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Abstract— Brain-computer interfaces (BCIs) employ various
paradigms which afford intuitive, augmented control for users
to navigate digital technologies. In this study we explore the
application of these BCI concepts to predictive text systems:
commonplace interactive and assistive tools with variable usage
contexts and user behaviors. We conducted an experiment to
analyze user neurophysiological responses under these different
usage scenarios and evaluate the feasibility of a closed-loop,
adaptive BCI for use with such technologies. We recorded
electroencephalogram (EEG) and eye tracking (ET) data from
participants while they completed a self-paced typing task in a
simulated predictive text environment. Participants completed
the task with different degrees of reliance on the predictive
text system (completely dependent, completely independent, or
their choice) and encountered both correct and incorrect text
generations. Data suggest that erroneous text generations may
evoke neurophysiological responses that can be measured with
both EEG and pupillometry. Moreover, these responses appear
to change according to users’ reliance on the predictive text
system. Results show promise for use in a passive, hybrid,
BCI with a closed-loop, adaptive framework, and support
a neurophysiological approach to the challenge of real-time
human feedback on system performance.

I. INTRODUCTION

Brain-computer interfaces (BCIs) utilize various physio-
logical modalities, signal analysis paradigms, and system
frameworks [1] allowing users to interact with computer-
based systems through their neurophysiological processes.
In this study, we explore the application of these concepts
to commonplace interactive systems within digital technolo-
gies. Given that interest in BCI and increasingly interactive,
intelligent human-computer interfaces continues to grow [2],
we conduct a case study analyzing user neurophysiological
responses while interacting with such systems. For this case
study, we focus on predictive text: a widely implemented
assistive tool within many of today’s digital technologies.
Yet many choose not to use predictive text, which may reflect
the variable usage contexts and individual user differences of
these systems [3], [4]. We design a study to explore these
scenarios through individuals’ behavioral and neurophysio-
logical responses and discuss the application of our findings
within the context of a passive BCI and closed-loop, adaptive
framework.
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Passive BCIs operate under a cognitive monitoring-style
paradigm in which qualities of a user’s mental state are
inferred through real-time analysis of their physiological
signals [5]. The type of analysis we will focus on is
detection of error-related potentials (ErrPs). The ErrP is a
signal pattern studied in electroencephalogram (EEG) data
and a popular paradigm of passive BCIs [1]; studies have
found this potential is evoked soon after a person makes
an error [6], observes another party making an error [7], or
interacts with a system which misinterprets their intentions
[8], [9]. Our aim is first to evaluate if an ErrP is evoked
in participants’ EEG when an intelligent text entry system
incorrectly predicts their intended message. Furthermore, we
explore if a related response can be found in participants’ eye
tracking (ET) data and discuss the feasibility of a passive,
EEG-ET hybrid BCI [1]. Findings that support real-time
error detection and classification of individuals’ system usage
could be implemented in a closed-loop framework, passively
providing real-time human feedback to improve individuals’
interactions with these systems over time [7], [10].

II. METHOD

A. Stimulus and Task Preparation

This study uses a simulated predictive text generation
interface developed using PsychoPy [11]. The sentences par-
ticipants type into the interface are experimentally controlled,
and the text “predictions” participants encounter as they are
typing are generated pseudo-randomly under certain criteria
chosen to mimic interactions of real predictive text systems.
450 common English sentences, ranging 4-8 words long, are
adapted from an in-lab dataset. We use the spaCy Python
library to identify 1) nouns, verbs, adjectives, and adverbs in
each sentence that are 2) more than three letters long, and
that are 3) not the first word of the sentence. These words
are the set of possible correct (“match”) generations made
by the simulated predictive text environment. For some trials,
the environment may instead generate incorrect (“mismatch”)
words, which are selected from a set of different words of
the same part of speech.

B. Data Acquisition

Ten healthy adults, fluent in English and with normal or
corrected-to-normal vision, are compensated for participating
in this experiment. All participants sign an informed consent
form approved by the Microsoft Research Ethics Review
Program Team. We record 32-channel EEG using the Brain
Products LiveAmp system with active gel electrodes at a



Fig. 1. Experiment setup. All data, keystrokes, and stimulus timing
information are recorded simultaneously using Lab Streaming Layer.

sampling rate of 500 Hz, and ET data using a screen-mounted
Tobii Pro Nano at a sampling rate of 60 Hz. During the
experiment, participants sit at a desk in an artificially-lit room
with a computer monitor approximately 24 inches away.
They use a standard QWERTY keyboard and their head
is supported by a chin rest. Participants are never told the
system is not a real predictive text algorithm.

At the start of each trial one of the 450 stimulus sentences
is displayed inside an un-editable textbox for three seconds
(Fig. 1a), then visually masked [12] for one second (Fig.
1b). Once the mask disappears (Fig. 1c), participants type
the target sentence verbatim (Fig. 1d). For each trial, the
experiment script randomly selects one suitable position in
the sentence (defined above) to generate a “prediction” as
the participant is typing. Approximately 50% of the time the
generated word will match what the participant is attempting
to type, while the other 50% of the time the word will
be a mismatch (Fig. 1e). Participant behavior following
text generation is governed by one of three possible “user
scenarios” given to participants at the start of each run:

• Dependent (reliant): Participants evaluate if the predic-
tion is correct, and if so, always press TAB to accept
it (Fig. 1f, left). If incorrect, then they reject it by
continuing to type the correct word (Fig. 1f, right).

• Independent (not reliant): Participants still observe gen-
erated predictions, but reject them all and type the word
themselves, even if the prediction is correct.

• Free choice: Participants decide for themselves how
they would like to use (or not use) the predictive text.

Each participant completes three runs (50 sentences per
run) under each user scenario (3 runs x 3 scenarios = 9 runs
total). Participants are instructed to keep their typing speed
and pattern consistent regardless of the user scenario.

C. Data Analysis

Bad trials, including system lag > 100 msec in displaying
the visual stimulus [13] or participants not engaging with
the text generation as instructed, are removed from analysis.
From the logged keystrokes, we calculate participant reaction
time (RT) for each trial as the time between text generation
appearing on the screen to the next key press (Fig. 1f).

EEG data are notch filtered at 60, 120, 180, and 240 Hz to
remove powerline noise, and bandpass filtered from 1-10 Hz
[6], [7], [8]. EEG channels are re-referenced to an average
reference. One epoch is extracted from each trial, starting
100 msec prior to text generation and ending 1000 msec
after text generation. Currently, we examine the epochs from

Fig. 2. Differences in RT between three user scenarios (x-axis) and match
(green) vs. mismatch (orange) text conditions. Statistically significant results
from pairwise tests (with Holm-Bonferroni corrections) are indicated [(*)
p<0.05; (**) p<0.01].

channel “Fz” only. Prior work has consistently characterized
ErrP by fronto-central midline channels [6], [7], [8]. From
the recorded ET features, we focus on pupil diameter. Pupil
data are preprocessed by a moving average filter with 50-
msec window size [14]. One epoch is extracted from each
trial, starting 100 msec prior to text generation and ending
2000 msec after text generation. Bad trials identified from the
behavioral analysis, and epochs where more than 500 msec of
ET data are missing are discarded from both physiological
analyses (479 match, 268 mismatch trials). Three partici-
pants’ data are excluded due to excessive EEG artifacts.
Any missing datapoints in the remaining valid ET epochs are
linearly interpolated. From the cleaned ET data, we calculate
participants’ percent change in pupil diameter (PCPD) at
each timepoint, t, using their average pupil diameter across
all runs (µ) as their baseline [15]. For example, the PCPD
for participant p is illustrated in (1).

PCPDp(t) =
Pupil diamp(t)− µp

µp
∗ 100% (1)

III. RESULTS

A. Reaction Time

We average RTs within match and mismatch conditions of
the three user scenarios for each participant (Fig. 2). A two-
way repeated measures ANOVA reveals significant overall
effect on RT of the user scenario [F(2,16) = 11.89, p<0.001]
and whether the generated word is a match or mismatch to
the target sentence [F(1,8) = 13.73, p = 0.006], with no sig-
nificant interaction effects [F(2,16) = 0.49, p = 0.621]. When
participants are heavily relying (dependent) on the predictive
text, their response patterns can be clearly distinguished from
when they are not relying [match: t(8) = 3.28, p = 0.045;
mismatch: t(8) = 4.48, p = 0.010], or only partially relying
[match: t(8) = 4.72, p = 0.009; mismatch: t(8) = 3.14, p
= 0.045], on the system. Furthermore, trends suggest that
participants have faster RTs to incorrect compared to correct
text generations across all user scenarios [dependent: t(8) =



Fig. 3. Dependent user scenario only. Top: Grand average ERPs for match
(blue) and mismatch (orange) conditions, with 95% confidence intervals, and
mismatch-minus-match difference ERP (black). Timepoints where match
and mismatch ERPs differ significantly are highlighted in green (WSR test,
corrected). Bottom: RTs shown in reference to ERPs.

2.56, p = 0.067; independent: t(8) = 3.64, p = 0.020; free
choice: t(8) = 2.26, p = 0.067].

B. EEG ErrP
We first analyze data from the dependent user scenario

only (when participants are most reliant on the text gener-
ations) to determine if an ErrP is evoked by mismatch text
predictions. Fig. 3 shows the grand average Event-Related
Potentials (ERPs) for match and mismatch conditions within
this scenario, and the mismatch-match difference. Although
the majority of the response does not reach statistical signif-
icance, some key features can be identified. In the difference
ERP we see a broad negative deflection around 480 msec and
a broad positive peak around 720 msec after text generation,
both of which are ErrP features that have been identified in
prior studies on interaction-specific ErrPs [8], [9]. Preceding
this are two positive peaks at about 250 and 390 msec (do
not reach statistical significance according to the Wilcoxon
signed rank test) and two negative peaks at about 170 and 320
msec (significant, p<0.05), again resembling the interaction
ErrP finding from [9]. Next, we explore how these features
change when participants are in the independent user sce-
nario (Fig. 4). Since these trials differ in participants’ reliance
on the text generations to complete the task, we expect a
difference in how they perceive system errors. A Wilcoxon
signed rank (WSR) test identifies two windows (140-260
msec and 540-650 msec) during which the dependent and
independent ErrP differ significantly. Although statistical
significance is limited, results suggest that features of the
EEG response may vary according to participants’ reliance
on the system.

C. Pupil Dilation Response
Fig. 5 shows participants’ PCPD averages from the de-

pendent and independent user scenarios. In the dependent

Fig. 4. Top: Grand average difference ERPs (mismatch-minus-match)
for dependent (blue) and independent (orange) scenarios with 95% con-
fidence intervals. Dependent-minus-independent difference ERP in black.
Timepoints where dependent and independent ERPs differ significantly are
in green (WSR test, corrected). Bottom: RTs shown in reference to ERPs.

scenario, before any participant keyboard response, we see
evidence of greater pupil dilation for generated mismatches,
and constriction for matches (this difference does not reach
statistical significance according to the WSR test). In con-
trast, there is almost no difference between these conditions
at this time in the independent scenario, suggesting a pupil-
lometry response to erroneous text during greater system
reliance. After the keyboard response, we must consider
an important detail for the dependent scenario: a generated
match word will remain on the screen after the user responds
with TAB, but a mismatch word will disappear when the
user types the first letter of the correct word (Fig. 1f). It
is possible that this visual difference could amount to a
difference in luminance, making it unclear how much of
the pupil response observed after participants’ keypress in
the dependent scenario is due to their perception of the
generated text versus this potential confounder. However, it
is worth noting that there are no such differences in visual
presentation for the independent user scenario (regardless of
if the generated word is a match or mismatch, participants
always type the following letter, and the generated text
always disappears from the display). Interestingly, our data
still shows a slight difference in pupil response between
conditions in the time after participants’ keypress.

IV. CONCLUSIONS AND DISCUSSIONS

In this study, we analyzed behavioral and neurophysio-
logical responses while participants completed a self-paced
typing task in a simulated predictive text environment with
different degrees of reliance on the system (completely de-
pendent, completely independent, or their choice). An analy-
sis of RT supports that participants were in fact significantly
altering their behavior according to the reliance prompts
they were given, validating the experimental conditions.



Fig. 5. Top: Grand average PCPD for match (blue) and mismatch (orange) conditions with 95% confidence intervals, and mismatch-minus-match difference
(black) for dependent (left) versus independent (right) user scenarios. Timepoints where match and mismatch responses differ significantly are highlighted
in green (WSR test, corrected). Bottom: RTs shown in reference to pupil response for dependent and independent scenarios.

Interestingly, our results also show a trend of faster RT
to erroneous compared to correct text generations across
all conditions. This was particularly unexpected for the
independent scenario, where correctness of the generated text
should have the least influence over participants’ response.

Results from the EEG analysis suggest that incorrect
text generations evoke a measurable response resembling
interaction-style ErrPs reported by prior studies [8], [9].
Future work will continue to explore how users’ reliance on
the interactive system may modulate this response. Results
from our exploration of the pupil dilation response appear
to parallel those from EEG (although less pronounced),
suggesting that system misinterpretations may also evoke
a measurable pupillometry response that varies according
to users’ reliance on the system. However, it is not clear
from the current experimental paradigm which mechanism(s)
underlie this response, and more work is also needed to rule
out any possible confound of screen luminance.

Overall, data suggest that the complex usage scenar-
ios of intelligent interactive interfaces may evoke distinct
neurophysiological responses that could be used within a
passive, EEG-ET hybrid BCI. In future work, we intend
to test this by developing an online EEG-ET classifier for
system error detection as well as users’ system reliance.
Prior research in closed-loop, adaptive BCI has demonstrated
how such classifiers provide real-time human feedback on
system performance, which can then be used to further train
and improve the interactive system with continued use [7],
[10]. As the interactive complexity of modern technologies
continues to increase, so does the amount of training data
they need to support those features. Through our case study
on predictive text systems, we propose and show support for
a BCI approach to this challenge.
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