
AMuLeT: Automated Design-Time Testing of Secure
Speculation Countermeasures

Bo Fu∗
University of Toronto

Toronto, Canada
fubof@cs.toronto.edu

Leo Tenenbaum∗

University of Toronto
Toronto, Canada

leo.tenenbaum@mail.utoronto.ca

David Adler
University of Toronto

Toronto, Canada
d.adler@mail.utoronto.ca

Assaf Klein
Technion - Israel Institute of

Technology
Haifa, Israel

assafklein@campus.technion.ac.il

Arpit Gogia
IMDEA Software Institute

Madrid, Spain
arpitgogia@proton.me

Alaa R. Alameldeen
Simon Fraser University

Burnaby, Canada
alaa@sfu.ca

Marco Guarnieri
IMDEA Software Institute

Madrid, Spain
marco.guarnieri@imdea.org

Mark Silberstein
Technion - Israel Institute of

Technology
Haifa, Israel

mark@ee.technion.ac.il

Oleksii Oleksenko
Azure Research, Microsoft
Cambridge, United Kingdom

oleksii.oleksenko@microsoft.com

Gururaj Saileshwar
University of Toronto

Toronto, Canada
gururaj@cs.toronto.edu

Abstract
In recent years, several hardware-based countermeasures
proposed to mitigate Spectre attacks have been shown to
be insecure. To enable the development of effective secure
speculation countermeasures, we need easy-to-use tools that
can automatically test their security guarantees early-on in
the design phase to facilitate rapid prototyping.
This paper develops AMuLeT, the first tool capable of

testing secure speculation countermeasures for speculative
leakage early in their design phase in simulators. Our key
idea is to leverage model-based relational testing tools that
can detect speculative leaks in commercial CPUs, and apply
them to micro-architectural simulators to test secure specula-
tion defenses. We identify and overcome several challenges,

∗Bo and Leo contributed equally as lead authors for this paper

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1079-7/25/03. . . $15.00
https://doi.org/10.1145/3676641.3716247

including designing an expressive yet realistic attacker ob-
server model in a simulator, overcoming the slow simula-
tion speed, and searching the vast micro-architectural state
space for potential vulnerabilities. AMuLeT speeds up test
throughput by more than 10× compared to a naive design
and uses techniques to amplify vulnerabilities to uncover
them within a limited test budget. Using AMuLeT, we launch
for the first time, a systematic, large-scale testing campaign
of four secure speculation countermeasures from 2018 to
2024—InvisiSpec, CleanupSpec, STT, and SpecLFB—and un-
cover 3 known and 6 unknown bugs and vulnerabilities,
within 3 hours of testing. We also show for the first time that
the open-source implementation of SpecLFB is insecure.

CCS Concepts: • Security and privacy → Security in
hardware.

Keywords: Side Channels, Spectre, Defenses, Fuzzing

ACM Reference Format:
Bo Fu, Leo Tenenbaum, David Adler, Assaf Klein, Arpit Gogia,
Alaa R. Alameldeen, Marco Guarnieri, Mark Silberstein, Oleksii
Oleksenko, and Gururaj Saileshwar. 2025. AMuLeT: Automated
Design-Time Testing of Secure Speculation Countermeasures. In
Proceedings of the 30th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
Volume 2 (ASPLOS ’25), March 30-April 3, 2025, Rotterdam, Nether-
lands. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3676641.3716247

https://doi.org/10.1145/3676641.3716247
https://doi.org/10.1145/3676641.3716247
https://doi.org/10.1145/3676641.3716247

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Bo Fu et al.

1 Introduction
Spectre attacks [20] exploit speculative execution to access
architecturally unreachable information and leak them via
𝜇arch side channels. To mitigate these leaks, many hardware
countermeasures have been proposed using techniques like
invisible speculation [19, 30, 37], undo-based approaches [29],
and tracking speculative flows [22, 36, 40, 41]. Many of these
countermeasures, however, have been shown to be insecure,
often in months. For instance, invisible speculation is vulner-
able to speculative interference attacks [3], whereas Cleanup-
Spec [29] and STT [41] were shown to be insecure in later
works [21, 22]. Even defenses proposed by CPU manufactur-
ers have been broken by subsequent attacks
To enable effective secure speculation defenses, we need

tools that can automatically test their security. These tools
need to satisfy two requirements to be practically adopted:

R1: They need to be applicable early in the design phase to
facilitate rapid prototyping of countermeasures.

R2: They need to be easy to use on existing design artifacts
to increase adoption by computer architects.

Currently, computer architects lack tools that meet both
requirements. Formal methods [9, 33, 34, 38] for reasoning
about 𝜇arch leaks have limited scalability and require ex-
pertise which computer architects often lack (failing R2).
For instance, Pensieve [38] requires formalizing 𝜇arch coun-
termeasures in a dedicated modeling language. RTL testing
tools [5, 16], while scalable and enabling pre-silicon testing,
fail R1, as they are inapplicable early in design, when archi-
tects prototype features on simulators. A majority of secure
speculation countermeasures are prototyped in simulators,
making RTL-based tools unsuitable for testing them.
In this work, we address this gap with AMuLeT, the first

tool that can test secure speculation countermeasures at de-
sign time in 𝜇arch simulators. AMuLeT enables Automated
𝜇-architectural Leakage Testing, i.e., the testing of a coun-
termeasure for unexpected speculative leaks to discover vul-
nerabilities at design time. For practical adoption, we seek to
avoid intrusive changes to either the simulator or the counter-
measure being tested. For this, AMuLeT adapts model-based
relational testing (MRT) techniques [25, 26], which found
speculative leaks in commercial CPUs, to 𝜇arch simulators.
Following the MRT approach, AMuLeT tests the target

defense (implemented on a 𝜇arch simulator) against a given
leakage contract [14], an ISA-level model capturing the ex-
pected leakage. AMuLeT has two main components: (a) a
model that maps program executions to contract traces, i.e.,
sequences of ISA-level observations capturing the expected
leakage according to the contract, and (b) an executor that
generates 𝜇arch traces, which capture the observable side-
effects of speculative execution on the simulator. AMuLeT
generates random programs executed on both the executor

and the model, and compares the expected leaked informa-
tion (captured by the contract traces) with the actual infor-
mation leaked by the defense (captured by the 𝜇arch traces).
Any discrepancy between the two (called a contract viola-
tion) indicates an unexpected leak, and therefore a potential
security vulnerability in the defense.
While we reuse the test and contract trace generation

from prior work [25, 26], implementing AMuLeT requires
addressing three core challenges (indicated as C1–C3 below).
C1: What CPU state to expose in the 𝜇arch trace? The
design of the 𝜇arch trace is critical in MRT as it captures the
observational power of the attacker against which the secu-
rity guarantees are tested. Simulators allow the definition
of extremely expressive 𝜇arch traces comprising potentially
the entire CPU 𝜇arch state. At the same time, 𝜇arch trace
needs to be grounded in a realistic observer model , so that
the detected violations may be exploitable on a real CPU.

In AMuLeT, we implement 𝜇arch traces by taking a snap-
shot of the final cache and TLB states of the test program
extracted from the simulator. Our evaluations in § 4.4 show
this 𝜇arch trace, capturing the observational power of an
attacker exploiting memory-system side channels (explicit
channels [41]), is sufficient to discover exploitable speculative
leaks in several secure speculation countermeasures claim-
ing to protect against these side channels. At the same time,
it is also easily extensible to other attacker models. In § 4.3,
we show that exposing more information in the 𝜇arch traces,
e.g., branch predictor state or program counter sequence,
can also detect implicit channels based on branch prediction
or resolution, at the cost of reduced testing throughput.
C2: Slow testing speed. Running test cases in a simulator
is slow. This severely limits the number of tests that can
be executed during a campaign and reduces the chances
of finding contract violations. Our key observation is that,
counterintuitively, the main bottleneck is the startup costs of
the simulator rather than the test runtime. This is because
current MRT techniques [24–26] generate small test pro-
grams (a few tens of instructions) that run quickly (e.g., tens
of milliseconds in gem5 [4]), whereas the simulator startup
times are nearly two orders of magnitude higher.

To address this, we design a testing harness that runs suc-
cessive tests without restarting the simulator by overwriting
register and memory values between the tests, thereby amor-
tizing the startup costs across multiple tests. Compared to
restarting the simulator on each test, AMuLeT improves test
throughput by over 10x, as shown in § 3.2.
C3: Low probability of discovering leaks. A key require-
ment for speculative leaks is contention on 𝜇arch resources.
To amplify the chances of their occurrence, we test the design
with smaller 𝜇arch structure sizes (e.g., fewer cache ways,
fewer MSHRs), amplifying contention and making leaks eas-
ier to discover. With this, AMuLeT uncovers vulnerabilities
that could not be detected otherwise, as shown in § 4.5.1.

AMuLeT: Automated Design-Time Testing of Secure Speculation Countermeasures ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Evaluation. We use AMuLeT to run the first systematic,
large-scale testing campaign against secure speculation coun-
termeasures (all implemented in the gem5 simulator). Our
campaign covers an unprotected out-of-order CPU and four
secure speculation countermeasures: InvisiSpec [37], Cleanup-
Spec [29], STT [41], and SpecLFB [8]. We detect Spectre-v1
and Spectre-v4 vulnerabilities within minutes in the unmod-
ified (insecure) CPU. In the countermeasures under test, we
discover 3 unknown implementation bugs, 3 unknown vul-
nerabilities in the designs, and confirm 3 known vulnerabili-
ties, all within three hours of testing.
In InvisiSpec, we discover a previously unknown bug in

the cache eviction logic, which leaks speculatively accessed
addresses via evictions.We also discovered a stronger variant
of speculative interference attack [3]. While the prior attack
requires a multi-threaded attacker and SMT support, our
variant is exploitable by a single-threaded adversary, thereby
breaking InvisiSpec’s security in a single-threaded setting.

In CleanupSpec, we discovered several new bugs and vul-
nerabilities.We find leaks of speculatively accessed addresses
due to (a) incorrect cleanups of non-speculative load ad-
dresses when they match with reordered speculative loads, a
previously unknown vulnerability, and (b) a lack of cleanup
for speculative stores and speculative requests crossing cache
lines, due to implementation bugs. We also re-discovered
unXpec [21], a previously known vulnerability.

In STT, AMuLeT automatically flagged a known vulnera-
bility on speculative stores where the TLB is speculatively ac-
cessed by tainted stores, as shown previously byDOLMA [22].

In SpecLFB, a defense proposed in 2024, AMuLeT discov-
ers a new vulnerability, similar to Spectre-v1, in the open-
sourced gem5 implementation. This is due to an undocu-
mented optimization in the implementation that removes
protection for the first speculative load in the load-store
queue, thereby making it vulnerable to Spectre attacks leak-
ing secret registers with a single speculative load.

Summary of contributions:

1. We introduce AMuLeT, the first tool that can automat-
ically find information leaks in simulated CPUs, and
identify weaknesses in the proposed designs of secure
speculation countermeasures.

2. We expose the 𝜇arch state realistically observable by
an attacker, and introduce techniques to amplify the
observability of violations in white-box simulators
without intrusive changes to the simulator.

3. We identify performance bottlenecks and address them
by streamlining the test case execution, improving the
testing throughput by an order of magnitude.

4. We launch the first large-scale testing campaigns on
several recent secure speculation countermeasures,
InvisiSpec, CleanupSpec, STT, and SpecLFB, and auto-
matically find multiple unknown bugs and vulnerabil-
ities in three hours of testing on a commodity server.

We have responsibly disclosed our discoveries to the au-
thors of the countermeasures. AMuLeT is open-sourced at
https://github.com/sith-lab/amulet to aid the testing of fu-
ture countermeasures as they are designed.

2 Background: Testing for speculative leaks
We first discuss leakage contracts [14], which model specula-
tive leaks at the ISA level (§ 2.1), then describe how attackers
can be modeled (§ 2.2), and how leakage contracts enable
detecting unexpected leaks visible to attackers (§ 2.3). Finally,
we overview Revizor [25] (§ 2.4), a testing tool for detecting
leaks in CPUs, which we use as a basis for AMuLeT.

2.1 Leakage contracts modeling speculative leaks
Leakage contracts [14] capture the expected 𝜇arch leaks at the
ISA level. A contract C describes, for any program 𝑝 and in-
put 𝑖 , what information might be leaked microarchitecturally
when executing 𝑝 with input 𝑖 . For this, contract C maps each
execution to a contract trace, i.e., a sequence of ISA-level ob-
servations capturing leaked information. C (𝑝, 𝑖) denotes the
contract trace for the execution of program 𝑝 with input 𝑖 .
Contracts are formalized by annotating ISA instructions

with (a) an observation clause modeling the information
leaked by the instruction, and (b) an execution clause mod-
eling if (and how) instructions trigger speculation. Table 1
summarizes the contracts we use in evaluations in § 4:

• The CT-SEQ contract models the leakage expected by
a CPU with cache side channels and without speculative
execution. Its observation clause exposes the addresses of
executed load and store instructions as well as the program
counter throughout the execution. The execution clause is
empty, indicating that no instruction triggers speculation
and that the leakage is only on architectural execution paths.

• The CT-COND contract models the leakage expected by
a CPU with branch prediction. While its observation clause
is the same as for CT-SEQ, the execution clause specifies
that when a conditional branch is executed, the correspond-
ing mis-predicted branch should be explored as well. This
captures instructions transiently executed due to branch
prediction.

• Finally, the ARCH-SEQ contract exposes the program
counter, the location of all loads and stores, and the values of
all data loaded from memory on architectural program paths.
For this, ARCH-SEQ extends the observation clause in CT-SEQ
by additionally exposing the values loaded from memory. As
in CT-SEQ, the execution clause is empty.

Table 1. Leakage contracts used in this work.

Name Clauses
Leakage Execution

CT-SEQ PC, LD/ST ADDR N/A
CT-COND PC, LD/ST ADDR Mispredicted Branches
ARCH-SEQ PC, LD/ST ADDR and values N/A

https://github.com/sith-lab/amulet

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Bo Fu et al.

2.2 Modeling attackers in speculation-based attacks
In speculation-based attacks, attackers extract information
about a victim program by observing changes in the CPU’s
𝜇arch state through side channels [27, 39]. Like priorworks [14,
25], we model attacker observations using 𝜇arch traces from
victim execution, where each trace captures the 𝜇arch changes
observed by an attacker. For a program 𝑝 starting from an
input 𝑖 and 𝜇arch context 𝜇 (the initial CPU 𝜇arch state),
𝜇Trace(𝑝, 𝑖, 𝜇) denotes the 𝜇arch trace for this execution.
In § 3, we describe the 𝜇arch traces used in AMuLeT.

2.3 Detecting unexpected leakages
A leakage contract captures the expected leakage of a CPU
under test. Any unexpected leak is a contract violation, where
the 𝜇arch traces leak more information than the contract
traces. This is defined precisely as follows:

Definition 2.1 (Contract violation [14]). A CPU violates a
contract C if there exists a program 𝑝 , two inputs 𝑖, 𝑖′, and a
microarchitectural context 𝜇 such that C (𝑝, 𝑖) = C (𝑝, 𝑖′) and
𝜇Trace(𝑝, 𝑖, 𝜇) ≠ 𝜇Trace(𝑝, 𝑖′, 𝜇).

A violation is evidence of an unexpected leak in the CPU as
the attacker can distinguish two executions (𝜇Trace(𝑝, 𝑖, 𝜇) ≠
𝜇Trace(𝑝, 𝑖′, 𝜇)) that should be indistinguishable based on the
contract (C (𝑝, 𝑖) = C (𝑝, 𝑖′)).

2.4 Model-based relational testing: Revizor
Model-based relational testing (MRT) tools [24, 25] discover
unexpected leaks in CPUs by searching for contract viola-
tions, and have been successful in finding new vulnerabilities
and variants of existing ones [15, 24–26]. Here, we focus on
Revizor, the MRT tool we use as a basis for AMuLeT.
Revizor searches for contract violations by (1) generat-

ing a random program 𝑝 and a sequence of random inputs
[𝑖0, 𝑖1, . . .], (2) collecting the contract and 𝜇arch traces for all
programs and inputs, and (3) analyzing the traces to identify
violations according to Definition 2.1. The testing continues
for a fixed number of rounds or until a violation is detected.
We now provide further details on the core parts of Revizor:

• Program generation: The generator selects a random
sequence of assembly instructions from a pool to form a
program. It can be configured to constrain the shape of the
program’s control-flow graph, control the pool of instruc-
tions, and configure the instruction frequencies.

• Input generation: Each input is a binary file, generated
with a (seeded) pseudo-random number generator, that ini-
tializes the test program’s memory and registers. Inputs can
also be mutated, preserving only the parts influencing the
contract trace while randomizing others to ensure identical
contract traces but potentially different speculative behavior.

• Collecting contract traces: Revizor implements an exe-
cutable version of the contract (called leakage model) on top

Generator

Leakage Model

Contract
Trace

Unicorn
(Emulator)

RNG

Executor

𝜇arch
Trace

CTrace B

==

AND

Leakage in
Defense

(violation)

CTrace A
𝜇Trace B

𝜇Trace A
Program

Input

Test Case

!=

Target
Defense

(Simulator)

Figure 1. Overview of AMuLeT. We leverage the test-
generation and leakage models from prior works [15, 25, 26]
and design a new executor in AMuLeT capable of testing
target defenses in a 𝜇arch simulator.

of the Unicorn ISA emulator [1] by (1) adding instrumenta-
tion to record observations according to the contract’s obser-
vation clause, and (2) simulating speculative execution paths
as per the execution clause. Revizor collects contract traces
by executing the program 𝑝 with all the inputs [𝑖0, 𝑖1, . . .]
using the leakage model and recording the observations.

• Collecting 𝜇arch traces: Revizor implements an execu-
tor that takes a program 𝑝 , executes it on the target CPU
with each of the inputs [𝑖0, 𝑖1, . . .], and measures the 𝜇arch
trace for each execution. These traces are collected via a side
channel attack, like Prime+Probe, where each trace is a set
of cache lines evicted by the program.

• Comparing leakage: At the end of each testing round,
Revizor compares the collected contract and 𝜇arch traces to
detect violations according to Definition 2.1.

3 AMuLeT Design
AMuLeT builds on Revizor [25], an MRT tool that finds leaks
in silicon CPUs, to enable design-time testing of secure spec-
ulation mechanisms in simulators. Next, we provide a high-
level overview of AMuLeT, highlight the key challenges in
testing designs in a simulator, and explain our solutions.

3.1 Overview of AMuLeT
AMuLeT consists of three main modules, as shown in Fig-
ure 1: (1) the test generator, which generates random pro-
grams and inputs, (2) the leakage model, which generates the
contract traces, and (3) the executor, which generates 𝜇arch
traces from a simulator implementing the countermeasure
under test. Below, we describe each component briefly.

Test Generator. AMuLeT reuses the test generator from
Revizor [25] (described in § 2.4) to generate short test pro-
grams of up to 5 basic blocks of randomly selected instruc-
tions, linked together by jumps in the form of a directed
acyclic control flow graph. All memory accesses are forced

AMuLeT: Automated Design-Time Testing of Secure Speculation Countermeasures ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

to access a predefined and initialized memory sandbox. We
vary the number of 4KB pages in the sandbox from 1 to 128.
Several random inputs are generated for each test program.
A combination of a program and input forms a test case.

Leakage Model. AMuLeT reuses the leakage model from
Revizor [25] to collect contract traces by executing each
test case on the Unicorn [1] CPU emulator. For each of
the target defenses, we test them against a contract that
matches their security guarantees, following the formal anal-
ysis by Guarnieri et al. [14, Section VI]. Specifically, we use
the CT-SEQ contract for testing InvisiSpec [37] (Futuristic),
CleanupSpec [29], and SpecLFB [8], and the ARCH-SEQ con-
tract for testing STT [41] (Futuristic).

Executor. The executor generates the 𝜇arch traces from
a simulator implementing the countermeasure under test.
𝜇arch traces model attacker observations for a given coun-
termeasure. When two tests have matching contract traces
but different 𝜇arch traces, we flag that as a contract violation
(cf. Definition 2.1), indicating a speculative leak (and a po-
tential vulnerability). Thus, the design of the 𝜇arch trace is
critical in determining the types of leaks that can be detected.

3.2 𝜇arch Trace Design - Challenges and Solutions
As the 𝜇arch traces model the attacker observations, they
play a critical role in determining the speed and efficacy of
testing for leaks. Below, we highlight the key challenges in
designing the 𝜇arch trace in AMuLeT and then our solutions.
C1. Determining 𝜇Arch States Exposed in 𝜇Arch Trace
A simulator provides white-box access to the entire CPU’s
𝜇arch state, which can be potentially exposed via the 𝜇arch
trace. However, exposing information that is too detailed
may reduce the testing throughput. Moreover, althoughmore
detailed 𝜇arch traces can result in more contract violations
(cf. Definition 2.1), not all discovered violations may lead to
exploitable leaks for software-based attackers.

Consider the following options for the 𝜇arch trace, which
expose different 𝜇arch information. The first uses a snap-
shot of the cache and TLB state at each test case’s end (i.e.,
L1D-cache and D-TLB tags). This models a realistic software-
based attacker inferring the cache or TLB state by performing
memory accesses and checking for cache or TLB hits/misses
(an explicit channel as per the STT taxonomy [41]). The sec-
ond option uses a snapshot of the branch-predictor (BP) state
(consisting of local/global history tables, branch target buffer,
etc.) at the end of the test case. This models a more sophisti-
cated attacker that can infer information about how program
branches have been executed from the secret-dependent BP
state (this is an example of an implicit channel based on pre-
diction in STT’s taxonomy).
Finally, the third option models an attacker physically

probing the hardware, i.e., monitoring 𝜇arch state transi-
tions throughout the execution of the test case. For example,

monitoring the sequence of program counter values (PC) and
branches, or monitoring each transaction on the L1-Cache
bus exposing the sequence of addresses of each load/store.
This provides much more precise and exhaustive informa-
tion. For instance, differences in the sequence of PCs can
detect implicit channels based on branch resolution (as per
STT’s taxonomy), whereas a secret-dependent reordering
of loads may induce a difference in the cache replacement
state. However, not all of these transient differences may
be exploitable in practice; some of these secret-dependent
orderings may not result in changes observable by a realistic
attacker (e.g., reordered loads map to different cache sets).
In § 4.3, we evaluate testing campaigns using each of

these three 𝜇arch trace formats and show that AMuLeT can
effectively detect different kinds of violations regardless of
the trace format. By default, in AMuLeT, we use state-based
𝜇arch traces to model the most realistic attacker. We use the
data cache and TLB snapshots (first option) for the 𝜇arch
traces, given that such memory-system-based side channels
are exploited in the majority of speculation-based attacks
and most defenses [8, 29, 37, 41] that we seek to test with
AMuLeT protect against at least these side channels.

In AMuLeT, we use the 𝜇arch trace comprising a snapshot
of the final TLB and caches state, which models a realistic
attacker observing memory-system side channels.

Our evaluation in § 4.4 shows that such a 𝜇arch trace pro-
vides sufficient information to discover exploitable violations
across a wide variety of defenses. We remark, however, that
any other 𝜇arch state observable to an attacker (e.g., second
or third option) can also be used as part of the 𝜇arch trace.
C2. Determining Initial State for 𝜇Arch Traces. Prior
works [25, 26] collect 𝜇arch traces on real CPUs using cache
side channels like Flush+Reload [39] or Prime+Probe [27].
While we directly extract the final state of the cache from
the simulator and do not need to infer it via a side channel,
this still leaves the question: What should be the initial state
of the caches before starting a test case?
The most intuitive approach is to start deterministically

from a clean cache state, thus eliminating noise.

We observe that the best results are obtained when ini-
tializing the L1 cache by filling it up with addresses from
outside the memory sandbox of the test case. This trans-
lates into 64 x 8 addresses for an 8-way, 32KB L1 cache.

Starting from a fully occupied cache set ensures we not
only detect leakages due to speculative cache line installs
(addresses installed by the program), but also due to replace-
ments (evicted addresses). In our evaluation (§ 4.2), we show
that initializing the cache state in this way increases the num-
ber of detected violations compared to the naive approach.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Bo Fu et al.

Simulator with
Target Defense

Loop:
mov [rax], rbx
xor rbx, rdx
add rbx,1024
m5 checkpoint

3. Run One Input on
Test Program

1. Start Simulator Once
Per Test Program

2. Overwrite
Input Registers &

Sandbox in Simulator

4. Extract μarch trace
(Cache/TLB snapshot)

Figure 2. Design of 𝜇arch trace extraction in AMuLeT-Opt.

C3.Alleviating SlowdownDue to SlowSimulator Startup.
While MRT tools for testing silicon CPUs face a performance
bottleneck due to test and contract trace generation [26],
the bottleneck for testing countermeasures in simulators is
the simulation runtime, i.e., the time to execute the test and
extract the 𝜇arch trace. The naive approach of generating a
𝜇arch trace for each test program and input involves pack-
aging the test case (program and input) in a binary, running
the binary on the simulator, and extracting the 𝜇arch trace
at the end of the simulation. Unfortunately, we observe that
this approach is not very performant due to the use of short
test cases (approximately 50 instructions per test case)1.
Characterizing AMuLeT-Naive.We analyze the execu-

tion time for a single test program in Table 2. We run tests on
the default Out-of-Order CPU (non-secure) in gem5, which
we run in SE mode. We see that 97% of the time is spent in
gem5 as expected; however, 96.1% of the time is spent in gem5
start-up, and only 0.9% is spent simulating the instructions.
This is because gem5 takes a few seconds to initialize, but
just tens of milliseconds to run a test case of ~50 instructions.
Thus, the startup time is the primary bottleneck.

Table 2. Breakdown of time per test program, using a Naive
and Optimized 𝜇arch trace extraction in AMuLeT (with 140
inputs/program), in a campaign running 30 test programs.

Component Naive Opt
gem5 startup 156 s (96.1%) 0.2 s (1.6%)
gem5 simulate 1.4 s (0.9%) 11 s (88.5%)
𝜇Trace extraction 0.9 s (0.5%) 0.6 s (4.6%)
Test generation 0.5 s (0.3%) 0.3 s (2.5%)
CTrace extraction 0.1 s (0.1%) 0.1 s (0.6%)
Others 3.4 s (2.1%) 0.3 s (2.2%)
Total 159 s (100%) 12 s (100%)

AMuLeT-Opt. We adopt an optimized 𝜇arch trace extrac-
tion method in AMuLeT (Opt in Table 2). Rather than restart-
ing the simulation for each program input, we continue to
execute test cases for different inputs of the same program
1Short test cases are beneficial to ensure that side effects of speculation are
observable in the final cache state obtained at the end of the test case.

by directly overwriting the register and memory values in
the simulated binary in the gem5 process without restarting
the simulator. As shown in Figure 2, we start the simulation
with a binary that loops over the test program instructions.
After each successive input, we overwrite the input register
values in the binary and continue the simulation. At the end
of each iteration, we extract the corresponding 𝜇arch trace.

Unlike AMuLeT-Naive, which restarts the simulator for
each input, AMuLeT-Opt only restarts it for each test
program, so the startup cost is amortized across all inputs.

Benefits of AMuLeT-Opt. As shown in the Opt column
of Table 2, the gem5 startup time is significantly reduced
(consuming 2% of the time), and the bottleneck is now the
time for simulating instructions (consuming 89% of the time).
Note that our simulation time per program increases, since
we need 10x more instructions to reset the cache state per
test input with addresses from outside the sandbox (64 × 8
instructions for a 8-way, 32KB L1D-cache). We considered
adding a special custom instruction to reset the cache to
further reduce the time per test but ruled out this idea to
avoid intrusive changes to the design that may potentially
change its behavior. The time per test program for AMuLeT-
Opt is just 12 seconds, 13x lower compared to AMuLeT-Naive,
which takes 2.7 minutes per test program with all its inputs.

AMuLeT-Opt has an additional benefit that it preserves
the 𝜇arch state of the predictors (like branch predictor or
memory dependence predictor) between test cases. This is
beneficial for finding leaks as it results in a wider variety of
predictions in successive inputs. However, this also means
that a violationmight be due to differences in the initial 𝜇arch
context. Following prior work [25], we validate a violation
by re-running the violating inputs with the other test case’s
𝜇arch starting context and check if the violation persists.
We provide detailed comparisons of the speed of testing and
efficacy in finding violations between Naive and Opt in § 4.2.

3.3 Analyzing Violations
Violations are detected by AMuLeTwhen there is a difference
in the 𝜇arch traces (final D-cache or TLB state) for two inputs
to a program with the same contract trace (cf. Definition 2.1).
On detecting a violation, AMuLeT outputs the program and
the pair of inputs causing the violation with their 𝜇arch
traces. Our violation analysis workflow, shown in Figure 3,
has two steps: (a) root cause analysis of a given violation and
(b) identifying unique violations by filtering out similar ones.

(a) Root Cause Analysis. Like any fuzzing approach, iden-
tifying the root cause of a violation in AMuLeT is a manual
process. This is because fuzzing typically automates the test-
ing process, whereas root causing detected vulnerabilities is
orthogonal and often dependent on the vulnerability itself.

AMuLeT: Automated Design-Time Testing of Secure Speculation Countermeasures ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Fuzz

Identify Unique Violations

Root Cause
Violation

Patch Root Cause

Use Leakage
Specific Contract

Use Signatures in
Debug Logs

Repeat Minimal Human Effort

Manual Process
(hours to days)

Fi
lte

r D
up

lic
at

es

Figure 3. Analyzing violations discovered with AMuLeT.

We analyze violations in AMuLeT that manifest as differ-
ences in the D-Cache and TLB-based 𝜇arch traces, by first
identifying the load instruction responsible for the differing
addresses in the 𝜇arch traces. We then trace back along the
program data flow to find the mis-speculated instruction de-
pendent on varying inputs (the source of the leak). This iden-
tifies the entire mis-speculated instruction sequence causing
the violation. We do this using a script that parses gem5’s
debug logs (containing information like load/store addresses,
branch prediction, etc.) and provides a side-by-side compari-
son of memory accesses under the two violating inputs and
highlights differences. It also displays squashes, which helps
locate the cause of the mis-speculation. Once the instruction
sequence causing the violation is thus identified, we examine
the gem5 debug logs for this sequence to pinpoint the code
in the defense causing the leakage. For violations discovered
in this work, root cause analysis took a few hours to few
days, based on the complexity of a violation.

(b) Identifying Unique Violations. Once we root cause a
given violation, we avoid re-discovering similar violations in
twoways: (1) fixing the root cause when possible, (2) filtering
similar violations using contracts that expose this leakage, or
by inspecting the debug logs. When fixing the vulnerability
in gem5 took less than 10 lines of code, we wrote a patch and
re-ran the violations to see which got resolved—this worked
for violations UV1 and UV3 in InvisiSpec and CleanupSpec
(§§ 4.5 and 4.6) with minimal effort.

If the vulnerability was fundamental to a defense and hard
to patch, we used a contract exposing this leakage in the con-
tract trace to filter these violations, as in priorworks [25, 26]—
this approach worked for KV1 and UV6 in InvisiSpec and
SpecLFB (§§ 4.5 and 4.7) and required few lines of code in
AMuLeT. When characterizing leaks at the contract level
was not straightforward, we identified a unique signature
for a violation based on patterns in the 𝜇arch traces or simu-
lator debug logs and used regex-based scripts to filter similar
violations. For example, InvisiSpec violation (UV2; § 4.5)
shows MSHR-related stalls in debug logs due to specula-
tive interference, while CleanupSpec violation (UV4; § 4.6)
shows load requests crossing cache line boundaries in debug
logs. This approach, which is akin to defining a leakage-
specific contract, isolates violations with similar signatures,

and worked for the remaining violations in InvisiSpec and
CleanupSpec (§§ 4.5 and 4.6). We continue steps (a) and (b)
until all violations are root caused. When left with a handful
of violations in a defense (e.g., less than 10), we manually in-
spect the debug logs to verify that all of them have the same
signature—this approach worked for STT (§ 4.8). Overall,
identifying unique violations takes minimal manual effort.

3.4 Amplifying Leakages in Simulators
So far, AMuLeT directly tests any CPU design or simulator-
based countermeasure for leaks without any modifications,
as if it were a black-box. However, programs that induce leak-
ages can be fundamentally hard to find with random testing,
and exhaustively traversing the vast 𝜇arch state space of a
design to check for leakage is impractical.
To efficiently uncover such leaks, we leverage the fact

that observing speculative leakage has two requirements:
(1) a speculative “access” instruction that reads the data to
be leaked, and a (2) speculative “transmitter” instruction,
that leaks the data via contention on a 𝜇arch resource (i.e.,
a covert channel) and impacts the 𝜇arch trace. To make
leaks easier to observe, we increase the chance of contention
on 𝜇arch structures by configuring the target design with
smaller 𝜇arch structure(s) (e.g., smaller L1-Caches, fewer
cache ways, fewer MSHRs). This approach makes covert
channels, where contention is unlikely to occur in short test
cases (e.g., Prime+Probe, MSHR contention), more likely,
thus increasing the chance of detecting speculative leaks.
Note that we do not modify the defense itself or test in-

feasible CPU configurations. We use valid configurations of
these structures with reduced sizes to increase the probability
of short test cases inducing contention. This will make any
speculative leaks that exist in the design more observable.
In evaluations, we show that AMuLeT can already dis-

cover leaks in countermeasures while testing with default
configurations, as we show in § 4.4; but it can discover more
interesting leaks with amplification, as we show in § 4.5.1.

3.5 Implementation
We integrate AMuLeT with the gem5 simulator [4]. Our test
and contract trace generation build on Revizor’s implementa-
tion [25]. We add 𝜇arch trace extraction to the gem5 code of
each defense, and run gem5 in Syscall Emulation (SE) mode.
For the 𝜇arch trace, we use the final state of the L1D-

cache and D-TLB extracted from the simulator at the end of
a test case. We reset the L1D-cache state after each test case
by filling it with addresses from pages outside the memory
sandbox, which also evicts the TLB entries (for InvisiSpec and
STT), or by invalidating the caches directly using a simulator
hook if this is supported by the specific simulator version (for
SpecLFB and CleanupSpec). For InvisiSpec, CleanupSpec,
and SpecLFB, we use a sandbox with 1 physical page (as the
TLB is not protected), whereas for STT we use a sandbox
with 128 pages since we seek to test it also for TLB leaks.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Bo Fu et al.

4 Evaluation
Here, we answer the following research questions:
RQ1 Can AMuLeT detect known leaks in non-secure CPUs?

How fast is AMuLeT-Opt compared toAMuLeT-Naive?
RQ2 How does the choice of the 𝜇arch trace format affect

the number and kinds of violations found?
RQ3 Can AMuLeT detect known and unknown leaks in

defenses? How effective is our leakage amplification?
RQ4 Can AMuLeT detect more interesting and more funda-

mental vulnerabilities, as we fix the simpler ones?
We answer RQ1 and RQ2 by testing the Out-of-Order gem5

CPU with AMuLeT (§ 4.2–4.3), and RQ3 and RQ4 by testing
InvisiSpec, CleanupSpec, STT, and SpecLFB (§ 4.4–4.8).

4.1 Evaluation Methodology
We use AMuLeT to test the baseline Out-of-Order CPU in
gem5 (O3CPU) and four different countermeasures: Invi-
siSpec [37], CleanupSpec [29], STT [41], and SpecLFB [8].
For the baseline, we test the insecure O3CPU in the gem5
code-base from InvisiSpec. For each countermeasure, we test
its publicly available implementation, run with the default
configuration flags. For InvisiSpec and STT, we run them in
their Futuristic mode, as it provides the strongest security.

We run our testing campaigns on an AMD EPYC 128-Core
CPU. For comparisons between AMuLeT-Naive and -Opt
(§ 4.2), due to the slower speed of AMuLeT-Naive, we run
shorter test campaign of 16 parallel instances of AMuLeT,
with each instance executing 100 test programs and 140
inputs per program (224k test cases in total). For testing
InvisiSpec, CleanupSpec, STT, and SpecLFB (§ 4.4), we run
100 parallel instances, each executing 200 test programs, and
140 inputs per program (2.8M test cases in total).

On discovering a violation, we analyze it to identify its
root cause following the process in § 3.3.

4.2 Testing Baseline Out-of-Order CPU
To answer RQ1, we test the insecure baseline O3CPU against
two contracts: CT-SEQ, which allows cache-based leaks on se-
quential execution, and CT-COND, which additionally allows
leaks on mispredicted branches. We run campaigns with
AMuLeT-Naive and AMuLeT-Opt using the default trace
format (L1D-cache and D-TLB). Table 3 shows the execution
time, number of violating test cases detected, and detection
time per violation, averaged over 16 parallel runs.
Detected Violations. AMuLeT-Naive detected violations
against CT-SEQ. These were due to branch mispredictions,
namely instances of Spectre-v1, where a value was leaked
speculatively on a mispredicted conditional jump instruction.

AMuLeT-Opt found violations of both CT-SEQ and CT-COND.
The latter were instances of Spectre-v4, where a store is spec-
ulatively bypassed by a younger load to the same address,
which reads the value in memory from before the store and
leaks it by encoding it in a subsequent load’s address.

Table 3. Results of testing the baseline Out-of-Order CPU.

Metric Contract Naive Opt Ratio

Time (minutes) CT-SEQ 289 25 11.7x
CT-COND 289 33 8.7x

Number of
violations

CT-SEQ 5.8 9.9 1.7x
CT-COND 0 0.1 N/A

Detection time
(minutes)

CT-SEQ 49.8 2.5 19.9x
CT-COND N/A 330 N/A

Execution Time. The test campaign with AMuLeT-Naive
took 289 minutes (13 test cases per second). AMuLeT-Opt
improved on this, taking up to 33 minutes per campaign (114
test cases per second). This speedup is due to the amortized
startup cost of the simulator. AMuLeT-Opt sometimes re-
quires additional validation of violations, which explains the
difference in time for CT-SEQ and CT-COND. However, the
reduction in startup cost significantly outweighs the extra
validation cost, leading to a net speedup of 9–11x.
Detection Time. AMuLeT-Naive detects CT-SEQ violations
in less than 1 hour on average, demonstrating that even a
basic AMuLeT implementation is useful in detecting leaks.
AMuLeT-Opt detects a CT-SEQ violation in 2.5 minutes (20x
faster) and a CT-COND violation in 6.5 hours. It takes longer to
discover Spectre-v4 (CT-COND violation) compared to Spectre-
v1 (CT-SEQ violation) as the probability that a load and store
address match and mispredict is low in random tests.

AMuLeT-Opt finds more violations compared to AMuLeT-
Naive with the same number of tests because it initializes
the cache with full sets, which results in violations through
speculative installs and also via evictions. AMuLeT-Opt also
preserves the branch predictor and memory-dependence
predictor state between inputs, which allows a broader set
of predictions and increases the chances of a violation.
As AMuLeT-Opt performs significantly better, we only

use this version next and we refer to it simply as AMuLeT.

4.3 Evaluating different 𝜇arch trace formats
To answer RQ2 and assess the trade-off between precision,
performance, and percentage of violating test cases detected
by different 𝜇arch traces, we ran testing campaigns on the
baseline Out-of-Order CPU with four types of 𝜇arch traces
exposing different fine-grained 𝜇arch information:
• Baseline (L1D+TLB): The 𝜇arch trace consists of the final
addresses in the L1D cache and D-TLB.

• BP State: The 𝜇arch trace consists of the final state of the
branch predictor (BP) and the end of the test case.

• Memory access order: The 𝜇arch trace consists of the
ordered list of all memory accesses (PCs and addresses).

• Branch prediction order: The 𝜇arch trace consists of the
ordered list of branch PCs and their predicted targets.
We measure the fraction of total violations as the percent-

age of violations detected by a trace format divided by the

AMuLeT: Automated Design-Time Testing of Secure Speculation Countermeasures ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 4. Results of testing InvisiSpec, CleanupSpec, STT, SpecLFB, and the baseline Out-of-Order CPU with AMuLeT-Opt.
The campaigns consisted of 100 parallel instances of AMuLeT, each executing 200 programs, each with 140 inputs.

Defense Contract Detected Avg. Detection Number of Testing Throughput Campaign
Violation? Time (sec.) Unique Violations (test cases/sec.) Execution Time

Baseline CT-SEQ YES 1.7 2 752 1 hr 2 min
InvisiSpec CT-SEQ YES 2.1 1 630 1 hr 14 min
CleanupSpec CT-SEQ YES 1.1 3 2592 18 min
SpecLFB CT-SEQ YES 1.6 1 2595 18 min
STT ARCH-SEQ YES 10371 1 34 23 hr 3 min

total violations detected by any trace format. For each of the
formats, we also report the fraction of their violations also
detected by baseline trace format. Table 5 shows the results.

Table 5. Results of testing the baseline O3CPU with different
𝜇arch trace formats, across 100 parallel instances of AMuLeT
each executing 200 programs, each with 140 inputs, com-
pared to baseline trace (L1D Cache and TLB).

Trace format Throughput
(test cases /
sec.)

Fraction of
total viola-
tions

Violations
covered by
baseline
trace

Baseline
(L1D+TLB)

580 79.8% 100%

BP state 27 6.9% 70.8%
Memory ac-
cess order

67 91.9% 80.9%

Branch pre-
diction order

302 2.6% 77.8%

The BP state, branch prediction order, and memory access
order 𝜇arch traces have lower throughput than the baseline.
This is because these 𝜇arch traces suffer from additional
validations. Recall from § 3.2 that violations may be observed
due to difference in the initial 𝜇arch context rather than
inputs, and AMuLeT confirms or rejects a violation by re-
running the inputs with the same initial 𝜇arch state. These
traces are more impacted by varying initial 𝜇arch states,
causing more validations and lowering the test throughput.

The baseline 𝜇arch trace consisting of the final L1D cache
and D-TLB state detects almost 80% of the total violating
test cases without significantly slowing down the fuzzer.
Although the memory access order trace detects a higher
fraction (92%) of the violations, it is an order of magnitude
slower in throughput due to extra validations, and not all
of its violations may be directly exploitable by a realistic
attacker. While we confirm that the BP state or branch pre-
diction order traces detect instances of implicit channels
based on branch predictions, a majority (>70%) of these vio-
lations are also detected by the baseline 𝜇arch trace, since
differences in the speculative control flow may also manifest
as differences in data-flow and accessed addresses.

The baseline 𝜇arch trace (L1D cache and D-TLB state) pro-
vides the best trade-off between speed and coverage. Since
most defenses [8, 29, 37, 41] protect against leaks through
the cache, we use the baseline 𝜇arch trace (L1D cache and
D-TLB state) in the rest of the evaluation. This is sufficient
to detect leakages in all defenses we test.

4.4 Testing Defenses with AMuLeT
To answer RQ3 and RQ4, we test four secure speculation
mechanisms, InvisiSpec, CleanupSpec, STT, and SpecLFB.
We also test the baseline CPU as a comparison point. We
test InvisiSpec, CleanupSpec, and SpecLFB against CT-SEQ as
these defenses claim to protect against speculative memory-
system side channels [8, 29, 37]. We test STT with ARCH-SEQ,
which captures STT’s non-interference guarantee [14, 41].
Table 4 shows the results of these campaigns.
Types of Violations. For the baseline non-secure CPU, we
find similar violations as previously discussed in § 4.2. We
also find contract violations for InvisiSpec, CleanupSpec,
STT, and SpecLFB and analyze their root causes in § 4.5–
§ 4.8. Surprisingly, a majority of these are new leakages that
differ from previously known vulnerabilities [3, 21, 22].
Performance. The violations in InvisiSpec, CleanupSpec,
and SpecLFB were discovered in less than 3 seconds on av-
erage. This is comparable to the baseline CPU, whereas on
STT, it takes longer (3 hours on average). CleanupSpec and
SpecFLB tests are faster than InvisiSpec (2590+ vs 630 test
cases/second) as they start from a clean cache state (which
only requires flushes to the sandbox addresses), whereas In-
visiSpec requires filling the cache with addresses that conflict
with the sandbox, requiring more instructions.

STT tests are much slower (34 test cases/second) as its
simulation on Gem5 is 17x slower than InvisiSpec, due to
its higher complexity. The overall testing performance for
the Baseline is higher compared to § 4.2 (752 vs 114 test
cases/second for the baseline) because we run 100 parallel
instances of AMuLeT in this campaign instead of 16.

4.5 Vulnerabilities Found in InvisiSpec
InvisiSpec’s design [37] claims that speculative loads are
invisible to the caches; when loads become safe, an expose
operation makes the load visible to the caches (installing

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Bo Fu et al.

and evicting cache lines). Below, we describe the leaks we
discovered in InvisiSpec, differentiating between Known
Vulnerabilities (KV) and Unknown Vulnerabilities (UV).

UV1. Speculative L1 D-Cache Evictions. All violations
in InvisiSpec in Table 4 were due to a previously unknown
vulnerability caused by an implementation bug. Figure 4
shows one such test that caused a violation. Figure 4a (Line
11) shows a mis-speculated load, whose address depends on
an input (rbx). Based on the input, the speculative load’s
address differs, as shown in Figure 4b. We observe that this
speculative address is leaked based on an address evicted
from the cache. In Input A, the speculatively accessed address
is 0x3a00, which evicts the valid address 0x13a00 (initially in
the L1D-cache) and is thus absent in the final state. Instead,
in Input B, the accessed address 0x3100 evicts 0x13100, which
is absent from the 𝜇arch trace.

1 . b b _ma in . 2 :
2 OR by te p t r [R14 + RDX] , AL
3 LOOPNE . b b_ma in . 3
4 JMP . b b _m a i n . e x i t
5
6 . b b _ma in . 3 : # m i s s p e c u l a t e d
7 AND BL , 34
8 AND RAX , 0 b111111111111
9 CMOVNBE SI , word p t r [R14 + RAX]
10 AND RBX , 0 b111111111111
11 XOR qword p t r [R14 + RBX] , RDI

(a) Test Asm Causing Violation

Input A
... 0x130c0 0x13100 ... 0x139c0 ...
Input B
... 0x130c0 ... 0x139c0 0x13a00 ...

Input A
Load Line-11, Addr: 0x3a10
Input B
Load Line-11, Addr: 0x3110

L1D-cache Tags in 𝜇arch trace

Speculative Load in Program

(b) Two inputs to Asm that
evict different addresses

Figure 4. Example of Test Asm Causing Violation in InvisiS-
pec due to Speculative L1D-cache Evictions.

Listing 1. InvisiSpec’s Speculative L1-Cache Eviction Bug
1 / / Cache Miss
2 i f (L1Dcache . c a cheAva i l (in_msg . L ineAddre s s)) {
3 / / Space Ava i l a b l e , Send Reques t to L2
4 t r i g g e r (manda to ry_ r eque s t _ t ype_ t o_even t
5 (in_msg . Type) , in_msg . L ineAddress , . . .) ;
6
7 } e l s e { / / No Space Av a i l a b l e
8 / / L1 E v i c t i o n (Even For S p e c u l a t i v e Reque s t s)
9 t r i g g e r (Event : L1_Replacement ,
10 L1Dcache . cacheProbe (in_msg . L ineAddre s s) , . . .) ;
11 }

Listing 2. Patch for InvisiSpec Speculative Eviction Issue
1 i f (L1Dcache . c a cheAva i l (in_msg . L ineAddre s s)
2 | | (in_msg . Type == RubyRequestType : SPEC_LD)) {
3 / / Space Av a i l a b l e or Spec Load , Send Reques t to L2
4 t r i g g e r (manda to ry_ r eque s t _ t ype_ t o_even t
5 (in_msg . Type) , in_msg . L ineAddress , . . .) ;
6
7 } e l s e { / / L1 E v i c t i o n Only f o r Non− S p e c u l a t i v e Reque s t s
8 t r i g g e r (Event : L1_Replacement , . . .

Figure 5. Bug in InvisiSpec’s Gem5 implementation discov-
ered by AMuLeT that leaks addresses of speculative loads
via L1D-cache evictions and breaks its security guarantees.

Root Cause: While speculative loads in InvisiSpec are sup-
posed to be invisible to the cache hierarchy, we observe that
its Gem5 implementation does not match this. As shown in
the code snippet from InvisiSpec in Listing 1 (line 9), on a
speculative load causing a L1D-cache miss, if a cache set is
fully occupied, we observe that a speculative load initiates
an L1D-cache replacement regardless of whether it is safe
or not to do so. So, a mis-speculated load might evict a con-
flicting address from the L1D-cache, thus leaking its address
and breaking InvisiSpec’s security guarantees.
Fix: This issue is an implementation bug and can be easily
patched. As shown in Listing 2, we modify the implemen-
tation so that L1-replacements are only executed on non-
speculative loads, i.e., when the load is safe and ready to be
exposed to the cache hierarchy. This fixes the leakage, as
campaigns after the patch in § 4.5.1 found no violations.

KV1. Speculative Instruction Fetches. In previous cam-
paigns, when we included the L1I-cache in the 𝜇arch trace,
we detected violations where L1I-cache state differed be-
tween two inputs. This is because, based on an input, the
execution time can vary due to differences in speculative hits
and misses, causing differences in instruction fetch behavior
that speculatively brings additional lines into the L1I-cache.
InvisiSpec [37] acknowledges that it does not protect the
L1I-cache, making this a known vulnerability. This shows
AMuLeT’s ability to detect unprotected threat vectors.

Table 6. Results of testing InvisiSpec (Patched) with smaller
𝜇arch structures (fewer L1D-cache ways and MSHRs)

InvisiSpec Configuration Time Violation
Patched, 8-way L1D, 256 MSHRs 52 min ✗

Patched, 2-way L1D, 256 MSHRs 20 min ✗

Patched, 2-way L1D, 2 MSHRs 26 min ✓

4.5.1 Amplifying the Vulnerability in InvisiSpec. We
add the bug-fix in Listing 2 and continue our testing cam-
paigns of InvisiSpec (Patched), running 100 parallel runs of
200 tests. As shown in Table 6, we do not observe further
violations after patching with the default, 8-way L1D-cache.
To answer RQ3 and see if we can amplify the vulnerabil-
ity, we test with smaller 𝜇arch structures that experience
higher contention. We run campaigns with 2-way L1D-cache
(down from 8 ways) and with D-cache Miss-Status-Handling
Registers (MSHRs) reduced to 2 (down from the default 256).
Table 6 shows that reducing the L1D-cache from 8 to 2

ways speeds up fuzzing campaigns by 2.6×. This is because
initializing a smaller L1D-cache requires fewer instructions
per test case. But this does not result in new violations. How-
ever, reducing MSHRs from 256 to 2 reveals new violations.
These leaks stem from a previously unknown variant of
the speculative-interference attack [3]. Unlike prior attacks,
which requires a multi-threaded attacker and SMT, our new

AMuLeT: Automated Design-Time Testing of Secure Speculation Countermeasures ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

variant (UV2) allows attacker observations from the same
core, breaking InvisiSpec’s secuity in a single-threaded set-
ting.

1 . b b _ma in . 1 :
2 AND DL , 7
3 AND RSI , 0 b111111111111
4 CMOVL EAX , dword p t r [R14 + RSI]
5 . . .
6 OR qword p t r [R14 + RCX] , RAX
7 JNO . bb_ma in . 2
8 JMP . b b _m a i n . e x i t
9
10 . b b _ma in . 2 : # m i s s p e c u l a t e d
11 AND RCX , 0 b111111111111
12 LOCK AND dword p t r [R14 + RCX] ,

EDI
13 AND RAX , 0 b111111111111
14 OR EDI , dword p t r [R14 + RAX]

(a) Test Asm Causing Violation

Input A
... 0x38c0 0x3f40 ...
Input B
... 0x38c0 0x3e80 0x3f40 ...

Input A
PC: 0x402152, Addr: 0x3500
Input B
PC: 0x402152, Addr: 0x3140

L1D-cache Tags in 𝜇arch trace

Speculative Load in Program

(b) Two inputs to Asm that
speculatively access different
addresses

Figure 6. Test Asm Causing Violation in InvisiSpec due to
Speculative Interference because of MSHR contention.

UV2. Same-Core Speculative Interference Attack. In the
example generated by AMuLeT, shown in Figure 6a, we have
a speculative load, SL (Line 14 in Figure 6a), which shares
the MSHRs with another non-speculative load, NSL (Line
6). Based on whether SL has a cache hit/miss, it causes con-
tention on the MSHRs, subsequently delaying the execution
of NSL. As shown in Table 7, Input A has an SL to address
0x3500, which misses the L2 cache, so an MSHR is occupied
by this speculative request; this stalls a later Expose opera-
tion of the NSL to 0x3e80. Since InvisiSpec must perform an
Expose operation to move lines in its speculative buffer to
the cache, and 0x3e80 is unable to issue its Expose request
before the test case ends, it is never brought into cache. Con-
versely, Input B has a SL to 0x3140, which hits in the L2
cache; so the occupied MSHR is freed up quickly, allowing
the Expose of the NSL to 0x3e80 to issue and be installed in
the L1 cache before the test case ends. By accessing 0x3e80
after the test ends, an adversary can observe whether the
access was fast or slow, dependent on input A or B.

Root cause: The delayed NSL Expose is in fact observable
by an adversary that subsequently accesses any address. As
the cache-controller queues are in-order, the stall due to
the Expose at the head of the queue causes all subsequent
requests (e.g., a cache hit to 0xbeef) to be stalled; whereas
in the case where the NSL is not delayed, the request (e.g., a
cache hit to 0xbeef) is serviced faster. We also discovered
variants of this leakage where MSHR contention is due to a
miss in InvisiSpec’s speculative buffer (instead of L2 cache).

Fix: This vulnerability is a fundamental design issue. A re-
design that addresses the original speculative interference at-
tacks, such as GhostMinion [2], which ensures that younger
loads cannot influence the execution time of older loads, will
also address the variants we discovered.

Table 7. Explanation of MSHR interference violation in In-
visiSpec. The column MSHRs show the addresses in the L1-
MSHRs. Blue and Green are speculative loads (SL), while Red
and Black are non-speculative loads (NSL). Input A induces
speculative MSHR interference, but Input B does not.

Input A Input B
Operation MSHRs Operation MSHRs

SpecLoad 0x3500 3500 SpecLoad 0x3140 3140
— 3500 L2 hit 0x3140

Replace 0x13e80 3500, 13e80 Replace 0x13e80 13e80
Expose 0x3e80– stall! 3500, 13e80 Expose 0x3e80 13e80, 3e80

m5exit 3500, 13e80 m5exit 13e80, 3e80
Load 0xbeef– slow! 3500, 13e80 Load 0xbeef– fast! 13e80, 3e80

4.6 Vulnerabilities Found in CleanupSpec
CleanupSpec [29] allows speculative loads to modify cache
state and cleans up these state changes on a mis-speculation.
Below, we describe the leaks we discovered in CleanupSpec
and classify them as per their root cause in Table 8. We
identify 2 new bugs causing insufficient cleaning and 1 new
vulnerability causing excessive cleaning.

Table 8.Types of CleanupSpec violations found from 100 par-
allel runs of 200 test programs, 140 inputs, with the unmodi-
fied CleanupSpec (Original) and after a fix for speculative-
stores not being cleaned up (Patched).

Violation Type Original Patched
Speculative Store Not Cleaned ✓ ✗

Split Requests Not Cleaned ✓ ✓

Too Much Cleaning ✓ ✓

UV3. Speculative Store Not Cleaned Bug. The first vi-
olation in CleanupSpec was due to incorrect cleanup for
speculative stores. As shown in Listing 3, cleaning specula-
tive cache state requires tracking cache hit/miss metadata.
While this tracking exists in readCallback() for specula-
tive loads, it is missing in writeCallback() for speculative
stores. Consequently, addresses of speculative stores are not
cleaned on a mis-speculation, causing leakage. We discov-
ered this when Spectre-v1-like tests with speculative stores
caused L1D-cache differences, and the debug log showed
incorrect metadata, as shown in Figure 7. We patched this
by fixing writeCallback() to update cleanup metadata on
speculative stores. After the fix (Patched in Table 8), these
violations no longer occur, resolving the bug.

UV4. Split Requests Not Cleaned Bug.We discovered a
subsequent violation due to a CleanupSpec bug related to
cleanup of requests crossing cache line boundaries. When a
load or store accesses data across cache lines (e.g., a 4-byte
store to an address two bytes from the cacheline boundary),
they spawn split-requests in gem5, i.e. multiple memory-
system requests. We see that CleanupSpec does not clean

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Bo Fu et al.

Listing (3) CleanupSpec bug -
speculative store not cleaned
/ / Log i c in ReadCa l l ba ck ()
i f (L1Hi t)

pkt −> s e t L 1H i t () ;
. . .
/ / Metadata f o r C lean ing
i f (! pkt −> i s L 1H i t ())

DO_CLEANUP (. . .) ;

WriteCallback() for Spec Store
L1Hit: 0, L2Hit: 0, L2Miss: 0

Debug Log on Speculative Store

Listing (4) CleanupSpec Bug:
no cleanup for split request

i f (loadQueue [l o a d _ i d x]−>
i s S p l i t R e q ()) {

++ l s q Squa sh edLo ad s Sp l i t R e q ;

/ / TODO: Cleanup f o r
S p l i t R e q

}

Figure 7. Implementation bugs in CleanupSpec’s gem5 im-
plementation discovered by AMuLeT’s testing campaigns.

speculative split requests, as shown in Listing 4 fromCleanup-
Spec code. We detected this with test cases like Spectre-v1
where speculative loads crossed cacheline boundaries.

UV5. Too Much Cleaning Vulnerability. Finally, we dis-
cover a new vulnerability in CleanupSpec due to an incorrect
cleanup of non-speculative loads when non-speculative loads
get reordered with transient loads to the same cache line.
Table 9 shows the operations in a test causing such a

violation. Input A has a younger, speculative load SL (PC =
0x40114d) to the same address as an older non-speculative
load NSL (PC = 0x40113c). For input B, the SL address
differs from the NSL address. In both cases, the SL has a
cache miss, installs the address, and is cleaned and evicted
on a mis-speculation. However, for Input A, cleaning also
removes any trace of theNSL to that address. In contrast, for
Input B, as the NSL address differs from the SL, it remains
in the cache after mis-speculation. Thus, these two inputs
have different 𝜇arch traces resulting in leakage.
Root cause and Fix: This is the first discovered speculative
interference vulnerability [3] on CleanupSpec, where inter-
action between transient and non-speculative loads corrupts
cleaning metadata. A potential mitigation can identify the re-
ordering of non-speculative and transient loads to the same
addresses at commit time, and set a noClean flag for the
younger speculative load(s). We leave this for future work.

Table 9. Test cases showing “Too Much Cleaning” vulnera-
bility in CleanupSpec: sequence of operations

Input A Input B
Cycle PC Type Addr. Cycle PC Type Addr.
1060 0x4011bb Load 0x1100 1060 0x4011bb Load 0x1100
1150 0x40114d SpecLd 0x10c0 1150 0x40114d SpecLd 0x1080
1423 0x40113c Load 0x10c0 1423 0x40113c Load 0x10c0
1429 0x40114d Undo 0x10c0 1580 0x40114d Undo 0x1080
𝜇arch trace 0x1100 𝜇arch trace 0x1100 0x10c0

KV2. UnXpec [21] Vulnerability. In campaigns where we
included the L1I-cache state in the 𝜇arch trace, we detected
violations similar to the unXpec vulnerability [21]. In these

violations, the inputs had different L1I-cache states at the
end. The root cause was a difference in cleanup operations
causing varying execution times and the instruction fetch
speculatively installing extra lines in the L1I-cache.
Table 10 shows the operations in one such test case. In-

put A has a speculative load to 0x1180 that is an L1 hit,
requiring no cleanup. Whereas, for Input B, the speculative
load to 0x1840 is an L1 miss, that requires a cleanup on mis-
speculation. As cleanup is on the critical path of execution,
this increases the execution time for Input B compared to In-
put A. This is like the UnXpec [21] vulnerability that uses the
difference in cleaning operation times to leak information.

As the execution is slower for Input B, the fetch unit spec-
ulatively fetches addresses beyond the end of the test, in-
stalling these in the L1I-cache. This causes a violation com-
pared with Input A, which does not exhibit such behavior.

Table 10. CleanupSpec vulnerability to UnXpec [21]

Input A Input B
Cycle PC Type Addr. Cycle PC Type Addr.
1054 0x40119b Load 0x1180 1054 0x40119b Load 0x1180
1056 0x4011b7 SpecLd 0x1180 1056 0x4011b7 SpecLd 0x1840
1207 0x4011a6 Load 0x1940 1207 0x4011a6 Load 0x1940

1213 0x4011b7 Undo 0x1840
1219 0x401190 Store 0x1940 1240 0x401190 Store 0x1940

4.7 Vulnerabilities found in SpecLFB
SpecLFB [8] adds security checks to the cache Line-Fill Buffer
(LFB) to prevent leaks via speculative cache misses. It blocks
speculative cache misses from being installed into the cache
until they are safe (like Delay-On-Miss [30]). Based on this,
we tested SpecLFB’s gem5 implementation against the CT-SEQ
contract, the most intuitive contract based on the security
guarantees described in the SpecLFB paper [8], and surpris-
ingly found it to be insecure with respect to this contract.
UV6. First Speculative Load Not Protected in SpecLFB.
The violating tests discovered by AMuLeT on SpecLFB are
all similar to Spectre-v1, where the secret is in a register, as
shown in Figure 8 (b). We discovered that the root cause of
these violations is an undocumented optimization in SpecLFB’s
implementation that marks speculative loads incorrectly as
safe if they are the first speculative load in the load-store
queue. SpecLFB identifies unsafe speculative loads to be
delayed by checking a flag, isUnsafe, for each load. The
isUnsafe flag depends on whether the load is speculative
either due to branch speculation (isCUSL) or memory de-
pendence speculation (isMUSL), and it also depends on an
isReallyUnsafe flag that is cleared if the load is the first
speculative load, as shown in Figure 8 (a,c). Thus, Spectre
variants with a single speculative load still leak information
as they are not blocked from installing into the cache. We
validate that these violations disappear when we expose this
leakage of register values in the contract (ARCH-SEQ).

AMuLeT: Automated Design-Time Testing of Secure Speculation Countermeasures ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

(a) Root Cause of SpecLFB Leak
i f (i sP revNoUnsa fe ()) :

/ / no p r i o r unsa f e l o a d s
c l e a r R e a l l yUn s a f e () ;

e l s e i f (! i s R e a l l yUn s a f e ()) :
/ / p r i o r unsa f e l o a d s e x i s t
s e t R e a l l yUn s a f e () ;

/ / on ly unsa f e l o a d s s t a l l e d
i f (! i sUn s a f e ()) :

c l e a r S t a l l () ;

bool isUnsafe():
return !isSquashed() && ((isCUSL() || isMUSL()) && isReallyUnsafe());

(c) isUnsafe(): uses isReallyUnsafe (cleared for first speculative load)

(b) Violation Test Asm
1 # RBX i s s e c r e t
2 CMP RAX , 0 # non− ze ro RAX
3 JNE . l 1
4 # RAX == 0 , m i s p r e d i c t i o n
5 MOV RAX , p t r [R14 + RBX]
6 JMP . l 2
7 . l 1 :
8 # RAX == 0
9 MOV RAX , p t r [R14 + 64]
10 . l 2 : . .

Figure 8. Vulnerability in SpecLFB discovered by AMuLeT.
The root cause is an undocumented optimization in SpecLFB
code that clears protections for the first speculative load.

4.8 Vulnerabilities Found in STT
STT [41] uses taints to keep track of registers holding data
accessed speculatively from memory or its derivatives, and
it blocks the execution of instructions that leak tainted data
via side channels. Below, we describe the violation (KV3)
we discovered in STT, which was due to tainted speculative
stores incorrectly executing and accessing the TLB.
KV3. Speculative Store Leaking via TLB. The violations
in STT manifested as a difference in the TLB state in the
𝜇arch trace. The root cause was a speculative store with
tainted address incorrectly installing an entry in the D-TLB
and leaking its address. This leak was previously known [22].
Figure 9 shows an example violation. In Figure 9(a), a

mispredicted conditional jump (JS) in Line 1 causes CMOVP
to speculatively load data in Line 6, which is encoded in the
store address in Line 8. Figure 9(b) shows two inputs (A and
B) leading to a violation. In both, speculatively loaded data
is encoded in the store address (0x9c78 in A and 0xdcb8 in
B). While these do not appear in the cache, their TLB entries
appear in the 𝜇arch trace, leaking the speculatively accessed
data. The root cause is an implementation bug that allows
tainted speculative stores to be executed; blocking their TLB
access, as proposed by DOLMA [22], would fix this leak.

1 JS . b b _ma in . 1
2 JMP . b b_ma in . 4
3 . b b _ma in . 1 : # m i s p r e d i c t e d
4
5 AND RCX , 0 b1111111111111111111
6 CMOVP AX, word p t r [R14 + RCX]
7 AND RAX , 0 b1111111111111111111
8 MOV dword p t r [R14 + RAX] , EBX

(a) Snippet of Test Asm

Input A
0x6000 0x9000 0x33000 0x4b000
Input B
0x6000 0xd000 0x33000 0x4b000

Input A
LD: Line-6, Addr: 0x4b238
ST: Line-8, Addr: 0x9c78
Input B
LD: Line-6, Addr: 0x4b238
ST: Line-8, Addr: 0xdcb8

TLB Entries in 𝜇arch trace

Speculative Acesses in Program

(b) Two inputs causing a violation

Figure 9. Example of Test Asm Causing Violation in STT
due to speculative store installing TLB entry.

5 Discussion
5.1 Portability to Other Defenses, Simulators, ISAs
Due to AMuLeT’s modular structure consisting of the (1) test
case generator, (2) the leakage model that provides contract
trace, and (3) the executor that provides the 𝜇arch traces, it
is quite easy to port AMuLeT to different defenses simply by
changing the executor. Table 11 shows the lines of code (LoC)
added or modified for each defense we tested. A majority of
the LoC added/modified in the Gem5 simulator are for the
test orchestration (452-532) and inter-process communica-
tion with AMuLeT (270-353), which are isolated and largely
independent of the defense or simulator. The LoC for trace
extraction (226-319) added to different 𝜇arch components in
the simulator is minimal. The majority of these LoC can be
copied from one defense to another with minor changes.

Table 11. Lines of Code (LOC) added/changed to different
defenses to enable testing with AMuLeT.

Defense Test Socket-Based Trace Total
Harness Communication Extraction LoC

InvisiSpec 532 353 445 1330
CleanupSpec 452 270 226 948

STT 486 276 296 1058
SpecLFB 465 338 319 1122

AMuLeT is easily portable to any CPU simulator, as long
as it models CPU speculation (so it exhibits speculation-
based vulnerabilities), and allows examining, extracting and
resetting the 𝜇arch state (cache, branch predictor states, etc.).
This covers most common 𝜇arch simulators (e.g., Gem5 [4],
Marss-x86 [28], Champsim [12]).

Porting AMuLeT to other ISAs (ARM, RISC-V) is also feasi-
ble, but it requires a test case generator that support the new
ISA semantics and requires support for accurate emulation
of the new ISA in Unicorn [1] used by the leakage model. For
example, while porting AMuLeT to Ghostminion [2] (built
on the ARM ISA), we discovered bugs in Unicorn’s ARM
hooks that hindered our testing. Future work can address
this and extend AMuLeT to other ISAs.

5.2 Detecting Additional Leaks with AMuLeT
Our campaigns usingAMuLeT primarily test for leaks through
caches and TLB, because most countermeasures [8, 29, 37]
protect against cache-based leakage. However, by includ-
ing additional 𝜇arch state in the 𝜇arch traces (e.g., branch-
predictor state, execution order of loads or branches), AMuLeT
can detect a wider range of speculative leaks, as shown in
Table 5. Additionally, the state of other 𝜇arch predictors,
like cache way-predictors, value predictors, or prefetchers,
can be added to the 𝜇arch trace to discover new vulnera-
bilities [7, 31]. Thus, AMuLeT can be used to detect leaks
from new micro-architectural features to be added in to a
processor well before it is commercialized.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Bo Fu et al.

5.3 Limitations of AMuLeT
Limits of Randomized Testing. AMuLeT, like any ran-
domized testing tool, can only demonstrate insecurity, but
cannot prove a defense’s security.2 This makes it complemen-
tary to, not a replacement for, formal verification techniques,
which can prove security but often lack scalability. For in-
stance, Pensieve [38] requires manual modeling of defenses
in domain-specific languages and several hours to verify se-
curity for programs up to nine cycles. In contrast, AMuLeT
finds vulnerabilities in seconds and is easily portable to new
defenses, making it a cost-effective first step to identify inse-
curity (e.g., how we show SpecLFB [8]’s implementation is
insecure) before attempting complex formal verification.
Limited Search Space.AMuLeT, like prior black-box fuzzing
works [15, 25, 26], is limited in the search space it can test
within the vast 𝜇arch state space and design space possible
for a processor. AMuLeT focuses its search by reducing the
sizes of 𝜇arch structures (e.g., reducing MSHRs and cache
ways) to prioritize high-contention states where leaks are
more likely. This prioritization increases the likelihood of
finding exploitable speculative leaks without altering the
simulator or defenses under test. However, the extensive
state space remains a limitation for comprehensive leak dis-
covery, and future work may explore adaptive strategies
for coverage-guided fuzzing or focused test generation to
improve AMuLeT’s detection capabilities.

6 Related Work
Post-silicon fuzzing formicroarchitectural leaks.Covert
Shotgun [11] and ABSynthe [13] automatically test CPUs for
covert channels emanating from 𝜇arch contention.Osiris [35]
uses fuzzing to discover new side channels. Transynther [23]
tests CPUs for new variants of MDS attacks by mutating at-
tack templates. Scam-V [24] uses model-based relational test-
ing and random test generation to discover undocumented
cache-based leaks in ARM CPUs. In contrast, AMuLeT fo-
cuses on pre-silicon testing of speculation countermeasures
early at design time, much before they are deployed in CPUs.
RTL Fuzzing. Several works propose design-time testing
of CPU designs at Register-Transfer Level (RTL). Whisper-
Fuzz [5] detects timing side channels in RTL using coverage-
driven fuzzing, whereas SpecDoctor [16] detects transient
execution vulnerabilities in RTL using attack templates. Nei-
ther work detects a wide variety of speculative leaks like
AMuLeT: WhisperFuzz can only test for constant-time exe-
cution, and it is inapplicable to test most secure speculation
countermeasures [8, 29, 37, 41]; SpecDoctor tests only one
type of leakage, where a secret in memory is exposed in
speculation, and it lacks an extensible leakage model like
AMuLeT. Other tools [17, 18, 32] that test CPU designs at
RTL using golden reference models only detect functional

2 “Testing shows the presence, not the absence of bugs.” - Djikstra [6]

bugs. In contrast to RTL-based tools, AMuLeT tests secure
speculation countermeasures at the earliest stage of 𝜇arch de-
sign, when features are being prototyped in simulators. This
allows computer architects to detect and address potential
leaks in 𝜇arch countermeasures early on.
Formal Verification. These approaches reason about and
prove the absence of leaks in hardware designs.

Micro-architectural Tools. Checkmate [33] uses 𝜇arch hap-
pens before graphs to generate security litmus tests. Pen-
sieve [38] uses bounded model checking to reason about the
security of countermeasures [2, 37] expressed as high-level
𝜇arch models. Both approaches require advanced modeling
capabilities and considerable human effort to formalize the
models in custom DSLs, which makes them impractical for
design-phase testing. Their scalability is also limited: Check-
mate has only been applied to simple in-order CPU models
and attacks with up to 7 instructions, while Pensieve only
analyzes programs up to 9 simulation cycles in a few hours.
In contrast, AMuLeT can work with complex out-of-order
CPU models in 𝜇arch simulators, without artificial limits on
simulation time or attack programs. It also requires mini-
mal integration effort, only requiring the addition of trace
modules before testing can begin with new defenses.
RTL-Based Tools. UPEC [10] proves the absence of leaks

caused by transient instructions in RTL designs, whereas
LeaVe [34] proves whether an RTL design satisfies a leakage
contract. These tools require implementations of defenses in
RTL to test them. In contrast, AMuLeT can test defenses early
on in 𝜇arch simulators, even before the RTL is generated.

7 Conclusion
AMuLeT is the first tool to enable the testing of countermea-
sures for speculative leaks in 𝜇arch simulators. Designed to
achieve high testing speed and efficacy, AMuLeT enables
large-scale campaigns on four countermeasures, revealing
3 known and 6 unknown leakages in them, including for
the first time, a vulnerability in the implementation of the
recently proposed SpecLFB. With AMuLeT, we enable de-
signers of future defenses to test their counter-measure at
design time, reducing the risk of insecure deployments.

Acknowledgments
This work is supported by the Spanish Ministry of Science
and Innovation under TED2021-132464B-I00 PRODIGY; the
SpanishMinistry of Science and Innovation under the Ramón
y Cajal grant RYC2021-032614-I; the Spanish Ministry of Sci-
ence and Innovation under PID2022-142290OB-I00 ESPADA;
the Natural Sciences and Engineering Research Council of
Canada (NSERC) under RGPIN-2023-04796; the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
under RGPIN-2021-03729; an NSERC Undergraduate Student
Research Award (USRA); an SFU Faculty Recruitment Grant;
and gifts from Intel Corporation and Ampere Computing.

AMuLeT: Automated Design-Time Testing of Secure Speculation Countermeasures ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

A Artifact Appendix
A.1 Abstract
This appendix describes artifacts accompanying the AMuLeT
paper, which introduces a tool for automated, design-time
testing of secure speculation countermeasures. The artifact
consist of two parts: (1) the AMuLeT framework, our tool cus-
tomized for testing defenses in simulators, and (2) extensions
to the Gem5 implementation of defenses that we test with
AMuLeT. We include instructions for running campaigns
with AMuLeT on speculative execution countermeasures
such as InvisiSpec, CleanupSpec, STT, and SpecLFB, and
reproducing the key results in the paper.

A.2 Artifact check-list (meta-information)
• Algorithm: Implements AMuLeT’s fuzzing techniques.
• Compilation: Automatically through dockerfiles.
• Run-time environment: Requires Docker. We use linux
environments inside Docker to run Amulet and gem5.

• Hardware: ∼100 cores, 128GB RAM to run parallel test
campaigns.

• Metrics: Test Throughput, Avg. Detection Time.
• Output: Table 5 (results of test campaigns).
• Experiments: Instructions to run campaigns are provided
in the README.

• Howmuch disk space required (approximately)?: 30GB
• How much time is needed to complete experiments
(approximately)?: 80 hours

• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT
• Workflow automation framework used?: Docker
• Archived?: https://doi.org/10.5281/zenodo.14847073

A.3 Description
A.3.1 How to access.

• AMuLeT’s git repository: https://github.com/sith-
lab/amulet. You can clone this directly from Github.

• Defenses’ git repository: https://github.com/sith-
lab/amulet-gem5. This contains the defenses we test
using AMuLeT. This is cloned directly during the runs.

A.3.2 Hardware dependencies.
• x86-based Server CPU
• At least 128GB RAM, 100 cores to run parallel tests

A.3.3 Software dependencies.
• Docker: We run all our tests inside docker containers.
• Each of our defenses have different software dependen-
cies. So we provide Dockerfiles which automatically
set up the required software dependencies.

A.4 Installation
1. Clone the GitHub repository:

$ git clone https://github.com/sith-lab/amulet.git

2. Run the artifact:

$ cd amulet ; ./run_artifact.sh ;

This will run the campaigns for each of our defenses
in Table 5, run InvisiSpec with reduced cache con-
figurations to produce Table 6, and run Baseline (no
defense) with different trace formats for Table 4.

A.5 Evaluation and expected results
You should be able to reproduce Tables 4, 5, and 6, and dis-
cover violations in each defense. The runtimes and average
detection time can vary based on differences in hardware
capabilities and the exact campaign configuration run.

A.6 Experiment customization
To reduce run times, one can decrease the number of test
programs (default 200) as fewer test programs shorten run
time. Fewer parallel campaigns (default 100) can be used on
systems with fewer cores and memory.

References
[1] Unicorn - The Ultimate CPU emulator. https://www.unicorn-engine.

org/, 2022. (Accessed: May 1, 2024).
[2] Sam Ainsworth. Ghostminion: A strictness-ordered cache system for

spectre mitigation. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 592–606, 2021.

[3] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu,
Zirui Neil Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas,
Carlos Rozas, Adam Morrison, et al. Speculative interference attacks:
Breaking invisible speculation schemes. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1046–1060, 2021.

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2):1–7, 2011.

[5] Pallavi Borkar, Chen Chen, Mohamadreza Rostami, Nikhilesh Singh,
Rahul Kande, Ahmad-Reza Sadeghi, Chester Rebeiro, and Jeyavijayan
Rajendran. Whisperfuzz: White-box fuzzing for detecting and locating
timing vulnerabilities in processors. In USENIX Security 2024, 2024.

[6] Buxton and Randell. Software engineering techniques, 1969.
[7] Boru Chen, Yingchen Wang, Pradyumna Shome, Christopher W

Fletcher, David Kohlbrenner, Riccardo Paccagnella, and Daniel Genkin.
Gofetch: Breaking constant-time cryptographic implementations using
data memory-dependent prefetchers. In USENIX Security, 2024.

[8] Xiaoyu Cheng, Fei Tong, Hongyu Wang, Zhe Zhou, Fang Jiang, and
Yuxing Mao. Speclfb: Eliminating cache side channels in speculative
executions. In USENIX Security, 2024.

[9] Mohammad Rahmani Fadiheh, Johannes Müller, Raik Brinkmann, Sub-
hasish Mitra, Dominik Stoffel, and Wolfgang Kunz. A formal approach
for detecting vulnerabilities to transient execution attacks in out-of-
order processors. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), 2020.

[10] Mohammad Rahmani Fadiheh, Alex Wezel, Johannes Müller, Jörg Bor-
mann, Sayak Ray, Jason M Fung, Subhasish Mitra, Dominik Stoffel,
andWolfgang Kunz. An exhaustive approach to detecting transient ex-
ecution side channels in RTL designs of processors. IEEE Transactions
on Computers, 72(1):222–235, 2022.

[11] Anders Fogh. Covert Shotgun. https://cyber.wtf/2016/09/27/covert-
shotgun/, 2016. (Accessed: December 1, 2018).

https://doi.org/10.5281/zenodo.14847073
https://github.com/sith-lab/amulet
https://github.com/sith-lab/amulet
https://github.com/sith-lab/amulet-gem5
https://github.com/sith-lab/amulet-gem5
https://www.unicorn-engine.org/
https://www.unicorn-engine.org/
https://cyber.wtf/2016/09/27/covert-shotgun/
https://cyber.wtf/2016/09/27/covert-shotgun/

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Bo Fu et al.

[12] Nathan Gober, Gino Chacon, Lei Wang, Paul V. Gratz, Daniel A.
Jimenez, Elvira Teran, Seth Pugsley, and Jinchun Kim. The cham-
pionship simulator: Architectural simulation for education and com-
petition, 2022.

[13] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh
Razavi. Absynthe: Automatic blackbox side-channel synthesis on
commodity microarchitectures. In NDSS, 2020.

[14] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. Hardware-
software contracts for secure speculation. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1868–1883. IEEE, 2021.

[15] Jana Hofmann, Emanuele Vannacci, Cédric Fournet, Boris Köpf, and
Oleksii Oleksenko. Speculation at Fault: Modeling and Testing Mi-
croarchitectural Leakage of CPU Exceptions. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 7143–7160, 2023.

[16] Jaewon Hur, Suhwan Song, Sunwoo Kim, and Byoungyoung Lee. Spec-
doctor: Differential fuzz testing to find transient execution vulnerabil-
ities. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’22, 2022.

[17] Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo Kim,
and Byoungyoung Lee. Difuzzrtl: Differential fuzz testing to find cpu
bugs. In 2021 IEEE Symposium on Security and Privacy (SP), pages
1286–1303. IEEE, 2021.

[18] Rahul Kande, Addison Crump, Garrett Persyn, Patrick Jauernig,
Ahmad-Reza Sadeghi, Aakash Tyagi, and Jeyavijayan Rajendran. The-
Huzz: Instruction Fuzzing of Processors Using Golden-Reference Mod-
els for Finding Software-Exploitable Vulnerabilities. In 31st USENIX
Security Symposium (USENIX Security 22), pages 3219–3236, 2022.

[19] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Safespec: Banishing the spectre of a meltdown with leakage-free spec-
ulation. In Proceedings of the Design Automation Conference (DAC),
2019.

[20] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In IEEE Security and Privacy (SP), 2019.

[21] Mengming Li, ChenluMiao, Yilong Yang, and Kai Bu. unxpec: Breaking
undo-based safe speculation. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages 98–112. IEEE,
2022.

[22] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. DOLMA: Securing Speculation with
the Principle of Transient Non-Observability. In 30th USENIX Security
Symposium (USENIX Security 21), pages 1397–1414, 2021.

[23] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz.
Medusa: Microarchitectural data leakage via automated attack synthe-
sis. In 29th USENIX Security Symposium (USENIX Security 20), pages
1427–1444, 2020.

[24] Hamed Nemati, Pablo Buiras, Andreas Lindner, Roberto Guanciale, and
Swen Jacobs. Validation of abstract side-channel models for computer
architectures. In Computer Aided Verification: 32nd International Con-
ference, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings,
Part I 32, pages 225–248. Springer, 2020.

[25] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and Mark Silberstein.
Revizor: testing black-box cpus against speculation contracts. In Pro-
ceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
226–239, 2022.

[26] Oleksii Oleksenko, Marco Guarnieri, Boris Köpf, and Mark Silberstein.
Hide and Seek with Spectres: Efficient discovery of speculative infor-
mation leaks with random testing. In Proceedings of the 44th IEEE
Symposium on Security and Privacy, S&P 2023. IEEE, 2023.

[27] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of aes. In CT-RSA’06, 2006.

[28] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. Marss:
a full system simulator for multicore x86 cpus. In Proceedings of the
48th Design Automation Conference, DAC ’11, page 1050–1055, New
York, NY, USA, 2011. Association for Computing Machinery.

[29] Gururaj Saileshwar and Moinuddin K Qureshi. Cleanupspec: An"
undo" approach to safe speculation. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 73–86,
2019.

[30] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean,
and Magnus Själander. Efficient invisible speculative execution
through selective delay and value prediction. In Proceedings of the
46th International Symposium on Computer Architecture, pages 723–735.
ACM, 2019.

[31] Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nandeeka Nayak,
Caroline Trippel, Adam Morrison, David Kohlbrenner, and Christo-
pher W. Fletcher. Opening pandora’s box: A systematic study of
new ways microarchitecture can leak private data. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
2021.

[32] Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi. Cascade: Cpu
fuzzing via intricate program generation. 2024.

[33] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Checkmate:
Automated synthesis of hardware exploits and security litmus tests.
In 2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 947–960. IEEE, 2018.

[34] Zilong Wang, Gideon Mohr, Klaus von Gleissenthall, Jan Reineke, and
Marco Guarnieri. Specification and verification of side-channel secu-
rity for open-source processors via leakage contracts. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’23, page 2128–2142, New York, NY, USA, 2023.
Association for Computing Machinery.

[35] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and
Christian Rossow. Osiris: Automated discovery of microarchitectural
side channels. In 30th USENIX Security Symposium (USENIX Security
21), pages 1415–1432, 2021.

[36] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F Wenisch, and Baris
Kasikci. Nda: Preventing speculative execution attacks at their source.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 572–586, 2019.

[37] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christo-
pher Fletcher, and Josep Torrellas. Invisispec: Making speculative exe-
cution invisible in the cache hierarchy. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 428–441.
IEEE, 2018.

[38] Yuheng Yang, Thomas Bourgeat, Stella Lau, andMengjia Yan. Pensieve:
Microarchitectural modeling for security evaluation. In Proceedings
of the 50th Annual International Symposium on Computer Architecture,
pages 1–15, 2023.

[39] Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution,
low noise, l3 cache side-channel attack. In USENIX Security, 2014.

[40] Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and
Christopher W Fletcher. Speculative data-oblivious execution: Mo-
bilizing safe prediction for safe and efficient speculative execution.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pages 707–720. IEEE, 2020.

[41] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Tor-
rellas, and Christopher W Fletcher. Speculative taint tracking (stt)
a comprehensive protection for speculatively accessed data. In Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 954–968, 2019.

	Abstract
	1 Introduction
	2 Background: Testing for speculative leaks
	2.1 Leakage contracts modeling speculative leaks
	2.2 Modeling attackers in speculation-based attacks
	2.3 Detecting unexpected leakages
	2.4 Model-based relational testing: Revizor

	3 AMuLeT Design
	3.1 Overview of AMuLeT
	3.2 arch Trace Design - Challenges and Solutions
	3.3 Analyzing Violations
	3.4 Amplifying Leakages in Simulators
	3.5 Implementation

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 Testing Baseline Out-of-Order CPU
	4.3 Evaluating different arch trace formats
	4.4 Testing Defenses with AMuLeT
	4.5 Vulnerabilities Found in InvisiSpec
	4.6 Vulnerabilities Found in CleanupSpec
	4.7 Vulnerabilities found in SpecLFB
	4.8 Vulnerabilities Found in STT

	5 Discussion
	5.1 Portability to Other Defenses, Simulators, ISAs
	5.2 Detecting Additional Leaks with AMuLeT
	5.3 Limitations of AMuLeT

	6 Related Work
	7 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results
	A.6 Experiment customization

	References

