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Outline
◦ Overview (15 mins)

◦ Offline Tuning (45 mins)
◦ Basic Architectural Overview

◦ Running Example

◦ Optimization

◦ Classic Search

◦ Bayesian Optimization

◦ Systems Challenges

◦ Online Tuning (20 mins)
◦ Basic Architectural Overview

◦ Optimization

◦ Reinforcement Learning (RL)

◦ Genetic Algorithms (GA)

◦ Systems Challenges

◦ Future Directions (10 mins)
◦ Workload Identification
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Gray Systems Lab               https://aka.ms/gsl 

GSL is an applied and embedded research group, comprised of Data-Scientists, Engineers, and Researchers. 

REDMOND, WA
MADISON, WI

MOUNTAIN VIEW, CA

BARCELONA, SPAIN
and

SWITZERLAND (remote)

NYC (remote)

(remote)

We are interested in interns and collaborations!
Come find us at the Microsoft booth ☺
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Brian Kroth Sergiy Matusevych Yiwen Zhu

General systems nerd from UW-
Madison with years of experience in 
both industry and research and 
generally excited to mentor and learn 
from others and make things go faster 
and more efficiently.

Along with Sergiy, Brian is one of the 
main developers and leads of the 
MLOS framework for generalized 
systems autotuning at MS.

Sergiy is a data scientist, engineer, 
researcher, and passionate hacker, 
among other things. 

At GSL, he applies machine learning 
for systems optimization and builds 
ML models for workload identification 
and analysis.

You can identify Sergiy by a large 
camera that he always has in his hand.

Yiwen is a Principal Scientist at 
Microsoft's Gray Systems Lab (GSL).
Her research interests center on the 
vision of autonomous cloud systems, 
utilizing machine learning, statistical 
inference, and operation research 
techniques.

Team
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What is “Autotuning”?
Efficiently auto selecting a 
system configuration

for a workload and its 
execution environment

to improve (optimize)
one or more metrics

◦ Sampling of prior works:
◦ DB: OtterTune, DBTune, CDBTune, DB-

Bert, GPTuner, …

◦ HPC: ATLAS, CLTune

◦ Compilers: MILEPOST GCC,

◦ Cloud, Resource Management: 
Autoscalers (e.g., CaaSPER)

◦ ML Hyperparams (AutoML): Keras Tuner, 
skopt, optuna, BoTorch, HyperMapper, …

◦ Generic: OpenTuner, MLOS
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https://dl.acm.org/doi/pdf/10.1145/3035918.3064029
https://www.dbtune.com/
https://dl.acm.org/doi/abs/10.1145/3299869.3300085
https://dl.acm.org/doi/10.1145/3514221.3517843
https://dl.acm.org/doi/10.1145/3514221.3517843
https://dl.acm.org/doi/10.1145/3514221.3517843
https://www.vldb.org/pvldb/vol17/p1939-tang.pdf
https://ieeexplore.ieee.org/abstract/document/7328205
https://link.springer.com/article/10.1007/s10766-010-0161-2
https://dl.acm.org/doi/pdf/10.1145/3626246.3653378
https://github.com/keras-team/keras-tuner
https://github.com/scikit-optimize/scikit-optimize
https://dl.acm.org/doi/10.1145/3292500.3330701
https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html
https://ieeexplore.ieee.org/abstract/document/9124618
https://dl.acm.org/doi/abs/10.1145/2628071.2628092
https://dl.acm.org/doi/10.14778/3685800.3685852


Where is “Autotuning”?
Efficiently auto selecting a 
system configuration

for a workload and its 
execution environment

to improve (optimize)
one or more metrics

◦ VM Size

◦ DB Indexes

◦ CPU Speed, Cache Size/Associativity

◦ …

◦ Talk Focus: Software Configurations

◦ Sometimes called “knob tuning”

◦ What level?

◦ Build Time (e.g., compile options)

◦ Startup Time (e.g., BP size)

◦ Runtime (e.g., QO rules, buffer sizes, etc.)

◦ “Where” affects deployment, tuning options
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How to “Autotuning”?
Efficiently auto selecting a 
system configuration

for a workload and its 
execution environment

to improve (optimize)
one or more metrics

◦ Heuristics
◦ Encoded “best practices”

◦ E.g., mysqltuner, pgtune, …

◦ Search Based
◦ Grid search
◦ Simulated Annealing

◦ Model Guided
◦ Bayesian Optimization
◦ Reinforcement Learning

◦ Key: sample efficiency
◦ More in the rest of the talk
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Where and What are we “Autotuning”?
Efficiently auto selecting a 
system configuration

for a workload and its 
execution environment

to improve (optimize)
one or more metrics

◦ “Execution Environment”
◦ HW Config (CPU, RAM, Disk, Network, GPU, …)
◦ VM Size
◦ OS
◦ System: Redis, MySQL, Postgres, Nginx, …
◦ …

◦ “Workload”
◦ YCSB
◦ TPC-C
◦ TPC-H
◦ Other?

◦ User or customer workloads
◦ …

“Context”
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What are we “Autotuning” for?
Efficiently auto selecting a system 
configuration

for a workload and its execution 
environment

to improve (optimize)
one or more metrics

◦ Minimize Latency
◦ Avg, Med, P95, …

◦ Maximize Throughput
◦ Minimize Cost
◦ Minimize Resource Usage

◦ Pack more into less with good perf

◦ Reduce power! 

◦ Maximize “Robustness”
◦ Availability

◦ Sensitivity to changes in environment

All of these?  At once?
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Why Tune? – Performance!
◦ “Properly tuned database systems can achieve 

4-10x higher throughput” (Van Aken, VLDB 2021)

◦ 68% reduction in P95 latency for Redis
◦ Tuning Kernel Scheduler Parameters

◦ Better user experience 

◦ Lower costs 

◦ Fewer machines, CAPEX, OPEX, power 

◦ …
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LlamaTune: Sample-Efficient DBMS Configuration Tuning (VLDB 2022)

https://www.vldb.org/pvldb/vol14/p1241-aken.pdf
https://www.rarnonalumber.com/en-us/research/publication/llamatune-sample-efficient-dbms-configuration-tuning/
https://www.rarnonalumber.com/en-us/research/publication/llamatune-sample-efficient-dbms-configuration-tuning/
https://www.rarnonalumber.com/en-us/research/publication/llamatune-sample-efficient-dbms-configuration-tuning/
https://www.rarnonalumber.com/en-us/research/publication/llamatune-sample-efficient-dbms-configuration-tuning/


Why Autotune?
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◦ Cloud Scale
◦ Growing # of HW/workload

◦ Expectation of “automagic”

◦ Not so many DBAs or Sysadmins
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Advancing Workload Management with Foundational Models: Challenges in Time Series Similarity and Interpretability. Bang et al., MIDAS 2025



Why is Autotuning Hard?
◦ Large, and increasing

# of parameters

◦ Complex system interactions
affect performance

◦ Not easy, takes time, even for 
experts!
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CDBTune (SIGMOD 2019)

OtterTune (SIGMO D 2017)

https://dl.acm.org/doi/abs/10.1145/3299869.3300085
https://dl.acm.org/doi/abs/10.1145/3035918.3064029


Motivating Example: Spark Tuning Game
• testautotune2.azurewebsites.net/app3

Exercise (to do now): 

1.Manually optimize TPC-H Q1 runtime

2.Limit 5min and 100 tries

3.Download Data and upload in chat 

4.Post your best perf #
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Aside: why even have parameters?
◦ Build SW to be adaptive?

◦ Examples:
◦ Network Protocols - TCP
◦ Autoscaling
◦ Load shedding/backpressure
◦ DB Index Cracking (Idreos CIDR 2007)

◦ Adaptive Query Processing
◦ Self Driving Databases (Pavlo CIDR 2017)

◦ Cost/complexity to rebuild

15

◦ Still have tunables
◦ Internal vs. External (more later)

◦ Different policies/techniques
◦ TCP: tahoe, reno, vegas, cubic, BBR
◦ AQP: Eddies, SIP, etc.

◦ Threshold to kick in
◦ Rate to change
◦ Backoff delay
◦ …

Complementary approaches
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https://ieeexplore.ieee.org/document/1092259
https://stratos.seas.harvard.edu/sites/g/files/omnuum4611/files/IKM_CIDR07.pdf
https://stratos.seas.harvard.edu/sites/g/files/omnuum4611/files/IKM_CIDR07.pdf
https://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf
https://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf
https://dsf.berkeley.edu/papers/sigmod00-eddy.pdf


Why is Autotuning Hard? - Workloads
◦ No “one config to rule them all”

◦ One workload may change over time

◦ Many, many workloads in the Cloud

◦ Lack of representative benchmarks

◦ Not clear how to match them
◦ Workload ID: more on this later
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Autotuning in Practice:   How to Deploy?
◦ Depends on the tunables:

◦ Regularly runtime (online) adjustable?

◦ E.g., join buffer size?

◦ ALTER SYSTEM CONFIGURATION SET tunable=new-val;

◦ Is there some lag before it takes affect?

◦ Only at startup time?

◦ E.g., PG shared_buffers size

◦ update_config_file new-tunables.json

◦ systemctl restart postgres.service

◦ Is it expensive to restart?

◦ E.g., do you lose buffer pool or cache contents?

◦ May need to do this infrequently

◦ Only at build or provision time?

◦ E.g., FS choice or block size

◦ Size of data operation to change

◦ E.g., mkfs && rsync

◦ Maybe just pick better defaults

◦ Classic “Policy vs Mechanism” system challenge

◦ N.B., in some cases, can work to make changing the 
tunable more adaptable.
◦ Orthogonal engineering effort

◦ improves mechanism → enable better policy
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Deployment Oriented View
◦ Split the world into:

1. Offline Tuning
◦ Two Phases

1. Explore in a controlled “lab” environment

2. Deploy “best” config to production

◦ Key Issue: When? How?

◦ + More flexible, expansive (though may crash)

◦ + Parallel Exploration

◦ + Easy to explain, rollback

◦ - What workload?

2. Online Tuning
◦ Use an “agent” to continually observe and adjust the system

◦ + Any workload

◦ - Safety?  Explainability?

◦ - Generalizability?

◦ Somewhat artificial separation

◦ Can use both!
◦ E.g., start from better “defaults” using offline

◦ Fine-tune from there

◦ Online can also “pre-train” in an offline “gym”

◦ Common Challenges/Approaches
◦ Size of search space

◦ Predictability

◦ Noise
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Outline
◦ Overview (15 mins)

◦ Offline Tuning (45 mins)
◦ Basic Architectural Overview

◦ Running Example

◦ Optimization

◦ Classic Search

◦ Bayesian Optimization

◦ Systems Challenges

◦ Online Tuning (20 mins)
◦ Basic Architectural Overview

◦ Optimization

◦ Reinforcement Learning (RL)

◦ Genetic Algorithms (GA)

◦ Systems Challenges

◦ Future Directions (10 mins)
◦ Workload Identification
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Offline Optimization
SERGIY MATUSEVYCH
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Motivating Example
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• System to optimize:  Redis on Linux

• Goal:  minimize tail latency

• Benchmark:  Redis benchmark

• Tunable parameter: /proc/sys/kernel/sched_migration_cost_ns

• Note:
• We optimize the OS for the benefit of 1 application (and workload)

• All other configuration parameters fixed (e.g., VM size)

• We already see the benefits of benchmark automatization

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

Scheduler

System 
Specific Scripts

Optimizer

Tunable Values Benchmark Results

Cloud



Problem Statement
• Optimize expensive black-box function in a sample-efficient manner:

𝒙∗ = argmin
𝒙∈𝒳

𝑓(𝒙)

27

𝑓 𝒙𝑖𝒙𝑖
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Configuration Space
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• Use prior knowledge about the system:
• Latency ≈ 1.0ms, sched_migration_cost_ns ∈ [0 .. 1 000 000]
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[Not so] Naïve Approach: Grid Search
• Idea: Fixed trial budget, pick values at even intervals

• Try all configs, pick the best
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Variation: Random Search
• Idea: Fixed trial budget, pick configuration values at random

• Try all configs, pick the best
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Problem: Sample Efficiency
• Idea: use the information from previous trials to pick the next configuration

• Can we do it in a principled way?
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Bayesian Optimization 
• Idea: instead of finding 𝒙∗ given 𝑓, find best model of 𝑓, given the observations
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Sequential Model-Based Optimization

1. Evaluate the expensive function:

2. Use 𝑓 𝒙𝑖  to update the statistical model 𝑀: 

3. Optimize the Acquisition Function: 𝒙𝑖+1 = argmax
𝒙∈𝒳

𝐴𝐹(𝑀, 𝒙)

4. ++𝑖; Repeat
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𝑓 𝒙𝑖𝒙𝑖
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Optimizer as a Black Box
• Target function is a black box to the optimizer

• Optimizer is a black box to the target function
• TF does not care where the suggestions come from

• One can build an elegant tuning framework

34

Optimizer:
Suggest new 𝒙𝑖

Target:
Evaluate 𝑦𝑖 = 𝑓 𝒙𝑖

𝑦𝑖 𝒙𝑖
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Model 𝑀: Gaussian Process 
• Model random functions: መ𝑓~𝒢𝒫(𝜇 𝒙 , 𝛴 𝒙, 𝒙′ ) 
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Bayesian Optimization 
• Condition on observed points

• Extract the expected function and confidence interval
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Bayesian Optimization
• Surrogate function: our best guess (so far) about the system behavior

• Acquisition function: pick the most “interesting” point to evaluate
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How the Sausage is Made
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Definitions
• Stochastic Process: An indexed sequence of random variables

• Gaussian Process: Model መ𝑓 𝒙  s.t. ∀ 𝒙1, 𝒙2, … : መ𝑓 𝒙1 , መ𝑓 𝒙2 , … ~𝒩 𝜇, Σ

• Why Gaussian?
• Normal distribution is closed under marginalization and conditioning

• Leads to elegant closed-form solutions for optimization
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Marginalization

• Marginalization:
𝑌𝑜𝑏𝑠

𝑌𝑚𝑖𝑠
~𝒩 𝜇, Σ = 𝒩

𝜇𝑜𝑏𝑠

𝜇𝑚𝑖𝑠
,

Σ𝑜𝑏𝑠,𝑜𝑏𝑠 Σ𝑜𝑏𝑠,𝑚𝑖𝑠

Σ𝑚𝑖𝑠,𝑜𝑏𝑠 Σ𝑚𝑖𝑠,𝑚𝑖𝑠

• Missing data does not impact the inference:

P 𝑌𝑜𝑏𝑠 = න P 𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠  𝑑𝑌𝑚𝑖𝑠 = න P 𝑌𝑜𝑏𝑠|𝑌𝑚𝑖𝑠  P 𝑌𝑚𝑖𝑠  𝑑𝑌𝑚𝑖𝑠

• We can update the model with the new data points 𝑌𝑜𝑏𝑠!
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Conditioning
• Conditioning:

 

𝑌𝑚|𝑌𝑜~𝒩 𝜇𝑚 + Σ𝑚,𝑜 Σ𝑜,𝑜
−1  (𝑌𝑜 − 𝜇𝑜), Σ𝑚,𝑚 − Σ𝑚,𝑜  Σ𝑜,𝑜

−1  Σ𝑜,𝑚

• Probabilistic model for missing points given the observations!
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From Distribution to Process
• Gaussian Process: distribution over functions መ𝑓~𝒢𝒫(𝑚 𝒙 , 𝐾 𝒙, 𝒙′ )

• 𝒢𝒫 defined by:

• Mean function 𝑚 𝒙 : assigns to each 𝒙 the expected value 𝔼[ መ𝑓 𝒙 ]

• Kernel function 𝐾 𝒙, 𝒙′ : assigns to each pair 𝒙, 𝒙′

    covariance between መ𝑓 𝒙  and መ𝑓 𝒙′
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Kernel Functions
• Radial Basis Function (RBF): exp −

𝑑2

2𝑙2

• scikit-learn default

• Matérn: 
21−𝜈

Γ(𝜈)
2𝜈

𝑑

𝑙

𝜈
𝐾𝜈 2𝜈

𝑑

𝑙

• Most popular kernel nowadays 

• Two parameters to control smoothness: 𝑙 and 𝜈

• Becomes RBF at 𝜈 → ∞

• Many others exist: Constant, Linear, Periodic, etc.
• Kernels can be combined
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• 𝑑: distance between 𝒙 and 𝒙′

• 𝑑 is usually Euclidean: 𝑑 = 𝒙 − 𝒙′
2

• Γ(𝜈): gamma function

• 𝐾𝜈: modified Bessel function of order 𝜈 
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Kernel Functions: RBF

• Radial Basis Function (RBF): 𝐾 𝒙, 𝒙′ = exp −
𝒙−𝒙′

2

2

2𝑙2

• 𝑙 controls the smoothness:
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Acquisition Functions

Max-value entropy search for efficient Bayesian optimization

Generalizing Bayesian optimization with decision-theoretic entropies

• Probability of improvement: PI 𝒙 = P(𝑓 𝒙 > 𝑓 𝒙∗ )
• Here 𝒙∗ means the best value so far

• Expected improvement: EI 𝒙 = 𝔼[max(𝑓 𝒙 > 𝑓 𝒙∗ , 0)]
• Takes the magnitude of improvement into account!

• Upper Confidence Bound (UCB): UCB 𝒙 = 𝑚 𝒙 + 𝛽𝜎 𝒙
• 𝛽 ≥ 0 controls explore/exploit

• 𝜎 𝒙 = 𝐾(𝒙, 𝒙)

• SOTA: Information-theoretic approach
• MES: Wang, Z., Jegelka, S. (2017) Max-value entropy search for efficient Bayesian optimization. ICML

• EHIG: Neiswanger, W. et al. (2022) Generalizing Bayesian optimization with decision-theoretic entropies. NeurIPS
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https://proceedings.mlr.press/v70/wang17e.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/8451a20c5a7e0ee5671dda28f7daf7f3-Abstract-Conference.html


Upper Confidence Bound
• In our case, Lower Confidence Bound: LCB 𝒙 = 𝑚 𝒙 − 𝛽𝜎 𝒙
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Other Models for Black-Box Optimization

Sequential model-based optimization for general algorithm

configuration

The CMA Evolution Strategy: A Tutorial

CMA-ES for Hyperparameter Optimization of Deep Neural Networks

Particle swarm optimization algorithm and its applications: a systematic review

• Random Forest: SMAC
• Idea: Learn መ𝑓(𝒙) with RF, use regression tree outputs to estimate mean and variance
• Hutter, F., Hoos, H. H., Leyton-Brown, K. (2010). Sequential model-based optimization for general algorithm 

configuration. Technical Report TR-2010–10, University of British Columbia.

• Evolutionary algorithms
• CMA-ES: Covariance Matrix Adaptation

Hansen, N. (2023). The CMA Evolution Strategy: A Tutorial. arXiv: 1604.00772

• Loshchilov, I., Hutter, F. (2016). CMA-ES for Hyperparameter Optimization of Deep Neural Networks. arXiv: 1604.07269

• PSO: Particle Swarm Optimization
• Gad, A. G. (2022). Particle swarm optimization algorithm and its applications: a systematic review. Archives of 

computational methods in engineering, 29(5), 2531-2561.
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https://ai.dmi.unibas.ch/research/reading_group/hutter-et-al-tr2010.pdf
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Discrete / Hybrid Optimization
• E.g., MySQL parameter innodb_flush_method can take values:

{fsync, littlesync, nosync, O_DSYNC, O_DIRECT, O_DIRECT_NO_FSYNC}

• Common approaches:
• Alternative surrogate models (e.g., Random Forest in SMAC)

• Multi-Armed Bandits (AFs like UCB and EI do not require sampling from posterior)

• Adapt features to continuous space (impose order, one-hot, etc.)
• MerCBO: Deshwal, A. et al. (2021). Mercer features for efficient combinatorial Bayesian optimization. AAAI.

Works with information-theoretic acquisition functions like MES

• SOTA: Use NNs to encode features, optimize in latent space
• LOL-BO: Maus, N. et al. (2022) Local latent space Bayesian optimization over structured inputs. NeurIPS.

51HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://ojs.aaai.org/index.php/AAAI/article/view/16886
https://proceedings.neurips.cc/paper_files/paper/2022/hash/ded98d28f82342a39f371c013dfb3058-Abstract-Conference.html


More Fun With Optimization
• Parallel Optimization

• E.g., produce the next 10 configurations to evaluate

• Constrained / Structured Space / Causal Optimization
• Use / model the parameters’ correlations

• Multi-Fidelity and Cost-Based Optimization
• Balance the accuracy and cost of measurements

• Multi-Objective Optimization
• Pareto frontier: e.g., an optimal combination of Cost and Throughput

• Multi-Task Optimization
• Efficient config space exploration for finding, e.g., optimal Latency and optimal Throughput
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Goal: Efficient Exploration
• Input: measurements 𝒙1, 𝑓 𝒙1 , … , (𝒙𝑛, 𝑓(𝒙𝑛))  (AKA training data)

• Task: Given the data, find the optimum 𝒙∗?

• A better task: Given the data, produce [𝒙𝑛+1, … ] that
maximize the information gain about the optimum of the unknown function 𝑓

• Sample Efficiency: minimize the number of trials to achieve desired accuracy
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References
• Books (available online):

• Rasmussen, C. E., Williams, C. (2006). Gaussian Processes for Machine Learning. MIT Press.

• Garnett, R. (2023). Bayesian Optimization. Cambridge University Press.

• Tutorials:
• Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv:1807.02811.

• Greenhill, S. et al. (2020). Bayesian Optimization for Adaptive Experimental Design: A Review. IEEE Access, vol. 8.

• Deshwal, A., Belakaria, S., Doppa, J. R. (2023). Recent Advances in Bayesian Optimization, AAAI.   ← Great bibliography!

• BoTorch Tutorials.   ← Many SOTA algorithms implemented in BoTorch.

• Videos:
• Doppa, J. R., Aglietti, V., Gardner, J. (2022). Advances in Bayesian Optimization, NeurIPS Tutorial.

• Alvarez, M. et al. (organizers) (2024). Gaussian Process Summer School. University of Manchester.
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Is It That Simple?
• As in:

• Let the optimizer suggest new configurations

• Evaluate them

• Repeat

• Yes, if configuration space is small…
and trials are cheap… and noise-free…
and workload is fixed… and …
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Optimizer:
Suggest new 𝒙𝑖

Target:
Evaluate 𝑦𝑖 = 𝑓 𝒙𝑖

𝑦𝑖 𝒙𝑖
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Challenges and Strategies
Challenges

• Systems:
• Execution costs

• Repeatable experiments

• Non-representative benchmarks

• Noise!

• Optimization:
• Curse of dimensionality

• Parallel / Multi-Task / Multi-Objective opt.

• Noise!

Strategies

• Systems:
• Make trials faster / cheaper

• Parallelize

• Noise:
• Collect more data

• Optimization:
• Reduce (focus) the search space

• Use (more) (noisy) features
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Parallel Optimization

Parallelized Bayesian optimization

for problems with expensive evaluation functions

Parallel Bayesian global

optimization of expensive functions

• Optimizer suggests many configurations at once
• Synchronous: always suggest 𝑘 points, batch execute trials

• Asynchronous: suggest 1 point at a time, track up to 𝑘
in-progress configurations

• Problem: maintain the diversity of configurations

• Rebolledo, M., Rehbach, F. et al. (2020). Parallelized Bayesian optimization 
for problems with expensive evaluation functions. GECCO 2020, 231–232.

• Wang, J., Clark, S. C., Liu, E., & Frazier, P. I. (2020). Parallel Bayesian global 
optimization of expensive functions. Operations Research, 68(6), 1850-1865.

• See also: CMA-ES
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Optimizer:
Suggest 𝒙𝑖 , … , 𝒙𝑖+𝑘

Target:
Evaluate 𝑓 𝒙𝑖 , … , 𝑓 𝒙𝑖+𝑘

𝒙𝑖 , … , 𝒙𝑖+𝑘𝑦𝑖 , … , 𝑦𝑖+𝑘
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Multi-Objective Optimization

ParEGO: a hybrid algorithm with on-line landscape approximation for expensive

multiobjective optimization problems

Leveraging Trust for Joint Multi-Objective and Multi-Fidelity Optimization

• Problem: min
𝒙∈𝒳

𝑓1 𝒙 , 𝑓2 𝒙 , … , 𝑓𝑘 𝒙  (e.g., Latency and Cost)

• Typically, no 𝒙∗ to optimize all functions simultaneously

• Pareto frontier: a set of solutions 𝒙∗  not dominated by any other solutions
• i.e., no objective can be improved without degrading some other objective

• Scalarization: Reduce to 1d: argmin
𝒙∈𝒳𝜃

𝑔𝜃 𝑓1 𝒙 , … , 𝑓𝑘 𝒙  where 𝑔𝜃: ℝ𝑘 → ℝ

• Linear: min
𝒙∈𝒳

σ𝑖=1
𝑘 𝜃𝑖𝑓𝑖 𝒙  where 𝜃𝑖 > 0 weights for objectives

• ParEGO: Knowles, J. (2006). ParEGO: a hybrid algorithm with on-line landscape approximation for expensive 
multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, vol. 10, no. 1

MOMF: Irshad, F., Karsch, S., Döpp, A. (2021). Leveraging Trust for Joint Multi-Objective and Multi-Fidelity Optimization. 
arXiv: 2112.13901
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Multi-Target Optimization

Kernels for Vector-Valued Functions: A Review

Multi-Output Gaussian Processes

Cluster-Specific Predictions with Multi-Task Gaussian Processes

• Problem: min
𝒙∈𝒳

𝑓1 𝒙 , min
𝒙∈𝒳

𝑓2 𝒙 , … , min
𝒙∈𝒳

𝑓𝑘 𝒙  simultaneously

• Can we reuse the data collected while optimizing 𝑓1 𝒙  when optimizing 𝑓2 𝒙  etc.? Yes!

• Idea: exploit the correlations between 𝑓1 𝒙 , … , 𝑓𝑘 𝒙

• Separable multi-output kernels: K 𝑖, 𝒙 , 𝑗, 𝒙′ = cov 𝑓𝑖 𝒙 , 𝑓𝑗 𝒙′ = K𝑡 𝑖, 𝑗  K𝑥 𝒙, 𝒙′

• Alvarez, M. et al. (2011). Kernels for Vector-Valued Functions: A Review. Foundations and Trends in Machine Learning.

• Video: Alvarez, M. (2017). Multi-Output Gaussian Processes. GP Summer School.

• Multi-task with common mean: 𝑦𝑖 = 𝜇0 + 𝑓𝑖 + 𝜖𝑖  where each component is a GP
• Leroy, A. et al. (2023) Cluster-Specific Predictions with Multi-Task Gaussian Processes. JMLR 24(5):1−49.
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Constraining the Search Space
• Marginal Constraints

• Range limits, quantization, log scale, specifying priors / histograms for individual tunables.

• E.g., on system with 8GB of RAM MySQL parameter innodb_buffer_pool_size
likely should be at 6..7GB 

• Constrained Optimization
• Constraints can involve multiple tunables and/or be black-box.

• E.g., MySQL configuration has constraints like:
innodb_buffer_pool_chunk_size <= innodb_buffer_pool_size / innodb_buffer_pool_instances

• SCBO: Eriksson, D., Poloczek, M. (2021). Scalable constrained Bayesian optimization. AISTATS.
Supports black-box constraints!
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Constraining the Search Space
• Structured Search Space Optimization

• Exploit the independence structure of the tunable parameters

• E.g., if PostgreSQL config parameter jit=off, then ignore JIT parameters
jit_expressions, jit_above_cost, jit_tuple_deforming, etc. 
• Jenatton, R. et al. (2017). Bayesian optimization with tree-structured dependencies. ICML.

Idea: Use a mixture of GPs + linear model for a decision tree to capture the dependencies.

• Causal Bayesian Optimization
• Learn the parameters’ independence structure
• Aglietti, V. et al. (2020). Causal Bayesian optimization. AISTATS.
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Dimensionality Reduction
• LlamaTune: Use random projection to reduce the search space

• Many config parameters are correlated ⇒ Replace them with random linear combinations

• Reduces PG configuration evaluations by up to 11x ; up to 21% higher throughput

• LlamaTune: Kanellis, K. et al. (2022) LlamaTune: Sample-Efficient DBMS Configuration Tuning. VLDB 

• HesBO: Nayebi, A., Munteanu, A., Poloczek, M. (2019) A framework for Bayesian optimization in embedded subspaces. ICML
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LLMs for Parameter Discovery
LLMs are good at extraction and summarization of
human knowledge from multiple sources (manuals, 
documentation, source code, StackOverflow, etc.)

• DBBert: Identify important tuning knobs and biased ranges with BERT.
• Trummer, I. (2022). DB-BERT: a Database Tuning Tool that "Reads the Manual". 

SIGMOD.

• GPTuner: Discover parameters with LLM, tune with BO.
• Lao, J. et al. (2024). GPTuner: A manual-reading database tuning system via GPT-

guided Bayesian optimization. VLDB.
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LLMs for Optimization
Next step: Use LLMs to suggest configurations / estimate performance.

• 𝜆-Tune: Identify the tunables with LLM, then use LLM to generate scripts for k configurations 
and evaluate the most feasible ones.
• Giannakouris, V., Trummer, I. (2025). λ-Tune: Harnessing Large Language Models for Automated Database System 

Tuning. SIGMOD.

• LATuner: Similar to 𝜆-Tune to warm-up the optimizer, then use Thompson sampling to select 
between GP and LLM-based surrogates.
• Fan, C. et al. (2024). LATuner: An LLM-Enhanced Database Tuning System Based on Adaptive Surrogate Model. ECML 

PKDD.
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Multi-Fidelity Optimization
• Combine expensive more accurate measurements and cheaper less accurate ones

• Use cost-adjusted utility functions, e.g., cost-adjusted Expected Improvement
• Do, B., Zhang, R. (2023). Multi-fidelity Bayesian Optimization in Engineering Design. CoRR.
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Systems Challenges of Multi-Fidelity
◦ Remember Goal: reduce cost to find 

improved config

◦ Multi-Fidelity Idea: run cheaper tests!
◦ E.g., Run TPC-H SF1 (seconds), not SF100 (minutes)

◦ Alt: TPC-C for 1 minute vs. 20 minutes

◦ Sample more points in the same amount of time!

◦ Is the knowledge gained transferable?
◦ E.g., TPC-H SF 1 everything fits in memory, don’t 

need to explore I/O settings

◦ TPC-C for 1 minute won’t stress the BP or I/O

◦ Not as simple as applying a scalar

◦ Similar for change in VM size

◦ But, can score it with “lower confidence”

◦ Important Takeaways:
◦ Knowledge Transfer (next)

◦ Benchmark Importance

◦ Knob Importance
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Knowledge Transfer
◦ Idea: Re-use prior samples

“warm start” a new optimization
◦ i.e., make it cheaper

◦ E.g., OpAdvisor (VLDB 2023), Amortized AutoTuning

◦ Policy:
1. Good samples: reuse results from “similar” workloads

2. Poor samples: unclear – could be good in this case?

◦ Keep exploring these

3. Bad samples: reuse everywhere

◦ Idea: if it crashes the system, probably always does

◦ Helps inform the optimizer don’t search there again

◦ How?
1. Good: keep the score

2. Bad: no score (e.g., crashed)?

◦ Make it up!

◦ N * {worst_score_measured}

◦ Assumes “compatible” context:
◦ Hardware

◦ VM Size

◦ OS

◦ Workload

◦ What about VM Size Changes?
◦ E.g., 2 vCPU 8GB → 4 vCPU 16 GB

◦ Just 2x everything?  Maybe not.

◦ Caches, OK

◦ Join or sort buffers?
Depends on the workload.

◦ Threads?
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Focus on the  Important Knobs!
◦ Previously:

◦ Use LLM to inform which parameters to focus on

◦ Crowd sourcing a “human expert”

◦ LlamaTune to narrow search space

◦ Multi-fidelity workload change may impact knob sensitivity

◦ Related:
◦ DBSeer (SIGMOD 2013):

◦ Uses models of specific resources to try and diagnose 
performance bottlenecks

◦ Can be used for tuning

◦ OtterTune (SIGMOD 2017):

◦ Uses Lasso with system metrics and prior configuration runs 
to identify important knobs

◦ More recent work use SHAP (NIPS 2017) values

◦ Framework for “explainable AI”

◦ Also useful for “knob importance” ranking

◦ Still need to have historical values to work from

◦ PGO or FDO (Diniz PLDI 1997): Concept from compilers:
◦ Use stack profiles captured from real runs to focus compiler 

optimizations in “the right places”

◦ Could do similar for other systems tuning:
◦ Run workload

◦ Capture stack traces

◦ Identify Hotspots

◦ Search surrounding code for “tunables” (non-trivial)

◦ Prioritize tuning those

◦ Reverse: design a workload to exercise certain/all 
code paths and tune for that “general case”?
◦ E.g., QO

◦ Opportunity: to our knowledge no system currently 
does this
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To Learn More … Run More Trials!
◦ Previously:

◦ Multi-Fidelity: learn from cheaper trials?

◦ Parallel Execution
◦ In the cloud!  Just Run more.

◦ Ignores the $$ and WHr cost …

◦ Also, see Parallel Optimization issues

◦ However, with “async trials” we also have the infra to 
augment other signals (e.g., additional cloud metrics)

◦ Alternatively: Early Abort
◦ Report bad score sooner

◦ Works well for “elapsed time based” benchmarks

◦ E.g., TPC-H

HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL 69



To Learn More … Get Stable!
Cloud is noisy

◦ Despite systems improvements

◦ Unstable performance, w/o config tuning

◦ Slows rate of learning

◦ Can have non-transferrable configs (undeployable)

What to do?
◦ Naïve: run N times, take aggregate (avg, median)

◦ Costly

◦ Alt: measure current resource performance
◦ Microbenchmarks

◦ Throw out outlier machines?
◦ No – may be stuck deployed to those later

◦ Learn noise adjusted performance score?
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You can TUNA Duet!
Duet Benchmarking (ICPE 2020)

◦ “Lean in” to the noise

◦ Run both default and trial config side by side

◦ Both should be subject to same noise

◦ Report normalized relative difference

◦ Originally intended for CI perf regressions

TUNA (Eurosys 2025)
◦ Successive Halving

◦ Progressively run on multiple VMs iff the config looks good

◦ Samples noise across a cluster/region

◦ Eliminate outliers and unstable configs

◦ Use a sideband signals and a model to register 
more “stable” scores with Optimizer

◦ Results in faster learning and more robust configs
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Systems References
◦ OtterTune (SIGMOD 2017, VLDB 2018, VLDB 2021)

◦ BestConfig (SoCC 2017)

◦ HyperMapper (MASCOTS 20127)

◦ CDBTune (SIGMOD 2019)

◦ QTune (VLDB 2019)

◦ OnlineTune (SIGMOD 2022)

◦ LOCAT (SIGMOD 2022)

◦ DBSeer (SIGMOD 2013)

◦ Bao for Scope (SIGMOD 2021)

◦ LlamaTune (VLDB 2022)

◦ Duet Benchmarking (ICPE 2020)

◦ TUNA (Eurosys 2025)

◦ MLOS (VLDB 2024)

◦ …
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Deploying Configs Tuned Offline
Problem: Tuned for TPC-C or YCSB or … ,
  but what is my customer running?

Which config should I recommend?
Are any of them “close”?

Alt: They were running TPC-C, but now they’re 
doing something else?

◦ When/how to re-evaluate?

◦ Timeseries …

Customers want “predicted” improvement
◦ BO can’t even say config is optimal!

◦ Can’t replay their workload (side effects)

◦ Can’t look at it (privacy)

Future Work
◦ Need some notion of “Similarity” for Workloads

◦ Create new synthetic benchmarks from just metrics?
◦ Stitcher (EDBT 2019)

Alternatively …
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Outline
◦ Overview (15 mins)

◦ Offline Tuning (45 mins)
◦ Basic Architectural Overview

◦ Running Example

◦ Optimization

◦ Classic Search

◦ Bayesian Optimization

◦ Systems Challenges

◦ Online Tuning (20 mins)
◦ Basic Architectural Overview

◦ Optimization

◦ Reinforcement Learning (RL)

◦ Genetic Algorithms (GA)

◦ Systems Challenges

◦ Future Directions (10 mins)
◦ Workload Identification
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Online Optimization
YIWEN ZHU
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Online Optimization

Learning in real-time and in production environment.

76

Changing Environment Workload Shifting
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Challenges

77

Workload Shifting Performance Regression /
Guardrail

Explainability Noisy Data
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Online Tuning Architectures
External

◦ Use a “side-car” to monitor and adjust the target 
from the outside
◦ Need to expose hooks to outside agent (already done?)

◦ Restricted

Internal
◦ Application contains agent embedded in it to 

monitor and adjust target from inside
◦ More invasive changes, costly to run

Both
◦ Internal agent monitors, calls out to external 

service for actions
◦ E.g., SelfTune, OPPerTune (NSDI 2024) →
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Online Tuning Algorithms:
Reinforcement Learning

79

• Q-Learning:
• Q Values, Q(s,a): the expected reward when 

taking the action a, given at a state s

• Actor-Critic:

• Policy Function, π(s,a): the probability to 
take the action a, given at state s given the 
current policy

• Value Function, V(s): the expected future 
rewards from state s

•[28] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: A query-aware database 
tuning system with deep reinforcement learning. Proc. VLDB Endow. 12, 12, 2118–2130. DOI: 

10.14778/3352063.3352129
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Online Tuning Algorithms:
Reinforcement Learning

80

•[21] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Reinforcement learning: A survey. 
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• Policy Function, π(s,a): the probability to 
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• Value Function, V(s): the expected future 
rewards from state s
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• Genetic Algorithm [HUNTER, DAC, RFHOC]

• Greedy Search [Auto-Steer]

• HybridBandits [OPPerTune]

• Multi-Objective Optimization [MOO]

• Divide-and-conquer search [BestConfig]

• Adaptive Modeling [LITE]
•[6] Baoqing Cai, Yu Liu , Ce Zhang, Guangyu Zhang, Ke Zhou, Li Liu, Chunhua Li, Bin Cheng, Jie Yang, and Jiashu Xing. 2022. HUNTER: An Online Cloud Database Hybrid  Tuning System for Personalized Requirements. In Proceedings o f the 2022 

International Conference on Management of Data (SIGMOD '22), 646–659. DOI: 10.1145/3514221.3517882

•[30] Chen Lin, Junqing Zhuang, Jiadong Feng, Hui  Li, Xuanhe Zhou, and Guoliang Li. 2022. Adaptive Code Learning for Spark Configuration Tuning . In 2022 IEEE 38th International Conference on Data Engineering (ICDE), IEEE, 1995–2007.

•[54] Zhibin Yu, Zhendong Bei, and Xuehai Qian. 2018. Datasize-Aware High Dimensional Configurations Auto-Tuning of In-Memory Cluster Computing. SIGPLAN Not. 53, 2 (March 2018), 564–577. DOI: 10.1145/3296957.3173187

•[3] Zhendong Bei, Zhibin Yu, Huiling Zhang, Wen Xiong, Chengzhong Xu, Lieven Eeckhout, and Shengzhong Feng. 2016. RFHOC: A Random-Forest Approach to  Auto-Tuning Hadoop’s Configuration. IEEE Transactions on Para llel and Distributed 

Systems 27, 5 (2016), 1470–1483. DOI: 10.1109/TPDS.2015.2449299

•[2] Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithviraj Pandian, Nikolay Laptev, and Ryan Marcus. 2023. AutoSteer: Learned Query Optimization for Any SQL Database. Proc. VLDB Endow. 16, 12 (Aug. 2023) , 3515–3527. 

DOI: 10.14778/3611540.3611544

•[46] Gagan Somashekar, Karan Tandon, Anush Kini, Chieh-Chun Chang, Petr Husak, Ranjita Bhagwan, Mayukh Das, Anshul Gandhi, and Nagarajan Natarajan. 2024. OPPerTune: Post-Deployment Configuration Tuning of Services Made Easy. In 

21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24) , 1101–1120.

•[31] Chenghao Lyu, Qi Fan, Philippe Guyard, and Yanlei Diao. 2024. A Spark Optimizer for  Adaptive, Fine-Grained Parameter  Tuning. Proc. VLDB Endow. 17, 11 (Aug. 2024) , 3565–3579. DOI: 10.14778/3681954.3682021

•[67] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue Liu, Kunpeng Song, and Yingchun Yang. 2017. BestConfig: Tapping the Performance Potentia l of Systems via Automatic Configuration Tuning. In Proceedings of the 

2017 Symposium on Cloud Computing (SoCC '17), 338–350. DOI: 10.1145/3127479.3128605
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• OnlineTune: Dynamically adapts to workload 
changes by embedding contextual features 
(e.g., data size, query plans) into a Bayesian 
Optimization framework. 

• OPPerTune: Uses AutoScoper, which 
integrates job type & RPS into a Hybrid 
Bandit algorithm, selecting optimal tuning 
strategies via a decision tree model.

• Rockhopper: Generate workload embedding 
based on the execution plan of each query 
[SIGMOD Industry 4]. 
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• OnlineTune: Iteratively optimizes subspaces around the best-known configuration, 
ensuring gradual convergence and assessing safety via lower-bound estimates. 

• LOCAT: Uses Safe Bayesian Optimization to tune Spark SQL while minimizing 
performance regressions. 

• AutoSteer: Applies greedy search to incrementally improve configurations, balancing 
exploration & exploitation. 

• HUNTER: Uses cloned Cloud Databases (CDBs) to test configurations without impacting 
production, acting as a hybrid online-offline approach. 

• OPPerTune: Integrates contextual bandits with a probabilistic model to safely explore 
configurations, limiting risk but trading off optimality. 

• [29]: Defines a safe exploration region using Gaussian Process models, ensuring 
configurations meet performance constraints (e.g., runtime limits).
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Common Strategies
SERGIY MATUSEVYCH
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Online vs. Offline
Online:

+ Adapts to individual system instances

+ Dynamically adjusts to workload changes

But:

- Runtime overhead

- Higher integration costs

- Harder to generalize to other systems

- Conservative / can get stuck in local optimum

Offline:

+ Better config space exploration / parallel

+ Cheap and easy to deploy/rollback/maintain

+ Zero runtime costs in prod

But:

- Configurations are static / not adaptable

- Benchmarks may be not representative

- Workload ID challenges
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Strategies
• Combine Online and Offline optimization

• Warm-up Online with Offline data

• Reuse optimized configs on similar systems
• Models for Workload Identification
• Pavlo, A. et al. (2017). Self-Driving Database Management Systems. CIDR (Vol. 4, p. 1).

• Zero-shot ML models to produce optimal configs
• North Star: WorkFM – Workload Foundation Models

87HTTPS://AKA.MS/SIGMOD-2025-AUTOTUNING-TUTORIAL

https://15721.courses.cs.cmu.edu/spring2020/papers/27-selfdriving/p42-pavlo-cidr17.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/27-selfdriving/p42-pavlo-cidr17.pdf
https://15721.courses.cs.cmu.edu/spring2020/papers/27-selfdriving/p42-pavlo-cidr17.pdf


Workload Identification
• Idea: Systems with similar workloads can benefit from the same optimal config

• Optimize one system

• Identify other similar systems

• Reuse the optimized configuration on that set

• Problem: How to determine what systems/workloads are similar?
• Easy if we have labels: e.g., MySQL + Wordpress

• In general: need a distance / similarity metric between workloads
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Workload Embedding
• Idea: Build ML model to capture the representation of workloads

• Map each workload to a multi-dimensional vector (embedding)

• Kernel function: measure distance between two points in multi-dimensional space

• Benefits of Embeddings:
• Compact representation of large number of heterogeneous features

• Comparison of not-exactly-alike workloads

• Clustering / other kernel-based methods

• Input to other ML models (query optimization, anomaly detection, scheduling, etc.)
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Data to Embed
• Telemetry: Time Series

• E.g., CPU load, Memory utilization, Disk and Network I/O, etc.

• Some app-specific data available (# of inserts/updates/selects, InnoDB stats…)

• Easy to collect / access; typically, not sensitive

• Noisy!

• Query Logs: Graph
• Query Logs / Query Plans available (or can be sampled) on some systems

• Can be sensitive; may require anonymization

• User Data: Tabular
• Access requires user consent; eyes-off training possible (maybe)
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Building the Embeddings
• Time Series

• Telemetry alone can capture irrelevant information about the system

• Foundation models for time series is an active area of research:
• MOIRAI: Woo, G. et al. (2024). Unified training of universal time series forecasting transformers. ICML.

• Chronos: Ansari, A.F. et al. (2024). Chronos: Learning the language of time series. TMLR.

• Liang, Y. et al. (2024). Foundation models for time series analysis: A tutorial and survey. KDD.

• Graph Data
• Query data captures most of the information about the workload (but not all!)

• Modeling query workloads with GNNs looks very promising
• Paul, D., Cao, J., Li, F., Srikumar, V. (2021). Database workload characterization with query plan encoders. VLDB.

• Zhao, Y. et al. (2022). QueryFormer: A tree transformer model for query plan representation. VLDB.
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Applications
• Knowledge Transfer

• Apply optimized configurations to other similar systems

• Warm-up optimizations for systems not-so-similar

• Workload Shift Detection
• Identify changes in workload over time

• Synthetic Benchmark Generation
• Generate the optimal mixture of queries to mimic the workload in production

• Offline optimize the system for that new synthetic benchmark

• Use the optimized config on system in prod
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Future Work
• Two orthogonal / complementing tasks:

• Build better embeddings for workloads

• Build better models that use these embeddings

• Multi-modal learning:
• Combine time series and graph data

• North Star: WorkFM
• Workload Foundation Models
• Wehrstein, J. et al. (2025). Towards Foundation Database Models. CIDR best paper award.
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Thank you!

• Ping us: Brian Kroth, Sergiy Matusevych, Yiwen Zhu

• Our team and projects: Microsoft Gray Systems Lab (GSL)               https://aka.ms/gsl 

• Meet us at the Microsoft booth! 

• Questions?
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