2508.02789v1 [cs.Al] 4 Aug 2025

arXiv

Cognitive Loop via In-Situ Optimization: Self-Adaptive
Reasoning for Science

Newman Cheng? Gordon Broadbent; William Chappell
Microsoft Discovery and Quantum, Office of the Chief Technology Officer

Abstract

The capacity for artificial intelligence (AI) to formulate, evolve, and test altered thought patterns
under dynamic conditions indicates advanced cognition that is crucial for scientific discovery. The
existing Al development landscape falls into two categories: 1) frameworks over non-reasoning models
that natively incorporate opinions on how humans think, and 2) reasoning models that abstract
precise control of the reasoning intuition away from end users. While powerful, for scientists to
maximize utility of AI in scientific discovery, they not only require accuracy and transparency in
reasoning, but also steerability. Hence, we introduce an alternative approach that enables deep and
precise control over the reasoning process called: a cognitive loop via in-situ optimization (CLIO).
CLIO enables large language models (LLMs) to self-formulate ways of approaching a problem, adapt
behavior when self-confidence is low, and ultimately provide scientists with a final belief or answer.
Through CLIO’s open design, scientists can observe uncertainty levels, understand how final belief
states are formulated using graph structures, and interject corrections. Without any further post-
training, OpenAl’s GPT-4.1 with CLIO yields an accuracy of 22.37% in text-based biology and
medicine questions on Humanity’s Last Exam (HLE). This yields a 13.82% net or 161.64% relative
increase when compared to the base GPT-4.1 model and surpasses OpenATI’s 03 performance in high
and low reasoning effort modes. We further discovered that oscillations within internal uncertainty
measures are key in determining the accuracy of CLIO’s results, revealing how its open design and
internal mechanisms can provide insight and control into scientific decision-making processes.

1 Introduction

Long-running LLM agents that reason, plan, and execute high-value tasks over long temporal periods,
such as in the creation of new materials or drugs, are poised to transform scientific discovery. Currently,
methods to produce long-form reasoning are based on post-training cycles prior to model deployment.
These corresponding models possess reasoning strategies and instinctual properties dictated by model
providers without direct input from end users, relegating them to steer behavior utilizing the context
window alone. In this paper, we demonstrate an alternative approach that enables end users to steer and
correct thought patterns in real-time or post-hoc while achieving the same or greater-level intelligence
when compared to a post-trained model. Our approach, CLIO, is designed as an alternative or comple-
ment to the reinforcement learning post-training step with recursive reflection to increase non-reasoning
models’ ability to think through problems and select the best approach.

While HLE scores are increasing from new models, with trends showing that it will be saturated akin to
other benchmarks, accuracy is no longer the only measure of success. Now, the real challenge is active
inclusion of the end user, bypassing passive user observation. To address this challenge, we tested CLIO’s
ability to answer biology and medicine questions from HLE with no tools. A model-only approach allows
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for a direct test of the efficacy between reinforcement learning models when compared to in-situ optimiza-
tion of non-reasoning models. CLIO does more than just increase performance; CLIO brings the end user
along throughout the creation of the entire thought process, increasing performance and explainability
into internal behavior. Metrics, such as uncertainty oscillation or number of new brainstorming perspec-
tives, enable an understanding of when results and decisions being made by the model can be trusted.
As we embark on this new age of discovery where answers will be as good or better than human subject
matter experts, the challenge has shifted to creating the balance between human and machine teaming.
Understanding when experts need to interject without oversaturation and ensuring critical decisions are
steerable is crucial. Ultimately, CLIO puts these principles at the forefront.

2 Prior Work

2.1 Reasoning Approaches

The neuroplasticity of the human brain is central to how humans learn, remember, and adapt.[1] As such,
human brains possess the ability to create, modify, or remove neural connections based on experiences.|2]
Designing cognitive-like systems that can think increasingly like humans requires the fundamental abil-
ity to formulate different approaches to problems, receive external feedback, and, subsequently, pivot
strategies.[3—6] Searching for new strategies when unsuccessful and saving useful patterns for reuse is
key in scaling developed knowledge.|[7, 8] This approach is central to post-training models today and is
the cornerstone of reinforcement learning (RL). Evidence shows continual scaling as reasoning models
solve increasingly complex, multi-step reasoning problems within verifiable domains.[9, 10]

The current phase of RL training predominantly utilizes externally verifiable rewards (RLVR)to provide
feedback to the model.[11] An example of RLVR is a binary reward for whether an LLM-produced code
segment compiled or not. Recent works, like “Learning to Reason without External Rewards,” focus on
the use of RL training with internal feedback (RLIR), which trades externally verifiable and human-
defined rewards in favor of internal confidence signals or self-certainty.[10] RLIR results demonstrate
how internally computed or estimated rewards can scale performance during post-training. In addition,
RLIR aims to reduce dependence solely on externally verifiable human rewards utilized in reinforcement
learning with human feedback (RLHF'). However, end users utilizing RLVR, RLIR, or RLHF post-trained
models all share the same fundamental limitations: the learning or reasoning process elicited is neither
personal, nor steerable as learning terminates once the trained model is handed to the user.[12] Enabling
such customization requires further post-training on high-quality data which often does not exist for
cutting-edge scientific discoveries.[13]

2.2 Systems that Evolve Knowledge

Recent work by Google’s AlphaEvolve demonstrates how Al systems can continue to scale inference-
time compute to discover or find known state-of-the-art algorithms through an evolutionary process.|[14]
Throughout AlphaEvolve’s discovery process, the use of verifiable rewards ranks and prioritizes subse-
quent algorithms that AlphaEvolve should use to evolve, reducing the burden on LLMs alone to control
the direction of exploration. This prioritization is critical as it narrows the search space and complexity
necessary for downstream evolution. Hence, it enables the incremental evolution of knowledge, that is
lower in complexity, to be aggregated and used in answering highly complex problems. As Apple’s “Illu-
sion of Thinking” paper highlights, models are particularly performant in solving problems that contain
a smaller combinatorial or exponential search space, but quickly fall apart as that space grows linearly or
exponentially.[15] By reducing the complexity of problems required for LLMs to address at each individ-
ualized state, complex search spaces can theoretically be mapped and reduced while considering multiple
signals of human feedback.[16, 17] Low complexity spaces can be explored using breadth-wise approaches
while high complexity spaces require depth wise approaches. Breadth-wise exploration requires a greater
sampling of different perspectives or paths.[18, 19] Depth-wise approaches require consecutively building
out reasoning paths, prioritizing the most promising ones, and pruning those that are least likely to yield
success.[20]



2.3 Science Agents

Google’s Co-Scientist and Sakana’s Al Scientist have identified the potential utility for long-running
agents to assist in scientific discovery.[21, 22] More recent works like TxGemma: Efficient and Agen-
tic LLMs for Therapeutics make use of the HLE benchmark to evaluate their system.[23] Similarly,
Stanford’s BioMNI: General-Purpose Biomedical Al Agent demonstrates how the use of combining an
agentic system with well-curated scientific literature and scientific tools can improve performance on a
subset of HLE biology and medicine questions.[24] Both focus on the demonstration of their respective
approaches in boosting performance, rather than critical areas of control, central to end users. In prac-
tice, FutureHouse’s work with Robin utilized a multi-agent architecture to identify a novel treatment
for dry age-related macular degeneration and paired it with an iterative lab-in-the-loop to automate
portions of the scientific discovery process.[25] This has been extended further where “self-driving labo-
ratories” are being used to accelerate the discovery of new materials.[26] While powerful, each of these
approaches demonstrates areas of concern when scientists are unable to control the reasoning process of
LLMs. The lack of steerability in deeply technical and high-stakes domains like scientific discovery or
diagnostic reasoning is a clear gap.[27] We address these limitations through CLIO.

3 Methods

Our approach leverages the inference-time evaluation of progress and self-confidence to optimize think-
ing in real time without additional training cycles. Furthermore, unlike the post-training reinforcement
learning process which requires high-quality data, CLIO does not require additional data or training.
Instead, our approach makes use of internal self-confidence and reflection to reason through and adapt
to problems at inference time. While the need for additional training data or compute cycles is obvi-
ated, the core challenge comes in a practical system design that prioritizes the shape of human cognitive
behaviors from the outset.!

3.1 The Recursive Nature of Cognition

The human thought process is not always linear, nor is it direct.[28] For example, problem solving is
non-linear in nature as it often requires both the formulation of the potential paths that may emerge
and selection of the most promising paths.[29] Through this framing, we designed CLIO to possess
both breadth- and depth-wise exploration capabilities. To enable breadth, CLIO builds on the inspira-
tion of existing approaches like chain-of-thought prompting, and reasoning then acting (ReAct) when
using tools.[30, 31] The key difference from other systems is that CLIO does not rely on prompting to
construct thought patterns, rather orchestration of thought is native to its design. This orchestration
pattern still follows the “feed-forward” nature of knowledge, allowing CLIO to explore many different
options as desired.

Conversely, to enable depth, CLIO introduces a new utilization of recursion that balances the challenge
of controlling semantic explosion in adaptive contexts with algorithmically defined constraints. CLIO’s
ability to invoke itself enables the formulation of individualized-thought channels that possess indepen-
dent context windows. These clean context windows are crucial when CLIO dives into a particular area
of exploration, without polluting the aggregated context with incomplete thoughts. Hence, this design
enables exploration across many different avenues in depth and adaptation to changes, when necessary,
within or across thought channels.

To control CLIO’s depth of exploration, we enabled the system to self-reflect and determine the necessary
duration for how long it needs to self-reflect based on a maximum recursion, or maximum cognitive
depth. We observed that without the proper algorithmic control on recursion, these systems continue to
goad themselves into further exploration, leading to fundamentally incorrect results over long periods of
time. Hence, control over cognitive depth is crucial and akin to reasoning effort levels from models like
03, where low/medium/high effort levels are configurable. The key difference is that CLIO controls both
the depth of exploration and the iterative assumptions made at each step. Each of these assumptions
can be altered or weighed differently. While exploring, CLIO can self-optimize its own internal strategy
through a series of parameters that are editable when invoking itself. These areas enable CLIO’s persona
to be modified, changing the area of focus or problem-solving approach. Most commonly, we observe
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Algorithm 1: CLIO’s Recursive Algorithm

Input: Initial semantic state so = ¢(question OR, prompt); branching factor b;
maximum depth D; confidence threshold 7; current depth d; confidence ¢
Output: Synthesized answer from LLM based on terminal/high-confidence states
1 Definitions:
- T'(s): Completion (terminal) Function; returns 0 if s is a solved/terminal state,
otherwise > 0.
- ¢(s): Confidence Function; returns a real-valued confidence score for state s.
- 7(+|s): LLM samples possible next states from s.
- LLM(S, s): LLM synthesizes answer from S and current context s.

2 Function CLIO (s, d):

3 if T(s) =0 or ¢(s) > 7 then

4 L return {s}

5 if d > D then

6 S « 0

7 14+ 0;

8 while ¢ < b do

9 s« 7(:|s) if T(s') =0 or ¢(s’) > 7 then
10 S+ Su{s};

11 break

12 11+ 1;
13 | return §
14 {517523"'75b}<;7r('|8);
15 S+ B;
16 for (in parallel) i < 1 to b do
17 | 8+ SUCLIO(s;, d+1)
18 | return LLM(S,s)

Fig. 1 CLIO’s recursive nature with semantic stopping through self-determination of completion

CLIO utilizing this optimization component to resolve uncertainties it has self-recognized throughout the
execution process. Hence, this utilization at runtime directly influences the optimization of the system’s
internal belief structures over time.

3.2 Building Awareness into CLIO

Within each thought channel, CLIO’s runtime is aware of when to complete its thought processes.
To do so, we enabled a special “completion” function that can be invoked to terminate the thought
channel. However, proper invocation of this termination function requires both sufficient confidence and
a temporal understanding of the progress made by the system. Integrating temporal awareness is key,
as the minimization of token-level probabilities alone fails to account for the notion of time. Hence, to
prevent early termination, we enabled CLIO to dynamically register the special completion function only
when a certain threshold of coverage was met. Under this construct, reduction of bias is critical when
solving complex challenge problems that possess potentially multiple correct answers. The precedence
of those assumptions contains minimal variations in themselves but leads to highly influential effects
downstream when reasoning through and selecting the proper approach. Across these possible reasoning
paths constructed during the breadth- and depth-wise exploration phase, the mechanism of attention
serves as a critical system internal process. Thereby, creating a belief state regarding the significance of
various elements can be established. Conceptually, this process is akin to human behavior where humans
adopt diverse cognitive perspectives or reasoning strategies before formulating an opinion on plausibility
or preference.|[32]



Algorithm 2: CLIO’s ENSEMBLING AND REDUCTION

Input: Semantic state s; depth d; max sampling M; folds f, follow_up u
Output: Final answer a

1 Function CLIO MoreThinking (s, d, M, f, u):
2 P« 0;
3 for i < 1 to M do
4 m; < CLIO (s, d);
5 L P PU{m};
6 G < BUILDGRAPHFROMPATHS(P);
7 C < CLUSTERGRAPH(G);
8 foreach community c € C do
9 summary. < LLM_SUMMARIZE(G|c], s);
10 foreach node v € c do
11 L G[v].summary  summaryc;
12 a < DRIFT_SEARCH(s, G, f,u);
13 return a;

Fig. 2 CLIO’s utilization of a graph-induced structures to balance beliefs during increased thinking modes

3.3 Overcoming the Over-Indexing Challenge

Agentic optimization approaches often ensemble multiple different perspectives to enable diversity of
thought and sampling, to elicit a correct answer. The most common approach to reduce and select an
answer from the sampled variations has been a custom prompt-based, facing both limitations in the
quality of the prompt as well as bias native within the context window itself.[33, 34] To mitigate these
issues raised through ensembling, we leveraged graph structures to reduce noise.

To build these graph structures, we utilized GPT-4.1 to perform entity and relationship extraction from
CLIO’s thought processes. These extractions then underwent unsupervised clustering to form hierarchi-
cal communities of information that were subsequently summarized and embedded. At runtime, these
summaries and embeddings were used to assist in the retrieval process for relevant pieces of information
related to CLIO’s query.[35] To build a holistic view, we enabled a control knob for CLIO to think more,
resulting in multiple different runs, often using different temperature configurations. Each run produced
a distinct chain of thought that we subsequently collected and built a joint graph of, using all sampled
sequences. To construct the final graph, we leveraged the use of LLM-induced graph structures with
unsupervised clustering to produce a representation across all runs. Finally, CLIO produced a response
by querying the final graph representation using the original question provided.

4 Evaluation

To evaluate CLIO’s performance against reasoning models, we compared our system without access to
external tools or data against 03 in high- and low-reasoning effort modes. We extended our study to
include GPT-4.1 and GPT-4o to illustrate how we can elevate the performance of completion models
into those on par with reasoning-class models, all without post-training. Ultimately, we demonstrated
how cognitive systems designed with the proper abstractions can be orchestrated to 1) self-formulate
thought patterns, 2) self-formulate confidence and feedback, and 3) self-recognize success or failure. We
further conducted a series of ablation studies that measured the system’s performance from multiple
aspects: accuracy with more thinking, similarity of reasoning structure, belief reduction using graph
structures, and uncertainty analysis. Overall, we found that CLIO surpassed o3 in both high- and low-
reasoning effort modes on the 152 text-based Biology/Medicine questions from Humanity’s Last Exam
in Pass @ 1 scenarios. On top of accuracy alone, we ran five independent Pass @ 1 scenarios to demon-
strate CLIO’s stability and fundamentally less variability than that of 03. Figure 3 below denotes the
performance and variability of GPT-4.1 with CLIO when compared to o3.

Furthermore, our results demonstrated how the utilization of graph structures reduced sporadic noise
from stronger false positive arguments, leading to an increasingly balanced perspective when answering
the question. This was evident through the performance increase of 7.90% between base GPT-4.1 with



HLE Biology & Medicine Performance: CLIO vs o3
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Fig. 3 GPT-4.1 with CLIO demonstrates on par performance with o3 in high and low reasoning efforts, while CLIO with
More Thinking enables a leap in performance.

CLIO and CLIO paired with “more thinking”. To obtain our Pass @ 1 metric, we leveraged dynamic
reasoning and inference with flexible traversal (DRIFT) search on the ensembled graph representation.
DRIFT search is a technique that combines global and local queries to obtain information spanning
multiple conceptual representations in the graph.[36] Table 1 denotes our complete Pass @ 1 accuracies
within the Biology/Medicine domain, with a detailed breakdown of specific question category perfor-
mance within them.

Question Category 03 (High) 03 (Low) GPT-4.1 GPT-4.1
w/ CLIO
Bio/Med - Genetics 0/27 2/27 2/27 7/27
Bio/Med - Biology 3/31 1/31 0/31 8/31
Bio/Med - Ecology 5/20 2720 3/20 7720
Bio/Med - Neuroscience 3/17 5/17 2/17 4/17
Bio/Med - Biochemistry 3/16 1/16 1/16 2/16
Bio/Med - Microbiology 0/9 1/9 2/9 1/9
Bio/Med - Immunology 1/8 1/8 1/8 2/8
Bio/Med - Molecular Biology 1/8 0/8 0/8 1/8
Bio/Med - Computational Biology | 0/7 0/7 0/7 1/7
Bio/Med - Biophysics 2/4 2/4 2/4 1/4
Bio/Med - Bioinformatics 2/3 1/3 0/3 1/3
Bio/Med - Genomics 0/1 0/1 0/1 0/1
Bio/Med - Physiology 1/1 1/1 0/1 0/1
TOTAL 21/152 = | 17/152 = | 13/152 = | 34/152 =
13.81% 11.18% 8.55% 22.37%

Table 1 Pass @ 1 Accuracy for text-based Biology/Medicine HLE Questions

Across multiple runs of CLIO, we found the graph-based structure alongside a multi-resolution query
of information reduced variance and raised the overall stability of the system’s performance, even when



multiple different perspectives were sampled. Figure 3 denotes the range in standard deviations between
GPT-4.1 with CLIO, of which is smaller than 03. To further validate the potential of graph-induced
structures and different search techniques to include DRIFT search, we queried the final graph con-
structed per question n times. Specifically, we ran questions in the immunology category n = 5 times
for both GPT-40, GPT-4.1, and CLIO backed by both models. In Figure 4, CLIO’s approach to more
thinking did not require a random selection and yielded a 22.5% average accuracy across all immunology
questions in this case.

CLIO Performance Improvement

Baseline Model M CLIO M CLIO (More Thinking)

Bio/Med All Immunology
40
35
el AT
30 Final: 22.5%
—_ Final: 16.1%
X
< o5 Final: 22.37%
E 22.37% 22.5%
3 % _
17.5%
15 14.47% 15:0%
] Final: 9.87%
5 8.55% Pe———— 207
2.5%
1.97% 1% 2.5%
GPT-4.1 w/ CLIO GPT-40 w/ CLIO GPT-4.1 w/ CLIO GPT-40 w/ CLIO

Fig. 4 Increasing CLIO’s performance through increased thinking

5 Discussion

5.1 Trust of Thought

We studied the diversity and semantic distance between all correct and incorrect chain-of-thought
sequences produced by CLIO and plotted them against human-annotated rationales provided by Human-
ity’s Last Exam. For each of the 34 distinct questions that CLIO successfully answered, we performed
additional sampling to ensure 95% statistical power. We found that the rationales produced by CLIO are
more like the rationales produced by humans when compared to the base model itself. Figure 5 denotes
a particular example for an immunology question that both CLIO and GPT-4.1 can solve. Here, we
plotted the similarity between CLIO’s and GPT-4.1’s chain of thought by projecting their embeddings,
generated using the text-embedding-3-large model, onto a 2D space with the top two computed princi-
pal components. GPT-4.1 was tested using the exact HLE question as well as detailed chain-of-thought
prompting to solicit clearer reasoning patterns that are ideally in line with human annotations.

5.2 Enabling Deep and Precise Reasoning Control

CLIO’s open nature of exposing its belief state makes it ripe for control. It is eminently important
for a human to communicate their cognitive processes regarding the logic of “how” they achieved a
certain result or the “why” behind a correct answer selection. Controlling and understanding this belief
state requires explainability, traceability, and the ability to argue for or against cognitive processes. Our
approach to designing CLIO puts this at the forefront, where we emphasized the ability to not only
explain the thought process and reasoning for tracking and testing, but also to raise flags when there
is uncertainty. A lack of such control greatly reduces value in deep applications, as reasoning without
control or correction is non-personal and can lead to indefensibility in the scientific context. The current
design of reasoning-class models inhibits the ability for humans to communicate and precisely correct a
reasoning chain for imprecise or non-preferable paths.[27] Untrustworthy or uncontrollable systems are
equivalent to accepting academic research that fails to meet peer review requirements.
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Fig. 5 CLIO’s produced chain of thoughts are more similar to human reasoning

5.2.1 Immunology Case Study

Figure 6 depicts the dynamic nature of CLIO’s internal uncertainty measurement across four different
temporally oriented views. To post-hoc analyze uncertainty within CLIO’s thinking process, we executed
a series of prompts that extracted the presence, level, and prior uncertainties that had been addressed.
These extracted features were subsequently utilized to construct a timestamped dataset that allowed for
trend analysis. To study trends in CLIO’s uncertainties, we ran and analyzed statistical power within
individual HLE questions to isolate any variability that was present, i.e. question type (multiple choice
versus free response) and scope of multiple-choice question (four answers versus fifteen answers).

Within Figure 6, the top plots capture a view of CLIO’s uncertainty in scenarios where CLIO is
correct, while the bottom figures denote incorrect answers. It is immediately clear how the gradient
of uncertainty with respect to time is negative for correct answers and positive for incorrect answers.
The “Correct — Low Uncertainty and Negative Gradient” plot demonstrates consistently low and stable
uncertainty scores with a negative gradient, indicating very little fluctuation in uncertainty and trend
to a correct answer. Similarly, the “Correct — Uncertainty Addressed and Negative Gradient” shows
pronounced spikes in uncertainty, which are mitigated through CLIO’s recursive thought channels as
indicated by the triangles. These clean context windows enable the dynamic adaptation of thought
strategies and when correct, result in a steady decline of uncertainty to converge on a result.

In “Incorrect — Low Uncertainty and Positive Gradient”, CLIO has little uncertainty across its entire
thinking process but trends positive. Further observations of this pattern indicate that CLIO did not
leverage its recursive ability to mitigate the positive shift in uncertainty. Finally, “Incorrect — High
Uncertainty and Positive Gradient” shows clear signal through high volatility and continually increasing
uncertainty. Analysis of these oscillation patterns indicates CLIO’s repeated attempts to address its
uncertainty but fails to do so. These oscillations are clear signals for when end users must be brought
in for interaction or additional review. Interestingly, CLIO still converges on an answer despite its
oscillations, highlighting an important gap in existing models or systems.

5.2.2 Bio/Med Full Case Study

Additionally, to analyze the utilization of uncertainty as a consistent flag for the user, we studied observed
effects within subdomains individually, i.e., immunology and biochemistry. Using a baseline of 95%
statistical power, we found that:
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Fig. 6 Direct comparison of CLIO’s internal uncertainty principles when correct and incorrect

However, the aggregation and dispersion of question type imbalance between multiple choice and free
response questions per subdomain increases likelihood for skewed results on analysis. For example, in
neuroscience, the following metrics are critical to CLIO.
These results demonstrate the importance of a scientist’s exposure to knowing both CLIO’s trajectory and
velocity of uncertainty signals. CLIO’s prioritization of developing escalation points that can be identified
and relayed to a scientist enables transparency and trustworthiness. While our work demonstrates CLIO’s
self-adaptation and optimization potential, this also backs the notion that successful problem solving
alongside end users can be attributed to proper interjection at the right time. Incorrect or oscillatory
thought patterns can be terminated directly and resumed to follow the right direction, enabling efficient

human oversight.

Feature p-value Effect size Observation
Initial Uncertainty  0.011437 -0.170 Correct samples have higher initial uncertainty
Uncertainty Range  0.040926 -0.141 Correct samples have higher uncertainty ranges
Feature p-value Effect size Observation
Ratio of Addressing Uncertainty  0.000249 -0.511 Correct samples address uncertainty and mitigate them
successfully at a higher ratio
Uncertainty Slope T-Stat 0.000396 0.605 Correct samples hold a negative gradient on the path to

resolving uncertainty




6 Future Work

As we continue our development, we approach our research under the accuracy, cost, and time (ACT)
framing.

6.1 Accuracy

While the effect of control variables like CLIO’s temperature and depth appear to influence overall per-
formance, further clarification and evaluation is required and is an area we look forward to continuing our
research in. Here, the tradeoffs between question complexity or nuance are of key interest in determin-
ing the depth of exploration or model to utilize when instantiating CLIO. In our initial tests, we mixed
reasoning and non-reasoning models in CLIO’s implementation and observed that CLIO’s uncertainty
raises the relevant flags in the reasoning models. For example, we observed CLIO’s approach effectively
combining GPT-4.1 and 03 to answer questions that o3 alone failed to. This observation held true in
the utilization of 03 in both high- and low-reasoning effort models. In further testing, we found that this
extends to a range of non-OpenAl models such as Microsoft’s Phi-4 and xAI's Grok-4. For example, we
found that our use of Phi-4 with CLIO solved new biology questions that Phi-4 alone was unable to solve.
The same was true with Grok-4, where we observed CLIO’s approach enabling an additional question
to be answered successfully within the molecular biology domain more than half the time. Nonetheless,
further assessment is required to study the effectiveness and optimization for which models to utilize for
respective problem cases, as models are performant in different categories.

6.2 Cost

While the recursive design of CLIO demands considerable computational resources and extended execu-
tion periods, prioritizing the pursuit of novel scientific discoveries offers a compelling trade-off between
time and computational expenditure. The utility function of cost against compute is outweighed by the
potential gains, both within the scientific domain but also outside. In our current work, we demonstrate
CLIO’s capabilities within science, with preliminary work showing how CLIO can extend to other domain
problems with similar cognitive patterns. Problems that require recursive reasoning patterns to handle
nuances and solve are ripe for CLIO’s utility (i.e. legal services or financial analytics).

6.3 Time

Our early work demonstrated that CLIO can successfully run and orchestrate scientific tools
autonomously for over ten hours to solve complex scientific discovery problems. Further assessments are
required to show the efficacy of tool integration and guidance over time from a subject matter expert.
Rather than demonstrating pre- or post-hoc control of outputs, we aim to show how mid-stream steering
influences scientific outcomes.

6.4 Scaling ACT

Across ACT, we believe that with CLIO’s consistent capacity to generate robust chains of thought, and
when properly selected, downstream model training using synthetic data can be further enabled. We are
actively evaluating whether CLIO’s design benefits synthetic data production for model training and
what additional components could be added to ensure the highest quality chain of thought selection.

7 Conclusion

We present CLIO, an alternative to post-training reasoning patterns prior to end-user interaction with
non-reasoning models like GPT-4.1. CLIO’s adaptation at runtime leads to increased performance on
difficult science problems while offering the opportunity for additional control and exposure to the end
user. As we enter a landscape where long-running science agents can perform increasingly complex and
difficult science functions, the ability for reasoning systems to be controlled, monitored, and corrected
is essential. Replacing reasoning trained models with the ability to alter thinking patterns in real time,
express the uncertainty in approaches and progress, and match the cognition approach of scientists is
necessary to reach the scientific potential of a human-machine team of scientists and Al agents.

We present the algorithm behind how CLIO can optimize thinking patterns at runtime through orches-
tration to solve problems like an expert starting from a blank slate. We demonstrate and analyze CLIO’s
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ability to highlight its own struggles with uncertainty. To address uncertainty, CLIO intrinsically applies
course correction through recursive invocation. In open scenarios, CLIO can be configured to highlight
when the appropriate time is to ask for help instead of correcting itself.

As the capabilities and performance of reasoning-class models and systems increase, so will the expec-
tations of scientists and end users. Scientists who bring in domain-specific tools for utilization will
increasingly require nuanced, scientific decisions to be explained and exposed. Therefore, the demon-
strated inference-time optimization of cognition patterns will be significant in shaping human-machine
symbiosis as we explore unexplored areas in science.
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