
Autotuning Systems
Techniques, Challenges, and Opportunities
https://aka.ms/sigmod-2025-autotuning-tutorial

BRIAN KROTH, SERGIY MATUSEVYCH, YIWEN ZHU

MICROSOFT GRAY SYSTEMS LAB

1HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://aka.ms/sigmod-2025-autotuning-tutorial
https://aka.ms/sigmod-2025-autotuning-tutorial
https://aka.ms/sigmod-2025-autotuning-tutorial
https://aka.ms/sigmod-2025-autotuning-tutorial
https://aka.ms/sigmod-2025-autotuning-tutorial
https://aka.ms/sigmod-2025-autotuning-tutorial
https://aka.ms/sigmod-2025-autotuning-tutorial
https://aka.ms/sigmod-2025-autotuning-tutorial
https://aka.ms/sigmod-2025-autotuning-tutorial
mailto:bpkroth@microsoft.com
mailto:sergiym@microsoft.com
mailto:yiwzh@microsoft.com

Outline
◦ Overview (15 mins)

◦ Offline Tuning (45 mins)
◦ Basic Architectural Overview

◦ Running Example

◦ Optimization

◦ Classic Search

◦ Bayesian Optimization

◦ Systems Challenges

◦ Online Tuning (20 mins)
◦ Basic Architectural Overview

◦ Optimization

◦ Reinforcement Learning (RL)

◦ Genetic Algorithms (GA)

◦ Systems Challenges

◦ Future Directions (10 mins)
◦ Workload Identification

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL 2

Gray Systems Lab https://aka.ms/gsl

GSL is an applied and embedded research group, comprised of Data-Scientists, Engineers, and Researchers.

REDMOND, WA
MADISON, WI

MOUNTAIN VIEW, CA

BARCELONA, SPAIN
and

SWITZERLAND (remote)

NYC (remote)

(remote)

We are interested in interns and collaborations!
Come find us at the Microsoft booth ☺

3

https://aka.ms/gsl

Brian Kroth Sergiy Matusevych Yiwen Zhu

General systems nerd from UW-
Madison with years of experience in
both industry and research and
generally excited to mentor and learn
from others and make things go faster
and more efficiently.

Along with Sergiy, Brian is one of the
main developers and leads of the
MLOS framework for generalized
systems autotuning at MS.

Sergiy is a data scientist, engineer,
researcher, and passionate hacker,
among other things.

At GSL, he applies machine learning
for systems optimization and builds
ML models for workload identification
and analysis.

You can identify Sergiy by a large
camera that he always has in his hand.

Yiwen is a Principal Scientist at
Microsoft's Gray Systems Lab (GSL).
Her research interests center on the
vision of autonomous cloud systems,
utilizing machine learning, statistical
inference, and operation research
techniques.

Team

4HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

mailto:bpkroth@microsoft.com
mailto:sergiym@microsoft.com
mailto:yiwzh@microsoft.com

What is “Autotuning”?
Efficiently auto selecting a
system configuration

for a workload and its
execution environment

to improve (optimize)
one or more metrics

◦ Sampling of prior works:
◦ DB: OtterTune, DBTune, CDBTune, DB-

Bert, GPTuner, …

◦ HPC: ATLAS, CLTune

◦ Compilers: MILEPOST GCC,

◦ Cloud, Resource Management:
Autoscalers (e.g., CaaSPER)

◦ ML Hyperparams (AutoML): Keras Tuner,
skopt, optuna, BoTorch, HyperMapper, …

◦ Generic: OpenTuner, MLOS

5HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://dl.acm.org/doi/pdf/10.1145/3035918.3064029
https://www.dbtune.com/
https://dl.acm.org/doi/abs/10.1145/3299869.3300085
https://dl.acm.org/doi/10.1145/3514221.3517843
https://dl.acm.org/doi/10.1145/3514221.3517843
https://dl.acm.org/doi/10.1145/3514221.3517843
https://www.vldb.org/pvldb/vol17/p1939-tang.pdf
https://ieeexplore.ieee.org/abstract/document/7328205
https://link.springer.com/article/10.1007/s10766-010-0161-2
https://dl.acm.org/doi/pdf/10.1145/3626246.3653378
https://github.com/keras-team/keras-tuner
https://github.com/scikit-optimize/scikit-optimize
https://dl.acm.org/doi/10.1145/3292500.3330701
https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html
https://ieeexplore.ieee.org/abstract/document/9124618
https://dl.acm.org/doi/abs/10.1145/2628071.2628092
https://dl.acm.org/doi/10.14778/3685800.3685852

Where is “Autotuning”?
Efficiently auto selecting a
system configuration

for a workload and its
execution environment

to improve (optimize)
one or more metrics

◦ VM Size

◦ DB Indexes

◦ CPU Speed, Cache Size/Associativity

◦ …

◦ Talk Focus: Software Configurations

◦ Sometimes called “knob tuning”

◦ What level?

◦ Build Time (e.g., compile options)

◦ Startup Time (e.g., BP size)

◦ Runtime (e.g., QO rules, buffer sizes, etc.)

◦ “Where” affects deployment, tuning options

6HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

How to “Autotuning”?
Efficiently auto selecting a
system configuration

for a workload and its
execution environment

to improve (optimize)
one or more metrics

◦ Heuristics
◦ Encoded “best practices”

◦ E.g., mysqltuner, pgtune, …

◦ Search Based
◦ Grid search
◦ Simulated Annealing

◦ Model Guided
◦ Bayesian Optimization
◦ Reinforcement Learning

◦ Key: sample efficiency
◦ More in the rest of the talk

7HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://github.com/major/MySQLTuner-perl
https://pgtune.leopard.in.ua/

Where and What are we “Autotuning”?
Efficiently auto selecting a
system configuration

for a workload and its
execution environment

to improve (optimize)
one or more metrics

◦ “Execution Environment”
◦ HW Config (CPU, RAM, Disk, Network, GPU, …)
◦ VM Size
◦ OS
◦ System: Redis, MySQL, Postgres, Nginx, …
◦ …

◦ “Workload”
◦ YCSB
◦ TPC-C
◦ TPC-H
◦ Other?

◦ User or customer workloads
◦ …

“Context”

8HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

What are we “Autotuning” for?
Efficiently auto selecting a system
configuration

for a workload and its execution
environment

to improve (optimize)
one or more metrics

◦ Minimize Latency
◦ Avg, Med, P95, …

◦ Maximize Throughput
◦ Minimize Cost
◦ Minimize Resource Usage

◦ Pack more into less with good perf

◦ Reduce power!

◦ Maximize “Robustness”
◦ Availability

◦ Sensitivity to changes in environment

All of these? At once?

9HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Why Tune? – Performance!
◦ “Properly tuned database systems can achieve

4-10x higher throughput” (Van Aken, VLDB 2021)

◦ 68% reduction in P95 latency for Redis
◦ Tuning Kernel Scheduler Parameters

◦ Better user experience

◦ Lower costs

◦ Fewer machines, CAPEX, OPEX, power

◦ …

10HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

LlamaTune: Sample-Efficient DBMS Configuration Tuning (VLDB 2022)

https://www.vldb.org/pvldb/vol14/p1241-aken.pdf
https://www.rarnonalumber.com/en-us/research/publication/llamatune-sample-efficient-dbms-configuration-tuning/
https://www.rarnonalumber.com/en-us/research/publication/llamatune-sample-efficient-dbms-configuration-tuning/
https://www.rarnonalumber.com/en-us/research/publication/llamatune-sample-efficient-dbms-configuration-tuning/
https://www.rarnonalumber.com/en-us/research/publication/llamatune-sample-efficient-dbms-configuration-tuning/

Why Autotune?

12

◦ Cloud Scale
◦ Growing # of HW/workload

◦ Expectation of “automagic”

◦ Not so many DBAs or Sysadmins

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Advancing Workload Management with Foundational Models: Challenges in Time Series Similarity and Interpretability. Bang et al., MIDAS 2025

Why is Autotuning Hard?
◦ Large, and increasing

of parameters

◦ Complex system interactions
affect performance

◦ Not easy, takes time, even for
experts!

13HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

CDBTune (SIGMOD 2019)

OtterTune (SIGMO D 2017)

https://dl.acm.org/doi/abs/10.1145/3299869.3300085
https://dl.acm.org/doi/abs/10.1145/3035918.3064029

Motivating Example: Spark Tuning Game
• testautotune2.azurewebsites.net/app3

Exercise (to do now):

1.Manually optimize TPC-H Q1 runtime

2.Limit 5min and 100 tries

3.Download Data and upload in chat

4.Post your best perf #

14HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://testautotune2.azurewebsites.net/app3

Aside: why even have parameters?
◦ Build SW to be adaptive?

◦ Examples:
◦ Network Protocols - TCP
◦ Autoscaling
◦ Load shedding/backpressure
◦ DB Index Cracking (Idreos CIDR 2007)

◦ Adaptive Query Processing
◦ Self Driving Databases (Pavlo CIDR 2017)

◦ Cost/complexity to rebuild

15

◦ Still have tunables
◦ Internal vs. External (more later)

◦ Different policies/techniques
◦ TCP: tahoe, reno, vegas, cubic, BBR
◦ AQP: Eddies, SIP, etc.

◦ Threshold to kick in
◦ Rate to change
◦ Backoff delay
◦ …

Complementary approaches

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://ieeexplore.ieee.org/document/1092259
https://stratos.seas.harvard.edu/sites/g/files/omnuum4611/files/IKM_CIDR07.pdf
https://stratos.seas.harvard.edu/sites/g/files/omnuum4611/files/IKM_CIDR07.pdf
https://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf
https://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf
https://dsf.berkeley.edu/papers/sigmod00-eddy.pdf

Why is Autotuning Hard? - Workloads
◦ No “one config to rule them all”

◦ One workload may change over time

◦ Many, many workloads in the Cloud

◦ Lack of representative benchmarks

◦ Not clear how to match them
◦ Workload ID: more on this later

16HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Autotuning in Practice: How to Deploy?
◦ Depends on the tunables:

◦ Regularly runtime (online) adjustable?

◦ E.g., join buffer size?

◦ ALTER SYSTEM CONFIGURATION SET tunable=new-val;

◦ Is there some lag before it takes affect?

◦ Only at startup time?

◦ E.g., PG shared_buffers size

◦ update_config_file new-tunables.json

◦ systemctl restart postgres.service

◦ Is it expensive to restart?

◦ E.g., do you lose buffer pool or cache contents?

◦ May need to do this infrequently

◦ Only at build or provision time?

◦ E.g., FS choice or block size

◦ Size of data operation to change

◦ E.g., mkfs && rsync

◦ Maybe just pick better defaults

◦ Classic “Policy vs Mechanism” system challenge

◦ N.B., in some cases, can work to make changing the
tunable more adaptable.
◦ Orthogonal engineering effort

◦ improves mechanism → enable better policy

19HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Deployment Oriented View
◦ Split the world into:

1. Offline Tuning
◦ Two Phases

1. Explore in a controlled “lab” environment

2. Deploy “best” config to production

◦ Key Issue: When? How?

◦ + More flexible, expansive (though may crash)

◦ + Parallel Exploration

◦ + Easy to explain, rollback

◦ - What workload?

2. Online Tuning
◦ Use an “agent” to continually observe and adjust the system

◦ + Any workload

◦ - Safety? Explainability?

◦ - Generalizability?

◦ Somewhat artificial separation

◦ Can use both!
◦ E.g., start from better “defaults” using offline

◦ Fine-tune from there

◦ Online can also “pre-train” in an offline “gym”

◦ Common Challenges/Approaches
◦ Size of search space

◦ Predictability

◦ Noise

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL 20

Outline
◦ Overview (15 mins)

◦ Offline Tuning (45 mins)
◦ Basic Architectural Overview

◦ Running Example

◦ Optimization

◦ Classic Search

◦ Bayesian Optimization

◦ Systems Challenges

◦ Online Tuning (20 mins)
◦ Basic Architectural Overview

◦ Optimization

◦ Reinforcement Learning (RL)

◦ Genetic Algorithms (GA)

◦ Systems Challenges

◦ Future Directions (10 mins)
◦ Workload Identification

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL 24

Offline Optimization
SERGIY MATUSEVYCH

25HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Motivating Example

26

• System to optimize: Redis on Linux

• Goal: minimize tail latency

• Benchmark: Redis benchmark

• Tunable parameter: /proc/sys/kernel/sched_migration_cost_ns

• Note:
• We optimize the OS for the benefit of 1 application (and workload)

• All other configuration parameters fixed (e.g., VM size)

• We already see the benefits of benchmark automatization

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Scheduler

System
Specific Scripts

Optimizer

Tunable Values Benchmark Results

Cloud

Problem Statement
• Optimize expensive black-box function in a sample-efficient manner:

𝒙∗ = argmin
𝒙∈𝒳

𝑓(𝒙)

27

𝑓 𝒙𝑖𝒙𝑖

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Configuration Space

28

• Use prior knowledge about the system:
• Latency ≈ 1.0ms, sched_migration_cost_ns ∈ [0 .. 1 000 000]

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

[Not so] Naïve Approach: Grid Search
• Idea: Fixed trial budget, pick values at even intervals

• Try all configs, pick the best

29HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Variation: Random Search
• Idea: Fixed trial budget, pick configuration values at random

• Try all configs, pick the best

30HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Problem: Sample Efficiency
• Idea: use the information from previous trials to pick the next configuration

• Can we do it in a principled way?

31HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Bayesian Optimization
• Idea: instead of finding 𝒙∗ given 𝑓, find best model of 𝑓, given the observations

32HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Sequential Model-Based Optimization

1. Evaluate the expensive function:

2. Use 𝑓 𝒙𝑖 to update the statistical model 𝑀:

3. Optimize the Acquisition Function: 𝒙𝑖+1 = argmax
𝒙∈𝒳

𝐴𝐹(𝑀, 𝒙)

4. ++𝑖; Repeat

33

𝑓 𝒙𝑖𝒙𝑖

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Optimizer as a Black Box
• Target function is a black box to the optimizer

• Optimizer is a black box to the target function
• TF does not care where the suggestions come from

• One can build an elegant tuning framework

34

Optimizer:
Suggest new 𝒙𝑖

Target:
Evaluate 𝑦𝑖 = 𝑓 𝒙𝑖

𝑦𝑖 𝒙𝑖

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Model 𝑀: Gaussian Process
• Model random functions: መ𝑓~𝒢𝒫(𝜇 𝒙 , 𝛴 𝒙, 𝒙′)

35HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Bayesian Optimization
• Condition on observed points

• Extract the expected function and confidence interval

36HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Bayesian Optimization
• Surrogate function: our best guess (so far) about the system behavior

• Acquisition function: pick the most “interesting” point to evaluate

37HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

How the Sausage is Made

38HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Definitions
• Stochastic Process: An indexed sequence of random variables

• Gaussian Process: Model መ𝑓 𝒙 s.t. ∀ 𝒙1, 𝒙2, … : መ𝑓 𝒙1 , መ𝑓 𝒙2 , … ~𝒩 𝜇, Σ

• Why Gaussian?
• Normal distribution is closed under marginalization and conditioning

• Leads to elegant closed-form solutions for optimization

39HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Marginalization

• Marginalization:
𝑌𝑜𝑏𝑠

𝑌𝑚𝑖𝑠
~𝒩 𝜇, Σ = 𝒩

𝜇𝑜𝑏𝑠

𝜇𝑚𝑖𝑠
,

Σ𝑜𝑏𝑠,𝑜𝑏𝑠 Σ𝑜𝑏𝑠,𝑚𝑖𝑠

Σ𝑚𝑖𝑠,𝑜𝑏𝑠 Σ𝑚𝑖𝑠,𝑚𝑖𝑠

• Missing data does not impact the inference:

P 𝑌𝑜𝑏𝑠 = න P 𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠 𝑑𝑌𝑚𝑖𝑠 = න P 𝑌𝑜𝑏𝑠|𝑌𝑚𝑖𝑠 P 𝑌𝑚𝑖𝑠 𝑑𝑌𝑚𝑖𝑠

• We can update the model with the new data points 𝑌𝑜𝑏𝑠!

40HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Conditioning
• Conditioning:

𝑌𝑚|𝑌𝑜~𝒩 𝜇𝑚 + Σ𝑚,𝑜 Σ𝑜,𝑜
−1 (𝑌𝑜 − 𝜇𝑜), Σ𝑚,𝑚 − Σ𝑚,𝑜 Σ𝑜,𝑜

−1 Σ𝑜,𝑚

• Probabilistic model for missing points given the observations!

41HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

From Distribution to Process
• Gaussian Process: distribution over functions መ𝑓~𝒢𝒫(𝑚 𝒙 , 𝐾 𝒙, 𝒙′)

• 𝒢𝒫 defined by:

• Mean function 𝑚 𝒙 : assigns to each 𝒙 the expected value 𝔼[መ𝑓 𝒙]

• Kernel function 𝐾 𝒙, 𝒙′ : assigns to each pair 𝒙, 𝒙′

 covariance between መ𝑓 𝒙 and መ𝑓 𝒙′

42HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Kernel Functions
• Radial Basis Function (RBF): exp −

𝑑2

2𝑙2

• scikit-learn default

• Matérn:
21−𝜈

Γ(𝜈)
2𝜈

𝑑

𝑙

𝜈
𝐾𝜈 2𝜈

𝑑

𝑙

• Most popular kernel nowadays

• Two parameters to control smoothness: 𝑙 and 𝜈

• Becomes RBF at 𝜈 → ∞

• Many others exist: Constant, Linear, Periodic, etc.
• Kernels can be combined

43

• 𝑑: distance between 𝒙 and 𝒙′

• 𝑑 is usually Euclidean: 𝑑 = 𝒙 − 𝒙′
2

• Γ(𝜈): gamma function

• 𝐾𝜈: modified Bessel function of order 𝜈

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Kernel Functions: RBF

• Radial Basis Function (RBF): 𝐾 𝒙, 𝒙′ = exp −
𝒙−𝒙′

2

2

2𝑙2

• 𝑙 controls the smoothness:

44HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Acquisition Functions

Max-value entropy search for efficient Bayesian optimization

Generalizing Bayesian optimization with decision-theoretic entropies

• Probability of improvement: PI 𝒙 = P(𝑓 𝒙 > 𝑓 𝒙∗)
• Here 𝒙∗ means the best value so far

• Expected improvement: EI 𝒙 = 𝔼[max(𝑓 𝒙 > 𝑓 𝒙∗ , 0)]
• Takes the magnitude of improvement into account!

• Upper Confidence Bound (UCB): UCB 𝒙 = 𝑚 𝒙 + 𝛽𝜎 𝒙
• 𝛽 ≥ 0 controls explore/exploit

• 𝜎 𝒙 = 𝐾(𝒙, 𝒙)

• SOTA: Information-theoretic approach
• MES: Wang, Z., Jegelka, S. (2017) Max-value entropy search for efficient Bayesian optimization. ICML

• EHIG: Neiswanger, W. et al. (2022) Generalizing Bayesian optimization with decision-theoretic entropies. NeurIPS

47HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://proceedings.mlr.press/v70/wang17e.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/8451a20c5a7e0ee5671dda28f7daf7f3-Abstract-Conference.html

Upper Confidence Bound
• In our case, Lower Confidence Bound: LCB 𝒙 = 𝑚 𝒙 − 𝛽𝜎 𝒙

48HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Other Models for Black-Box Optimization

Sequential model-based optimization for general algorithm

configuration

The CMA Evolution Strategy: A Tutorial

CMA-ES for Hyperparameter Optimization of Deep Neural Networks

Particle swarm optimization algorithm and its applications: a systematic review

• Random Forest: SMAC
• Idea: Learn መ𝑓(𝒙) with RF, use regression tree outputs to estimate mean and variance
• Hutter, F., Hoos, H. H., Leyton-Brown, K. (2010). Sequential model-based optimization for general algorithm

configuration. Technical Report TR-2010–10, University of British Columbia.

• Evolutionary algorithms
• CMA-ES: Covariance Matrix Adaptation

Hansen, N. (2023). The CMA Evolution Strategy: A Tutorial. arXiv: 1604.00772

• Loshchilov, I., Hutter, F. (2016). CMA-ES for Hyperparameter Optimization of Deep Neural Networks. arXiv: 1604.07269

• PSO: Particle Swarm Optimization
• Gad, A. G. (2022). Particle swarm optimization algorithm and its applications: a systematic review. Archives of

computational methods in engineering, 29(5), 2531-2561.

50HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://ai.dmi.unibas.ch/research/reading_group/hutter-et-al-tr2010.pdf
https://ai.dmi.unibas.ch/research/reading_group/hutter-et-al-tr2010.pdf
https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.07269
https://link.springer.com/article/10.1007/S11831-021-09694-4

Discrete / Hybrid Optimization
• E.g., MySQL parameter innodb_flush_method can take values:

{fsync, littlesync, nosync, O_DSYNC, O_DIRECT, O_DIRECT_NO_FSYNC}

• Common approaches:
• Alternative surrogate models (e.g., Random Forest in SMAC)

• Multi-Armed Bandits (AFs like UCB and EI do not require sampling from posterior)

• Adapt features to continuous space (impose order, one-hot, etc.)
• MerCBO: Deshwal, A. et al. (2021). Mercer features for efficient combinatorial Bayesian optimization. AAAI.

Works with information-theoretic acquisition functions like MES

• SOTA: Use NNs to encode features, optimize in latent space
• LOL-BO: Maus, N. et al. (2022) Local latent space Bayesian optimization over structured inputs. NeurIPS.

51HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://ojs.aaai.org/index.php/AAAI/article/view/16886
https://proceedings.neurips.cc/paper_files/paper/2022/hash/ded98d28f82342a39f371c013dfb3058-Abstract-Conference.html

More Fun With Optimization
• Parallel Optimization

• E.g., produce the next 10 configurations to evaluate

• Constrained / Structured Space / Causal Optimization
• Use / model the parameters’ correlations

• Multi-Fidelity and Cost-Based Optimization
• Balance the accuracy and cost of measurements

• Multi-Objective Optimization
• Pareto frontier: e.g., an optimal combination of Cost and Throughput

• Multi-Task Optimization
• Efficient config space exploration for finding, e.g., optimal Latency and optimal Throughput

52HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Goal: Efficient Exploration
• Input: measurements 𝒙1, 𝑓 𝒙1 , … , (𝒙𝑛, 𝑓(𝒙𝑛)) (AKA training data)

• Task: Given the data, find the optimum 𝒙∗?

• A better task: Given the data, produce [𝒙𝑛+1, …] that
maximize the information gain about the optimum of the unknown function 𝑓

• Sample Efficiency: minimize the number of trials to achieve desired accuracy

53HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

References
• Books (available online):

• Rasmussen, C. E., Williams, C. (2006). Gaussian Processes for Machine Learning. MIT Press.

• Garnett, R. (2023). Bayesian Optimization. Cambridge University Press.

• Tutorials:
• Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv:1807.02811.

• Greenhill, S. et al. (2020). Bayesian Optimization for Adaptive Experimental Design: A Review. IEEE Access, vol. 8.

• Deshwal, A., Belakaria, S., Doppa, J. R. (2023). Recent Advances in Bayesian Optimization, AAAI. ← Great bibliography!

• BoTorch Tutorials. ← Many SOTA algorithms implemented in BoTorch.

• Videos:
• Doppa, J. R., Aglietti, V., Gardner, J. (2022). Advances in Bayesian Optimization, NeurIPS Tutorial.

• Alvarez, M. et al. (organizers) (2024). Gaussian Process Summer School. University of Manchester.

54HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://gaussianprocess.org/gpml
https://bayesoptbook.com/
https://arxiv.org/abs/1807.02811
https://ieeexplore.ieee.org/abstract/document/8957442
https://bayesopt-tutorial.github.io/
https://botorch.org/docs/tutorials/
https://botorch.org/docs/tutorials/
https://neurips.cc/virtual/2022/tutorial/55806
https://gpss.cc/gpss24/day-3.html

Is It That Simple?
• As in:

• Let the optimizer suggest new configurations

• Evaluate them

• Repeat

• Yes, if configuration space is small…
and trials are cheap… and noise-free…
and workload is fixed… and …

55

Optimizer:
Suggest new 𝒙𝑖

Target:
Evaluate 𝑦𝑖 = 𝑓 𝒙𝑖

𝑦𝑖 𝒙𝑖

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Challenges and Strategies
Challenges

• Systems:
• Execution costs

• Repeatable experiments

• Non-representative benchmarks

• Noise!

• Optimization:
• Curse of dimensionality

• Parallel / Multi-Task / Multi-Objective opt.

• Noise!

Strategies

• Systems:
• Make trials faster / cheaper

• Parallelize

• Noise:
• Collect more data

• Optimization:
• Reduce (focus) the search space

• Use (more) (noisy) features

56HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Parallel Optimization

Parallelized Bayesian optimization

for problems with expensive evaluation functions

Parallel Bayesian global

optimization of expensive functions

• Optimizer suggests many configurations at once
• Synchronous: always suggest 𝑘 points, batch execute trials

• Asynchronous: suggest 1 point at a time, track up to 𝑘
in-progress configurations

• Problem: maintain the diversity of configurations

• Rebolledo, M., Rehbach, F. et al. (2020). Parallelized Bayesian optimization
for problems with expensive evaluation functions. GECCO 2020, 231–232.

• Wang, J., Clark, S. C., Liu, E., & Frazier, P. I. (2020). Parallel Bayesian global
optimization of expensive functions. Operations Research, 68(6), 1850-1865.

• See also: CMA-ES

57

Optimizer:
Suggest 𝒙𝑖 , … , 𝒙𝑖+𝑘

Target:
Evaluate 𝑓 𝒙𝑖 , … , 𝑓 𝒙𝑖+𝑘

𝒙𝑖 , … , 𝒙𝑖+𝑘𝑦𝑖 , … , 𝑦𝑖+𝑘

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://www.spotseven.de/wp-content/papercite-data/pdf/rebo20b.pdf
https://www.spotseven.de/wp-content/papercite-data/pdf/rebo20b.pdf
https://arxiv.org/abs/1602.05149
https://arxiv.org/abs/1602.05149

Multi-Objective Optimization

ParEGO: a hybrid algorithm with on-line landscape approximation for expensive

multiobjective optimization problems

Leveraging Trust for Joint Multi-Objective and Multi-Fidelity Optimization

• Problem: min
𝒙∈𝒳

𝑓1 𝒙 , 𝑓2 𝒙 , … , 𝑓𝑘 𝒙 (e.g., Latency and Cost)

• Typically, no 𝒙∗ to optimize all functions simultaneously

• Pareto frontier: a set of solutions 𝒙∗ not dominated by any other solutions
• i.e., no objective can be improved without degrading some other objective

• Scalarization: Reduce to 1d: argmin
𝒙∈𝒳𝜃

𝑔𝜃 𝑓1 𝒙 , … , 𝑓𝑘 𝒙 where 𝑔𝜃: ℝ𝑘 → ℝ

• Linear: min
𝒙∈𝒳

σ𝑖=1
𝑘 𝜃𝑖𝑓𝑖 𝒙 where 𝜃𝑖 > 0 weights for objectives

• ParEGO: Knowles, J. (2006). ParEGO: a hybrid algorithm with on-line landscape approximation for expensive
multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, vol. 10, no. 1

MOMF: Irshad, F., Karsch, S., Döpp, A. (2021). Leveraging Trust for Joint Multi-Objective and Multi-Fidelity Optimization.
arXiv: 2112.13901

58HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://ieeexplore.ieee.org/document/1583627
https://ieeexplore.ieee.org/document/1583627
https://arxiv.org/abs/2112.13901

Multi-Target Optimization

Kernels for Vector-Valued Functions: A Review

Multi-Output Gaussian Processes

Cluster-Specific Predictions with Multi-Task Gaussian Processes

• Problem: min
𝒙∈𝒳

𝑓1 𝒙 , min
𝒙∈𝒳

𝑓2 𝒙 , … , min
𝒙∈𝒳

𝑓𝑘 𝒙 simultaneously

• Can we reuse the data collected while optimizing 𝑓1 𝒙 when optimizing 𝑓2 𝒙 etc.? Yes!

• Idea: exploit the correlations between 𝑓1 𝒙 , … , 𝑓𝑘 𝒙

• Separable multi-output kernels: K 𝑖, 𝒙 , 𝑗, 𝒙′ = cov 𝑓𝑖 𝒙 , 𝑓𝑗 𝒙′ = K𝑡 𝑖, 𝑗 K𝑥 𝒙, 𝒙′

• Alvarez, M. et al. (2011). Kernels for Vector-Valued Functions: A Review. Foundations and Trends in Machine Learning.

• Video: Alvarez, M. (2017). Multi-Output Gaussian Processes. GP Summer School.

• Multi-task with common mean: 𝑦𝑖 = 𝜇0 + 𝑓𝑖 + 𝜖𝑖 where each component is a GP
• Leroy, A. et al. (2023) Cluster-Specific Predictions with Multi-Task Gaussian Processes. JMLR 24(5):1−49.

59HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://arxiv.org/abs/1106.6251
https://gpss.cc/gpss17/day-2.html#MultiOutputGaussianProcesses
https://www.jmlr.org/papers/v24/20-1321.html

Constraining the Search Space
• Marginal Constraints

• Range limits, quantization, log scale, specifying priors / histograms for individual tunables.

• E.g., on system with 8GB of RAM MySQL parameter innodb_buffer_pool_size
likely should be at 6..7GB

• Constrained Optimization
• Constraints can involve multiple tunables and/or be black-box.

• E.g., MySQL configuration has constraints like:
innodb_buffer_pool_chunk_size <= innodb_buffer_pool_size / innodb_buffer_pool_instances

• SCBO: Eriksson, D., Poloczek, M. (2021). Scalable constrained Bayesian optimization. AISTATS.
Supports black-box constraints!

60HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://arxiv.org/abs/2002.08526

Constraining the Search Space
• Structured Search Space Optimization

• Exploit the independence structure of the tunable parameters

• E.g., if PostgreSQL config parameter jit=off, then ignore JIT parameters
jit_expressions, jit_above_cost, jit_tuple_deforming, etc.
• Jenatton, R. et al. (2017). Bayesian optimization with tree-structured dependencies. ICML.

Idea: Use a mixture of GPs + linear model for a decision tree to capture the dependencies.

• Causal Bayesian Optimization
• Learn the parameters’ independence structure
• Aglietti, V. et al. (2020). Causal Bayesian optimization. AISTATS.

61HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://proceedings.mlr.press/v70/jenatton17a.html
https://proceedings.mlr.press/v70/jenatton17a.html
https://proceedings.mlr.press/v70/jenatton17a.html
https://proceedings.mlr.press/v108/aglietti20a

Dimensionality Reduction
• LlamaTune: Use random projection to reduce the search space

• Many config parameters are correlated ⇒ Replace them with random linear combinations

• Reduces PG configuration evaluations by up to 11x ; up to 21% higher throughput

• LlamaTune: Kanellis, K. et al. (2022) LlamaTune: Sample-Efficient DBMS Configuration Tuning. VLDB

• HesBO: Nayebi, A., Munteanu, A., Poloczek, M. (2019) A framework for Bayesian optimization in embedded subspaces. ICML

62HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Low-Dimensional

Search Space Tuning
Special Knob

Values Handling

Knob Values

Bucketization

OFF

50

100

200

300

https://arxiv.org/abs/2203.05128
https://arxiv.org/abs/2203.05128
https://arxiv.org/abs/2203.05128
https://proceedings.mlr.press/v97/nayebi19a.html

LLMs for Parameter Discovery
LLMs are good at extraction and summarization of
human knowledge from multiple sources (manuals,
documentation, source code, StackOverflow, etc.)

• DBBert: Identify important tuning knobs and biased ranges with BERT.
• Trummer, I. (2022). DB-BERT: a Database Tuning Tool that "Reads the Manual".

SIGMOD.

• GPTuner: Discover parameters with LLM, tune with BO.
• Lao, J. et al. (2024). GPTuner: A manual-reading database tuning system via GPT-

guided Bayesian optimization. VLDB.

63HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://dl.acm.org/doi/pdf/10.1145/3514221.3517843
https://dl.acm.org/doi/pdf/10.1145/3514221.3517843
https://dl.acm.org/doi/pdf/10.1145/3514221.3517843
https://www.vldb.org/pvldb/vol17/p1939-tang.pdf
https://www.vldb.org/pvldb/vol17/p1939-tang.pdf
https://www.vldb.org/pvldb/vol17/p1939-tang.pdf
https://www.vldb.org/pvldb/vol17/p1939-tang.pdf
https://www.vldb.org/pvldb/vol17/p1939-tang.pdf

LLMs for Optimization
Next step: Use LLMs to suggest configurations / estimate performance.

• 𝜆-Tune: Identify the tunables with LLM, then use LLM to generate scripts for k configurations
and evaluate the most feasible ones.
• Giannakouris, V., Trummer, I. (2025). λ-Tune: Harnessing Large Language Models for Automated Database System

Tuning. SIGMOD.

• LATuner: Similar to 𝜆-Tune to warm-up the optimizer, then use Thompson sampling to select
between GP and LLM-based surrogates.
• Fan, C. et al. (2024). LATuner: An LLM-Enhanced Database Tuning System Based on Adaptive Surrogate Model. ECML

PKDD.

64HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://dl.acm.org/doi/pdf/10.1145/3709652
https://dl.acm.org/doi/pdf/10.1145/3709652
https://dl.acm.org/doi/pdf/10.1145/3709652
https://dl.acm.org/doi/pdf/10.1145/3709652
https://link.springer.com/chapter/10.1007/978-3-031-70362-1_22
https://link.springer.com/chapter/10.1007/978-3-031-70362-1_22
https://link.springer.com/chapter/10.1007/978-3-031-70362-1_22
https://link.springer.com/chapter/10.1007/978-3-031-70362-1_22

Multi-Fidelity Optimization
• Combine expensive more accurate measurements and cheaper less accurate ones

• Use cost-adjusted utility functions, e.g., cost-adjusted Expected Improvement
• Do, B., Zhang, R. (2023). Multi-fidelity Bayesian Optimization in Engineering Design. CoRR.

65HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://arxiv.org/abs/2311.13050
https://arxiv.org/abs/2311.13050
https://arxiv.org/abs/2311.13050

Systems Challenges of Multi-Fidelity
◦ Remember Goal: reduce cost to find

improved config

◦ Multi-Fidelity Idea: run cheaper tests!
◦ E.g., Run TPC-H SF1 (seconds), not SF100 (minutes)

◦ Alt: TPC-C for 1 minute vs. 20 minutes

◦ Sample more points in the same amount of time!

◦ Is the knowledge gained transferable?
◦ E.g., TPC-H SF 1 everything fits in memory, don’t

need to explore I/O settings

◦ TPC-C for 1 minute won’t stress the BP or I/O

◦ Not as simple as applying a scalar

◦ Similar for change in VM size

◦ But, can score it with “lower confidence”

◦ Important Takeaways:
◦ Knowledge Transfer (next)

◦ Benchmark Importance

◦ Knob Importance

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL 66

Knowledge Transfer
◦ Idea: Re-use prior samples

“warm start” a new optimization
◦ i.e., make it cheaper

◦ E.g., OpAdvisor (VLDB 2023), Amortized AutoTuning

◦ Policy:
1. Good samples: reuse results from “similar” workloads

2. Poor samples: unclear – could be good in this case?

◦ Keep exploring these

3. Bad samples: reuse everywhere

◦ Idea: if it crashes the system, probably always does

◦ Helps inform the optimizer don’t search there again

◦ How?
1. Good: keep the score

2. Bad: no score (e.g., crashed)?

◦ Make it up!

◦ N * {worst_score_measured}

◦ Assumes “compatible” context:
◦ Hardware

◦ VM Size

◦ OS

◦ Workload

◦ What about VM Size Changes?
◦ E.g., 2 vCPU 8GB → 4 vCPU 16 GB

◦ Just 2x everything? Maybe not.

◦ Caches, OK

◦ Join or sort buffers?
Depends on the workload.

◦ Threads?

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL 67

https://dl.acm.org/doi/abs/10.14778/3632093.3632114
https://arxiv.org/abs/2106.09179

Focus on the Important Knobs!
◦ Previously:

◦ Use LLM to inform which parameters to focus on

◦ Crowd sourcing a “human expert”

◦ LlamaTune to narrow search space

◦ Multi-fidelity workload change may impact knob sensitivity

◦ Related:
◦ DBSeer (SIGMOD 2013):

◦ Uses models of specific resources to try and diagnose
performance bottlenecks

◦ Can be used for tuning

◦ OtterTune (SIGMOD 2017):

◦ Uses Lasso with system metrics and prior configuration runs
to identify important knobs

◦ More recent work use SHAP (NIPS 2017) values

◦ Framework for “explainable AI”

◦ Also useful for “knob importance” ranking

◦ Still need to have historical values to work from

◦ PGO or FDO (Diniz PLDI 1997): Concept from compilers:
◦ Use stack profiles captured from real runs to focus compiler

optimizations in “the right places”

◦ Could do similar for other systems tuning:
◦ Run workload

◦ Capture stack traces

◦ Identify Hotspots

◦ Search surrounding code for “tunables” (non-trivial)

◦ Prioritize tuning those

◦ Reverse: design a workload to exercise certain/all
code paths and tune for that “general case”?
◦ E.g., QO

◦ Opportunity: to our knowledge no system currently
does this

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL 68

https://web.eecs.umich.edu/~mozafari/papers/sigmod_2013.pdf
https://web.eecs.umich.edu/~mozafari/papers/sigmod_2013.pdf
https://db.cs.cmu.edu/papers/2017/p1009-van-aken.pdf
https://db.cs.cmu.edu/papers/2017/p1009-van-aken.pdf
https://www.jstor.org/stable/2346178
https://dl.acm.org/doi/10.5555/3295222.3295230
https://dl.acm.org/doi/pdf/10.1145/258915.258923

To Learn More … Run More Trials!
◦ Previously:

◦ Multi-Fidelity: learn from cheaper trials?

◦ Parallel Execution
◦ In the cloud! Just Run more.

◦ Ignores the $$ and WHr cost …

◦ Also, see Parallel Optimization issues

◦ However, with “async trials” we also have the infra to
augment other signals (e.g., additional cloud metrics)

◦ Alternatively: Early Abort
◦ Report bad score sooner

◦ Works well for “elapsed time based” benchmarks

◦ E.g., TPC-H

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL 69

To Learn More … Get Stable!
Cloud is noisy

◦ Despite systems improvements

◦ Unstable performance, w/o config tuning

◦ Slows rate of learning

◦ Can have non-transferrable configs (undeployable)

What to do?
◦ Naïve: run N times, take aggregate (avg, median)

◦ Costly

◦ Alt: measure current resource performance
◦ Microbenchmarks

◦ Throw out outlier machines?
◦ No – may be stuck deployed to those later

◦ Learn noise adjusted performance score?

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL 70

TUNA: Tuning Unstable and Noisy Cloud Applications. Eurosys 2025

https://www.rarnonalumber.com/en-us/research/publication/tuna-tuning-unstable-and-noisy-cloud-applications/
https://www.rarnonalumber.com/en-us/research/publication/tuna-tuning-unstable-and-noisy-cloud-applications/
https://www.rarnonalumber.com/en-us/research/publication/tuna-tuning-unstable-and-noisy-cloud-applications/

You can TUNA Duet!
Duet Benchmarking (ICPE 2020)

◦ “Lean in” to the noise

◦ Run both default and trial config side by side

◦ Both should be subject to same noise

◦ Report normalized relative difference

◦ Originally intended for CI perf regressions

TUNA (Eurosys 2025)
◦ Successive Halving

◦ Progressively run on multiple VMs iff the config looks good

◦ Samples noise across a cluster/region

◦ Eliminate outliers and unstable configs

◦ Use a sideband signals and a model to register
more “stable” scores with Optimizer

◦ Results in faster learning and more robust configs

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL 71

https://dl.acm.org/doi/10.1145/3358960.3379132
https://dl.acm.org/doi/10.1145/3689031.3717480

Systems References
◦ OtterTune (SIGMOD 2017, VLDB 2018, VLDB 2021)

◦ BestConfig (SoCC 2017)

◦ HyperMapper (MASCOTS 20127)

◦ CDBTune (SIGMOD 2019)

◦ QTune (VLDB 2019)

◦ OnlineTune (SIGMOD 2022)

◦ LOCAT (SIGMOD 2022)

◦ DBSeer (SIGMOD 2013)

◦ Bao for Scope (SIGMOD 2021)

◦ LlamaTune (VLDB 2022)

◦ Duet Benchmarking (ICPE 2020)

◦ TUNA (Eurosys 2025)

◦ MLOS (VLDB 2024)

◦ …

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL 72

https://db.cs.cmu.edu/projects/ottertune/
https://db.cs.cmu.edu/projects/ottertune/
https://dl.acm.org/doi/10.1145/3127479.3128605
https://dl.acm.org/doi/10.1145/3127479.3128605
https://doi.org/10.1109/MASCOTS.2019.00045
https://doi.org/10.1109/MASCOTS.2019.00045
https://dl.acm.org/doi/10.1145/3299869.3300085
https://dl.acm.org/doi/10.1145/3299869.3300085
https://dl.acm.org/doi/10.14778/3352063.3352129
https://dl.acm.org/doi/10.14778/3352063.3352129
https://dl.acm.org/doi/10.1145/3514221.3526176
https://dl.acm.org/doi/10.1145/3514221.3526176
https://dl.acm.org/doi/10.1145/3514221.3526157
https://dl.acm.org/doi/10.1145/3514221.3526157
https://dl.acm.org/doi/abs/10.1145/2463676.2467800
https://dl.acm.org/doi/abs/10.1145/2463676.2467800
https://dl.acm.org/doi/10.1145/3448016.3457568
https://dl.acm.org/doi/10.1145/3448016.3457568
https://dl.acm.org/doi/abs/10.14778/3551793.3551844
https://dl.acm.org/doi/abs/10.14778/3551793.3551844
https://dl.acm.org/doi/10.1145/3358960.3379132
https://dl.acm.org/doi/10.1145/3358960.3379132
https://dl.acm.org/doi/10.1145/3689031.3717480
https://dl.acm.org/doi/10.1145/3689031.3717480
https://dl.acm.org/doi/abs/10.14778/3685800.3685852
https://dl.acm.org/doi/abs/10.14778/3685800.3685852

Deploying Configs Tuned Offline
Problem: Tuned for TPC-C or YCSB or … ,
 but what is my customer running?

Which config should I recommend?
Are any of them “close”?

Alt: They were running TPC-C, but now they’re
doing something else?

◦ When/how to re-evaluate?

◦ Timeseries …

Customers want “predicted” improvement
◦ BO can’t even say config is optimal!

◦ Can’t replay their workload (side effects)

◦ Can’t look at it (privacy)

Future Work
◦ Need some notion of “Similarity” for Workloads

◦ Create new synthetic benchmarks from just metrics?
◦ Stitcher (EDBT 2019)

Alternatively …

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL 73

https://openproceedings.org/2023/conf/edbt/paper-19.pdf
https://openproceedings.org/2023/conf/edbt/paper-19.pdf

Outline
◦ Overview (15 mins)

◦ Offline Tuning (45 mins)
◦ Basic Architectural Overview

◦ Running Example

◦ Optimization

◦ Classic Search

◦ Bayesian Optimization

◦ Systems Challenges

◦ Online Tuning (20 mins)
◦ Basic Architectural Overview

◦ Optimization

◦ Reinforcement Learning (RL)

◦ Genetic Algorithms (GA)

◦ Systems Challenges

◦ Future Directions (10 mins)
◦ Workload Identification

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL 74

Online Optimization
YIWEN ZHU

75HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Online Optimization

Learning in real-time and in production environment.

76

Changing Environment Workload Shifting

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Challenges

77

Workload Shifting Performance Regression /
Guardrail

Explainability Noisy Data

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Online Tuning Architectures
External

◦ Use a “side-car” to monitor and adjust the target
from the outside
◦ Need to expose hooks to outside agent (already done?)

◦ Restricted

Internal
◦ Application contains agent embedded in it to

monitor and adjust target from inside
◦ More invasive changes, costly to run

Both
◦ Internal agent monitors, calls out to external

service for actions
◦ E.g., SelfTune, OPPerTune (NSDI 2024) →

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL 78

https://github.com/microsoft/SelfTune
https://dl.acm.org/doi/10.5555/3691825.3691886

Online Tuning Algorithms:
Reinforcement Learning

79

• Q-Learning:
• Q Values, Q(s,a): the expected reward when

taking the action a, given at a state s

• Actor-Critic:

• Policy Function, π(s,a): the probability to
take the action a, given at state s given the
current policy

• Value Function, V(s): the expected future
rewards from state s

•[28] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A query-aware database
tuning system with deep reinforcement learning. Proc. VLDB Endow. 12, 12, 2118–2130. DOI:

10.14778/3352063.3352129

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://doi.org/10.14778/3352063.3352129
https://doi.org/10.14778/3352063.3352129

Online Tuning Algorithms:
Reinforcement Learning

80

•[21] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Reinforcement learning: A survey.

Journal of Artificial Intelligence Research 4, 237–285.

•[56] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yangtao Wang, Tianheng

Cheng, Li Liu, et al. 2019. An end-to-end automatic cloud database tuning system using deep reinforcement

learning. In Proceedings of the 2019 International Conference on Management of Data, 415–432.
•[28] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A query-aware database tuning system

with deep reinforcement learning. Proc. VLDB Endow. 12, 12, 2118–2130. DOI: 10.14778/3352063.3352129

•[57] William Zhang, Wan Shen Lim, Matthew Butrovich, and Andrew Pavlo. 2024. The Holon Approach for

Simultaneously Tuning Multiple Components in a Self-Driving Database Management System with Machine

Learning via Synthesized Proto-Actions. Proc. VLDB Endow. 17, 11, 3373–3387.
•[52] Junxiong Wang, Immanuel Trummer, and Debabrota Basu. 2021. UDO: universal database optimization

using reinforcement learning. Proc. VLDB Endow. 14, 13, 3402–3414. DOI: 10.14778/3484224.3484236

•[New] Microsoft. Self-Tune. microsoft/SelfTune

• Q-Learning:
• Q Values, Q(s,a): the expected reward when

taking the action a, given at a state s

• Actor-Critic:

• Policy Function, π(s,a): the probability to
take the action a, given at state s given the
current policy

• Value Function, V(s): the expected future
rewards from state s

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://doi.org/10.14778/3352063.3352129
https://doi.org/10.14778/3484224.3484236
https://github.com/microsoft/SelfTune

Online Tuning Algorithms

81

• Genetic Algorithm [HUNTER, DAC, RFHOC]

• Greedy Search [Auto-Steer]

• HybridBandits [OPPerTune]

• Multi-Objective Optimization [MOO]

• Divide-and-conquer search [BestConfig]

• Adaptive Modeling [LITE]
•[6] Baoqing Cai, Yu Liu , Ce Zhang, Guangyu Zhang, Ke Zhou, Li Liu, Chunhua Li, Bin Cheng, Jie Yang, and Jiashu Xing. 2022. HUNTER: An Online Cloud Database Hybrid Tuning System for Personalized Requirements. In Proceedings o f the 2022

International Conference on Management of Data (SIGMOD '22), 646–659. DOI: 10.1145/3514221.3517882

•[30] Chen Lin, Junqing Zhuang, Jiadong Feng, Hui Li, Xuanhe Zhou, and Guoliang Li. 2022. Adaptive Code Learning for Spark Configuration Tuning . In 2022 IEEE 38th International Conference on Data Engineering (ICDE), IEEE, 1995–2007.

•[54] Zhibin Yu, Zhendong Bei, and Xuehai Qian. 2018. Datasize-Aware High Dimensional Configurations Auto-Tuning of In-Memory Cluster Computing. SIGPLAN Not. 53, 2 (March 2018), 564–577. DOI: 10.1145/3296957.3173187

•[3] Zhendong Bei, Zhibin Yu, Huiling Zhang, Wen Xiong, Chengzhong Xu, Lieven Eeckhout, and Shengzhong Feng. 2016. RFHOC: A Random-Forest Approach to Auto-Tuning Hadoop’s Configuration. IEEE Transactions on Para llel and Distributed

Systems 27, 5 (2016), 1470–1483. DOI: 10.1109/TPDS.2015.2449299

•[2] Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithviraj Pandian, Nikolay Laptev, and Ryan Marcus. 2023. AutoSteer: Learned Query Optimization for Any SQL Database. Proc. VLDB Endow. 16, 12 (Aug. 2023) , 3515–3527.

DOI: 10.14778/3611540.3611544

•[46] Gagan Somashekar, Karan Tandon, Anush Kini, Chieh-Chun Chang, Petr Husak, Ranjita Bhagwan, Mayukh Das, Anshul Gandhi, and Nagarajan Natarajan. 2024. OPPerTune: Post-Deployment Configuration Tuning of Services Made Easy. In

21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24) , 1101–1120.

•[31] Chenghao Lyu, Qi Fan, Philippe Guyard, and Yanlei Diao. 2024. A Spark Optimizer for Adaptive, Fine-Grained Parameter Tuning. Proc. VLDB Endow. 17, 11 (Aug. 2024) , 3565–3579. DOI: 10.14778/3681954.3682021

•[67] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue Liu, Kunpeng Song, and Yingchun Yang. 2017. BestConfig: Tapping the Performance Potentia l of Systems via Automatic Configuration Tuning. In Proceedings of the

2017 Symposium on Cloud Computing (SoCC '17), 338–350. DOI: 10.1145/3127479.3128605

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://doi.org/10.1145/3514221.3517882
https://doi.org/10.1145/3296957.3173187
https://doi.org/10.1109/TPDS.2015.2449299
https://doi.org/10.14778/3611540.3611544
https://doi.org/10.14778/3681954.3682021
https://doi.org/10.1145/3127479.3128605

Challenge:
Workload Shifting

82

• OnlineTune: Dynamically adapts to workload
changes by embedding contextual features
(e.g., data size, query plans) into a Bayesian
Optimization framework.

• OPPerTune: Uses AutoScoper, which
integrates job type & RPS into a Hybrid
Bandit algorithm, selecting optimal tuning
strategies via a decision tree model.

• Rockhopper: Generate workload embedding
based on the execution plan of each query
[SIGMOD Industry 4].

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://2025.sigmod.org/program_full_detail.shtml#sigmod_industry_4__graph_databases_and_ml

Challenge:
Workload Shifting

83

• OnlineTune: Dynamically adapts to workload
changes by embedding contextual features
(e.g., data size, query plans) into a Bayesian
Optimization framework.

• OPPerTune: Uses AutoScoper, which
integrates job type & RPS into a Hybrid
Bandit algorithm, selecting optimal tuning
strategies via a decision tree model.

• Rockhopper: Generate workload embedding
based on the execution plan of each query
[SIGMOD Industry 4].

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

[1] Xinyi Zhang, Hong Wu, Yang Li, Jian Tan, Feifei Li, and Bin Cui.
2022. TowardsDynamic and Safe Configuration Tuning for Cloud
Databases. In Proceedingsof the 2022 International Conference on

Management of Data (Philadelphia, PA,USA) (SIGMOD ’22).
Association for Computing Machinery, New York, NY, USA,631–645.
https://doi.org/10.1145/3514221.3526176
[2] Gagan Somashekar, Karan Tandon, Anush Kini, Chieh-Chun
Chang, Petr Husak,Ranjita Bhagwan, Mayukh Das, Anshul Gandhi,

and Nagarajan Natarajan. 2024.{OPPerTune}:{Post-Deployment}
Configuration Tuning of Services Made Easy.In 21st USENIX
Symposium on Networked Systems Design and
Implementation(NSDI 24). 1101–1120.
[3] Yiwen Zhu, Rathijit Sen, Brian Kroth, Sergiy Matusevych, Andreas

Mueller, Tengfei Huang, Rahul Challapalli, Weihan Tang, Xin He, Mo
Liu, Estera Kot, Sule Kahraman, Arshdeep Sekhon, Dario Bernal,
Aditya Lakra, Shaily Fozdar, Dhruv Relwani, Rui Fang, Long Tian,
Karuna Krishna, Ashit Gosalia, Carlo Curino, and Subru Krishnan.
2025. Rockhopper: A Robust Optimizer for Spark Configuration

Tuning in Production Environment. In Companion of the 2025
International Conference on Management of Data (SIGMOD-
Companion '25). ACM, New York, NY, USA.
https://doi.org/10.1145/3722212.3724451

https://2025.sigmod.org/program_full_detail.shtml#sigmod_industry_4__graph_databases_and_ml
https://doi.org/10.1145/3514221.3526176

Challenge:
Avoid Performance Regression

84

• OnlineTune: Iteratively optimizes subspaces around the best-known configuration,
ensuring gradual convergence and assessing safety via lower-bound estimates.

• LOCAT: Uses Safe Bayesian Optimization to tune Spark SQL while minimizing
performance regressions.

• AutoSteer: Applies greedy search to incrementally improve configurations, balancing
exploration & exploitation.

• HUNTER: Uses cloned Cloud Databases (CDBs) to test configurations without impacting
production, acting as a hybrid online-offline approach.

• OPPerTune: Integrates contextual bandits with a probabilistic model to safely explore
configurations, limiting risk but trading off optimality.

• [29]: Defines a safe exploration region using Gaussian Process models, ensuring
configurations meet performance constraints (e.g., runtime limits).

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Common Strategies
SERGIY MATUSEVYCH

85HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Online vs. Offline
Online:

+ Adapts to individual system instances

+ Dynamically adjusts to workload changes

But:

- Runtime overhead

- Higher integration costs

- Harder to generalize to other systems

- Conservative / can get stuck in local optimum

Offline:

+ Better config space exploration / parallel

+ Cheap and easy to deploy/rollback/maintain

+ Zero runtime costs in prod

But:

- Configurations are static / not adaptable

- Benchmarks may be not representative

- Workload ID challenges

86HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Strategies
• Combine Online and Offline optimization

• Warm-up Online with Offline data

• Reuse optimized configs on similar systems
• Models for Workload Identification
• Pavlo, A. et al. (2017). Self-Driving Database Management Systems. CIDR (Vol. 4, p. 1).

• Zero-shot ML models to produce optimal configs
• North Star: WorkFM – Workload Foundation Models

87HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://15721.courses.cs.cmu.edu/spring2020/papers/27-selfdriving/p42-pavlo-cidr17.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/27-selfdriving/p42-pavlo-cidr17.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/27-selfdriving/p42-pavlo-cidr17.pdf

Workload Identification
• Idea: Systems with similar workloads can benefit from the same optimal config

• Optimize one system

• Identify other similar systems

• Reuse the optimized configuration on that set

• Problem: How to determine what systems/workloads are similar?
• Easy if we have labels: e.g., MySQL + Wordpress

• In general: need a distance / similarity metric between workloads

88HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Workload Embedding
• Idea: Build ML model to capture the representation of workloads

• Map each workload to a multi-dimensional vector (embedding)

• Kernel function: measure distance between two points in multi-dimensional space

• Benefits of Embeddings:
• Compact representation of large number of heterogeneous features

• Comparison of not-exactly-alike workloads

• Clustering / other kernel-based methods

• Input to other ML models (query optimization, anomaly detection, scheduling, etc.)

89HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Data to Embed
• Telemetry: Time Series

• E.g., CPU load, Memory utilization, Disk and Network I/O, etc.

• Some app-specific data available (# of inserts/updates/selects, InnoDB stats…)

• Easy to collect / access; typically, not sensitive

• Noisy!

• Query Logs: Graph
• Query Logs / Query Plans available (or can be sampled) on some systems

• Can be sensitive; may require anonymization

• User Data: Tabular
• Access requires user consent; eyes-off training possible (maybe)

90HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Building the Embeddings
• Time Series

• Telemetry alone can capture irrelevant information about the system

• Foundation models for time series is an active area of research:
• MOIRAI: Woo, G. et al. (2024). Unified training of universal time series forecasting transformers. ICML.

• Chronos: Ansari, A.F. et al. (2024). Chronos: Learning the language of time series. TMLR.

• Liang, Y. et al. (2024). Foundation models for time series analysis: A tutorial and survey. KDD.

• Graph Data
• Query data captures most of the information about the workload (but not all!)

• Modeling query workloads with GNNs looks very promising
• Paul, D., Cao, J., Li, F., Srikumar, V. (2021). Database workload characterization with query plan encoders. VLDB.

• Zhao, Y. et al. (2022). QueryFormer: A tree transformer model for query plan representation. VLDB.

91HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://arxiv.org/abs/2402.02592
https://arxiv.org/abs/2403.07815
https://arxiv.org/abs/2403.14735
https://arxiv.org/abs/2105.12287
https://www.vldb.org/pvldb/vol15/p1658-zhao.pdf

Applications
• Knowledge Transfer

• Apply optimized configurations to other similar systems

• Warm-up optimizations for systems not-so-similar

• Workload Shift Detection
• Identify changes in workload over time

• Synthetic Benchmark Generation
• Generate the optimal mixture of queries to mimic the workload in production

• Offline optimize the system for that new synthetic benchmark

• Use the optimized config on system in prod

92HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Future Work
• Two orthogonal / complementing tasks:

• Build better embeddings for workloads

• Build better models that use these embeddings

• Multi-modal learning:
• Combine time series and graph data

• North Star: WorkFM
• Workload Foundation Models
• Wehrstein, J. et al. (2025). Towards Foundation Database Models. CIDR best paper award.

93HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://mail.vldb.org/cidrdb/papers/2025/p31-wehrstein.pdf

Thank you!

• Ping us: Brian Kroth, Sergiy Matusevych, Yiwen Zhu

• Our team and projects: Microsoft Gray Systems Lab (GSL) https://aka.ms/gsl

• Meet us at the Microsoft booth!

• Questions?

94HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

mailto:bpkroth@microsoft.com
mailto:sergiym@microsoft.com
mailto:yiwzh@microsoft.com
https://www.rarnonalumber.com/en-us/research/group/gray-systems-lab/
https://aka.ms/gsl

	Introduction
	Slide 1: Autotuning Systems Techniques, Challenges, and Opportunities https://aka.ms/sigmod-2025-autotuning-tutorial
	Slide 2: Outline
	Slide 3: Gray Systems Lab https://aka.ms/gsl
	Slide 4: Team
	Slide 5: What is “Autotuning”?
	Slide 6: Where is “Autotuning”?
	Slide 7: How to “Autotuning”?
	Slide 8: Where and What are we “Autotuning”?
	Slide 9: What are we “Autotuning” for?
	Slide 10: Why Tune? – Performance!
	Slide 12: Why Autotune?
	Slide 13: Why is Autotuning Hard?
	Slide 14: Motivating Example: Spark Tuning Game
	Slide 15: Aside: why even have parameters?
	Slide 16: Why is Autotuning Hard? - Workloads

	Autotuning In Practice
	Slide 19: Autotuning in Practice: How to Deploy?
	Slide 20: Deployment Oriented View
	Slide 24: Outline

	Offline Optimization
	Slide 25: Offline Optimization
	Slide 26: Motivating Example
	Slide 27: Problem Statement
	Slide 28: Configuration Space
	Slide 29: [Not so] Naïve Approach: Grid Search
	Slide 30: Variation: Random Search
	Slide 31: Problem: Sample Efficiency
	Slide 32: Bayesian Optimization
	Slide 33: Sequential Model-Based Optimization
	Slide 34: Optimizer as a Black Box
	Slide 35: Model M: Gaussian Process
	Slide 36: Bayesian Optimization
	Slide 37: Bayesian Optimization
	Slide 38: How the Sausage is Made
	Slide 39: Definitions
	Slide 40: Marginalization
	Slide 41: Conditioning
	Slide 42: From Distribution to Process
	Slide 43: Kernel Functions
	Slide 44: Kernel Functions: RBF
	Slide 47: Acquisition Functions
	Slide 48: Upper Confidence Bound
	Slide 50: Other Models for Black-Box Optimization
	Slide 51: Discrete / Hybrid Optimization
	Slide 52: More Fun With Optimization
	Slide 53: Goal: Efficient Exploration
	Slide 54: References

	Strategies
	Slide 55: Is It That Simple?
	Slide 56: Challenges and Strategies
	Slide 57: Parallel Optimization
	Slide 58: Multi-Objective Optimization
	Slide 59: Multi-Target Optimization
	Slide 60: Constraining the Search Space
	Slide 61: Constraining the Search Space
	Slide 62: Dimensionality Reduction
	Slide 63: LLMs for Parameter Discovery
	Slide 64: LLMs for Optimization
	Slide 65: Multi-Fidelity Optimization

	SystemChallenge
	Slide 66: Systems Challenges of Multi-Fidelity
	Slide 67: Knowledge Transfer
	Slide 68: Focus on the Important Knobs!
	Slide 69: To Learn More … Run More Trials!
	Slide 70: To Learn More … Get Stable!
	Slide 71: You can TUNA Duet!
	Slide 72: Systems References
	Slide 73: Deploying Configs Tuned Offline
	Slide 74: Outline

	Online Optimization
	Slide 75: Online Optimization
	Slide 76: Online Optimization
	Slide 77: Challenges
	Slide 78: Online Tuning Architectures

	OnlineAlgo
	Slide 79: Online Tuning Algorithms: Reinforcement Learning
	Slide 80: Online Tuning Algorithms: Reinforcement Learning
	Slide 81: Online Tuning Algorithms
	Slide 82: Challenge: Workload Shifting
	Slide 83: Challenge: Workload Shifting
	Slide 84: Challenge: Avoid Performance Regression

	Common Strategies and Challenges
	Slide 85: Common Strategies
	Slide 86: Online vs. Offline
	Slide 87: Strategies
	Slide 88: Workload Identification
	Slide 89: Workload Embedding
	Slide 90: Data to Embed
	Slide 91: Building the Embeddings
	Slide 92: Applications
	Slide 93: Future Work

	Finale
	Slide 94: Thank you!

