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Abstract

Large language models trained with reinforcement learning with verifi-
able rewards tend to trade accuracy for length—inflating response lengths
to achieve gains in accuracy. While longer answers may be warranted
for harder problems, many tokens are merely “filler”: repetitive, ver-
bose text that makes no real progress. We introduce GFPO (Group Filtered
Policy Optimization), which curbs this length explosion by sampling larger
groups per problem during training and filtering responses to train on
based on two key metrics: (1) response length and (2) token efficiency:
reward per token ratio. By sampling more at training-time, we teach mod-
els to think less at inference-time. On the Phi-4-reasoning model, GFPO
cuts GRPO’s length inflation by 46–71% across challenging STEM and
coding benchmarks (AIME 24/25, GPQA, Omni-MATH, LiveCodeBench)
while maintaining accuracy. Optimizing for reward per token further in-
creases reductions in length inflation to 71–85%. We also propose Adap-
tive Difficulty GFPO, which dynamically allocates more training resources
to harder problems based on real-time difficulty estimates, improving the
balance between computational efficiency and accuracy especially on diffi-
cult questions. GFPO demonstrates that increased training-time compute
directly translates to reduced test-time compute—a simple yet effective
trade-off for efficient reasoning.
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Âi,t

]

GFPO
S = REJECTIONSAMPLE(G, k, metric), mi = I{i∈S}
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Figure 1: Left: GFPO introduces simple yet powerful modifications to GRPO: sample more
responses during training (↑ G), rank them by a target attribute (e.g., length, token effi-
ciency), and learn only from the top-k—setting the advantages of the rest to zero. This
selective learning functions as implicit reward shaping, steering the policy toward desired
behaviors. Right: When optimizing for length or token efficiency, GFPO curbs GRPO’s
length inflation—letting the model think less at inference-time by sampling more at training-
time—while maintaining its core reasoning capabilities.
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1 Introduction

Reinforcement learning from verifier rewards (RLVR) methods such as GRPO (Shao et al.,
2024) and PPO (Schulman et al., 2017) have been pivotal in enabling test-time scal-
ing—allowing models like O3 (OpenAI, 2025) and DeepSeek-R1 (Guo et al., 2025) to “think
longer” and unlock unprecedented performance on challenging reasoning tasks such as
AIME and IMO. While longer reasoning chains are expected for solving harder prob-
lems, prior work shows that length inflation can be uncorrelated with correctness, and
that shorter chains may in fact yield better accuracy. For example, Balachandran et al. (2025)
report that on AIME 25, DeepSeek-R1 generates responses nearly 5x longer than Claude
3.7 Sonnet, despite achieving similar accuracy. Likewise, Hassid et al. (2025) find that on
AIME and HMMT, the shortest responses from QwQ-32B outperform randomly sampled
responses by 2% while using 31% fewer tokens, indicating that longer chains are not syn-
onymous with better reasoning.

Longer responses can appear less accurate simply because they often arise from harder
questions. To disentangle genuine length increases driven by question difficulty from un-
necessary inflation, we analyze the correlation between response length and correctness for
multiple responses to the same questions in Phi-4-reasoning-plus (Abdin et al., 2025). On
AIME 25, we find that in 72% of questions where both correct and incorrect responses are
generated, longer responses are more likely to be wrong than their shorter counterparts.

Approaches such as Dr. GRPO (Liu et al., 2025) and DAPO’s (Yu et al., 2025) token-level
loss normalization have been proposed to curb the persistent length inflation phenomenon
in RLVR-trained models. Yet, even with token-level normalization applied during the
training of Phi-4-reasoning-plus, we observe rapid response length growth—from 4k to 14k
tokens in just 100 steps of GRPO training. We hypothesize that while token-level normal-
ization penalizes long incorrect responses more heavily, it also amplifies rewards for long
correct chains—unintentionally reinforcing the inherent verbosity of strong base models
that have been heavily SFTed for step-by-step reasoning (e.g., Phi-4-reasoning (Abdin et al.,
2025) and DeepSeek-R1-Distill-Qwen (Guo et al., 2025)). This underscores the difficulty of
relying on loss normalization alone to counteract GRPO’s pronounced length inflation.

Motivated by these observations, our goal is to develop efficient reasoning models—models
that retain the reasoning accuracy afforded by GRPO while producing substantially shorter
reasoning chains. Towards achieving this goal, we make the following contributions:

• GFPO (Group Filtered Policy Optimization): We propose GFPO (Figure 1, Sec-
tion 3), a simple yet effective variant of GRPO designed to explicitly counteract re-
sponse length inflation. GFPO combines rejection sampling with standard GRPO:
for each question, we sample a larger group of candidate reasoning chains G to in-
crease exposure to desirable outputs, filter them according to a target metric, and
only learn from the policy gradients of the top-k retained chains. While many rejec-
tion metrics are possible, we focus on response length—retaining the shortest chains
to encourage the model to “think less” while reasoning.

When optimized for length, GFPO reduces GRPO’s length inflation by 46.1% on
AIME 25, 59.8% on AIME 24, 57.3% on GPQA, 71% on Omni-MATH, and 57% on
LiveCodeBench, all while maintaining accuracy (Section 5.2, 5.3).

• Token Efficiency (Section 5.4): Beyond targeting length alone, we introduce the to-
ken efficiency metric—defined as the ratio of reward to response length. This met-
ric promotes reasoning chains that justify their length by delivering proportionally
higher rewards, encouraging the model to be both concise and effective.

Optimizing for token efficiency with GFPO reduces length inflation by 70.9% on
AIME 25, 84.6% on AIME 24, 79.7% on GPQA, 82.6% on Omni-MATH, and 79.7%
on LiveCodeBench (see Appendix A for qualitative examples).

• Adaptive Difficulty GFPO (Section 5.5): We further introduce an adaptive variant
of GFPO in which the number of retained responses k is dynamically adjusted based
on a lightweight, unsupervised estimate of question difficulty. This adaptive strat-
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Figure 2: Comparison of GFPO and GRPO on AIME 25 accuracy (n = 8 samples) during
training. GFPO variants reach the same peak performance as GRPO (blue).

egy allocates more exploration (larger k) to harder questions, while aggressively
shortening easier ones.

• Out-of-Distribution Generalization (Section 5.6): We show that GFPO preserves
accuracy while curbing length inflation even on out-of-distribution tasks.

• Analysis of GFPO on Response Length and Question Difficulty (Section 6): Fi-
nally, we present a detailed analysis of GFPO’s accuracy and length reductions on
easy vs. hard questions, and examine its impact on the accuracy of long responses.

GFPO exploits a fundamental trade-off between training and inference-time compute,
shifting cost from inference—where shorter chains deliver substantial efficiency—to train-
ing, by sampling and evaluating additional candidate responses. This trade-off is particu-
larly advantageous because training compute is a one-time investment, whereas inference
compute savings are realized continuously throughout deployment. In doing so, GFPO
offers a simple yet effective solution to the response-length inflation inherent in reason-
ing models—retaining GRPO’s state-of-the-art performance while producing dramatically
shorter reasoning chains.

2 Preliminaries

Group Relative Policy Optimization (GRPO; Shao et al. (2024)) is a reinforcement learning
algorithm that simplifies Proximal Policy Optimization (PPO; Schulman et al. (2017)) by
eliminating the need for a value model to estimate the baseline advantage. This is achieved
by sampling multiple responses per question and using their average reward as a baseline,
while still optimizing a similar clipped surrogate objective as PPO. Let θ denote the model
parameters, q denote the question, and o denote responses sampled from the old policy
πθold

. The GRPO objective can then be written as:

JGRPO(θ) = E[q∼P(Q), {oi}G
i=1∼πθold

(O|q)]
1
G

G

∑
i=1

1
|oi|

|oi |
∑
t=1

min
Ä

ri,t“Ai,t, clip(ri,t, 1− ε, 1 + ε)“Ai,t
ä

− βDKL
(
πθ ∥πθold

)
+ γ Entropy(πθ) (1)

where the advantage is “Ai,t =
R(q,oi)− 1

k ∑G
j=1R(q,oj)…

1
k ∑G

l=1

(
R(q,oi)− 1

k ∑G
j=1R(q,oj)

)2
, ri,t =

πθ(oi,t | q,oi,<t)
πθold

(oi,t | q,oi,<t)
and

βDKL(πθ ∥πθold
) denotes the KL penalty.

Note that although we show the standard GRPO loss normalization equation, several
open-source RL libraries including verl (Sheng et al., 2024) and TRL (von Werra et al., 2020)
default to the DAPO token-level loss normalization for GRPO, which is also what we use
in our experiments.
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A key limitation of GRPO is its reliance on a single scalar reward signal, making it difficult
to jointly optimize multiple desirable response attributes, such as brevity and accuracy.
This often leads to gains in accuracy at the cost of substantial response length inflation. To
address this, we introduce GFPO to enable simultaneous optimization of multiple response
properties.

3 Group Filtered Policy Optimization

We propose Group Filtered Policy Optimization (GFPO), a simple yet effective method
for targeted policy optimization of desirable response properties. GFPO samples a larger
group of candidate responses per question, broadening the response pool to include more
candidates with desirable traits, and then explicitly filters for these traits when computing
the policy gradient. While it may seem natural to directly encode desirable attributes such
as brevity or informativeness into the scalar reward, doing so for multiple traits can be
challenging, especially when correctness must already be captured.

Data filtration instead serves as an implicit, flexible form of reward shaping—akin to it-
erative self-improvement methods that use selective sampling to amplify specific model
behaviors (Zelikman et al., 2022). After this explicit filtering step isolates the preferred re-
sponses, standard rewards are then used solely to compute relative advantages within the
selected group. Thus, GFPO optimizes for multiple desirable properties (e.g., length and
accuracy) simultaneously, without requiring complex reward engineering. Since our goal
is to reduce the response length inflation in RL, we focus on using GFPO to optimize for
shorter responses while matching GRPO’s accuracy.

Algorithm 1 REJECTION SAMPLING

Require: group of responses G = {o1, . . . , oG},
retain count k (k < G), scoring function
metric(·), sort order (↑/↓)

1: scores← [metric(oi)]G
i=1

2: idx← ARGSORT(scores, order)
3: S ← [idx[j] for j = 1, . . . , k]
4: m← [I[ i ∈ S ] for i = 1, . . . , G]
5: return S , m

Given a question q, we sample a large
set of responses G = {o1, . . . , oG} from
the current policy. Rather than train-
ing equally on all responses, GFPO ap-
plies a selection step based on a user-
specified metric to filter a subset of
size k of the most desirable responses
to train on. We compute a metric score
for each response and sort accordingly,
selecting the top-k responses to form
the retained subset S ⊆ G (Algo-
rithm 1). We define a binary mask m ∈ {0, 1}G, where mi = 1 indicates a selected response
and mi = 0 indicates a rejected response.

Formally, we define the GFPO objective1 as:

JGFPO(θ) = Eq∼P(Q), {oi}G
i=1∼πθold

(O|q)
1

∑G
i=1 |oi|

G

∑
i=1

|oi |
∑
t=1

min
Ä

ri,t “A (m)
i,t , clip(ri,t, 1− ε, 1 + ε) “A (m)

i,t

ä
−βDKL

(
πθ ∥πθold

)
+ γ Entropy(πθ) (2)

where
S , m = REJECTIONSAMPLE(G, k, metric, order), mi = I{i∈S}

µS =
1
k ∑

i∈S
R(q, oi), σS =

√
1
k ∑

i∈S

(
R(q, oi)− µS

)2, “A (m)
i,t =

R(q, oi)− µS
σS

mi.

ri,t =
πθ(oi,t | q, oi,<t)

πθold
(oi,t | q, oi,<t)

.

1Note we use the DAPO token-level loss aggregation for both GFPO and GRPO which is the
default choice in verl. We employ a slightly modified version of the clipped surrogate policy gradient
loss introduced in prior work (Li et al., 2025), which reduces training instabilities caused by negative
advantages and large policy ratios.
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We normalize the advantages for responses in the selected subset S using the mean (µS)
and standard deviation (σS) of the response-level rewards in S . This enables meaningful
comparisons among responses already exhibiting the desired property, ensuring GFPO
prioritizes the highest-reward responses within the filtered subset. Responses not in S
receive zero advantage, effectively excluding them from influencing policy updates. Thus,
GFPO’s primary intervention is at the level of advantage estimation, making it compatible
with any GRPO variant such as DAPO (Yu et al., 2025), Dr. GRPO (Liu et al., 2025), or
GRPO with the Dual-Clip PPO loss (Ye et al., 2020). Although GFPO incurs higher training-
time compute by sampling more responses, this cost is partially offset as the learned policy
produces shorter responses than GRPO.

While GFPO is general-purpose and can accommodate various scoring metrics, our exper-
iments specifically leverage metrics aimed at reducing response length inflation:

• Response Length: Training on short responses directly encourages brevity.

• Token Efficiency (reward/length): Training on highly token-efficient responses
encourages succinctness, but still allows longer responses if sufficiently “justified”
by proportionately higher rewards.

Other metrics—such as factuality, diversity, or external quality scores—could also be inte-
grated into GFPO to optimize different attributes of interest.

3.1 Adaptive Difficulty GFPO. We also introduce an adaptive difficulty variant of
GFPO (Algorithm 2), aiming to allocate more training signal to harder questions.

Algorithm 2 ADAPTIVE DIFFICULTY SAMPLING

Require: group G = {o1, . . . , oG}, t-digest tracker T ,
reward function R(·), prompt q, scoring metric(·),
sort order (↑/↓)

1: µR ← 1
G ∑G

i=1 R(q, oi)
2: T .UPDATE(µR)
3: if T .READY() then
4: (q25, q50, q75)← T .PERCENTILE([25, 50, 75])
5: if µR < q25 then k← kvery-hard
6: elif µR < q50 then k← khard
7: elif µR < q75 then k← kmed
8: else k← keasy
9: else

10: k← kvery-hard
11: end if
12: (S , m)← REJECTIONSAMPLE

(G, k, metric, order)
13: return S , m

At each step of training, we
estimate question difficulty by
computing the average reward
of sampled responses per ques-
tion—lower average rewards in-
dicate higher difficulty.

To adaptively scale the number
of retained responses (k), we
maintain a streaming summary
of prompt difficulties using a
lightweight t-digest data struc-
ture. The t-digest efficiently
approximates quartiles over
all prompt difficulties (reward
means) seen thus far, enabling us
to categorize new questions into
relative difficulty buckets. Based
on this categorization, we assign
each question a target number of
retained responses k: 4 for easy, 6 for medium, and 8 for hard and very hard questions
(out of 16 sampled).2 This dynamic curriculum enables more aggressive filtering on easy
prompts, and more exploration on hard ones. The number of difficulty buckets and the k
per bucket are hyperparameters of this approach.

Adaptive Difficulty GFPO makes efficient use of training compute, focusing gradient up-
dates where they are most needed. It helps the model reduce verbosity on easy exam-
ples—where correctness is already high—while preserving accuracy on harder prompts by
retaining more reasoning chains. To the best of our knowledge, this is the first algorithm to
dynamically adapt the effective group size based on question difficulty.

4 Setup
Model. We demonstrate the effectiveness of GFPO via Phi-4-reasoning (Abdin et al., 2025)
as the base model. This model was derived by extensive supervised fine-tuning of the

2To prevent biased difficulty estimates due to insufficient processed prompts, for a few warmup
training steps we retain 8 responses for all questions.
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14 billion parameter Phi-4 (Abdin et al., 2024) model on synthetically generated o3-mini
reasoning traces primarily on STEM domains, but has not been tuned with any RL. In our
results and analysis, we refer to Phi-4-reasoning as the SFT baseline.

Baseline. We compare our GFPO-tuned models with the GRPO trained baseline Phi-4-
reasoning-plus (Abdin et al., 2025). Note that we use GRPO with the DAPO token-level
loss aggregation and slightly modify the clipped surrogate objective to improve training
stability, as detailed in Section 3. We replicate the training setup of Phi-4-reasoning-plus,
as detailed below. In our results and analysis, we refer to Phi-4-reasoning-plus as the GRPO
baseline.

Dataset. Our RL training focuses on improving mathematical reasoning. The training
dataset contains solely of 72k math problems selected from a larger training corpus (Abdin
et al., 2025). Notably, we constrain RL training to 100 steps with batch size of 64 so the
model only sees 6.4k of these problems during training—identical to the set used to train
Phi-4-reasoning-plus.

Reward Function. We use the reward function used for training Phi-4-reasoning-plus (Ab-
din et al., 2025). The reward is a weighted sum of a 0/1 accuracy reward—scaled to be
“length-aware”—and an n-gram repetition penalty. The binary accuracy reward Racc is
computed by extracting the final answer from the response and verifying its equivalence
with the ground truth answer and deferring to LLM verifiers if simple answer extraction
fails. This reward is then scaled to a float between −1.0 and 1.0 based on the response
length, penalizing long responses for correct answers. Formatting violations are penalized
by receiving the lowest reward. The final reward function R is a weighted combination of
this length-aware accuracy reward and a repetition penalty based on repetition frequency
of 5-grams.

R = waccLENGTHSCALE(Racc) + wrepRrep, (3)

where Racc ∈ {0, 1} and R ∈ [−1, 1]. See Section 4.1 of Abdin et al. (2025) for more details.
Notably, the length penalty in the reward proves insufficient to curb the response length
inflation caused by GRPO, motivating our proposal of GFPO.

Training Configuration. We use the verl (Sheng et al., 2024) framework for GFPO training
using the specified reward function. Matching the training setup of Phi-4-reasoning-plus,
we GFPO-tune Phi-4-reasoning on 32 H100s with a global batch size of 64 across GPUs for
100 steps, with the Adam optimizer with learning rate of 1e-73, cosine warmup for the first
10 steps, and sampling temperature T = 1.0. We apply KL regularization with β = 0.001
and an entropy coefficient of γ = 0.001. Our models are trained with 32k maximum context
length, with 1k tokens reserved for the prompt.

Group Size. Phi-4-reasoning-plus is trained with a GRPO group size of G = 8. GFPO in-
creases G to increase exposure to desirable responses, trading off more training-time com-
pute for less inference-time compute resulting from shorter responses. We experiment with
G ∈ 8, 16, 24 for GFPO, but the GFPO retained group size k = |S| ≤ 8 for all experiments
to match the number of responses for which the model receives policy gradient signals for
a fair comparison with GRPO.

Evaluation. We evaluate our checkpoints on AIME 25 (AIME, 2025) and 24 (AIME, 2024)
with 32 samples per prompt, GPQA (Rein et al., 2024) with 5 samples, Omni-MATH (Gao
et al., 2025) with 1 sample, and LiveCodeBench (8/24-1/25) (Jain et al., 2024) with 3 sam-
ples. We sample responses at temperature T = 0.8 with maximum length of 32k with
1k tokens reserved for the prompt. For AIME 25, 24, GPQA, and Omni-MATH we first
use regex based answer extraction and then use GPT-4o for LLM based extraction if regex
extraction fails. While there was no coding data in our RL training set, we evaluate on
LiveCodeBench to measure how optimizing for shorter responses with GFPO impacts re-
sponses lengths and accuracy out-of-distribution.

We report the average pass@1 accuracy, raw response lengths (L), and excess length reduc-
tion (ELR) for all models and datasets (Tables 1, 2). We define excess length reduction, the

3Phi-4-reasoning-plus is trained with a slightly lower learning rate of 5e-8, but we replicate this
run with learning rate of 1e-7 and use the same for GFPO.
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AIME 25 AIME 24 GPQA

Acc Avg
Len

% Len
Inf (↓) Acc Avg

Len
% Len
Inf (↓) Acc Avg

Len
% Len
Inf (↓)

SFT 64.2 10.9k N/A 72.2 10.1k N/A 67.0 6.6k N/A
GRPO 72.4 14.8k 0.0 77.7 13.3k 0.0 67.5 10.7k 0.0

6 of 8 69.2 14.7k 1.8 79.6 13k 9.5 70.2 10.2k 11.5

8 of 16 70.2 13.9k 23.8 77.9 12.3k 33.0 70.0 9.7k 23.7
6 of 16 70.1 13.8k 25.6 76.9 12.2k 35.6 68.3 9.1k 38.8
4 of 16 69.7 13.3k 38.0 76.6 11.8k 46.8 68.6 8.8k 45.7

8 of 24 70.4 12.6k 54.4 75.1 11.6k 52.7 68.9 8.6k 52.2
6 of 24 68.5 13.1k 41.0 75.6 11.9k 44.9 70.2 8.7k 48.6
4 of 24 70.3 13k 46.1 76.5 11.3k 59.8 68.1 8.3k 57.3

Token
Efficiency 69.5 12k 70.9 76.4 10.6k 84.6 68.5 7.5k 79.7

Adaptive
Difficulty 70.8 12.8k 50.8 76.6 11.6k 52.9 70.8 9k 41.7

Table 1: Pass@1 Accuracy, Response Lengths, and Length Inflation Reduction on AIME
25, AIME 24, and GPQA. GFPO variants match GRPO accuracy (no statistically significant
differences under the Wilcoxon signed-rank test) while reducing length inflation across all
benchmarks. Across configurations, sampling more responses is key, and lowering the
k/G ratio is an effective lever for controlling length. Token Efficiency delivers the largest
reductions overall, while Adaptive Difficulty surpasses Shortest k/G at equivalent com-
pute. Pass@1 accuracy is computed over 32 samples for AIME 25/24 and 5 samples for
GPQA. We highlight the best accuracy and length within G = 16 and G = 24 and between
Token Efficiency and Adaptive Difficulty. See Table 2 for results on Omni-MATH, Live-
CodeBench, and average performance across all benchmarks.

extent by which GFPO reduces response length inflation caused by GRPO over the SFT
model, as follows:

ELR =
LGRPO − LGFPO
LGRPO − LSFT

(4)

To understand whether GFPO accuracies match those of GRPO, we assess whether the
gap in pass@1 accuracies between GRPO and the GFPO variants is meaningful using the
Wilcoxon signed-rank test (Wilcoxon, 1992). This non-parametric, paired test compares the
per-question differences in pass@1 accuracy without assuming a normal distribution.

5 Results

We evaluate three GFPO variants:

• Shortest k/G: retains the k shortest responses from G, with both k and group size G
varied to study their effect on length reduction.

• Token Efficiency: retains the k most reward-per-token efficient responses from G, us-
ing k = 8, G = 16 (matching the baseline Shortest k/G setting).

• Adaptive Difficulty: retains the k shortest responses from G, with k chosen dynami-
cally with real-time difficulty estimates (4, 6, 8, and 8 for easy→very hard) and G = 16.

We measure pass@1 accuracy and Excess Length Reduction (Equation 4). The Wilcoxon
signed-rank test shows no statistically significant accuracy differences between GFPO vari-
ants and GRPO across tasks, indicating GFPO preserves accuracy while reducing length.

5.1 Think Less Without Sampling More? A natural question is whether rejection sam-
pling alone—without increasing the total number of sampled responses—can signifi-
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Omni-MATH LiveCodeBench Average

Acc Avg
Len

% Len
Inf (↓) Acc Avg

Len
% Len
Inf (↓) Acc Avg

Len
% Len
Inf (↓)

SFT 84.7 9.6k N/A 57.7 10.3k N/A 69.2 9.5k N/A
GRPO 86.0 12.7k 0.0 56.7 13.9k 0.0 72.1 13k 0.0

6 of 8 88.3 12.9k -5.5 56.4 13.6k 7.0 72.7 12.9k 4.8

8 of 16 89.3 11.8k 31.5 59.8 12.6k 36.5 73.4 12k 29.7
6 of 16 87.8 11.4k 43.7 58.3 12.6k 37.2 72.3 11.8k 36.2
4 of 16 88.0 11.3k 47.3 57.2 12.3k 43.2 72.0 11.5k 44.2

8 of 24 87.5 11.1k 51.9 56.5 11.8k 59.4 71.7 11.1k 54.1
6 of 24 88.1 10.9k 58.2 58.7 12.4k 42.7 72.2 11.4k 47.1
4 of 24 87.6 10.5k 71.0 59.2 11.8k 57.0 72.3 11k 58.2

Token
Efficiency 87.4 10.1k 82.6 57.0 11k 79.7 71.7 10.2k 79.5

Adaptive
Difficulty 88.9 11.6k 35.1 57.2 12.1k 49.4 72.9 11.4k 46.0

Table 2: Pass@1 Accuracy, Response Lengths, and Length Inflation Reduction on Omni-
MATH, LiveCodeBench, and Average Across All Benchmarks. GFPO variants cut length
inflation and slightly boost accuracy over GRPO on Omni-MATH. On LiveCodeBench
(out-of-distribution, coding), GRPO exhibits substantial length inflation without accu-
racy gains, whereas GFPO variants reduce length and in some cases improve accuracy
(e.g., 8/16, 4/24). On average across all benchmarks (AIME 25, AIME 24, GPQA, Omni-
MATH, LiveCodeBench), Token Efficiency GFPO achieves the largest excess length reduc-
tion (79.5%) while maintaining GRPO-level accuracy. Pass@1 accuracy is computed over 1
sample for Omni-MATH and 3 samples for LiveCodeBench.

cantly reduce response lengths. To study this, we experiment with Shortest 6/8 GFPO—
subsampling the k = 6 shortest responses from a group size of G = 8. We find that Short-
est 6/8 GFPO achieves comparable accuracy to GRPO on AIME 25, AIME 24, GPQA, and
Omni-MATH. However, the resulting reductions in excess length are modest: Shortest 6/8
GFPO only cuts length inflation by 1.8%, 9.5%, and 11.5% on AIME 25, AIME 24, and
GPQA respectively and even leads to a minor length increase on Omni-MATH (+5.5%)
(Tables 1, 2). This suggests that while subsampling from a small group can yield modest
reductions in response length, more substantial reductions may require increasing G to
draw shorter chains to train on. This motivates our subsequent experiments exploring if
sampling more can enable models to think less.

5.2 GFPO Enables Efficient Reasoning. Motivated by the observation that sampling more
responses may substantially reduce chain length, we investigate the effectiveness of the
Shortest 8/16 GFPO variant. In this method, we increase our group sample size to G = 16
and retain only the shortest 8 responses—effectively training the model on the shortest 50%
of sampled chains, with the rejected samples receiving zero advantage.

Finding

“Thinking Less” Requires Sampling More: Reducing retained responses without
increasing group size (Shortest 6/8 GFPO) does not reduce response length.

Applying Shortest 8/16 GFPO, we observe significant reductions in length inflation across
multiple benchmarks—23.8% reduction in excess length on AIME 25, 33% reduction on
AIME 24, 23.7% reduction on GPQA, and 31.5% reduction on Omni-MATH, all without
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Figure 3: Pareto Trade-off Between Accuracy and Response Length. For all bench-
marks except AIME 25, at least one GFPO variant strictly dominates GRPO—achieving
both higher accuracy and shorter responses (green region above and to the left of GRPO).
For AIME 25, GRPO attains the highest accuracy, but several GFPO variants, while taking
non-significant accuracy dips, remain Pareto-optimal because their responses are shorter,
and no other method is simultaneously more accurate and more concise. On average,
Shortest 4/24, Adaptive Difficulty, and Shortest 8/16 are strictly Pareto-superior to GRPO
with Token Efficiency close behind.

any statistically significant drops in accuracy (Tables 1, 2). Overall, GFPO substantially
reduces response lengths while maintaining the strong reasoning performance of GRPO.

5.3 Effect of Varying k and G on Length Reductions. We next investigate how varying the
retained group size (k) and the sampled group size (G) affects length reduction, motivated
by the intuition that either rejecting more responses (k ↓) or sampling more extensively
(G ↑) could further shorten reasoning chains. Compared to Shortest 8/16 GFPO, slightly
reducing the retained set to Shortest 6/16 GFPO yields moderate additional reductions:
1.8% more on AIME 25, 2.6% more on AIME 24, 15.1% more on GPQA, and 12.2% more on
Omni-MATH. Decreasing k further with Shortest 4/16 GFPO achieves even stronger im-
provements over Shortest 8/16, providing 14.2%, 13.8%, 22%, and 15.8% additional excess
length reduction on the same benchmarks (Tables 1, 2).

We also investigate scaling up the sampled group size G from 16 to 24, while hold-
ing k fixed. Moving from Shortest 8/16 to 8/24 yields substantial additional reduc-
tions in excess length (30.6%, 19.7%, 28.5%, and 20.4% more on AIME 25, AIME 24,
GPQA, and Omni-MATH respectively). Similarly, moving from Shortest 6/8 to 6/16

Figure 4: Average Response Length
vs k/G. ↓ k/G →↓ Lavg but beyond
a point leads to diminishing returns.

provides large added excess length reductions
(23.4%, 26.2%, 27.3%, and 49.2% more), with smaller
additional improvements (15.4%, 9.3%, 9.8%, and
14.5% more) when scaling further to 6/24. Finally,
increasing from Shortest 4/16 to 4/24 achieves ad-
ditional length reductions of 8.1%, 13%, 11.5%, and
23.7% respectively on the same datasets (Tables 1, 2).

These results collectively indicate that the crucial
knob for controlling response length is the propor-
tion of retained responses (k/G)—decreasing k/G by
decreasing k or increasing G enables response length
reductions (Figure 4). We confirm this by compar-
ing two configurations—Shortest 4/16 and Shortest
6/24—with identical retention fractions of 25% but
different absolute values of k and G. Shortest 6/24
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achieves slightly better average length reductions (by 2.9%) (Table 2, Figure 4), reflecting
that a larger sampled group size (G) increases the chance of encountering high-quality
short chains. Notably, this suggests that once the sampled group size is sufficiently large
(↑ G from 8 → 16), strong length reductions can be efficiently achieved by simply tun-
ing k without needing further sampling. Ultimately, decreasing the retained fraction too
aggressively yields marginal improvements (e.g., 8/24 to 4/24 yields only 4.1% average
additional excess length reduction) (Table 2). Therefore, to push beyond these limits, we
must leverage smarter sampling strategies.

Finding

% of Retained Responses (k/G) Controls Length Pressure: Lowering k or raising G
further reduces length; retaining 25–33% of responses is observed as optimal, with
smaller ratios yielding diminishing gains. Shortest 4/24 is the best length optimized
GFPO variant, yielding the strongest excess length reductions.

5.4 Reinforcing Token Efficiency. Earlier experiments revealed that simply decreasing
the proportion of retained responses k/G eventually hits a ceiling: beyond a certain group
size it is difficult to yield substantially shorter reasoning chains. To overcome this plateau,
we introduce Token Efficiency GFPO—a “smart-sampling” approach that ranks responses
by reward-per-token (reward/length). The intuition is straightforward: the policy should
prioritize chains that deliver high reward efficiently; longer solutions should be favored
only if justified by high enough rewards.

Mechanically, Token Efficiency GFPO retains the top-k responses according to the ratio
Ri/|oi|. Short correct chains and some long correct and incorrect chains maximize this
ratio. Computing advantages within this filtered set results in short correct chains receiv-
ing the strongest positive gradients, long correct chains receiving modest bonuses or mild
penalties, and long incorrect chains incurring the steepest penalties. The additional gra-
dient pressure on long incorrect chains trims “filler” tokens that shortest-k GFPO cannot
directly target, as it provides no gradient signal beyond the length of the longest retained
chain. While shortest-k relies on the KL penalty to implicitly nudge late-token probabilities
downward, Token Efficiency GFPO supplies explicit negative gradients to actively disin-
centivize these late, low-value token positions.

We train this method with k = 8 and G = 16. Token Efficiency GFPO delivers the largest
excess length reductions across all tasks—70.9% on AIME 25, 84.6% on AIME 24, 79.7%
on GPQA, and 82.6% on Omni-MATH—outperforming the shortest-k variants (Tables 1, 2)
smaller or equivalent G. These added length reductions come at a slight cost: training
curves exhibit higher variance in policy performance (Figure 2) and we observe minor
non-statistically significant degradations in accuracy (Tables 1, 2).

Finding

Token-efficiency (reward/length) Optimization Yields Largest Cuts: Excess length
reductions of 70.9% (AIME 25), 84.6% (AIME 24), 79.7% (GPQA), 82.6% (Omni-
MATH), 79.7% (LiveCodeBench) while maintaining accuracy. These reductions
come with slightly increased variance during training.

This variance is likely due to noisy gradients on token segments that occur in both long cor-
rect and incorrect responses, causing conflicting reward and penalty signals. Nevertheless,
Token Efficiency GFPO achieves the strongest token savings without sacrificing accuracy,
confirming that reward-per-token is an effective proxy for genuinely concise reasoning.

5.5 Adaptive Difficulty GFPO. Beyond intelligent sampling through improved rejection
metrics, we introduce Adaptive Difficulty GFPO, a method for strategically determining
the retained group size k based on question difficulty—allocating more training resources
to harder questions.
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In Adaptive Difficulty GFPO (Section 3.1), we estimate question difficulty using the aver-
age reward of responses per question, efficiently compute problem difficulty quartiles at
each training step, and categorize questions into four difficulty buckets: very hard (bottom
25%), hard (25–50%), medium (50–75%), and easy (top 25%). Based on this categorization,
we retain the 8, 8, 6, or 4 shortest responses (of G = 16 sampled) for questions from hardest
to easiest, respectively (Algorithm 2).

For this configuration of Adaptive Difficulty GFPO, the average k per question is 6.5, so
we compare this approach against Shortest 6/16 GFPO which closely matches the number
of retained responses k and the group size G. While Shortest 6/16 GFPO achieves stronger
excess length reductions on Omni-MATH (43.7% vs. 35.1%), Adaptive Difficulty GFPO
outperforms it on AIME 25 (50.8% vs. 25.6%), AIME 24 (52.9% vs. 35.6%), and GPQA
(41.7% vs. 38.8%), despite Shortest 6/16 GFPO applying slightly more aggressive response
pruning. Compared to Shortest 4/16 GFPO, which filters even more aggressively, Adaptive
Difficulty GFPO still achieves superior excess length reductions on AIME 25 (50.8% vs.
38%) and AIME 24 (52.9% vs. 46.8%) (Tables 1, 2).

Finding

Adaptive Difficulty GFPO Beats Shortest-k at Equal Compute: Adaptively decid-
ing k based on question difficulty yields stronger length reductions on 4/5 bench-
marks than Shortest-k at equivalent compute.

Adaptive Difficulty GFPO also attains the highest accuracy on GPQA (70.8%) (Table 1) and
on the hardest AIME 25 questions (27%) (Figure 6a) compared to GRPO and all GFPO vari-
ants. These results underscore the effectiveness of strategically allocating sampling budget
based on problem difficulty. Note that Adaptive Difficulty GFPO could be optimized with
the token efficiency metric for even stronger outcomes.

5.6 Out-of-Distribution Effects of GFPO. Our RL training recipe is geared towards en-
hancing mathematical reasoning performance. To investigate potential adverse effects of
GFPO’s bias toward shorter responses, we assess out-of-distribution generalization on the
LiveCodeBench coding benchmark. Note that coding is not a part of our RL training set.

We observe that GRPO leads to significant response length inflation even out-of-
distribution, increasing average response length from 10.3k tokens (SFT) to 13.9k tokens
without improving accuracy (56.7% GRPO vs 57.7% SFT). While thinking for longer as a
result of RL may be warranted to solve harder problems in-distribution, this length in-
flation is unexpected and undesirable for out-of-distribution tasks, particularly when no
accuracy gains accompany the longer outputs.

Finding

GFPO Mitigates OOD Length Inflation: GRPO increases response length on out-
of-distribution tasks without accuracy gains; GFPO curbs this while modestly im-
proving accuracy.

GFPO effectively mitigates this unintended verbosity. On LiveCodeBench, Token Effi-
ciency GFPO achieves the most substantial reduction (79.7%) in excess response length.
GFPO variants even yield modest accuracy improvements on the coding task: Shortest
8/24 GFPO slightly outperforms both SFT and GRPO in accuracy (59.2% vs. 57.7% and
56.7%, respectively) while simultaneously cutting excess length by 57%. These results high-
light GFPO’s ability to maintain—and even slightly enhance—out-of-distribution general-
ization while explicitly managing response length increase.

5.7 Accuracy-Length Pareto Comparison. Figure 3 provides a holistic view of the
accuracy—response length frontier. Across four of the five benchmarks, at least one GFPO
variant is strictly Pareto-superior to GRPO (landing in the green region), confirming that
GFPO can deliver both shorter and more accurate answers, improving both axes simul-
taneously. Even on AIME 25, where GRPO has slightly better accuracy, GFPO variants
remain on the Pareto front by offering meaningful length reductions without statistically
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(a) Average Response Length Across Problem
Difficulties.

(b) Excess Length Reduction Across Problem
Difficulties.

Figure 5: Average Length and Excess Length Reductions Across Problem Difficulties. Re-
sponse lengths rise with problem difficulty for all methods (left), but GFPO reduces excess
length across all problem difficulty levels (right). Token efficiency has the most significant
reductions–with responses more brief than even the SFT baseline on easy questions. Short-
est 8/24 has the strongest reductions on very hard questions.

significant losses in accuracy. Aggregating across tasks (bottom-right panel) highlights
Shortest 4/24, Adaptive Difficulty, and Shortest 8/16 as the most consistently concise and
accurate methods, with Token Efficiency trailing in accuracy by a narrow margin.

6 Analysis

We analyze GFPO’s behavior on the AIME 2025 dataset by measuring question difficulty as
1− SFT accuracy—capturing how challenging each problem is for the base SFT model prior
to RL. Questions are partitioned into difficulty quartiles (easy, medium, hard, very hard)
to study how GFPO affects response length and accuracy across difficulty levels. We then
examine the accuracy of long responses under fixed difficulty and how GFPO reshapes the
joint length–accuracy distribution. Finally, we investigate what parts of responses GFPO is
trimming and share qualitative examples comparing GFPO with GRPO in Appendix A.

6.1 Length Reductions on Easy vs Hard Problems. We analyze how GFPO’s length re-
ductions vary with question difficulty on AIME 2025. As expected, response lengths sig-
nificantly increase with difficulty—from roughly 4k tokens on easy questions to over 20k
tokens on very hard ones (Figure 5a). GFPO effectively reduces lengths across all difficulty
levels (Figure 5b).

Token Efficiency GFPO achieves the strongest overall reductions, particularly on easy ques-
tions (121.6% excess length reduction compared to GRPO) (Figure 5b), surpassing even the
SFT model’s brevity while improving accuracy—demonstrating that length and accuracy
can be optimized simultaneously. However, its reductions decrease on harder questions
(79.1% on medium, 63.5% on hard, 56.5% on very hard) because the token efficiency metric
allows longer responses when justified by higher rewards, common for difficult problems
requiring additional reasoning.

Adaptive Difficulty GFPO exhibits increasing excess length reductions with difficulty
(37.7% on easy vs. 60.3% on very hard), effectively trimming the ”long tail” of lengthy
responses (Figure 5b). Although both Adaptive Difficulty and Shortest 8/16 GFPO retain 8
shortest responses for hard problems, Adaptive Difficulty achieves stronger length reduc-
tions. This succinctness likely stems from brevity gradients from easier problems, teaching
the policy to avoid unnecessary tokens even on challenging tasks.
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(a) Accuracy Across Problem Difficulties. Adap-
tive Difficulty and Shortest 8/24 have the best ac-
curacies. Token Efficiency has strongest length
cuts, but with small non-statistically significant
drops in accuracy.

(b) Accuracy, Response Share, and Prompt Dif-
ficulty by Response Length. Each cell shows
accuracy (center), response share (top left), and
prompt difficulty (bottom right; avg difficulty
(← 1− SFTacc) of prompts corresponding to re-
sponses in cell, for a fixed response length range.

Figure 6: GFPO Accuracy Across Difficulty Levels and Response Lengths. (a) Accuracy
Across Problem Difficulties shows Adaptive Difficulty matching or exceeding GRPO ac-
curacy on easy, medium, and very hard questions with Shortest 8/24 matching GRPO on
hard problems via larger G. (b) Accuracy, Response Share, and Prompt Difficulty by Re-
sponse Length shows GFPO cuts long-tail verbosity (32% to 22% outputs≥ 20k) and solves
hard problems with shorter responses (∼9x harder prompts solved with ≤ 5k tokens).

Finding

• GFPO shortens responses across all difficulty levels.
• Token Efficiency GFPO delivers the largest reductions on easy, medium, and

hard questions—on easy questions producing responses even shorter than the
SFT model while matching GRPO’s accuracy.

• Shortest 8/24 GFPO achieves the greatest reductions on the hardest questions
due to its stronger filtering.

As expected, Shortest 8/24 GFPO consistently achieves stronger reductions than Short-
est 8/16 across all difficulty levels. Notably, Shortest 8/24 yields the largest reductions
on very hard questions, outperforming Token Efficiency GFPO—which preserves high-
reward long responses—and Adaptive Difficulty GFPO—which retains a larger fraction of
responses for hard problems during training (Figure 5b).

6.2 Accuracy on Easy vs Hard Problems. Next, we examine GFPO’s accuracy across diffi-
culty levels on AIME 2025 (Figure 6a). All methods achieve near-perfect accuracy (98–99%)
on easy problems. SFT accuracy sharply declines as difficulty increases, whereas RL fine-
tuning (GRPO and GFPO) consistently improves performance over SFT.

Token Efficiency GFPO achieves large length reductions (Figure 5b), though with small,
statistically insignificant accuracy drops compared to GRPO (Figure 6a). Adaptive Diffi-
culty GFPO matches or exceeds GRPO’s accuracy on easy, medium, and very hard ques-
tions notably improving accuracy on medium problems (90.2% vs. 88.4%) while reducing
excess length by 47%. On very hard questions—where other GFPO variants slightly lose
accuracy—Adaptive Difficulty matches GRPO (27% vs. 26.6%) by adaptively allocating
more compute and exploration to challenging problems while simultaneously reducing
excess length by 60% (Figure 5b).
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Finding

• Adaptive Difficulty GFPO surpasses GRPO accuracy on medium and very
hard problems while reducing excess length by 47%-60%.

• Larger group sizes improve accuracy on hard problems: Adaptive Difficulty
(k = 8, G = 16) drops slightly on hard problems, but Shortest 8/24 matches
GRPO accuracy by sampling more to find concise correct answers.

However, Adaptive Difficulty experiences a modest accuracy drop on hard problems.
Easy-to-medium problems enable confident filtering of long responses due to all re-
sponses having consistently high rewards. Very hard problems rarely yield correct an-
swers even with long responses, enabling aggressive filtering without sacrificing accuracy.

Figure 7: Accuracy vs Relative Length for
Hard and Very Hard Problems. Accu-
racy declines with increasing response length
even at fixed difficulty. On hard prob-
lems, most models peak at 12k− 16k tokens,
while GFPO variants outperform GRPO in
the longest bin by producing shorter, more
accurate long responses. On very hard prob-
lems, Adaptive Difficulty is most robust.

Hard problems occupy a middle ground,
where discarding beneficial longer re-
sponses slightly reduces accuracy. Increas-
ing group size (e.g., from 16 to 24 responses
per question) can address this limitation.

Shortest 8/24 GFPO illustrates this ap-
proach: sampling more responses en-
sures retaining high-quality concise chains,
fully matching GRPO’s accuracy on hard
problems (73.4%) (Figure 6a). Overall,
GFPO robustly preserves accuracy across
difficulty levels, with Adaptive Difficulty
strategically allocating sampling resources
to effectively balance length and correct-
ness.

6.3 Accuracy of Long Responses under
GFPO. Longer responses from reasoning
models often show lower accuracy, but
this trend is confounded by question dif-
ficulty—harder problems naturally elicit
longer outputs so accuracy may drop due
to question difficulty instead of response
verbosity. To disentangle these effects, we
hold difficulty constant and analyze how
response length alone affects model perfor-
mance on AIME 2025. We partition each
model’s responses for hard and very hard problems into length quartiles (Figure 7), us-
ing the SFT model’s per-question accuracy as a proxy for difficulty, and compute response
accuracy within each quartile (Figure 7).

Accuracy declines consistently with increasing length for both difficulty levels–confirming
that longer responses tend to be less accurate, even when problem difficulty is held con-
stant. On hard problems, most models peak at mid-low or mid-high lengths (Figure 7)
(12k–16k tokens) (Table 3), suggesting a sweet spot: long enough for reasoning, but short
enough to avoid over-thinking.

Finding

Longer responses are less accurate even at fixed difficulty: Across hard problems,
the sweet spot for reasoning emerges around 12k–16k tokens.

Beyond this range, accuracy drops consistently. GFPO variants outperform GRPO in the
longest bin in both difficulty levels (66.7% vs 52.1% on Hard, 20.3% vs 17.2% on Very Hard)
(Table 4), as their longest responses are less verbose (20.8k vs. 23.8k on Hard; 26.9k vs. 27.5k
on Very Hard) (Table 3) and more accurate than those from GRPO.
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Finding

GFPO outperforms GRPO accuracy in the lengthiest response quartiles.

Figure 8: Response Length Kernel Density. Dis-
tribution of response lengths across all outputs on
AIME 25. All GFPO variants compress the long
tail shifting distribution mass toward shorter out-
puts. Token Efficiency and Shortest 8/24 achieve
the largest shifts.

For very hard problems, accuracy falls
off more sharply with length. Only
Adaptive Difficulty and Token Effi-
ciency improve from short to mid-
low bins; all others decline steadily.
Token Efficiency and Shortest 8/24
show the steepest drops in longer bins,
likely due to aggressive filtering re-
ducing exposure to long chains in
training. Adaptive Difficulty is the
most robust, maintaining stable accu-
racy across bins and avoiding sharp
drops in very hard cases. In con-
trast, SFT—while less prone to degra-
dation—rarely solves hard problems,
yielding a flat but low accuracy profile
(Figure 7).

We complement this with an absolute-length analysis across models on AIME 25 (Fig-
ure 6b)–holding the response lengths fixed between models and evaluating the accuracy,
fraction of responses, and difficulty of the unique prompts corresponding to the responses
per fixed length bin. GFPO shifts substantial mass away from the long tail (≥20k tokens),
reducing it from 32% (GRPO) to 22–23% and boosting the share of <15k responses.

Finding

GFPO cuts extreme verbosity: dropping the fraction of≥ 20k-token responses from
32% to 22%, while solving harder problems at shorter lengths (questions answered
in ≤ 5k tokens are 9× harder in GFPO than GRPO).

These shorter GFPO responses often solve harder problems: in the ≤5k bin, prompt diffi-
culty is 9× higher than GRPO’s (16–18% vs. 2% hardness) with only minor accuracy dips
(e.g., 100% → 97%). Slightly lower accuracy in GFPO’s longest bins reflects that many of
these prompts are already solved at shorter lengths; remaining long outputs are rare, out-
of-distribution cases corresponding to the hardest questions. Together, the relative- and
absolute-length analyses show verbosity—not difficulty—is the main driver of GRPO’s
long-chain errors. GFPO, by contrast, solves difficult problems more succinctly with com-
petitive or better accuracy.

Figure 9: Accuracy Kernel Density. Per-repeat
pass@1 accuracy distributions on AIME 25 from
32 independent runs for SFT, GRPO, and GFPO
variant indicate the variance in performance of
each model.

6.4 Distribution-Level Effects of
GFPO. To visualize how GFPO re-
shapes the accuracy–length landscape,
we plot kernel density estimates for re-
sponse lengths (Figure 8) and pass@1
accuracies over 32 independent runs
(Figure 9) on AIME 25.

We find that all GFPO variants com-
press the long tail, shifting mass to-
ward shorter responses (Figure 8). The
distribution of pass@1 accuracies on
AIME 25 allows a visual compari-
son of both typical performance and
run-to-run variability for each method
(Figure 9). The SFT model’s per-repeat accuracy distribution is left-skewed, indicating
lower average performance across runs, while GRPO’s distribution is shifted right, reflect-
ing higher typical accuracies.
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Figure 10: Average Token Counts by Reasoning-Trace Section for AIME 25 (left) and
GPQA (right). GRPO expands the Solution and Verification phases relative to SFT. GFPO
variants markedly reduce this excess—on AIME 25, Shortest 8/24 cuts Solution length by
94.4% and Verification length by 66.7%.

GFPO variants fall between these extremes. Token Efficiency GFPO shows the narrow-
est spread, suggesting the most consistent accuracy from repeat to repeat. Shortest 8/24
closely matches GRPO’s central mass, while Adaptive Difficulty exhibits a slightly bi-
modal profile—indicating that some repeats achieve GRPO-level accuracy while others
drop slightly lower.

We quantify the accuracy–length trade-off on AIME 25 by measuring the share of prompts
with accuracy≥ 70% and responses with length≥ 15k tokens. GRPO produces the highest
proportion of long responses (46.8%), compared to 28% for SFT. GFPO variants reduce
this to 42.1% (Shortest 8/16), 35% (Shortest 8/24), 37.8% (Adaptive Difficulty), and 32.7%
(Token Efficiency). GRPO has 70% of prompts with accuracy ≥ 70%, while GFPO variants
follow behind, with modest reductions—66.7% (Shortest 8/16), 60% (Shortest 8/24), 63.3%
(Adaptive Difficulty), and 60% (Token Efficiency). Note, however, that the differences in
average accuracy across prompts between GRPO and GFPO are not statistically significant.

Finding

Which GFPO variant is best?
• Token Efficiency: strongest length reductions, small drops in accuracy
• Adaptive Difficulty: best accuracy on hardest problems with solid length cuts
• Shortest 8/24: very effective at managing accuracy-length trade-off

Overall, both Shortest 8/24 GFPO and Adaptive Difficulty strike a strong bal-
ance—substantially shortening responses while preserving high accuracy on a large share
of questions. Further gains may be possible by tuning the k/G ratio for Token Efficiency
GFPO and Adaptive Difficulty GFPO, or by training Adaptive Difficulty with the token
efficiency metric.

6.5 What is GFPO trimming? To investigate the source of GFPO’s length reductions,
we annotate reasoning traces from five models—SFT, GRPO, Shortest 8/24 GFPO, Token
Efficiency GFPO, and Adaptive Difficulty GFPO—on AIME 25 and GPQA using GPT-4o.
We first segment each trace into smaller chunks and label every sentence according to its
functional role in the reasoning chain:
i) Problem: text relating to problem formulation and understanding,
ii) Solution: sentences proposing or developing candidate solutions,
iii) Verification: steps where the model re-checks or validates intermediate results, and
iv) Final: the concluding statements that deliver the answer.

A qualitative comparison of GRPO vs GFPO using our annotations is shown below. See
Appendix A for more examples on AIME 25 and GPQA.
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AIME 25 II Problem 1: GRPO v/s Token Efficiency GFPO

User:

Six points A, B, C, D, E and F lie in a straight line in that order. Suppose that G is a point
not on the line and that AC = 26, BD = 22, CE = 31, DF = 33, AF = 73, CG = 40, and
DG = 30. Find the area of△BGE.

GRPO

<think>... So now triangle BGE: B = (18, 0), G = (58, 24), E = (57, 0). Its base BE = distance
from 18 to 57 = 39. But then what is the height? The triangle’s base is along x-axis and G
has y coordinate 24, but note that G is not vertically above the segment? Actually, base BE:
endpoints (18, 0) and (57, 0). The distance from G to line BE is simply the absolute y coordi-
nate if G’s x coordinate lies between 18 and 57? But here xG = 58, so G is to the right of E.
But the formula for area using base and height with base along line is the distance from G
to the line containing BE. But the line containing BE is horizontal (y = 0). So the distance is
|24| = 24, regardless of the x-coordinate. So area = 1

2 · base · height = 1
2 · 39 · 24 = 468.

...
Wait, 39 · 24 = 936, half is 468. But wait, is that the answer? Let’s check: base BE length
= 57− 18 = 39, height = 24. So area = 39·24

2 = 468.
...
But the problem’s answer is expected to be an integer? Possibly yes. But let’s check
step 1: “Six points A, B, C, D, E, F lie in a straight line in that order.” Our computed po-
sitions are consistent: A = 0, B = 18, C = 26, D = 40, E = 57, F = 73. Check
distances: AC = 26, BD = 40 − 18 = 22, CE = 57 − 26 = 31, DF = 73 − 40 = 33,
AF = 73, correct. Now then triangles: CG = distance from C = (26, 0) to G = (58, 24)
equals

√
(32)2 + 242 =

√
1024 + 576 =

√
1600 = 40, and DG =

√
(58− 40)2 + 242 =√

182 + 576 =
√

324 + 576 =
√

900 = 30, so correct. Now triangle BGE: vertices B = (18, 0),
G = (58, 24), E = (57, 0). The base BE has length 57− 18 = 39, and the height is the vertical
distance from G to the x-axis is 24, so area= 39·24

2 = 468. So answer is 468.
...
However, double-check: It might be that G could have negative y. But then area is same
magnitude, absolute value. Therefore answer: 468.
...
But wait, check problem statement: “Find the area of triangle BGE.” Not necessarily with
base BE horizontal? But we computed that. I want to check if there’s any trick: Possibly
the triangle is not oriented with base along the line containing B and E because then the
altitude would be the distance from G to that line. And indeed the line BE is horizontal, so
the altitude is the absolute value of G’s y-coordinate. We computed G’s y-coordinate as 24.
So final answer: 468.
...
Wait, but what about possibility x = 58? Let’s double-check the x-coordinate from differ-
ence of circle equations: We had circles: (x− 26)2 + y2 = 402 = 1600, (x− 40)2 + y2 = 302 =
900. Subtracting: (x− 26)2− (x− 40)2 = 700. Expand: (x2− 52x+ 676)− (x2− 80x+ 1600) =
−52x + 676 + 80x − 1600 = 28x − 924 = 700, so 28x = 1624, x = 58. So that’s consistent.
So yes. Thus final answer: 468. ...... </think>

Token Efficiency GFPO

<think>... Now we want the area of triangle BGE. The vertices are B = (18, 0), G = (58, 24)
or (58,−24), and E = (57, 0). The area is given by 1

2 absolute value of cross product of
−→
BG

and
−→
BE etc. Let’s compute vectors:

−→
BG = G− B = (58− 18, 24− 0) = (40, 24).

−→
BE = E− B =

(57− 18, 0− 0) = (39, 0). Area = 1
2 |det(

−→
BG,
−→
BE)| = 1

2 |(40 · 0− 24 · 39)| = 1
2 | − 936| = 468.

Thus answer: 468. So final answer: 468. ...... </think>

Comparison:

The GRPO response recomputes the area of△BGE six times, while Token Efficiency GFPO
computes it only once.
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We report the average token counts per section for each model across AIME 25 and GPQA
(Figure 10). On both benchmarks, GRPO inflates the mid-trace reasoning (Solution and
Verification) substantially compared to the SFT baseline. For example, on AIME 25 the
Solution segment grows from 6.5k tokens (SFT) to 8.3k tokens, and Verification from 1.9k to
3.1k tokens.

In contrast, the three GFPO strategies effectively compress those phases. Shortest 8/24
GFPO reduces the AIME 25 Solution segment from 8.3k to 6.6k tokens (94.4% reduction in
excess length). This indicates that GFPO many tokens proposing different candidate solu-
tion which may be incorrect or unnecessary digressions, while GFPO hones in on promis-
ing candidates and cuts the noise. Shortest 8/24 also reduces the Verification tokens on
AIME 25 from 3.1k to 2.3k (66.7% reduction in excess length), cutting a large portion of the
repetitive, circular checks characteristic of GRPO.

Token Efficiency GFPO achieves even lower token usage than Shortest 8/24 across all
sections, except in AIME 25’s Solution phase, where Shortest 8/24 produces stronger re-
ductions. Adaptive Difficulty GFPO also trims the Solution and Verification sections sub-
stantially, though less aggressively than the other two methods. Similar trends appear on
GPQA.

Finding

GFPO slashes verbosity in the solution and verification phases of reasoning—
cutting 94.4% of excess length in the solution and 66.7% of the excess length in the
verification steps on AIME 25.

The GFPO variants leave the Problem and Final segments largely unchanged (within 10%
of SFT counts), showing that GFPO specifically targets verbosity and redundancy in the
core reasoning steps while preserving both the problem statement and the final answer.

7 Related Work

GRPO Loss Modifications. Recent works such as Dr. GRPO (Liu et al., 2025) and
DAPO (Yu et al., 2025) modify GRPO’s loss normalization to improve token efficiency and
training stability. Standard GRPO normalizes loss within each response before averaging,
giving all responses equal weight—resulting in the downweighting of tokens in longer
outputs. Dr. GRPO instead normalizes by the maximum response length in the batch, and
DAPO by the total token count—both increasing the weight of tokens in longer responses
to more heavily penalize incorrect long chains.

Following open-source RL training frameworks such as verl (Sheng et al., 2024) and
TRL (von Werra et al., 2020), GFPO uses DAPO’s token-level normalization. However, this
not only penalizes long incorrect chains but also boosts the reward for long correct ones,
often driving stronger SFTed reasoning models (e.g., Phi-4-reasoning-plus, DeepSeek-R1-
Distill-Qwen) toward greater verbosity. This highlights the limits of loss normalization
alone for length control. GFPO instead modifies the advantage function by computing ad-
vantages only for retained chains, a change independent of loss normalization; while our
experiments pair it with DAPO’s loss aggregation, it could be combined with alternatives
such as Dr. GRPO in future work.

Length-Aware Penalties. Beyond normalization, several works add explicit length-aware
penalties to the reward in GRPO to discourage longer reasoning chains: Hou et al. (2025)
impose a token-limit during RL (zero reward beyond the cap) and iteratively tighten it;
Su & Cardie (2025) use an adaptive direct length penalty that evolves over training to
curb over/under-compression; Xiang et al. (2025) scale the penalty inversely with per-
prompt solve rate so easy prompts pay more for extra tokens; Cheng et al. (2025) combine
a global length reward with a targeted compress reward to remove redundant thinking;
and Aggarwal & Welleck (2025) optimize accuracy subject to a prompt-specified target
length by penalizing deviations. In our initial runs, simply scaling the length penalty in
our length-aware reward did not yield substantial length reductions, or reduced length
at the cost of accuracy. In contrast, GFPO’s rejection step implicitly shapes the reward by
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determining which samples are used for learning, offering a simpler way to optimize for
multiple properties (e.g., length, safety) without complex reward engineering. At the same
time, pairing GFPO with a more carefully crafted reward could potentially deliver further
gains.

Inference-time Interventions. Other works have also explored how to control reasoning
length purely at inference-time. Like our work, Hassid et al. (2025) show that shorter chains
are often more accurate (even when controlling for hardness) and propose voting over the
shortest m of k samples. Muennighoff et al. (2025) introduce “budget forcing”, where spe-
cial phrases such as “Wait” or “Final Answer” are used to control when reasoning stops
without re-training. Other approaches monitor intermediate generation signals and halt
when the model appears confident or when the answer stabilizes across consecutive rea-
soning chunks (Liu & Wang, 2025; Yang et al., 2025). These methods are complementary
to GFPO and could be combined to further reduce inference-time costs or enforce length
constraints at post-training time.

Rejection Sampling Methods. Rejection sampling has been applied in various LLM train-
ing and decoding settings. Kim et al. (2024) explore post-training for length reduction after
RL by sampling multiple solutions per prompt and either (i) fine-tuning on the shortest
correct response or (ii) applying DPO with the shortest correct output as a positive exam-
ple and longer responses as negatives. In contrast, GFPO integrates rejection sampling
within the RL update—sampling a larger group per prompt and training on chains selected
by length or reward-per-token—avoiding extra distillation, length-alignment stages, or ex-
plicit penalty terms.

DAPO (Yu et al., 2025) employs “dynamic sampling” discarding prompts whose responses
are all correct or incorrect to stabilize batch gradients. Xiong et al. (2025) show that a simple
RAFT baseline (Dong et al., 2023), which trains solely on positively rewarded samples can
perform comparably to GRPO. While their filtering is based on correctness reward, GFPO
filters by length or token efficiency and can adaptively adjust the degree of filtering based
on question difficulty. Other applications include Khaki et al. (2024) which combines rejec-
tion sampling with DPO by sampling more responses per prompt, and selecting contrastive
pairs using reward scores;Lipkin et al. (2025), which uses adaptive weighted rejection sam-
pling for efficient constrained generation; and Sun et al. (2024), which accelerates Best-of-N
decoding by early-rejecting low-scoring candidates with a reward model.

8 Conclusion

We introduce Group-Filtered Policy Optimization (GFPO), a simple yet versatile exten-
sion of GRPO that samples more responses and selectively learns from those best aligned
with a desired attribute, such as brevity or token efficiency. This selective learning serves
as implicit reward shaping, guiding policies toward higher-quality outputs while curbing
undesirable behaviors like response length inflation without complex reward engineer-
ing. Across diverse reasoning benchmarks, length-optimized GFPO consistently preserves
GRPO-level reasoning ability while substantially improving reasoning efficiency. Token Ef-
ficiency GFPO delivers the strongest length reductions overall, while Adaptive Difficulty
GFPO applies test-time scaling only when needed—achieving the best efficiency-accuracy
trade-offs on the hardest problems. By applying selective learning at training-time, GFPO
converts a one-off increase in training-time compute into lasting gains in inference-time
reasoning efficiency.

9 Acknowledgments

We would like to thank Guoqing Zheng, Suriya Gunasekar, Piero Kauffmann, Mojan Java-
heripi, Safoora Yousefi, and the AI Frontiers team at Microsoft Research for valuable dis-
cussions and feedback throughout this project.

19



References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gu-
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A Qualitative Examples

AIME 25 I Problem 8: GRPO v/s Token Efficiency GFPO

User:

Let k be real numbers such that the system |25 + 20i− z| = 5 and |z− 4− k| = |z− 3i− k|
has exactly one complex solution z. The sum of all possible values of k can be written as m

n ,
where m and n are relatively prime positive integers. Find m + n. Here i =

√
−1.

GRPO

<think>... Equate squares: (x− (4+ k))2 + y2 = (x− k)2 + (y− 3)2. Expand: (x− (4+ k))2 =
(x− k− 4)2 = (x− k)2 − 2 · 4 · (x− k) + 16, wait check: actually, let’s expand properly. Let
A = 4 + k, B = k, then equation becomes (x− A)2 + y2 = (x− B)2 + (y− 3)2. Expand LHS:
(x− A)2 = x2− 2Ax + A2 and then plus y2, so LHS = x2− 2Ax + A2 + y2. RHS: (x− B)2 +
(y− 3)2 = (x2 − 2Bx + B2) + (y2 − 6y + 9) = x2 − 2Bx + B2 + y2 − 6y + 9. Cancel x2 and y2

yields−2Ax + A2 = −2Bx + B2 − 6y + 9. Rearranging: −2Ax + A2 + 2Bx− B2 + 6y− 9 =
0, or 2(B − A)x + 6y + (A2 − B2 − 9) = 0. But note that A2 − B2 = (A + B)(A − B) and
A+ B = (4+ k)+ k = 4+ 2k, and A− B = (4+ k)− k = 4, so A2− B2 = 4(4+ 2k) = 16+ 8k.
Then our equation is 2(B− A)x + 6y + (16 + 8k− 9) = 0, i.e. 2(B− A)x + 6y + (7 + 8k) = 0,
but note that B− A = k− (4 + k) = −4. Then 2(B− A)x = 2(−4)x = −8x, so the equation
becomes −8x + 6y + 7 + 8k = 0 or 8x− 6y = 7 + 8k.
...
Alternatively, we can get the perpendicular bisector of the segment connecting (4+ k, 0) and
(k, 3). Let’s check the midpoint: M =

Ä
4+k+k

2 , 0+3
2

ä
=
Ä

4+2k
2 , 3

2

ä
= (2 + k, 3/2). The slope

of the line joining these two points from (4 + k, 0) to (k, 3) equals 3−0
k−(4+k) = 3

−4 = − 3
4 . So

the perpendicular bisector slope is the positive reciprocal: 4
3 , and it passes through M. Its

equation is y − 3/2 = 4
3 (x − (2 + k)). Multiply both sides by 3: 3y − 9/2 = 4(x − 2− k).

Multiply both sides by 2: 6y− 9 = 8(x− 2− k) = 8x− 16− 8k. Then rearranging: 6y− 9 =
8x− 16− 8k, so 8x− 6y = 16 + 8k + 9 = 25 + 8k.
...
Let’s re-check... So the equation is (x − (4 + k))2 + (y− 0)2 = (x − k)2 + (y− 3)2. Expand
LHS: (x − 4− k)2 + y2 = (x − k − 4)2 + y2 = (x2 − 2x(4 + k) + (4 + k)2) + y2. The RHS is
(x − k)2 + (y− 3)2 = x2 − 2kx + k2 + y2 − 6y + 9. Cancel x2 and y2 from both sides to get
−2(4+ k)x + (4+ k)2 = −2kx + k2− 6y+ 9. Bring terms to one side: −2(4+ k)x + (4+ k)2 +
2kx− k2 + 6y− 9 = 0. Combine the x terms: −2(4 + k)x + 2kx = −8x− 2kx + 2kx = −8x.
Then the constant terms: (4+ k)2− k2− 9; expanding (4+ k)2 = k2 + 8k + 16, subtracting k2

gives 8k+ 16, and subtracting 9 gives 8k+ 7. So the equation becomes−8x+ 6y+ (8k+ 7) =
0, or equivalently 8x− 6y = 8k + 7.
...... </think>

Token Efficiency GFPO

<think>... Squaring both sides yields: (x − (4 + k))2 + y2 = (x − k)2 + (y − 3)2. Expand:
(x2 − 2(4 + k)x + (4 + k)2 + y2) = (x2 − 2kx + k2 + y2 − 6y + 9). Cancel x2 and y2, leaving:
−2(4 + k)x + (4 + k)2 = −2kx + k2 − 6y + 9. Simplify: Bring terms: −2(4 + k)x + (4 +
k)2 + 2kx − k2 + 6y − 9 = 0. Combine x terms: −2(4 + k)x + 2kx = −2(4 + k − k)x =
−2 · 4x = −8x. So equation becomes: −8x + (4 + k)2 − k2 + 6y− 9 = 0. Simplify constant:
(4 + k)2 − k2 = (16 + 8k + k2)− k2 = 16 + 8k. So the equation is: −8x + (16 + 8k) + 6y−
9 = 0, or −8x + 6y + (8k + 7) = 0, but check: 16 + 8k − 9 = 7 + 8k. Multiply by −1:
8x− 6y− (8k + 7) = 0, or in standard form: 8x− 6y = 8k + 7. ...... </think>

Comparison:

GRPO response recomputes and checks the perpendicular bisector equation 5 times (only 3
instances shown), while Token Efficiency GFPO computes it only once.
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AIME 25 II Problem 5: GRPO v/s Shortest 8/24

User:

Suppose △ABC has angles ∠BAC = 84◦, ∠ABC = 60◦, and ∠ACB = 36◦. Let D, E,
and F be the midpoints of sides BC, AC, and AB, respectively. The circumcircle of △DEF
intersects BD, AE, and AF at points G, H, and J, respectively. The points G, D, E, H, J, and
F divide the circumcircle of△DEF into six minor arcs, as shown. Find D̃E+ 2 · Ĥ J + 3 · F̂G,
where the arcs are measured in degrees.

A

B CD

EF

G

H
J

GRPO

<think> ...... We need to compute arcs on the circumcircle of triangle DEF. Let’s denote
the vertices of triangle DEF in order: It says circle of triangle DEF, and then the points
G, D, E, H, J, F are arranged in order along circle. So the vertices of triangle DEF are D, E, F.
But note the circle has six points in order, and the six arcs are (arc DE), then arc EH? Wait,
but check the given: They mention ”the points G, D, E, H, J, and F divide the circumcircle of
triangle DEF into six minor arcs, as shown.” That means the circle order is: G, then D, then
E, then H, then J, then F, and then back to G. But we need to be careful: The circumcircle
of triangle DEF has vertices D, E, F as well. So the arcs are between adjacent points in the
circle order. The six arcs are: arc GD, arc DE, arc EH, arc HJ, arc JF, arc FG. But the problem
statement says ”the points G, D, E, H, J, and F divide the circumcircle of triangle DEF into
six minor arcs, as shown.” But then they ask ”find arc DE + 2 · arc HJ + 3 · arc FG.” But
wait, which arc is arc FG? The arcs, I need to check which arcs are which from the order:
They are given in the diagram: The points in order are: G, then D, then E, then H, then J,
then F, then back to G. So the arcs are: arc GD, arc DE, arc EH, arc HJ, arc JF, arc FG. But
the problem asks for arc DE, then 2 · (arc HJ), then 3 · (arc FG). But note that arc FG is the
arc from F to G, but in our ordering, the arc from F to G is the arc FG, but careful: the order
is G-D-E-H-J-F, so arc FG is the arc from F to G, which is indeed the last arc in the sequence.
So we need to compute these arc measures, but they are not trivial. We need to find angles
related to triangle ABC and midpoints D, E, F. Let coordinates: A, B, C. But maybe we can
use properties: The circle through midpoints of sides of a triangle is the medial circle, but
it’s not necessarily the circumcircle of the medial triangle, but that’s exactly what it is: The
circumcircle of triangle DEF, where D, E, F are midpoints of BC, AC, AB respectively, is the
nine-point circle of triangle ABC. ..... </think>

Shortest 8/24 GFPO

<think> ...... We need to compute arcs on the circumcircle of triangle DEF. Let’s denote
the vertices of triangle DEF in order: It says circle of triangle DEF, and then the points
G, D, E, H, J, F are arranged in order along circle. So the vertices of triangle DEF are D, E, F.
But note the circle has intersections with lines BD, AE, AF. Let’s re-read the problem state-
ment. Given triangle ABC with angles A = 84, B = 60, C = 36. D, E, F are midpoints of
sides BC, AC, AB respectively. The circumcircle of triangle DEF intersects BD, AE, AF at
points G, H, and J respectively. The points G, D, E, H, J, F divide the circumcircle of trian-
gle DEF into six minor arcs, as shown. I want to label positions: We have triangle ABC, but
then midpoints D, E, F are on sides BC, AC, AB respectively. Now, note that triangle DEF
is the medial triangle of ABC. And the circumcircle of the medial triangle is known to be
the nine-point circle of triangle ABC. .... </think>
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Comparison:

The Shortest 8/24 GFPO response quickly recognizes that△DEF is the medial triangle and
its circumcircle is the nine-point circle, while the GRPO response gets bogged down in arc
bookkeeping before arriving at the same conclusion.

AIME 25 I Problem 9: GRPO v/s Adaptive Difficulty GFPO

User:

The parabola with equation y = x2 − 4 is rotated 60 degrees counterclockwise around the
origin. The unique point in the fourth quadrant where the original parabola and its image

intersect has y-coordinate a−
√

b
c . Find a + b + c.

GRPO

<think> .....
But before that, we can attempt to factor the quartic if possible. It is a quartic in u. But
perhaps a substitution might simplify it? Alternatively, note that u might be a ”nice” value?
Alternatively, we can try to find the intersection by considering symmetry. Alternatively,
consider the fact that the intersection point is the unique one in the fourth quadrant. Maybe
we can try to solve directly by eliminating u. Alternatively, consider using rotation in re-
verse: For an intersection point (x, y), we have y = x2 − 4 and also (y + 4)??? Not sure.
...... </think>

Adaptive Difficulty GFPO

<think> .....
I think we need to solve for x explicitly from the quartic. Alternatively, we can use the
approach: Let (x, y) be the intersection point. Then (x, y) satisfies: y = x2 − 4, and also (x, y)
satisfies the equation of the rotated parabola, i.e. if we rotate (x, y) by −60 degrees, we get
a point on the original parabola: So let (u, v) =

Ä
1
2 x + 3

2 y, − 3
2 x + 1

2 y
ä

. Then y = u2 − 4.
...... </think>

Comparison:

The GRPO response jumps between several different alternatives—factoring the quartic,
trying substitutions, symmetry arguments, and vague rotation ideas without committing
to a plan and doesn’t reduce uncertainty, whereas the Adaptive Difficulty GFPO defines a
single clear approach to take.
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A.1 GPQA Qualitative Examples.

GPQA: GRPO v/s Token Efficiency GFPO

User:

Consider this annihilation process p + p̄→ 2A+ + 2A−

The antiproton is slowly moving and mAc2 = 300MeV.
What is the velocity of particle A?

GRPO

<think>... Actually, maybe the process is in the lab frame where the antiproton is slow rel-
ative to the proton. But wait, which is slowly moving: ”The antiproton is slowly moving”
means that maybe the proton is moving? Wait check: ”p+ p̄” one of them is slow, but which
one? ”The antiproton is slowly moving” means that the proton is moving fast? But then the
question states: ”Consider this annihilation process: p + p̄ → 2A+ + 2A−”. The wording
”The antiproton is slowly moving” implies that the initial momentum is coming from the
proton, which is fast. But then the question is asking: ”What is the velocity of particle A?”
Possibly meaning the outgoing particles have velocity determined by energy-momentum
conservation in the center-of-mass frame.
...
Alternatively, the problem might be set in the center-of-mass frame. Let me think: ”Annihi-
lation process” usually is considered in the center-of-mass frame. But then ”The antiproton
is slowly moving” might be a hint that the proton is at rest? Because usually one would
take p is at rest, and the anti-proton is slow relative to p? Actually, ”slowly moving” means
small velocity. ... But if the antiproton is slow, then maybe the proton has kinetic energy?
But then the process might be not exactly symmetric. Alternatively, maybe the assumption
is that the antiproton is slow relative to the lab frame. That means the proton is at rest?
Because then the antiproton is slow? That is contradictory: if the proton is at rest, then the
anti-proton must be moving if we are in the lab frame?
...
Maybe the intended scenario is that the annihilation takes place in the lab frame where
the antiproton is almost at rest, and the proton is moving with a velocity such that the
center-of-mass energy is just above threshold. But then threshold for production of 4A is
4mA = 1200 MeV.
...
That doesn’t work. Maybe the intended scenario is that both the proton and antiproton are
nearly at rest in the center-of-mass frame...
...... </think>

Token Efficiency GFPO

<think>... Possibly the antiproton is slowly moving, so the reaction is in the lab frame, and
one particle is at rest, but then the total kinetic energy available is the difference of the rest
masses? But careful: if the antiproton is ”slowly moving” that means it is non-relativistic?
But then the proton might be at rest or antiproton at rest? Let me re-read: ”The antiproton is
slowly moving.” So perhaps the proton is at rest? Actually, which one is at rest? The phrase
”slowly moving” might indicate that the antiproton is nearly at rest relative to the proton?
But then the total energy available is the mass difference, but then momentum conservation
forces the final products to share momentum such that they have equal velocity magnitude.
But which velocity? Let me analyze the reaction in the center-of-mass frame. ...... </think>

Comparison:

The GRPO response repeatedly rehashes whether the reaction is in the lab frame or center-
of-mass frame, while Token Efficiency GFPO response correctly makes the assumption of
center-of-mass frame once.
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GPQA: GRPO v/s Adaptive Difficulty GFPO

User:

A quantum mechanical particle of mass m moves in two dimensions in the following po-
tential, as a function of (r, θ): V(r, θ) = 1

2 kr2 + 3
2 kr2 cos2(θ). Find the energy spectrum.

GRPO

<think>... Let x = r cos θ, y = r sin θ. Then r2 = x2 + y2, cos2 θ = x2

r2 if r ̸= 0. So

potential becomes: V(x, y) = 1
2 k(x2 + y2) + 3

2 k(x2 + y2)
(

x2

x2+y2

)
= 1

2 k(x2 + y2) + 3
2 kx2 =

1
2 kx2 + 1

2 ky2 + 3
2 kx2 = (2)kx2? Let’s check: 1

2 kx2 + 3
2 kx2 = 2kx2, plus 1

2 ky2 remains. So
potential becomes: V(x, y) = 2kx2 + 1

2 ky2. That is a two-dimensional harmonic oscilla-
tor with different frequencies along x and y. But wait, does that match? Let’s recalculate:
Given V(r, θ) = 1

2 kr2 + 3
2 kr2 cos2 θ = 1

2 k(x2 + y2) + 3
2 k cos2 θ(x2 + y2). But cos θ = x/r so

cos2 θ = x2

x2+y2 . So then V = 1
2 k(x2 + y2) + 3

2 k(x2 + y2) · x2

x2+y2 = 1
2 k(x2 + y2) + 3

2 kx2. So

indeed V = 1
2 ky2 +

Ä
1
2 + 3

2

ä
kx2 = 1

2 ky2 + 2kx2. That is a harmonic oscillator with frequen-

cies: ωx =
»

4k
m = 2

»
k
m and ωy =

»
k
m .

...
Wait, but our derivation assumed that the potential is separable in Cartesian coordinates,
which is valid if we perform transformation x = r cos θ, y = r sin θ. But is that al-
ways valid? Let’s double-check: The given potential is V(r, θ) = 1

2 kr2 + 3
2 kr2 cos2 θ =

1
2 k(x2 + y2) + 3

2 k
(

x2

x2+y2

)
(x2 + y2) = 1

2 k(x2 + y2) + 3
2 kx2 = 1

2 ky2 + 2kx2. Yes that is in-
deed a separable potential in Cartesian coordinates with x and y degrees of freedom. So
the energy eigenvalues are those of two independent harmonic oscillators with frequencies

ωx =
»

4k
m = 2

»
k
m and ωy =

»
k
m .

...... </think>

Adaptive Difficulty GFPO

<think>... Let x = r cos θ, y = r sin θ. Then cos2 θ = x2

r2 if r ̸= 0. So then potential be-

comes: V(x, y) = 1
2 k(x2 + y2) + 3

2 k(x2 + y2)
(

x2

x2+y2

)
= 1

2 k(x2 + y2) + 3
2 kx2. So rewriting:

V(x, y) = 1
2 ky2 +

Ä
1
2 k + 3

2 k
ä

x2 = 1
2 ky2 + 2kx2. Wait, check: x2 + y2 multiplied by factor 1

2 k

gives 1
2 kx2 + 1

2 ky2 and then add 3
2 kx2 gives total potential: V(x, y) =

Ä
1
2 k + 3

2 k
ä

x2 + 1
2 ky2 =

(2k)x2 + 1
2 ky2. So then the potential is anisotropic harmonic oscillator in Cartesian coordi-

nates with frequencies: for x: ωx =
»

4k
m = 2

»
k
m and for y: ωy =

»
k
m .

...... </think>

Comparison:

The GRPO response recalculates the harmonic oscillator frequencies multiple times while
the Adaptive Difficulty GFPO response only calculates this once.
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GPQA: GRPO v/s Shortest 8/24 GFPO

User:

A light beam is propagating through a glass with index of refraction n. The glass is moving
at constant velocity v in the same direction as the beam and toward the observer in labo-
ratory. What is the speed of light in glass relative to the observer in laboratory? Take the
speed of light in vacuum c = 1.

GRPO

<think>... Let me derive from special relativity: The speed of light in a medium is c/n in the
medium’s rest frame. But when the medium is moving with velocity v, the speed of light
in the lab frame is given by the relativistic velocity addition formula: u′ = u+v

1+(uv)/c2 . Here,
u = c/n and v is the velocity of the medium in lab frame. But wait, is it v? But careful:
The medium is moving with velocity v in lab frame and the light moves in the medium
frame with speed c/n. But the medium’s velocity relative to lab is v, so we can use velocity
addition. But then the effective speed in lab frame for light traveling in the same direction
as medium is: u = c/n+v

1+(vc/(nc2)) ? Wait, let me recalc: The formula is: u = u′+v
1+u′v/c2 . But c = 1,

so u = 1/n+v
1+v/(n) . Actually, check: If u′ = 1/n then u = 1/n+v

(n+v)/n = 1/n+v
(n+v)/n =

Ä
1
n + v

ä
n

n+v =
1+nv
n+v . But wait, then answer is 1+nv

n+v ?
...
But is that the Fizeau drag effect? The Fizeau drag coefficient is 1 − 1/n2. Wait, I recall
the formula for the speed of light in a moving medium in the direction of flow is: u =

1/n + (1− 1/n2)v. Let me check with our expression: 1/n+v
1+v/n = 1/n+v

(n+v)/n =
Ä

1
n + v

ä
n

n+v =
1+nv
n+v . Now expand that in v: Let v be small. Write 1+nv

n+v = 1+nv
n(1+v/n) = 1

n
1+nv

1+v/n . Now

expand denominator: 1
1+v/n = 1− v/n + (v/n)2 + . . . So we get = 1

n (1 + nv)(1− v/n) =
1
n [1 + nv− v/n− nv · (v/n)] = 1

n [1 + nv− v/n− v2]. Actually, let me do it properly: (1 +

nv)(1− v/n) = 1− v/n + nv− v2. So that equals 1 + nv− v/n− v2. Dividing by n gives
= 1/n + v− v/n2 − v2/n. So the coefficient of v is v(1− 1/n2). So indeed, to first order in
v, u = 1/n + (1− 1/n2)v. That is the Fizeau drag formula. So our expression is consistent
with the known formula for the speed of light in a moving medium. But wait, are we using
the correct sign? The medium is moving toward the observer, so the effective speed of
light relative to the observer is increased relative to the medium’s rest frame speed. So the
answer is ulab = 1/n+v

1+v/n which simplifies to 1+nv
n+v .

...... </think>

Shortest 8/24 GFPO

<think>...
The transformation from glass frame to lab frame, where the speed of light is c/n in the
glass frame and then add the velocity of glass, which is v. But note that the direction is
the same as the beam. But the lab observer sees the beam speed as v + (1/n)? But wait
not exactly, because the addition formula is: u′ = u+v

1+uv . But careful: Actually, we have
an object moving at speed u (with respect to the glass) and the glass moving at speed v
(with respect to lab) along same direction. The lab speed ulab of the light beam should be
computed using relativistic addition formula: ulab =

uglass+v
1+uglass·v . But note that uglass is 1/n.

So lab speed = 1/n+v
1+(1/n)v . Multiply numerator and denominator by n: = 1+nv

n+v ...But in lab

frame, the medium is moving, so the speed of light in lab frame is: u = 1/n+v
1+v/n = 1+nv

n+v as

computed. Wait check: Multiply numerator and denominator by n, get 1+nv
n+v . Yes.

...... </think>
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Comparison:

The GRPO response circles back and re-derives the velocity addition with uglass = 1/n
multiple times, while the Shortest 8/24 GFPO response does this once with a small recheck.

B Response Length and Accuracy for Hard and Very Hard Problems

Difficulty Bin Method Short Mid-Low Mid-High Long

Hard SFT 7298 9949 12576 18349
Hard GRPO 12719 16292 19846 23834

Hard Shortest 8/16 11292 13948 17897 22211
Hard Shortest 8/24 10087 12839 15711 20837
Hard Token Efficiency 8918 12044 15337 20815
Hard Adaptive Difficulty 9593 12959 16126 21677

Very Hard SFT 10707 15630 20875 25666
Very Hard GRPO 16728 22026 25309 27462

Very Hard Shortest 8/16 15768 20786 24051 26935
Very Hard Shortest 8/24 12657 18219 22671 25911
Very Hard Token Efficiency 13034 18633 23223 26109
Very Hard Adaptive Difficulty 13096 18625 22276 26279

Table 3: Average Response Length by Difficulty and Length Bins. We bin each model’s
responses to hard and very hard problems into length quartiles (short, mid-low, mid-high,
long) and report the average response lengths across length bins. We highlight the shortest
average response length per response length quartile across the different RL methods.

Difficulty Bin Method Short Mid-Low Mid-High Long

Hard SFT 60.42 54.17 58.33 52.08
Hard GRPO 83.33 85.42 64.58 60.42

Hard Shortest 8/16 77.08 79.17 70.83 52.08
Hard Shortest 8/24 72.92 81.25 72.92 66.67
Hard Token Efficiency 75.00 68.75 72.92 54.17
Hard Adaptive Difficulty 62.50 64.58 72.92 56.25

Very Hard SFT 21.88 14.06 12.50 12.50
Very Hard GRPO 32.81 31.25 25.00 17.19

Very Hard Shortest 8/16 25.00 23.44 23.44 20.31
Very Hard Shortest 8/24 35.94 25.00 18.75 10.94
Very Hard Token Efficiency 26.56 29.69 17.19 15.63
Very Hard Adaptive Difficulty 29.69 35.94 23.44 18.75

Table 4: Accuracy (%) by Difficulty and Length Bins. We bin each model’s responses to
hard and very hard problems into length quartiles (short, mid-low, mid-high, long) and
report the accuracies across length bins. We highlight the highest accuracy per response
length quartile across the different RL methods.
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