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Abstract

The robustness of 3D object detection in large-scale out-
door point clouds degrades significantly when deployed in
an unseen environment due to domain shifts. To minimize
the domain gap, existing works on domain adaptive detec-
tion focuses on several factors, including point density, ob-
Jject shape and sizes, to reduce the false negative detections.
However, the adaptation results indicate that there are still
remaining challenges. We argue that this is due to the chal-
lenge in recognizing comparably less distinctive region on
object surface due to sparsity, occlusion, etc. In this work,
we aim to reinforce those features by generating points on
object surface to make them straightforwardly recognizable.
We draw our motivation from a common observation that
detection proposals already contain the accurate bounding
boxes, but with relatively low objectness score predictions,
which lead to false negatives. Given these box proposals,
we densify sparse object points with a diffusion approach.
As a result, our model DiffRefine can act as a simple addi-
tional module before second-stage refinement, where most
existing detection models for two-stage detection can use.
Experimental results on domain adaptive detection show
competitive performance, especially on vanishing points due
to distance on various detection architectures.

1. Introduction

Point cloud based object detection is a popular research topic
in computer vision due to the wide range of applications.
Despite recent progress, it still faces challenges caused by
domain gaps, due to factors such as variations in object sizes
and sparsity caused by different sensors. Although different
types of sensor specification can lead to different point cloud
densities, such as 32 or 64-beam LiDAR, a key challenge
that most sensors for point cloud share is diminishing point
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Figure 1. DiffRefine performs proposal specific generation to boost
the detection performance.

density on object surface due to the distance from the sensor,
leaving object surface featureless (see Fig. 1). The problem
becomes even worse when the domain changes, as sparse
points on distant objects can be easily confused when the
surrounding structure, such as roads or buildings, look dif-
ferent. Existing domain adaptive detection works addressing
this issue can be broadly divided into two categories: 1)
data augmentation-based techniques and 2) prototype-based
techniques.

Augmentation based techniques [9, 19, 32] aim to make
the detection model insensitive to variation in sparsity caused
by different sensors across domains. More specifically, dur-
ing the training, they strategically sample the object points
while providing the consistent targets for bounding box re-
gression and confidence scores. During this process, the
detection model learns to be insensitive towards the density
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of objects. However, the augmentation is usually only effec-
tive on already dense objects, which are usually close to the
sensors, as their subsampling could help model the sparse
objects. Since the upsampling is based on the interpola-
tion of existing points, the distant objects, which are usually
partially visible, do not get the maximum benefit from the
techniques. Another approach to deal with this problem is
using learnable prototypes [15]. In the work, prototypes are
learned from the multiple viewing angles of the objects of
the same category. Since each prototype learns each partial
view of the object, they can be used to improve false neg-
ative detections on partial view. However, the prototypes
also struggle to reduce the false negative detections when
the objects are featureless due to sparsity.

In this paper, we address these two issues with target-
specific object points generation, which focuses on the gen-
eration of specific areas where objects of interest are likely
to exist instead of looking at the entire point cloud. We
draw our motivation from a common observation of recent
works [18, 34], where they found that the predicted boxes
actually have sufficient overlaps with ground-truth, but the
predicted objectness scores paired with the boxes are com-
parably low if the Intersection over Unions (IoUs) are not
large enough (<0.7), leading to false negative detections.
We argue that this is because of the absence of necessary
features in the false negative region, caused by variations in
sparsity, etc. Our aim is to take these potential boxes and
reinforce the features of the corresponding region of boxes
by point densification.

We adopt a diffusion mechanism to generate the target
specific point cloud to address the sparsity challenge (see
Fig. 1). Our core intuition for adopting diffusion is two-fold:
1) sparse points on object surfaces can be considered to be
a noisy representation of dense object points, which can
be recovered by iterative denoising, and 2) diffusion with
multiple steps allows effective learning in challenging point
cloud generation, rather than conventional densification in
one step. Nevertheless, we notice that using generation mod-
els introduces extra challenges. For instance, an erroneously
generated car instance appears despite not being warranted.
To address this issue, we propose an approach to incorporate
the spatial context into generation. The generated points
can then be considered with the surrounding region to re-
ject the false positive generation. Our contributions can be
summarized as follows:

1. We introduce a proposal specific point generation method,
which focuses on objects rather than entire point cloud,
improving the problem of sparse points on object sur-
faces.

2. In order to maximize the generation ability for detection,
we propose a differentiable 3D generation with voxel
grids, making a solid second stage refinement widely
available to existing detection models.

3. To avoid hallucination (false positive) generation problem,
we introduce a conditioning on spatial features, which
also incorporates spatial context.

4. Extensive adaptation experiments on KITTI [7],
NuScenes [1], and Waymo [28], and NuScenes datasets
show the effectiveness of our approach (see Fig. | (b)),
particularly for sparse object points caused by various fac-
tors, including different sensors and distances for bridg-
ing domain gaps.

2. Related Work

Object Detection in Point Cloud There are two main cat-
egory methodologies for object detection in point cloud:
voxel-based methods and point-based methods. Voxel-based
methods usually voxelize irregular point cloud into regular
voxel grids before feeding the point cloud to the encoders to
generate Bird’s Eye View (BEV) feature. The encoder can be
either Transformers architectures [0, 13, 14, 29, 33] or sparse
convolution architectures [3, 10, 12, 22, 24, 38, 43, 47].
After obtaining the BEV feature, a Region Proposal Net-
work (RPN) is used for final object detection. More recent
works [23, 25, 35] combine Transformer based architectures
and sparse convolution based architectures for better perfor-
mance. Based on these observations, in this work, we build
the base detectors on top of the widely used Second-IoU [38]
and PointPillars [12] for the extendability.

Domain Adaptive Detection Domain adaptation aims to
mitigate the domain gap discrepancy between the source
and target domain. Factors such as encoder strategy [41],
object size difference [21, 34] and deterioration in point
cloud [37] stays as the main reasons for domain gap. Self-
training strategy has been extensively leveraged to address
the domain gap. It either adopts prototype learning [15,
20], knowledge distillation [36], beam augmentation [9] or
pseudo-label consistency [4] to mitigate the domain gap
effects. Although these attempts, sparsity issue still exists
and has not been sufficiently addressed. In this work, we
specifically focus on resolving the sparsity issue for distant
objects in the point cloud.

Diffusion for Point Cloud Diffusion models [8] are a class
of latent variable models that use Markov chains to convert
noise distributions to data distributions. They have been
successfully applied across a range of generative modeling
tasks. For point cloud data, shape generation methods have
been proposed that use diffusion for point cloud comple-
tion [45] or to act over the latent spaces of a hierarchical
VAE [30]. Diffusion has also been used for object detection,
refining randomly-proposed bounding boxes [46], serving
as the basis for a proposal refinement stage in a two-stage
detector [11], or being used to refine bounding boxes under
domain shift [2]. Although these promising results, no prior
has adopted Diffusion model for proposal-specific point gen-
eration.
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Figure 2. Overall pipeline of our proposed method for the second stage refinement: Given the box proposals from the first-stage detection,
the object points inside each proposal are extracted and voxelized. The points are then densified following the denoising process of Diffusion
with differentiable warping. The final refinement head takes the densified points and spatial context feature as input and predicts the refined

boxes and class of objects.

3. DiffRefine Framework Introduction

3.1. Overview

Following the self-training-based unsupervised domain adap-
tation scheme [39, 40] for 3D detection, we are given point
clouds X = X ,UX; and labels Y = Y,UY; as the initial set.
Here, s denotes the source and ¢ the target domain, with X
and Y being point cloud and box labels of the known source
domain. X, and Y; are the point cloud and initial pseudo la-
bel set in the unlabeled target domain. Y; is collected by the
detector trained only on the source domain using X, and Y.
A label in Y consists of seven parameters defining a 3D box
with three parameters for center (z, y, ), three parameters
for size (I, w, h), and one parameter for vertical rotation 6.
Our goal is to improve the detector’s domain adaptation by
focusing on the pseudo-label collection. In particular, we
focus on improving false negatives, caused by featureless
area with point sparsity.

Specifically, given a set of box proposals and their corre-
sponding spatial features from the first stage detection, we
first extract points (Sec. 3.2) before processing them into
voxel grids for fixed input to our generation module, where
the points are densified with differentiable warping (Sec. 3.3).
The generated points are then fed into a final box prediction
module to refined the box proposals (Sec. 3.4). The overall
pipeline is shown in Fig. 2.

3.2. Point Extraction and Size Agnostic Voxelization

As reported in [34], the variance in object sizes across do-
mains negatively affects the performance of detection mod-

els. To avoid the impact led by object size variance, we
follow [2, 17] to process points in normalized coordinates to
achieve size-agnostic detection.

Given N predicted box proposals, B; € RY1*7 and
their corresponding spatial features, Fj., € RV *¥ and
corresponding confidence scores, C; € RN %1 in the first
stage detection, we extract the points inside each box from
a point cloud P and process them using Normalized Box
View (NBV) [2]. The extracted points p C P from a box
b C B are transformed into normalized space, pporm as:
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Prorm 18 then voxelized into v € RW*HXD aq follows:

1, if (2,9, %) € prom falls in the grid
0, otherwise

v(w, h,d) = {

2
where (w, h, d) refer to the indices of v for (W, H, D).

3.3. Proposal-specific Point Generation with Diffu-
sion

Our core intuition behind point generation is the assump-
tion that despite differences in density, objects of the same



category, such as car and pedestrian, share similar physical
features. For example, a car has four wheels below the body
frame, which can be recovered even from a partial view.

Diffusion Formulation Following the intuition from
point diffusion [44], the forward diffusion process contin-
uously adds random noise to the input through a Markov
chain, assuming that there is a point-to-point mapping rela-
tionship between adjacent timestamps. Given a noisy sample
at timestamp ¢ = T, the task of diffusion model is to con-
tinuously denoise the sample in reverse order to recover the
clean data at timestamp ¢ = 0, which is called generation.
We apply this principle to a voxel grid. More specifically, we
consider v = v, as a noisy sample (sparse object points)
at time 7" and attempt to denoise it to obtain a clean sample
(dense object points), v.—¢ that provides enough features to
reduce false negatives. In the next section, we discuss how
we create the generation target for densification now that the
noisy sample can be provided from v.

Generation Target The challenge of making a generation
target is the fact that the complete shape of the object with
dense points is unknown and not trivial to infer from a given
sparse set of object points. An alternative way to create dense
points is to accumulate object points inside ground truth
bounding boxes in NBV as described in Sec 3.2. Formally,
we create the generation target vy as:

1 2 Nt
V=0 = Vy—p U Vi, ..., Uu, O, 3)

where N, stands for the number of ground truth boxes in a
batch for the same class, and v}_ is voxels extracted from
14, ground-truth bounding box and corresponding P. The
generation task then aims to generate voxels for empty grids
in v;—7, which are occupied in v;—g by comparing them.

Differentiable Generation One straightforward way to
generate points is to formulate it as dense grid classification
problem as in [37]. However, it is not straightforward to
use the output of classification during multiple reverse steps
of denoising as the classification output is discrete and non-
differentiable. Also, dense classification for generation gives
an equal target, 1, for each grid. This does not fit well with
denoising, which iteratively refines the noisy samples step
by step. We propose to learn offsets from the occupied
voxel grid to the input. We do this for two reasons: firstly,
the generation target of grids close to occupied voxels have
relatively small offsets, whereas grids further away could be
considered harder as the offsets become larger.

Diffusion Training As mentioned above, we consider the
sparse object points as a nosier representation of the dense
object points. Therefore, we first start by introducing random
noise to the clean data, v;—¢, which can be learned by our
generation network. In order to formulate the sparse voxel as
noisy sample, we introduce the random voxel subsampling
strategy utilizing Gaussian randomness.
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Figure 3. Conceptual diagram of differentiable object points gener-
ation. Given given the sparse input v:=r (a), the process aims to
generate target v:—o (b). During the generation process, we predict
3D dense offset. The predicted offsets from grids to be occupied
according to the target, point at the closest occupied voxel from
input voxel grid (c). Using the predicted offsets, the generation is
performed by differentiable warping operation (d). (c) and (d) are
iterative process in the formulation of denoising from Diffusion.

More specifically, we define the probability of a voxel
grid for remaining occupied as:

i whd—pi— .
m(w h d) . Ht:o eXp(_ | QU?ﬁT £ )7 if empty,
s Ity t=1 — -
0 otherwise
“4)

where whd € R3 refers to voxel coordinate (w,h,d). Here,
the mean p—7r € R3 and the covariance matrix o,_p €
R3*3 are measured from the noisy input v;—7 to encourage
the points existing in v:—7 to survive while taking advantage
of randomness for learning to denoise. In other words, the
voxels close to the mean of v;—7 have greater chance to
remain occupied, encouraging the similar shape similar to
vi=7 during random sampling. For ¢;; forward process,
we use m;—; to remove voxels from v;—;_1. The diffusion
model then learns to predict the offset to the closest occupied
voxels from the removed voxel at t = 7. Formally, the vy—;41
is given as:

1, if m(w,h,d)i=; < e(w,h,d)
0, otherwise

U(w7h7d)t:i+1 = {
4)

where ¢(w, h, d) is a random threshold following uniform
distribution. The loss for training the denoising process is
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Figure 4. Generated object points of Car (first row) and Pedestrian
(second row) classes with respect to denoising steps.

then given as:

T-1
Lyigs = Z Z [67_; — vlZ.] (6)

i=1 jeS

where S is a set indices for removed voxels at iy, step, and
7 is the closest occupied voxels to j.

Denoising Process During inference, as shown in Fig-
ure 3 (c) and (d), the diffusion model takes v;— as input and
predict offsets o;—p € RWXH*D*3 from dense 3D grid for
warping as:

Vg1 = Warp(vVe=r, 04=r), @)

where warp(, ) refers to differentiable warping operator. As
the denoising step iterates, the input voxel is densified as
illustrated in Fig. 4.

3.4. Points-Region Correlation and Box Refinement

A potential risk of point denoising is false positive gen-
eration, where the diffusion model could hallucinate non-
existing objects, which could lead to false positive detection.
One way to avoid is to fuse a spatial context to the generated
output, so that the generated output can be considered in
accordance with the spatial context. For instance, a car is
likely to be located near a road. Based on this motivation, we
propose to fuse spatial feature and generated object points.
To achieve this, we first transform v;—y with a 3D convolu-
tion based encoder to get the encoded feature f, € R'*X.
Our Points-Region correlation then performs cross-attention
to make fused feature as:

fgen = CAttn(fm fbew fbev) ®)

where cAttn(.) is cross attention [31] that takes query, key,
and value as input and outputs the cross-attended feature.
Here, fyev € Fhey refers to a spatial feature corresponding to
the box that v;—7 is made from.

The Points-Region Correlation Features fg., can then be
fed into any existing second-stage refinement structures [5,
12, 38] following their formulation to refine the box from
the first-stage detection b; .

3.5. Overall Training

Our overall training losses are defined the same as the general
RPN learning for detection, as the proposed modules do not
need to change the formulation of the existing works. In
general, the first stage detection is learned with loss L as:

L = Lobj + Lreg )

where L learns the objectness score of proposals using
Focal Loss [16] and Ly, learns the box regression of the
proposals. The second refinement modules generally uses

loss Lyt as:
Lng = Leis + Lier (10

where L. learns the classification of the object type and
Ly learns to refine the box from the first-stage prediction,
which is B;.

Overall, our training loss L is defined as:

L = Lgitt + Lis + Long (11)

4. Experiment
4.1. Datasets

We conduct a comprehensive evaluation of our proposed
methods against multiple baseline approaches across three
widely used benchmark datasets: KITTI [7], NuScenes [1],
and Waymo [28]. The KITTI dataset comprises 7,481 Li-
DAR point cloud frames for training and validation, all cap-
tured using a 64-beam Velodyne LiDAR. The NuScenes
dataset consists of 28,130 training frames and 6,019 val-
idation frames, collected with a 32-beam LiDAR. The
Waymo dataset provides a significantly larger-scale collec-
tion, including 122,000 training frames and 30,407 valida-
tion frames, captured using a multi-LiDAR setup comprising
one 64-beam LiDAR and four 200-beam LiDARs.

4.2. Implementation Details

Our diffusion model consists of three Transformer blocks
followed by a 3D convolutional layer to output the 3D off-
sets of dense voxel grid, o,—7, given the input v,—7. Here,
the dense grid parameters are set as W = 32, H = 32,
D = 32. The 3D encoder to produce f, consists of three
3D convolutional layers followed by MLPs to output the
embedding with K = 512 dimension for the cross attention
with fpe,. Following existing works on domain adaptive de-
tection in point cloud [9, 15, 26, 39, 40], we test our model
on two base detectors, Second IoU [38] and PointPillars [12].
They are widely used and applicable to most recent detec-
tors. Network parameters used for the experiments are from
ST3D [40]. Similar to [15, 26], we first train each detector
for 50 epochs with batch-size 4 as a pretraining step using
two NVIDIA A10 GPUs. Following the same parameters
as [26, 40], the self-training stage trains 30 more epochs
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Figure 5. Qualitative comparison of Baseline DTS [9], GroupEXP-DA [26] and ours on Waymo [28] to NuScenes [1] adaptation scenario

(rows 1-3) and NuScenes [1] to KITTI (rows 4-5) adaptation scenarios.

to adapt to the target domain. We utilize Adam optimizer
with Cosine annealing [42] for scheduling the learning rate,
which is set to 0.0015.

4.3. Comparing Methods

We compare recent existing 3D domain adaptive detection
methods, such as SN [34], 3D-CoCo [41], ST3D [39, 40],
GPA-3D [15], DTS [9], and GroupEXP-DA [26] with our
proposed method. As our method is based on the self-
training, we set ST3D [40] as our baseline and show ex-
perimental results by comparing with more recent methods.
Additionally, we also illustrate the performance of the ora-
cle models, which refer to a fully-supervised model on the
target domain directly as an upper bound. Following the
most recent works [9, 15], all methods are compared in three
adaptation scenarios focusing on “car” class: (1) Waymo —
NuScenes (2) NuScenes — KITTI (3) Waymo — KITTL

4.4. Evaluation Metric

Following [9, 15, 26, 39, 40], we evaluate the performance
using the metrics APggy, APp, and closed gap, where

Closed Gap = 4psi=fbous 5 100 [40].

4.5. Quantitative Results

Waymo — KITTI Table | (first task) shows the quantita-
tive results of 3D detection in APggy and AP;p. When
using Second-IoU as detector [38], our proposed method
outperforms the baseline ST3D series for 7.03/9.61 in
APgey/APsp, respectively. Compared with the SOTA
method, GroupExp-DA [26], 0.87/1.54 improvements are
achieved. When using PointPillars as the base detector [12],
our approach outperforms the previous best-performing
method by 6.29/1.73.

NuScenes — KITTI As shown in Table 1 (second task),
our approach shows 2.28/2.92 gains over SOTA in terms
of APgrv/AP;p with Second-IoU [38] as the base detector.
With PointPillars [12] as the base detector, our approach
exceeds the baseline and GroupExp-DA by 26.23/43.06 and
4.74/1.32, respectively. Furthermore, Table 2 shows the adap-
tation performance of the categories Pedstrian and Cyclist.
DiffRefine exceeds the best-performing method by 1.97/1.43
for Pedestrian and 1.35/0.81 for Cyclist.

Waymo — NuScenes Table | (third task) illustrates the adap-
tation results. Our approach outperforms the baseline and
the best-performing method [27] by 8.97/5.06 and 1.05/0.83



Task Methods SECOND-IOU PointPillars
APggv (1)/AP3p (1) Closed Gap (1) | APsgv (1)/AP3p (1) Closed Gap (1)
Source Only 67.64/27.48 - 47.8/11.5 -
SN [34] 78.96/59.20 72.33/69.00 27.4/6.4 55.14/8.49
3D-CoCo [41] - - 76.1/42.9 76.49/52.25
ST3D [40] 82.19/61.83 92.97/74.72 58.1/23.2 27.84/19.47
Waymo —» KITTI ST3D++ [39] 80.78/65.64 83.96/83.01 - -
GPA-3D [15] 83.79/70.88 103.19/94.41 77.29/50.84 79.70/65.46
DTS [9] 85.80/71.50 115.9/95.7 76.1/50.2 76.50/64.4
GroupExp-DA [26] 86.94/73.70 123.2/100.4 78.44/54.11 82.81/71.0
DiffRefine (Ours) 87.81/75.25 128.79/103.80 81.73/55.84 91.53/73.77
Oracle 83.3/73.5 - 84.8/71.6 -
Source Only 51.8/17.9 - 22.8/0.5 -
SN [34] 59.7/37.6 25.1/35.4 39.3/2.0 26.6/2.1
3D-CoCo [41] - - 77.0/47.2 87.4/65.7
ST3D [40] 75.9/54.1 76.6/59.5 60.4/11.1 60.6/14.9
NuScenes — KITTI ST3D++ [39] 80.5/62.4 91.1/80.0 - -
DTS [9] 81.4/66.6 94.0/87.6 79.5/51.8 91.5/72.2
GroupExp-DA [26] 81.47/68.2 98.3/90.0 81.89/52.84 95.3/73.6
DiffRefine (Ours) 83.751/71.13 101.43/95.74 86.63/54.16 102.83/75.47
Oracle 83.3/73.5 - 84.8/71.6 -
Source Only 32.91/17.24 - 27.8/12.1 -
SN [34] 33.23/18.57 1.69/7.54 28.1/12.98 2.41/4.58
3D-CoCo [41] - - 33.1/20.7 25.00/44.79
ST3D [40] 35.92/20.19 15.87/16.73 30.6/15.6 13.21/18.23
Waymo — NuScenes ST3D++ [3‘_)] 35.73/20.90 14.87/20.76 - -
GPA-3D [15] 37.25/22.54 22.88/30.06 35.47/21.01 36.18/46.41
DTS [9] 41.2/23.0 43.7/32.80 42.2/21.5 67.9/49.0
GroupExp-DA [26] 43.84/24.42 57.56/40.66 44.31/22.15 77.88/52.34
DiffRefine (Ours) 44.89/25.25 64.09/45.37 45.51/22.79 83.54/55.68
Oracle 51.9/34.9 - 49.0/31.3 -

Table 1. Quantitative comparisons of the recent domain adaptive 3D detection methods on three adaptation scenarios. The top-, second-

and third- performing methods are labeled in different colors.

Pedestrian Cyclist
Method APoiv/APsp | APoev/APip
Source Only 39.95/34.57 17.70/11.08
ST3D [40] 44.00/42.60 29.58/21.21
DTS [9] 48.65/45.87 30.76/21.93
GroupExpDA [26] 49.23/46.56 32.17/23.48
DiffRefine (Ours) 51.20/48.0 33.52/24.29
Oracle 46.64/41.33 62.92/60.32

Table 2. Quantitative comparison of recent adaptation methods for
pedestrian and cyclist categories in NuScenes — KITTI adaptation
scenario with Second-IoU as a base detector.

in A Pggy/AP;p, respectively, with Second-IoU as the detec-
tor. Similarly, with PointPillars as the detector, 14.90/7.19
and 32.8/1.94 improvements are gained compared with the
baseline and SOTA in terms of A Pgpyv/AP;p.

4.6. Qualitative Results

Figure 5 visually compares SOTA methods, such as DTS [9],
GroupEXP-DA [26] and ours. Notably, for each existing
method, most of the false negatives are caused by distant
objects with sparse points, as they do not contain distinc-
tive features. Interestingly, due to the density insensitive
nature, DTS handles objects with sparse points better than
GroupEXP-DA (row 2, row 3). However, DTS fails to accu-

Differentiable  feen | APgev | APsp
@ 064 2373
) v 4331 24.19
© V| 4430 2482
) v v | 4480 2525

Table 3. Impact of spatial context feature and differentiability in
APggyv and AP;p on Waymo — NuScenes adaptation.

rately infer the rotation (row 4, row 5) when the object points
are sparse due to distance. Despite the fact that GroupEXP-
DA has more false negatives for objects with sparse points,
it handles the different shape better than DTS (row 4) due
to its diverse group-based detection. On the other hand, our
proposed method is able to densify the sparse points of ob-
jects regardless of distance, demonstrating its effectiveness,
as can be additionally seen in Fig. 8.

4.7. Ablations

Impact of Differentiable Warping and f, is illustrated
in Table 3 in Waymo—NuScenes adaptation using Second
IoU [38] in terms of APggy/AP;p.

For the experiment on differentiable warping, we manu-
ally cut the gradient on v;—( after denoising and feed it as
input to the refinement module to see the impact. For the
experiment on fgen, we directly feed v;— as input to the



Voxel Cls. Diffusion
APBEV [ AP}D APBEV [ AP}D
(W, H, Z)=(8,8,8) 36.27  21.58 42.87 2374
(W, H, Z)=(16,16,16) 36.62 21.87 44.14  24.74
(W, H, Z2)=(32,32,32) 3591 2044 | 4489  25.25

Voxel Grid Size

Table 4. Quantitative comparisons of generation methods w.r.t.

different voxel grid sizes in Waymo — NuScenes adaptation.

a) (b) (©)

Figure 6. Illustration of (a) ground-truth, (b) detection output
without spatial context fgen, (c) detection output with feen. feen
improves the false positive generation problem indicated by red
dotted circles in (a) and (b) (i.e. hallucination) by providing the
context of a surrounding area, avoiding the generation of a car
generated where there should not be a car.
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Figure 7. Runtime analysis with the execution time (bar) and
APsp (line) with respect to number of denoising steps used for the
generation in NuScenes — KITTI adaptation.

refinement module without fusing the spatial context feature
frev to see how it affects performance. Notably, excluding
feen (Table 3 (b)) leads to the biggest performance drop of
1.58/1.06. This is expected as feen €ncodes spatial context,
which can provide additional signals for refinement to avoid
false positive detection, as shown in Fig. 6.

Cutting the gradient flow from object point generation
to second stage module (Table 3 (c)) also deteriorates the
performance of 0.59/0.43 as it prevents the joint optimization
of two modules, where each module could learn helpful
feature for each other. When both differentiable v;—q and
feen are used, the performance reaches the best, making
2.25/1.52 improvement compared to the setting where none
of them are used (Table 3(a)).

Impact of Generation Steps is illustrated in Fig. 4 and
Fig. 7. Increasing generation steps from 2 to 6 shows gradual
improvement in AP;p of 0.12, 0.08, 0.06, and 0.03 between

3500 == Ours
- @ Bascline

ject
P

=
=

Num. of
=
=

1500

<)
S

1000
500
0 0.2
10 20 30 40 50 0 10 20 30 40 50
Object Distance (m) Object Distance (m)
(a) (b)

Average Num. of Object Points
3
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Figure 8. Average number of points on object surface (a)-line,
number of existing objects (a)-bar, and APsp (b) with respect to
distance between objects and LiDAR, showing negative correla-
tion between object distance and detection performance due to
sparsity for a substantial number of objects. The resulting domain
adaptation from NuScenes—KITTI in (b) shows a growing gap
in performance between the baseline [40] and ours as the object
distance increases.

individual steps. However, the performance reaches the best
when using 6 steps for denoising. This is in accordance
with visual comparison in Fig. 4, where the generated object
points proceed to contain more clear features as the steps
increase. The overall execution time monotonously increases
around 0.02 per each denoising step.

Impact of Diffusion based Generation is shown in Ta-
ble 4. The aim of this experiment is to see how effective
Diffusion based generation is compared to existing tech-
nique [37]. Specifically, we formulate the generation as a
dense binary classification of v,—p problem, where each
voxel grid is considered occupied if the predicted output
for the grid is higher than 0.5, following [37]. Except for
changing the learning task, all the network configurations
stay the same as Diffusion-based generation for each grid
size. As can be seen, the performance of detection when
using diffusion-based generation outperforms the voxel clas-
sification method (Voxel Cls.) in all the configurations for at
least 6.59/2.16 in A Pggy/AP;p. Interestingly, the classifica-
tion method shows better performance when the grid sizes
are smaller than (32,32,32), probably because one-step clas-
sification is unable to learn the complexity from the larger
grid. In contrast, the performance of Diffusion-based gener-
ation deteriorates as the grid size decreases, suggesting that
the multiple steps of denoising enable the learning of more
complex shapes of object points in larger grid sizes.

5. Conclusion

In this paper, we present DiffRefine, which learns to generate
proposal-specific object points for domain adaptive detec-
tion. We improve the box refinement process by densifying
the object points to be more distinctive. By formulating
the challenging points generation problem as denoising from
Diffusion process, DiffRefine shows significant improvement,
particularly for distant objects, where the object point natu-
rally becomes sparse, leading to false negative detection.
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