-
quence is irrelevant; swapping two triangles in the sequence should
produce the same result. However, the position of the triangle in the
virtual world matters. The contribution to the global light transport
differs for two triangles with exactly the same reflectance proper-
ties and shape (and thus with identical token embedding) but at
different positions in the scene. Furthermore, translating the whole

scene (including light sources and virtual camera) does not alter the
light transport. Hence, RenderFormer requires a relative positional
encoding based on the 3D spatial location for each triangle with
respect to other triangles. We, therefore, do not embed the absolute
position of the triangle by adding the positional encoding directly to
the triangle token, but instead adapt Rotational Positional Encoding
(RoPE) [Su et al. 2024a] to modify the triangle token to embed the
triangle’s relative 3D spatial location. RoPE expresses the positional
embedding as a rotation and relies on the fact that the composition
of two rotations is equivalent to a relative rotation between both.
However, unlike a simple index in a sequence, the position of the
triangle is determined by three 3D vertices of floating point values.
We therefore first concatenate all three vertex positions into a 9D
vector and multiply each element, duplicated 6 times, with each
of 6 frequencies (with scales exponentially distributed between 1
and 5: [1.0, 1.3797, 1.9037, 2.6265, 3.6239, 5.0]), yielding a vector of
54 scaled frequencies. Following RoPE, we encode each coefficient
as the sine and cosine of the angle proportional to the scaled fre-
quencies, and create a block-diagonal rotation matrix where each
sine/cosine pair determines the rotation for each 2 × 2 block. Each
of the 6 attention heads operates on 128 coefficients of the triangle
token embedding (6 heads ×128 = 768). Consequently, we apply
the block-rotation only to the first 108 coefficients for each head
and leave the remaining 20 coefficients unchanged. Similar to RoPE,
we apply the relative spatial positional embedding to the tokens at
each attention layer. Ideally we would like the relative positional
encoding to also be invariant to scene rotations. However, because
SO(3) is not commutative, this is difficult to achieve with RoPE.
To ensure that the register tokens are also invariant to scene

translations, we also apply relative spatial positional encoding on
the register tokens using the average position of all scene vertices.

Triangle Embedding. For each triangle we want to embed all rel-
evant information needed for rendering, such as shading normals,
reflectance properties, and emission (in case of a light source). As
noted above, the position and shape of the triangle will be encoded
via relative spatial positional embedding.

We store a normal per vertex that is interpolated (and normal-
ized) over the triangle using an absolute positional encoding of the
per-vertex normals. Practically, we encode all three normals with
(NeRF) positional encoding [Mildenhall et al. 2021] with 6 frequen-
cies (using the same frequencies as for relative spatial positional
embedding), which are subsequently expanded to a 768-dimensional
vector through a single linear layer followed by RMS-Normalization.

Wemodel surface reflectancewith amicrofacet BRDFmodel using
a GGX normal-facet distribution [Walter et al. 2007] parameterized
by diffuse albedo, specular albedo, and roughness. We stack the
reflectance parameters as well as emission into a 10 dimensional
vector (3D for all parameters except for roughness (1D)). This 10-
dimensional vector is expanded to a 768-dimensional vector by a
single linear layer followed by RMS-Normalization. The resulting
768-dimensional vector is added to the above normal embedding.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



4 •

Fig. 2. RenderFormer Architecture Overview. Top: the view-independent stage resolves triangle-to-triangle light transport from a sequence of triangle tokens
that encode the reflectance properties of each triangle. The relative position of each triangle is separately encoded, and applied to each token at each
self-attention layer. Bottom: the view-dependent stage takes as input the virtual camera position encoded as a sequence of ray-bundles. Guided by the resulting
triangle tokens from the view-independent stage via a cross-attention layer, the ray-bundle tokens are transformed to tokens encoding the outgoing radiance
per view ray. Finally, the ray-bundle tokens are transformed to log-encoded HDR radiance value through an additional dense vision transformer.

3.2 View-dependent Stage
The goal of the view-dependent stage is to transform the triangle
tokens transformed by the previous view-independent stage to ra-
diance pixel values corresponding to a given virtual camera. For
performance reasons, we encode an 8 × 8 radiance pixel patch in an
output token. Inspired by Gao et al. [2024] and Jin et al. [2024], we
specify the virtual camera to the view-dependent transformer by
encoding a bundle of 8 × 8 rays that pass through the centers of the
pixels in the corresponding output patch.

Transformer Architecture. We follow a similar architecture as for
the view-independent transformer, except that it transforms a se-
quence of ray-bundle tokens (instead of triangle tokens), and we
only repeat the attention layers 6 times instead of 12. Furthermore
we precede each self-attention layer with a cross-attention layer
that connects the ray-bundle tokens with the triangle tokens (in-
cluding register tokens) from the view-independent stage. The role
of the cross-attention layer is to find the triangles related to the
rays in the ray-bundle. As before, each transformer layer has 6
heads, 768 hidden units, and a 768 × 4 feed-forward network. We
again employ SwiGLU activations, QK-normalization, and RMS-
Normalization. Furthermore, we found that the view-dependent
stage requires higher precision (tf32) than the view-independent
stage (which uses bf16) to convergence during training. In addition,
to decode the pixel-patch tokens into log(𝑥 + 1)-encoded HDR RGB
radiance values, we found that even though the radiance observed
for each view ray is independent of other view rays, sharing informa-
tion between view rays through self-attention between ray-bundle
tokens improves rendering accuracy (Table 1, 3rd vs. 4th row). Fur-
thermore, we employ a dense vision transformer [Ranftl et al. 2021]

Table 1. Ablation study of different model variants and architectures. Due
to computational constraints, all ablation studies are performed at 256× 256
resolution. Layer configurations are denoted as: #view-independent +
#view-dependent layers.

Variant PSNR ↑ SSIM ↑ LPIPS ↓ FLIP ↓
full view-dependent stage 29.77 0.9526 0.05514 0.1751
w/o dpt 29.75 0.9476 0.05519 0.1806
w/o self-attention 29.70 0.9503 0.05703 0.1766
w/o dpt & w/o self-attention 29.15 0.9396 0.06407 0.1836
camera space view-dep. stage 29.77 0.9526 0.05514 0.1751
world space view-dep. stage 28.98 0.9420 0.06309 0.1904
205M / 768d tokens / 12 + 6 layers 29.77 0.9526 0.05514 0.1751
143M / 768d tokens / 8 + 4 layers 28.99 0.9444 0.06408 0.1873
71M / 512d tokens / 8 + 4 layers 28.27 0.9356 0.07238 0.2032
45M / 384d tokens / 8 + 4 layers 27.87 0.9295 0.07921 0.2075
12 + 6 layers 29.77 0.9526 0.05514 0.1751
9 + 9 layers 30.11 0.9554 0.05121 0.1735
6 + 12 layers 30.38 0.9560 0.05043 0.1685
0 + 18 layers 28.28 0.9355 0.07152 0.1994

on the features from the last 4 layers of the view-dependent trans-
former, to further improve accuracy (Table 1, 1st vs. 2nd row) and
reduce (but not fully eliminate) resolution dependence. Figure 2
(bottom) summarizes the view-dependent architecture.

To reduce the degrees of freedom in the training data, we perform
the view-dependent stage in camera coordinates, rather than in
world coordinates as in the view-dependent stage. This is trivially
achieved by applying the relative positional spatial embedding using
transformed vertex coordinates at each attention layer. We do not
apply any other transformation (e.g., normals) because after the
view-independent transformation, the interpretation of the triangle
tokens does not align anymore with the original embedding. By
expressing the triangles’ (and registers’) positional embedding in

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



RenderFormer: Transformer-based Neural Rendering of Triangle Meshes with Global Illumination • 5

Fig. 3. The four template scenes used for generating training data.

camera coordinates we avoid having to learn the world-to-camera
transformation, which also helps to improve accuracy (Table 1, 5th-
6th row).

Ray Bundle Embedding. Each ray bundle is a collection of 8 × 8
rays that go through the center of the pixels of the corresponding
pixel patch. Because the scene is expressed in camera coordinates
in the view-dependent stage, the origin of all rays is (0, 0, 0). We
therefore, only need to encode the normalized directions of each
ray. We stack the 64 direction vectors in a 192-dimensional vector
which is subsequently encoded by a single linear layer followed by
RMS-Normalization into a 768-dimensional token.

3.3 Training
We train RenderFormer end-to-end using the AdamW [Loshchilov
and Hutter 2019] optimizer with a batch size of 128, a linear warm-
up learning step size of 1.0×10−4 for 8,000 steps followed by a cosine
decay schedule on 8 NVIDIA A100 GPUs with 40GB of memory us-
ing Flash-Attention 2 [Dao 2024] and Liger Kernel [Hsu et al. 2024]
for speed-up. We, first train RenderFormer at 256 × 256 resolution
with a maximum mesh size of 1,536 triangles for 500𝑘 iterations
which took approximately 5 days, followed by 100𝑘 additional fine-
tuning iterations at 512× 512 resolution with a maximum mesh size
of 4,096 triangles, which took an additional 3 days. While Render-
Former is invariant to scene translations due to the relative spatial
positional embedding, it is not invariant to rotations. We therefore
improve stability to scene rotations by applying a random rotation
to the scene (including the camera); this does not require rerender-
ing and thus rotation is performed on-the-fly during training using
RoMa [Brégier 2021].

Loss Function. We train RenderFormer in a supervised manner
by computing the L1 loss between a rendered reference HDR im-
age of a synthetic scene and the RenderFormer HDR prediction.
To avoid that small errors on bright highlights dominate the loss,
we first apply a log transform to the images before computing the
L1 loss. In addition, to minimize perceptual differences, we also
include an LPIPS loss [Zhang et al. 2018] on a tone-mapped ver-
sion (𝑐𝑙𝑎𝑚𝑝 (log 𝐼/log 2, 0, 1)) of both images. The final loss is then:
𝑙𝑜𝑠𝑠𝐿1 + 0.05𝑙𝑜𝑠𝑠𝐿𝑃𝐼𝑃𝑆 .

Training Data. Our training set consists of synthetic scenes com-
posed of 1 to 3 randomly selected objects from the Objaverse dataset
[Deitke et al. 2023] randomly placed in one of four template scenes
(shown in Figure 3) that consist of a combination of (randomly trans-
lated, rotated, and scaled) ground, back, and side walls. The camera
is placed outside the scene such that its view is not blocked by any of
the template walls and with a field of view (FOV) uniformly sampled
between 30◦ and 60◦. The camera is aimed towards the center (with

Table 2. Timing comparison between RenderFormer and Blender Cycles
with 4,096 samples per pixels (matching the settings for training data gener-
ation). We include both timings with and without adaptive sampling and
denoising. In addition, we provide a breakdown of time spent in the view-
independent and view-dependent stage. Timings are measured in seconds
with pre-cached kernels and excluding the cost of scene loading.

Figure 1
First Second Third Fourth

#Triangles 5366 4400 4527 7321
Cycles 4,096 adaptive spp + denoise 3.97 4.73 3.77 2.71
Cycles 4,096 spp 12.05 11.21 9.95 7.83
RenderFormer 0.0760 0.0613 0.0625 0.0978
View-independent stage 0.0282 0.0186 0.0192 0.0429
View-dependent stage 0.0478 0.0427 0.0433 0.0549

some perturbations to avoid always aiming at the exact center), at a
distance uniformly sampled between 1.5 and 2.0 units, where one
unit corresponds to the size of the scene’s bounding box. Between
1 to 8 light sources (i.e., triangles with a diffuse emission), with
an intensity uniformly sampled between 2,500 and 5,000𝑊 /𝑢𝑛𝑖𝑡𝑠2,
are placed following a similar procedure as the camera, but with
a distance uniformly sampled between 2.1 and 2.7 units. We ran-
domly assign material parameters either per-object or per-triangle
with a 1:1 ratio. We randomly assign an RGB color to the diffuse
albedo with maximum intensity per color channel set such that the
sum with the monochromatic specular albedo lies between 0.9 and
1.0 (uniformly sampled). Roughness is log-sampled in [0.01, 1.0].
Furthermore, we randomly select, with equal probability, whether
the object is shaded with per-vertex normals or flat-shaded.
The runtime-complexity of attention layers scales quadratically

with the number of tokens, and thus triangles in our case. As a result,
we limit the total number of triangles in our scenes to 4,096; increas-
ing this limit is an interesting avenue for future research. Since the
objects in the Objaverse dataset easily exceed our triangle budget,
we remesh the objects by first removing interior or malformed trian-
gles (by converting to a signed distance field followed by a marching
cubes step to convert it back to a clean triangle mesh), followed by
Qslim to lower the number of faces between 256 to 3,072.

We render 8M HDR training images for 2M synthetic scenes from
4 different viewpoints at 256 × 256 resolution (with a maximum
triangle count of 1,536), and an additional 8M HDR training images
at 512 × 512 resolution with a maximum triangle count of 4,096
using Blender Cycles with 4,096 samples per pixel (using adaptive
sampling and denoising).

4 Results
We demonstrate RenderFormer on a variety of scenes (Figure 1 and
Figure 4) showcasing different aspects of global light transport. For
each example, we show a reference render computed with Blender
Cycles with 4,096 samples per pixel and a difference image scaled
5× as well as the PSNR, SSIM, LPIPS [Zhang et al. 2018] and HDR-
FLIP [Andersson et al. 2020] errors. Qualitatively, the RenderFormer
results look visually similar albeit not exactly the same. Nevertheless,
RenderFormer manages to include many important light transport
effects such as shadows, diffuse and specular interreflections, glossy
reflections, and multiple specular interreflections. While not explic-
itly enforced, RenderFormer is stable to changes in scene parameters

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



6 •

Reference RenderFormer Difference 5× Reference RenderFormer Difference 5×

PSNR: 27.63
SSIM: 0.9609

LPSIPS: 0.04350
FLIP: 0.08558

PSNR: 34.21
SSIM: 0.9802
LPIPS: 0.01361
FLIP: 0.05515

PSNR: 34.98
SSIM: 0.9881
LPIPS: 0.02247
FLIP: 0.04377

PSNR: 31.73
SSIM: 0.9762
LPSIP: 0.01537
FLIP: 0.06922

Fig. 4. A variety of scenes rendered with RenderFormer and compared to path-traced reference images. We also list the PSNR, SSIM, LPIPS, and FLIP errors.

RenderFormer Error ×5 Path Tracing 26 spp Error ×5

Fig. 5. Equal-time comparison between RenderFormer and Blender Cycles
with (non-adaptive) 26 sampler-per-pixel and without denoising.

as shown in the supplemental video where we move the camera,
move the lighting, and change reflectance properties.

Table 2 compares the timings on the four scenes in Figure 1 of our
unoptimized RenderFormer (pure PyTorch implementation without
DNN compilation, but with pre-caching of kernels) and Blender Cy-
cles with 4,096 samples per pixel (matching RenderFormer’s training
data) at 512 × 512 resolution on a single NVIDIA A100 GPU. To
provide further insight, we also provide a qualitative equal-time
comparison (Figure 5) of the first scene from Figure 1; because the
fixed cost of denoising exceeds the RenderFormer times and the
scene-dependent non-linear cost of adaptive sampling, we disable
both optimizations for the equal-time comparison. Besides opti-
mizing the RenderFormer implementation, we can further speed
up rendering for static scenes by reusing the view-independent
transformed sequence or for animations by rendering 48 frames in
parallel by batching.

4.1 Analysis & Ablation Study
RenderFormer’s architecture differs from prior neural rendering
methods, and it follows a significantly different way of solving the
rendering equation compared to classic global illumination methods.
To gainmore insight on the inner-workings of RenderFormerwe per-
form a series of ablation studies. Due to computational constraints,
we perform all ablation experiments at 256 × 256 resolution.

Relative Spatial Positional Embedding. One of the main differ-
ences between RenderFormer and traditional transformers is the
positional encoding based on the position of the triangles in world
space instead of the sequence index position, using a novel relative

spatial positional encoding based on RoPE. However, we also used
a NeRF-like positional encoding for embedding the vertex normals.
This raises the questions whether it would be possible to also em-
bed the triangle positions together with the normals using a NeRF
positional encoding instead. However, we found that training with
such positional encoding for the triangles’ positions is not stable,
and it is prone to converge to a suboptimal local minimum.

Model Size. A key design parameter in transformer models is the
token feature length; larger features result in larger models, and
thus longer training time. Table 1 (7th to 11th row) lists average
PSNR, SSIM, LPIPS [Zhang et al. 2018] and HDR-FLIP [Andersson
et al. 2020] errors over 400 test scenes rendered from 4 viewpoints
(i.e., 1,600 total) for models trained with feature lengths ranging
from 768 to 192. We also adjust the number of attention layers to
further reduce the number of model parameters from 205M to 143M,
71M, and 45M parameters respectively. In general, more parameters
yield more accurate results.

Number of Layers. In the previous experiment, we purposefully
kept the ratio of attention layers between the view-independent and
view-dependent stage constant. We perform an additional ablation
experiment to better understand the impact of the ratio of attention
layers between both stages. Table 1 (rows 11-14) compares Render-
Former models with a different subdivisions of a total of 18 attention
layers over the two stages. Figure 6 qualitative shows the impact
of varying the attention layers per stage. We observe that Render-
Former benefits from including more attention-layers in the view-
dependent stage than in the view-independent stage. Fully elimi-
nating the view-independent stage (Table 1, 14th row and Figure 6,
2nd column) fails to produce good results, indicating that the view-
independent stage is necessary for obtaining good results. However,
rendering often requires a careful balance between accuracy and
speed. The runtime of each stage depends on different factors. The
view-independent stage scales roughly by O(#𝑡𝑟𝑖𝑠2), whereas the
view-dependent layers scales by O(#𝑏𝑢𝑛𝑑𝑙𝑒𝑠2 + #𝑏𝑢𝑛𝑑𝑙𝑒𝑠 × #𝑡𝑟𝑖𝑠).
Furthermore, the difference in precision (bf16 versus tf32) imposes
an additional hardware-dependent performance scale between both
stages. The ideal number of attention layers per stage is complex
and depends on mesh size, resolution, and hardware. We therefore

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



RenderFormer: Transformer-based Neural Rendering of Triangle Meshes with Global Illumination • 7

Reference 0+18 6+12 9+9 12+6

Fig. 6. Qualitative comparison of varying #view-independent + #view-dependent attention layers per stage. RenderFormer is shown in the last column
with a ratio of 12 view-independent versus 6 view-dependent layers.

Fig. 7. Visualization of the transformed tokens from the view-independent
stage that (after transformation) encode smooth diffuse shading and inter-
reflections, as well as shadows at sub-triangle granularity.

roughness=0.3 roughness=0.7 roughness=0.99

Fig. 8. Visualization of the average attention per triangle for a given ray-
bundle in the view-dependent stage. The average attention gives an indi-
cation on which triangles RenderFormer uses for computing the outgoing
radiance for the rays in the bundle. As expected directly visible triangles
and triangles around the reflected direction receive the most attention.

opt for a 12+6 split between view-independent and view-dependent
attention layers, balancing accuracy and training/render speed (i.e.,
∼25% faster for ∼5% loss in accuracy).

Role of the Different Stages. The previous ablation study clearly
shows that both stages are necessary and each serve a role in the
rendering pipeline. However, the previous ablation experiments do
not give insights on what exactly each stage does.
The interpretation of the embedding of the triangle tokens does

not follow the initial embedding after passing through the view-
independent stage, precluding direct visualization of the triangle
tokens. We therefore train an small auxiliary MLP that casts a trans-
formed triangle token into a 32 × 32 RGB texture for each triangle.

Reference Large Size. Average Size Average Size
785 Tris. 1,831 Tris. 6,603 Tris.

Fig. 9. Using larger than normal triangles for the pedestal and icosphere
results in degraded shadows and shading (2nd column). Interestingly, this
degradation is also visible in the reflections in the back wall.

Because the register tokens might include important information,
we also include a cross-attention layer between each triangle token
and the 16 register tokens. We train the MLP and the cross-attention
layers, while keeping the view-independent stage frozen, on a small
batch (∼ 500) of simple solid colored diffuse scenes. The MLP is in-
tentionally kept shallow to limit it to simple operations that directly
visualize the information embedded in the tokens. Figure 7 shows
that the view-independent stage resolves a significant portion of
diffuse light transport between triangles as well as shadows.

The view-dependent stage gathers information from the triangle
tokens to compute the observed radiance for each pixel. In Figure 8,
we visualize the (sum of the) attention weights projected on their
respective triangles for selected ray-bundles and visualized from an
appropriate view. This visualization shows how much each triangle
contributes to the final radiance observed for the given ray-bundle.
From Figure 8 we can see that the main weight lies on the directly
visible triangle, as well as triangles around the reflected direction.
We can also see that the weight distribution changes when we
increase the roughness of the material.

4.2 Generalization of Scene Parameters
While the previous ablation study and analysis provides more in-
sight on the inner-workings of RenderFormer, it does not give an
indication on how the model performs in practical situations and
what its limits are. Therefore, we perform several experiments to
probe RenderFormer’s generalization capabilities with respect to
the triangle mesh, light sources, and camera.

Triangle Mesh. Currently the training data is generated such that
the triangles are all roughly the same size. To better understand if
the triangle size affects the accuracy of the solution, we perform an
experiment where we render a scene twice (Figure 9), once where
the pedestal and icosphere are represented by 1,318 triangles of

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



8 •

1 Light 2 Lights 4 Lights 8 Lights 9 Lights (Direct) 9 Lights (Sum) 9 Lights (Reference)

Fig. 10. RenderFormer can handle multiple light sources with correct reflections and shadows (1st to 4th column) as long as the number of lights does not
exceed 8 (as seen in training). For more lights, highlights or shadow might be missing (e.g., the missing double shadow at the bottom shadow in the 5th
column). In such a case, we can still compute a correct result by compositing multiple single-light images (6th column).

Reference RenderFormer Reference Composite Reference Single Triangle Subdivided (16) Composite (16)
Light Inside Scene Colored Light Large Light

Fig. 11. Left: RenderFormer was never trained with lights inside the scene, and thus fails to correctly render such scenes. Middle: RenderFormer can simulate
colored lights by leveraging linearity of light transport and blending three images (one for each color channel). Right: RenderFormer fails to correctly render
scenes with light sources larger than those encountered during training. Subdividing the triangle can correct the error if the number of light sources does not
exceed the maximum seen during training (8), in which case we can still leverage linearity of light transport by rendering each subdivided light separately.

Re
fe
re
nc
e

Re
nd

er
Fo
rm

er

3k 11k 23k 45k

Fig. 12. RenderFormer can handle scenes with more triangles than for which
it was trained, albeit with loss of detail and thin features.

average size, and once with 332 larger triangles. As can be seen in
Figure 9 (2nd column), the quality of the shading and shadows over
larger triangles degrades due to the fact that the triangle-tokens
now need to store more complex information per triangle.

The attention layers that form the core of transformers are costly
in terms of compute resources. Therefore, the training set for Ren-
derFormer is limited to scenes with at most 4,096 triangles. Figure 12
shows that RenderFormer can handle larger triangle-meshes at in-
ference time, albeit with some loss of details. However, we observe
that overall RenderFormer fails gracefully with most of the light
transport correctly modeled. We exploit this property during train-
ing by first pretraining on smaller scenes (1,536 triangles) and then
refine on larger scenes (4,096 triangles). However, due to the O(𝑁 2)
complexity of the attention layers, there is a limit to how far the
model can be pushed before running out of resources.

Many attention-optimization techniques used in LLMs and Vi-
sion Transformers [Dong et al. 2023; Liu et al. 2021; Wang et al.
2021b] leverage properties inherent to 1D sequences or 2D images
whereas RenderFormer operates in 3D, making direct application
difficult. Adapting state-of-the-art techniques from LLMs and Vision
Transformers (such as linear attention mechanisms, native sparse
attention, and sequence parallelism) is a promising avenue for fu-
ture research, especially when combined with established computer
graphics methodologies such as LoD and BVH.

Lighting. RenderFormer is currently trained for scenes with 1 to 8
light sources. Figure 10 (columns 1 to 4) shows a sequence of images
of a scene with an increasing number of light sources. We observe
that RenderFormer does not reliably handle cases where the number
of light sources exceeds the maximum seen during training causing
incomplete shadows or missing highlights (Figure 10, 5th column).
The maximum number of light sources can either be increased by
training withmore lights, or by exploiting linearity of light transport
by rendering each light source separately and adding the resulting
images (Figure 10, 6th column).
Currently, RenderFormer is also trained with light sources po-

sitioned outside the scene, and placing a light source in the scene
yields an incorrect result (Figure 11, 2nd column). Moreover, Render-
Former is also trained for white light sources only; RenderFormer
ignores the color when it encounters a colored light. This problem
can be solved by either expanding the training set or by leveraging
linearity of light transport (Figure 11, 4th column).
In addition, RenderFormer is trained for a limited range in light

source size. As expected, exceeding the trained light source size
(Figure 11, 6th column) does not produce the correct shadows. We
can either expand the training set, or construct larger light sources
by subdividing the light source in more (smaller) triangles (Figure 11,
7th (direct render) and 8th column (composite render)).

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



RenderFormer: Transformer-based Neural Rendering of Triangle Meshes with Global Illumination • 9
Re

fe
re
nc
e

Re
nd

er
Fo
rm

er

Normal Close Inside Normal Small Large 512 × 512 768 × 768 1024 × 1024
Distance Field of View Resolution

Fig. 13. RenderFormer is robust to moving the camera closer than seen during training (2nd column), as long as the camera remains outside the scene (3rd
column). RenderFormer is also robust to exceeding the field of view seen during training (4th-6th column). We also found that RenderFormer fails gracefully
when rendering at higher resolutions (7th-9th column), with differences around depth discontinuities (e.g., between the gray and blue walls).

Fig. 14. RenderFormer can correctly reproduce occlusions for scenes with many objects. However, the shadows cast by occluders with very complex shapes,
can result in a loss of detail in the cast shadow.

Camera Parameters. Similar to light sources, RenderFormer is
also only trained for a camera located outside the scene. As a result
RenderFormer has never learned that triangles can be placed behind
the camera, and fails to correctly render such scenes (Figure 13,
3nd column). Extending the training set to include such cases could
allow RenderFormer to learn how to handle such cases.

RenderFormer is also trained for a limited range of FOV. However,
from Figure 13 (4th to 6th column) we can see that RenderFormer
appears to be robust to going outside this range.

RenderFormer is also only trained for a fixed 512× 512 resolution.
While in theory the ray-bundles can model higher resolution, we
found that RenderFormer exhibits a minor resolution dependence.
As shown in Figure 13 (8th and 9th column), when applied to higher
resolutions, RenderFormer fails gracefully, with most of the errors
focused around depth discontinuities. We also exploit this property
by first training RenderFormer at lower resolutions (256 × 256), and
then fine-tuning it at 512 × 512 resolution.

Scene Complexity. Finally, we explore the accuracy of Render-
Former with respect to scene complexity. In particular, we investi-
gate if RenderFormer can handle complex occluders and multiple
specular reflections. Figure 14 shows scenes with increasing oc-
cluder complexity. The first two columns show a series of closely
packed planes that cast shadows between the planes and the floor.
Figure 14 (3rd to 5th column) shows a series of small occluders
placed at varying distances between the ground plane and light
source. We observe that the shadows of occluders with complex
shapes sometimes miss fine details (Figure 14, columns 3 to 5).

Figure 15 shows howwell RenderFormer handlesmultiple bounces
of reflections. While RenderFormer does not reason in terms of phys-
ical bounces of light transport, we find that RenderFormer correctly
models on average 3 bounces of specular reflections, but higher-
order bounces are dropped (e.g., the 2nd reflection of red ball on the
back wall in the last example in Figure 15). We found that the reflec-
tion depth is independent of the number of view-dependent layers,
and we posit that this limitation is mainly due to the scarcity of
training examples with higher-order specular bounces, and careful
augmentation of the training dataset could improve performance
for multi-bounce reflections.

Textures. RenderFormer assumes constant reflectance properties
over a triangle. We perform an exploratory experiment to extend
RenderFormer to include spatially-varying surface reflectance by
modifying the reflectance token embedding. Instead of expanding
the stacked reflectance parameters to a 768-dimensional vector, we
directly encode spatially varying information at the triangle level. To
embed the spatially-varying parameters (i.e., 13 channels containing
diffuse albedo, specular albedo, roughness, and surface normal), we
first rasterize the parameters to an isosceles right triangle at 32× 32
resolution. Next, we concatenate all texels in a 13,312-dimensional
vector (i.e., 32 × 32 texels and 13 channels per texel) that is en-
coded by a single linear layer followed by RMS-Normalization into
a 768-dimensional token. Our initial results (Figure 16) show that
RenderFormer is able to model spatially varying reflectance, albeit
blurred. Expanding the token length might improve texture quality;
we leave this for future research.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



10 •

Reference RenderFormer Reference RenderFormer Reference RenderFormer
1 Interreflection 2 Interreflections 3 Interreflections

Fig. 15. RenderFormer correctly handles 1 and 2 recursive specular interreflections. However, due to the scarcity of training exemplars with more specular
interreflections, it does not always correctly resolve higher order reflections (e.g., the reflection of the red ball in the reflection of the mirror on the top wall).

Fig. 16. Preliminary results of extending RenderFormer to support spatially-
varying material properties.

5 Conclusion
In this paper we introduce RenderFormer, a transformer-based neu-
ral rendering pipeline that takes as input a regular triangle mesh,
and outputs an image of the scene accounting for global illumina-
tion. While RenderFormer is limited in the scenes it can render (i.e.,
limited triangle count, number of light sources, camera positions,
etc...), it generalizes better than prior neural rendering systems. Ren-
derFormer approaches solving light transport in a virtual scene as
a two-stage sequence-to-sequence transformation. The first stage
transforms a triangle-sequence to model view-independent triangle-
to-triangle transport. The second stage transforms a sequence of
ray-bundles to a sequence of corresponding observed radiance val-
ues guided by the triangle-sequence from the first stage.

There are ample avenues to further improve RenderFormer. First,
we can expand the training set to support a wider variety of camera
and light positions. Furthermore, while our current implementa-
tion utilizes training data rendered using the GGX BRDF model,
we impose no inherent architectural restrictions related with the
reflectance model. Hence, RenderFormer could be trained on al-
ternative datasets using other reflectance models including those
that model transparency or subsurface scattering. Currently, Ren-
derFormer only supports simple light sources, and extensions to
environment lighting and non-diffuse light sources would further
generalize RenderFormer. Since RenderFormer is fully transformer
based, it is inherently differentiable, allowing us to train Render-
Former directly from data. An interesting and promising direction
for future work that leverages the inherent differentiability, would
be to apply RenderFormer to inverse rendering applications. Finally,
would like to investigate hierarchical attention methods based on
existing grouping based acceleration structures for classic rendering

methods (e.g., BVH) to support more complex scenes with larger
triangle-meshes.

Acknowledgments
We would like to thank Kexun Zhang and Kaiqi Chen for discus-
sions on transformer model design and performance optimizations,
and Sam Sartor for Blender Cycle tips and pre-reviewing this work.
Pieter Peers was supported in part by NSF grant IIS-1909028. Chong
Zeng and Hongzhi Wu were partially supported by NSF China
(62332015, 62227806 & 62421003), the XPLORER PRIZE, and Infor-
mation Technology Center and State Key Lab of CAD&CG, Zhejiang
University.

References
Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle

Åström, and Mark D Fairchild. 2020. FLIP: A Difference Evaluator for Alternating
Images. Proc. ACM Comput. Graph. Interact. Tech. 3, 2 (2020).

Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan NováK, Alex Harvill,
Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convo-
lutional networks for denoising Monte Carlo renderings. ACM Trans. Graph. 36, 4
(2017).

Romain Brégier. 2021. Deep Regression on Manifolds: a 3D Rotation Case Study.
International Conference on 3D Vision.

Michael F Cohen, Shenchang Eric Chen, John RWallace, and Donald P Greenberg. 1988.
A progressive refinement approach to fast radiosity image generation. In Proceedings
of the 15th annual conference on Computer graphics and interactive techniques. 75–84.

Arno Coomans, Edoardo Alberto Dominici, Christian Döring, Joerg H. Mueller, Jozef
Hladky, and Markus Steinberger. 2024. Real-time Neural Rendering of Dynamic
Light Fields . Comp. Graph. Forum (2024).

Tri Dao. 2024. FlashAttention-2: Faster Attention with Better Parallelism and Work
Partitioning. In ICLR.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. 2024. Vision
Transformers Need Registers. In ICLR.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli Vander-
Bilt, Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. 2023.
Objaverse: A universe of annotated 3d objects. In CVPR. 13142–13153.

Zican Dong, Tianyi Tang, Lunyi Li, and Wayne Xin Zhao. 2023. A survey on long text
modeling with transformers. arXiv preprint arXiv:2302.14502 (2023).

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. 2020. An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In ICLR.

Philip Dutré, Philippe Bekaert, and Kavita Bala. 2018. Advanced global illumination.
AK Peters/CRC Press.

Duan Gao, Haoyuan Mu, and Kun Xu. 2022. Neural global illumination: Interactive
indirect illumination prediction under dynamic area lights. Trans. Vis. and Comp.
Graph. 29, 12 (2022), 5325–5341.

Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin-
Brualla, Pratul P. Srinivasan, Jonathan T. Barron, and Ben Poole*. 2024. CAT3D:
Create Anything in 3D with Multi-View Diffusion Models. NeurIPS (2024).

Cindy M Goral, Kenneth E Torrance, Donald P Greenberg, and Bennett Battaile. 1984.
Modeling the interaction of light between diffuse surfaces. ACM SIGGRAPH computer
graphics 18, 3 (1984), 213–222.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



RenderFormer: Transformer-based Neural Rendering of Triangle Meshes with Global Illumination • 11

Jonathan Granskog, Fabrice Rousselle, Marios Papas, and Jan Novák. 2020. Composi-
tional neural scene representations for shading inference. ACM Trans. Graph. 39, 4
(2020).

Jonathan Granskog, Till N Schnabel, Fabrice Rousselle, and Jan Novák. 2021. Neural
scene graph rendering. ACM Trans. Graph. 40, 4 (2021).

Saeed Hadadan, Shuhong Chen, and Matthias Zwicker. 2021. Neural radiosity. ACM
Trans. Graph. 40, 6 (2021).

Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and Angjoo
Kanazawa. 2023. Instruct-nerf2nerf: Editing 3d scenes with instructions. In CVPR.
19740–19750.

Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen.
2020. Query-Key Normalization for Transformers. In EMNLP. 4246–4253.

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, Siyu Zhu,
Steven Shimizu, Shivam Sahni, Haowen Ning, and Yanning Chen. 2024. Liger
Kernel: Efficient Triton Kernels for LLM Training. arXiv preprint arXiv:2410.10989
(2024). arXiv:2410.10989 [cs.LG] https://arxiv.org/abs/2410.10989

Haian Jin, Hanwen Jiang, Hao Tan, Kai Zhang, Sai Bi, Tianyuan Zhang, Fujun Luan,
Noah Snavely, and Zexiang Xu. 2024. Lvsm: A large view synthesis model with
minimal 3d inductive bias. arXiv preprint arXiv:2410.17242 (2024).

James T Kajiya. 1986. The rendering equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques. 143–150.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert: Pre-
training of deep bidirectional transformers for language understanding. In Proceed-
ings of naacL-HLT, Vol. 1. 2.

Yixun Liang, Hao He, and Yingcong Chen. 2024. Retr: Modeling rendering via trans-
former for generalizable neural surface reconstruction. NeurIPS 36 (2024).

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. 2021. Swin transformer: Hierarchical vision transformer using shifted
windows. In CVPR. 10012–10022.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization. In
ICLR.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance fields
for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-time
neural radiance caching for path tracing. ACM Trans. Graph. 40, 4 (2021).

Thu Nguyen-Phuoc, Chuan Li, Stephen Balaban, and Yong-Liang Yang. 2018. RenderNet:
A deep convolutional network for differentiable rendering from 3D shapes. In
NeurIPS.

FE Nicodemus, JC Richmond, JJ Hsia, IW Ginsberg, and T Limperis. 1992. Geometrical
considerations and nomenclature for reflectance. In Radiometry. 94–145.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically based rendering: From
theory to implementation. MIT Press.

Gilles Rainer, Adrien Bousseau, Tobias Ritschel, and George Drettakis. 2022. Neural
Precomputed Radiance Transfer. Comp. Graph. Forum 41, 2 (April 2022).

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. 2021. Vision transformers for
dense prediction. In CVPR. 12179–12188.

Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick La-
batut, and David Novotny. 2021. Common objects in 3d: Large-scale learning and
evaluation of real-life 3d category reconstruction. In ICCV. 10901–10911.

Konstantinos Rematas and Vittorio Ferrari. 2020. Neural Voxel Renderer: Learning an
Accurate and Controllable Rendering Tool. In CVPR. 5416–5426.

Haocheng Ren, Yuchi Huo, Yifan Peng, Hongtao Sheng, Weidong Xue, Hongxiang
Huang, Jingzhen Lan, Rui Wang, and Hujun Bao. 2024. LightFormer: Light-Oriented
Global Neural Rendering in Dynamic Scene. ACM Trans. Graph. 43, 4 (July 2024).

Mehdi SM Sajjadi, Henning Meyer, Etienne Pot, Urs Bergmann, Klaus Greff, Noha Rad-
wan, Suhani Vora, Mario Lučić, Daniel Duckworth, Alexey Dosovitskiy, et al. 2022.
Scene representation transformer: Geometry-free novel view synthesis through
set-latent scene representations. In CVPR. 6229–6238.

Paul Sanzenbacher, Lars Mescheder, and Andreas Geiger. 2020. Learning neural light
transport. arXiv preprint arXiv:2006.03427 (2020).

Noam Shazeer. 2020. Glu variants improve transformer. arXiv preprint arXiv:2002.05202
(2020).

Peter-Pike Sloan, Jan Kautz, and John Snyder. 2023. Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments. In Seminal
Graphics Papers: Pushing the Boundaries, Volume 2. 339–348.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. 2024a.
Roformer: Enhanced transformer with rotary position embedding. Neurocomputing
568 (2024), 127063.

Rui Su, Honghao Dong, Jierui Ren, Haojie Jin, Yisong Chen, Guoping Wang, and Sheng
Li. 2024b. Dynamic Neural Radiosity with Multi-grid Decomposition. In SIGGRAPH
Asia 2024 Conference Papers. 1–12.

Mohammed Suhail, Carlos Esteves, Leonid Sigal, and Ameesh Makadia. 2022. Light
field neural rendering. In CVPR. 8269–8279.

A. Tewari, J. Thies, B. Mildenhall, P. Srinivasan, E. Tretschk, W. Yifan, C. Lassner, V.
Sitzmann, R. Martin-Brualla, S. Lombardi, T. Simon, C. Theobalt, M. Niessner, J. T.

Barron, G. Wetzstein, M. Zollhöfer, and V. Golyanik. 2022. Advances in Neural
Rendering. Comp. Graph. Forum 41, 2 (2022), 703–735.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
2023. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971 (2023).

Mukund Varma, Peihao Wang, Xuxi Chen, Tianlong Chen, Subhashini Venugopalan,
and Zhangyang Wang. 2022. Is attention all that NeRF needs?. In ICLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
NeurIPS. 6000–6010.

Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007.
Microfacet models for refraction through rough surfaces. In EGSR. 195–206.

Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou,
Jonathan T Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser.
2021a. Ibrnet: Learning multi-view image-based rendering. In CVPR. 4690–4699.

Qi Wang, Zhihua Zhong, Yuchi Huo, Hujun Bao, and Rui Wang. 2023. State of the Art
on Deep Learning-enhanced Rendering Methods. Machine Intelligence Research 20,
6 (2023), 799–821.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu,
Ping Luo, and Ling Shao. 2021b. Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions. In ICCV. 568–578.

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. 2022.
Nerf-editing: geometry editing of neural radiance fields. In CVPR. 18353–18364.

Biao Zhang and Rico Sennrich. 2019. Root mean square layer normalization. NeurIPS
32 (2019).

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.
The unreasonable effectiveness of deep features as a perceptual metric. In CVPR.
586–595.

Chuankun Zheng, Yuchi Huo, Hongxiang Huang, Hongtao Sheng, Junrong Huang, Rui
Tang, Hao Zhu, Rui Wang, and Hujun Bao. 2024. Neural Global Illumination via
Superposed Deformable Feature Fields. In SIGGRAPH Asia 2024 Conference Papers.
1–11.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

https://arxiv.org/abs/2410.10989
https://arxiv.org/abs/2410.10989

	Abstract
	1 Introduction
	2 Related Work
	3 RenderFormer
	3.1 View-independent Stage
	3.2 View-dependent Stage
	3.3 Training

	4 Results
	4.1 Analysis & Ablation Study
	4.2 Generalization of Scene Parameters

	5 Conclusion
	Acknowledgments
	References

