Autotuning Systems: Techniques, Challenges, and Opportunities

Brian Kroth Sergiy Matusevych Yiwen Zhu
Microsoft Microsoft Microsoft
Gray Systems Lab Gray Systems Lab Gray Systems Lab

Madison, WI, USA
bpkroth@microsoft.com

Abstract

The rapid growth of cloud computing and systems has introduced
significant complexity in managing and optimizing configurations
to meet diverse workload demands across a wide array of hardware.
Autotuning systems, leveraging advancements in machine learning
and optimization, offer an effective solution to these challenges.
By automating configuration tuning, these systems can dynam-
ically adapt to workload changes, optimize performance in real
time, and reduce the burden on system administrators. This tutorial
provides both theoretical foundations and practical demonstrations
of systems autotuning software, with a focus on offline and online
optimization methodologies. We present a comprehensive review
of state-of-the-art autotuning systems and discuss how they ad-
dress key challenges, such as handling large configuration spaces,
mitigating noise in real-world environments, and ensuring safe and
efficient exploration during tuning. To conclude, we offer a hands-
on session where participants can experiment with an open-source
system and gain experience with real-world tuning scenarios.
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1 Introduction

The rapid growth of cloud platforms has led to the collection of
vast amounts of workload traces and system telemetry from mil-
lions of users and applications [20, 42]. This abundance of data,
coupled with advances in instrumentation, monitoring, and ma-
chine learning (ML) techniques, provides a fertile foundation for the
development of autonomous services. Automation in this context
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facilitates critical tasks such as resource provisioning [66], sched-
uling [10], data systems query optimization [28, 33], execution,
and service tuning [9, 40, 68], achieving significant gains in perfor-
mance and cost efficiency. Such automation substantially reduces
the workload of systems administrators (e.g., DBAs) and has given
rise to the concept of autotuning systems—which may also include
self-tuning, self-adaptive, or self-managing systems—which have
garnered significant attention in modern systems, especially data
systems’ management. These systems have found widespread ap-
plications in real-world database environments [55, 66], driving
the evolution of autonomous data services [68]. In this tutorial, we
explore recent advancements in configuration tuning, a critical area
of research that has garnered significant attention due to its poten-
tial to further enhance the performance, cost efficiency, reliability,
and adaptability of systems with minimum overhead. We provide
an overview of the area, deconstructed under the lens of deploy-
ment strategy (e.g., offline and online tuning), and further discuss
some of the tuning challenges of each (e.g., efficiency, robustness,
safety, predictability, etc.), as well as some of the mitigation strate-
gies for overcoming them (e.g., workload identification, transfer
learning, space reduction, range biasing, guardrails, etc.).

Armed with a theoretical background, we then present attendees
with a hands-on lab session using MLOS [12, 25], an open-source
framework for full-stack autotuning experimentation, to provide a
practical demonstration of some concepts discussed in the tutorial.

2 Tutorial Information

2.1 Target Audience

This tutorial targets systems and database practitioners, researchers,
and industry professionals interested in machine learning for sys-
tems. It introduces auto-tuning challenges, techniques, and oppor-
tunities, requiring no prior knowledge of databases or ML.

2.2 Tutorial Breakdown

The tutorial spans 1.5 hours, extendable to 3 hours, and consists of
two parts:

Section 1: Foundations of Autotuning Systems (75 mins).

(1) Deployment Scenarios We begin by categorizing auto-tuning

by deployment context to orient attendees.

Offline Optimization. (25 mins)

e Bayesian Optimization: Using trial history to guide tuning
via Gaussian Processes and related methods.

e Applications and Challenges: Survey of ML approaches
and systems, covering issues like dimensionality reduction,
noise, and workload diversity.

Online Optimization. (25 mins)
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e Adapting in Real-Time: Systems that adjust continuously
to evolving workloads.

e Theory and Methods: Overview of online learning and
reinforcement learning.

e Applications: Production challenges and state-of-the-art
online tuning systems.

(2) Common Challenges and Strategies (25 mins) We highlight
recurring issues (e.g., efficiency, safety) and strategies including
test acceleration, space pruning, noise handling, and transfer
learning.

e Focus: Workload Identification A key technique enabling

better generalization across systems and workloads.

- Motivation: Transferability and drift adaptation using
similarity metrics.

— Theory: ML-based embeddings for compact workload rep-
resentation.

— Applications: Real-world use and challenges in scaling
workload identification to cloud systems.

Section 2: Hands-On with MLOS (15 mins).

(1) Intro to MLOS Overview of the MLOS framework and its
integration of discussed techniques for experimentation and
optimization.

(2) (Optional) Lab Demo (30 mins)

Hands-on session with:

e Full-stack autotuning using MLOS.

e Experiments across VMs, OS kernels, and DBMS.
o Result visualization and framework extensibility.

3 Tutorial Outline

As outlined above, we begin with a high level overview of the end
goal, autotuning systems, and describe the two main deployment
methods: offline and online tuning.

3.1 Introduction

Motivation: Manual Tuning. “You can’t improve what you don’t
measure.” — This well-known adage, often attributed to Peter Drucker,
captures the essence of the optimization process. A system may per-
form adequately under a given workload and configuration, but how
can we ascertain whether it is truly optimal? The answer lies in sys-
tematic benchmarking and experimentation. To assess optimality,
we must evaluate the system under diverse conditions and mea-
sure performance metrics that align with our specific goals—such
as throughput, tail latency, robustness to workload variation, and
operational cost. Optimization becomes even more complex when
multiple objectives must be balanced, necessitating techniques such
as Pareto frontiers or multi-objective optimization [53].

To illustrate the challenges of manual tuning, we developed an
interactive online “game” in which Spark experts adjust commonly
tuned configuration parameters, including maxPartitionBytes,
autoBroadcastJoinThreshold, shuffle.partitions, and others.
Users can observe the hypothetical execution time for each configu-
ration and make informed decisions about subsequent adjustments.
Typically, one parameter is modified at a time, enabling a straight-
forward rollback if performance degradation is observed.
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The manual tuning approach underscores the necessity for au-
tomation. The exponential growth in the number of possible con-
figurations with each additional parameter makes manual testing
infeasible. Moreover, as the number of required experiments in-
creases, so does the time (cost) required to conduct them. To address
these challenges, two high-level strategies are often applied to im-
prove a major challenge—sample efficiency:

o Accelerating each trial, possibly by adopting surrogate met-
rics or a series of progressively complex tests (e.g., by adjust-
ing duration or scale factor in a DB benchmark), and

e Reducing the number of trials needed to find a good config.

These strategies are complementary and can be synergistically
applied. This tutorial will discuss both strategies, focusing primarily
on (1) offline auto-tuning and (2) employing machine learning for
sample-efficient optimization.

Introduction to Autotuning Systems. We classify system tun-
ing into two main approaches: (a) online, where production sys-
tem parameters are adjusted at runtime under safety constraints
(e.g., [29, 35]); and (b) offline, where more flexible tuning is con-
ducted in isolated environments (e.g., [52, 57, 59]). Both approaches
face distinct challenges and employ various mitigation strategies.

This tutorial highlights workload identification, a technique that
enables insight transfer across systems by characterizing work-
loads [37]. In large-scale cloud deployments, recognizing similar
instance behavior supports efficient configuration transfer and cost
optimization. Due to workload diversity, accurate classification and
similarity assessment are essential.

We explore offline tuning in Section 3.2, online tuning in Sec-
tion 3.3, shared challenges in Section 3.4, and workload identifica-
tion in Section 3.4.2. Importantly, these methods can be combined:
offline optimizers can be seeded with results from similar systems
via workload identification, and online tuning can refine configura-
tions using offline data, creating a feedback loop.

3.2 Offline Optimization

3.2.1 Theory: Introduction to Bayesian Optimization. From
the optimizer perspective, it is convenient to treat the system under
optimization as a black box: as long as we can specify how to set
the parameters and measure the performance of the system, we
can use a variety of strategies to pick the next configuration to test,
and, eventually, choose the best-performing configuration.

Grid search and random search are two basic strategies for offline
optimization. Both have an advantage of being easy to parallelize:
we can run multiple trials in parallel and pick the best configuration
at the end. The disadvantage is that they are not sample-efficient,
and the information gained in one trial or experiment is not used
in the subsequent ones. As a result, the system can spend a lot of
time testing configurations that are not promising or outright bad.

This is where ML-based optimization comes into play: we can
build a model that uses the results of previous trials to suggest
the next configuration to test [64]. A more sophisticated model
can also use the data from other systems as well as the telemetry
data from the system under optimization, and incorporate the user-
defined and learned constraints to further narrow down the search
space [43, 48, 55].
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We will start with the most basic and widely used ML model for
optimization: Bayesian Optimization (BO), that has been used by
many tuning systems [4, 7, 25, 27, 48, 55, 58]. In this approach, the
Gaussian Process (GP) models the objective function (both in mean
and variance) for each configuration. An acquisition function, such
as Expected Improvement (EI) or Upper Confidence Bound (UCB)
can be used to select the optimal candidate for the next round [45].

3.22 Applications, Techniques, and Challenges. Even though
for many practical applications, optimizing a handful of parameters
using simple BO on synthetic benchmarks already yields good
results [35], every system optimization practitioner very soon faces
a number of challenges that make the solution hard to scale.

Curse of Dimensionality. Regardless of the optimization method,
the number of possible configurations in the real-world scenario
grows exponentially with the number of parameters. Hence, it is
highly desirable to restrict the search space before and during the
optimization process. Below we will survey the main methods for
dimensionality reduction in the context of system optimization.

e Dimensionality Reduction. Many systems reduce configura-
tion space complexity by encoding configurations into lower-
dimensional representations. Db2une prioritizes high-impact
regions using telemetry [4], while Proto-X and LlamaTune
use latent-space embeddings and projections to enhance sam-
ple efficiency [23, 57]. Rover leverages SHAP and expert feed-
back [44], and OtterTune applies Bayesian optimization guided
by past workloads [48]. DBTune selects knobs via Lasso [58],
and OpAdviser transfers promising regions across tasks. Re-
cent work explores using LLMs to propose knobs and ranges
from documentation and source code [14, 27, 47].

o Inter-Parameter Dependencies. Encoding known parameter
relationships (e.g., constraints or feature toggles) can shrink
the search space. Techniques include constrained Bayesian op-
timization [18], clustering via correlation [1], and structure
learning with graphical models [51]. Though data-hungry, such
models are promising in transfer learning scenarios. DBTune
may aid in inferring dependencies [61].

e Feature Priors. Another strategy is constraining each parame-
ter’s value range using expert rules, LLMs [27], or learned priors.
Methods include scaling, value quantization, and prior distri-
butions (e.g., Beta, Normal). Proto-X uses histogram-based
quantization [57].

Execution Speed-up. The systems optimization process is often
limited by the execution time of the trials. It makes sense, therefore,
to reduce the time it takes to run each trial, run multiple trials in
parallel, and use the surrogate models to predict the performance
or feasibility of the configurations that have not been tested yet.

o Parallelization. It is trivial to speed up the optimization pro-
cess with grid search or random search by executing multiple
trials in parallel, since each can be executed independently.
With the ML-based optimization, the situation is more com-
plicated: the model needs to be updated after each trial, and
the next configuration to test is selected based on the updated
model. The model, therefore, must be able to generate mul-
tiple suggestions at once, and make sure the configurations
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planned for parallel execution are not too close to each other
and together make a good coverage of the search space [15].

e Early Stopping. For tests optimizing task runtime, if a given
trial takes too long to run, it makes sense to stop it early and
inform the optimizer that the proposed configuration is clearly
suboptimal. Here we can use information from earlier trials to
set the cut-off time. One can also use the telemetry collected
during the trial to make such a decision.

e Surrogate Models. Instead of running an expensive bench-
mark, one can use a surrogate model to predict the perfor-
mance of the configuration. This scheme is widely used in the
context of Reinforcement Learning, such as QTune [29] and
CDBTune [56]. OtterTune [48, 55] uses a machine learning
model to predict the feasibility of the configuration suggested
by the optimizer and discard the configurations that are likely
to perform poorly. OpAdviser introduces a meta-learner to
predict the most suitable optimizer based on task character-
istics, further improving the convergence of the tuning [63].
GPTuneBand [65] and MFIX [8] incorporates multi-fidelity
testing into surrogate modeling to enhance the efficiency and
accuracy of performance predictions by leveraging data of vary-
ing fidelities (such as from similar tasks).

Noise Mitigation. Despite decades of research into isolation by the
systems community, real-world systems remain inherently noisy:
performance can vary between runs due to factors such as hard-
ware variability, resource contention, and interference in shared
cloud environments [30]. Noise like this significantly impacts the
optimization process, as optimizers can be misled by unreliable
measurements and select suboptimal configurations [16]. The state
of the art has typically been statistical measures, e.g., ResTune [60]
performs each experiment three times and averages the results to
reduce observation variances. Duet Benchmarking [5] instead
proposed side by side measures to evaluate relative performance
differences for code changes, which can be akin to config changes.
OtterTune [48, 55] employs Factor Analysis to reduce dimensional-
ity before clustering workloads for configuration selection, thereby
mitigating the impact of noise in the observational data. [30] intro-
duces Gaussian white noise into the Gaussian Process (GP) model
to enhance prediction accuracy in the presence of noise. In this
section, we discuss several other potential strategies to mitigate
noise, improve sample efficiency, and enhance the robustness of
optimizers, including TUNA [17].

e Micro-Benchmarks. Instead of evaluating the full workload,
micro-benchmarks focus on isolated components of the sys-
tem to provide a controlled, low-variance measurement of spe-
cific performance aspects. These benchmarks are faster to exe-
cute and allow optimizers to test configurations in an environ-
ment with minimized noise, offering more reliable feedback for
fine-tuning individual parameters. However, short runs or mi-
crobenchmarks may not be entirely predictive of the full system
behavior, leading to the need for multi-fidelity optimization.

o Sideband Signals. Additional signals or metrics, known as
sideband signals, can provide valuable context during the op-
timization process. For example, delayed signals (e.g., CPU
usage, memory pressure, or system logs) can be analyzed to
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re-evaluate noisy benchmarks post hoc. Fluctuations in mi-
crobenchmarks can be used to infer resource interference [26].
These sideband signals can also be incorporated into surrogate
models as auxiliary data to help predict performance more ac-
curately, smoothing out noise and improving the optimizer’s
decision-making process. For instance, [1] proposes to leverage
multi-task Bayesian Optimization to optimize multiple perfor-
mance objectives simultaneously, such as maximizing IOPS
(input/output operations per second) while minimizing write
amplification and latency.

e Outlier Detection and Smoothing. Detecting and filtering
outliers from noisy observations helps prevent the optimizer
from being misled. Techniques such as moving averages, weighted
smoothing, or statistical outlier detection methods (e.g., z-score
analysis) can be applied to stabilize performance metrics, en-
suring that optimization decisions are based on reliable trends
rather than isolated noisy measurements [16].

By combining these strategies, optimization systems can effec-
tively mitigate noise, ensuring sample efficiency and more consis-
tent and reliable performance improvements even in dynamic and
noisy real-world environments.

Non-Representative Benchmarks. Finally, at the end of this sec-
tion, we have to point out to the elephant in the room: synthetic
benchmarks used for the optimization process are often not repre-
sentative of the real-world workloads [13, 49]. The reasons for that
are numerous: the benchmarks are often designed to stress-test the
system, they are not updated to reflect the changes in the system or
the workload or the new usage scenarios, and so on. In the sections
that follow, we will show how online optimization and workload
identification help to mitigate this issue by periodically selecting
configs from similar workloads tuned offline and then fine tuning
online, and further discuss the ways to make the benchmarks more
representative of the real-world workloads.

3.3 Online Optimization

Motivation: Adapting in Real-Time. While offline tuning ad-
dresses the configuration tuning for specific workloads in a more
optimal way, in production environments, online tuning also be-
comes attractive in many scenarios due to: (1) Dynamic workloads:
The data size, query patterns, or resource demands may change
significantly even for the same requests structure. There may be
rarely the need to execute identical queries multiple times, and
under varying conditions, as the optimal configuration may differ;
and (2) Environmental changes: Factors such as software updates,
hardware upgrades, or shifts in network conditions can alter system
performance, necessitating real-time adjustments.

Though recommendations obtained from offline tuning can be
periodically reapplied, with online tuning, the configuration can
be further adaptive to account for changes during the runtime
through a tighter loop iterative process. However, there are still
several challenges:

e Workload shifting. Rapid changes in workload characteris-
tics can lead to suboptimal configuration selections unless the
system adapts promptly.
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e Performance regression. Dynamic adjustments can some-
times degrade performance in unpredictable ways, requiring
mechanisms to ensure stability during configuration transitions
for Service Level Agreement (SLA) compliance.

o Explainability. Studies show that both customers and support
engineers often struggle with online approaches due to their
potential for unexplainable or hard-to-debug behavior.

e Noisy data in production environments. Various factors,
such as resource contention, hardware heterogeneity, and un-
predictable external influences, can introduce noise into system
data, complicating optimization convergence efforts.

In this section, we discuss techniques designed to address these
challenges effectively.

Theory: Online Tuning Algorithms. Reinforcement Learning
(RL) is a machine learning paradigm where an agent learns to
make decisions by interacting with an environment, aiming to max-
imize cumulative rewards [22]. In the context of online tuning,
RL involves three key components: (1) State: Represents the en-
vironment’s status, which may include workload characteristics,
resource usage, and current configurations; (2) Action: Defines the
set of adjustments the agent can make to configuration parameters,
such as increasing, decreasing, or setting a specific value; and (3)
Reward: Provides scalar feedback to evaluate the quality of an
action. Rewards are often derived from performance metrics such
as throughput, latency, or cost efficiency.

Classic Q-learning algorithms can be used to train the model
where a Q-table is learned, representing the value of a state taking
a specific action [56]. Actor-Critic methods are commonly used
in RL-based tuning systems. These combine policy optimization
(actor) and value function estimation (critic) to iteratively improve
decision-making [29, 57]. Other methods, such as Monte Carlo
Tree Search (MCTS), explore configuration spaces efficiently by
balancing exploration and exploitation [52].

Genetic Algorithms (GA) are also widely used in online tuning
frameworks due to their ability to handle high-dimensional and
complex configuration spaces and easy implementation. GAs oper-
ate by: (1) Evaluating configurations using a fitness function that
measures their quality relative to an optimization goal; (2) Selecting
high-performing configurations as parents; and (3) Generating new
configurations (offspring) by combining features of parent config-
urations (crossover) or adding small random changes (mutation).
The iterative process explores the search space efficiently, avoiding
local optima and refining solutions until a stopping criterion is met.

Several other approaches extend beyond Reinforcement Learn-
ing (RL) and Genetic Algorithms (GA) to address specific chal-
lenges in online tuning. Greedy search, for example, simplifies the
optimization process by iteratively selecting the best immediate
configuration adjustments without exploring a broader set of pos-
sibilities [2]. Hybrid bandits combine contextual bandit algorithms
with perturbation strategies to dynamically refine configurations,
improving sample efficiency and adaptability [46]. As in offline
mode, multi-objective optimization is also possible [32]. These ap-
proaches complement RL and GA by offering alternative strategies
suited to specific use cases and constraints in system tuning. [67]
introduced a divide-and-conquer approach to recursively explore
the parameter space by discretizing the parameter ranges.
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Applications: Online Tuning. Reinforcement Learning (RL) has
been successfully applied in various online tuning systems. For in-
stance, QTune leverages deep RL to dynamically optimize database
query performance by adjusting configurations in real-time [29].
Similarly, Proto-X employs RL to coordinate the tuning of multiple
components in database systems, using synthesized proto-actions
to achieve optimal configurations [57]. HUNTER [6] introduces a
hybrid architecture by adjusting configurations dynamically based
on real-time feedback combining Genetic Algorithms (GA) and
Deep Reinforcement Learning (DRL). Genetic Algorithms (GA) are
also widely used for their effectiveness in handling complex, high-
dimensional configuration spaces. DAC utilizes GA to adaptively
tune high-dimensional configurations for distributed systems [54],
while RFHOC combines GA with a random forest-based model to
optimize Hadoop configurations [3]. AutoSteer uses greedy search
to optimize SQL database queries by iteratively improving configu-
rations [2], and LITE employs adaptive modeling techniques for
tuning Spark configurations based on performance feedback [31].

Workload Shifting. While most online tuning algorithms demon-
strate good adaptability to workload shifts, several advanced tech-
niques have been developed to further enhance the generalization
of trained models in the face of workload changes:

e OnlineTune [62] embeds environmental factors as contextual
features in its optimization model, enabling dynamic adaptation
to changing workloads and environments. By leveraging prior
workload context, such as data size and query plan variations,
OnlineTune efficiently handles workload shifts using contextual
Bayesian Optimization.

OPPerTune [46] introduces the AutoScoper component to in-
ject additional contextual information, such as job type and
requests per second (RPS), into its Hybrid Bandit algorithm.
AutoScoper uses a decision tree model to select the appropriate
tuning instance for a given context, ensuring that the learned
tuning strategies align with the operational realities of produc-
tion for each specific scope.

Performance Regression. To ensure performance guarantees
during the tuning process, several methods have been proposed:

e OnlineTune [62] reduces the optimization process over the
entire configuration space into a sequence of subspace optimiza-
tions centered around the best configuration estimated so far,
gradually converging toward the optimal solution. Addition-
ally, OnlineTune assesses the safety of candidate configurations
using the model’s lower-bound performance estimates.

o LOCAT: Employs Safe Bayesian Optimization to explore Spark
SQL configurations while minimizing the risk of performance
regressions, ensuring stability during the tuning process.

o AutoSteer [2] uses a greedy search strategy to incrementally
improve configurations, balancing exploration and exploitation
to avoid significant regressions.

o HUNTER [6] implements a cloned Cloud Database (CDB) strat-
egy, where cloned database instances are used to verify con-
figuration impacts. This approach isolates tuning experiments,
ensuring that suboptimal configurations do not affect the pro-
duction system. As such, this can be viewed as a hybrid online-
offline approach.
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e OPPerTune [46] combines contextual bandits with a probabilis-
tic approach to perturb configurations around the “current best”
candidate, limiting exploration to safe regions of the configura-
tion space and minimizing performance risks at the expensive
of potentially achieving a global optimum.

e [30] introduces safe exploration by defining a safe region us-
ing Gaussian Process predictions, selecting configurations that
satisfy constraints, such as runtime thresholds.

LLM-Related Advancements. Recent advancements in Large
Language Models (LLMs) have led to several novel applications in
database tuning, leveraging the power of LLMs to enhance efficiency
and performance:

e DBBert [47] extracts tuning hints from text documents to iden-
tify optimal tuning knobs using large, pre-trained language
models, specifically the BERT model.

e A-Tune [19] explores the feasibility of replacing the entire tun-
ing process with LLM calls. In this approach, all configurations
are generated by LLMs as prompts, and an additional configu-
ration selector is developed to identify the optimal candidate.

e LATuner [14] utilizes LLMs to identify critical knobs and
warm-start the tuning process. Two surrogate models are em-
ployed: one based on a Gaussian Process and another guided by
LLM-generated prompts to predict performance. Additionally,
LATuner uses LLMs to sample effectively in high-value spaces
based on sampling prompts.

e GPTuner [27] leverages LLMs to aggregate domain knowl-
edge from diverse sources and transforms this knowledge into
a structured format, focusing on attributes such as suggested
values, minimum and maximum values, and special values for
each knob. During the tuning process, GPTuner also employs an
LLM-based knob selection mechanism to reduce tuning dimen-
sionality and integrates with Bayesian Optimization to explore
the configuration space effectively.

3.4 Common Challenges and Strategies

3.4.1 Challenges. As outlined above, both offline and online tun-
ing approaches must address a number of challenges which we
summarize here, including sample efficiency during exploration
and predictability or robustness during exploitation.

3.4.2 Strategies. In this section we will summarize some of the
commonalities of the strategies used to address those challenges
presented in the previous sections such as space reduction, test
acceleration, surrogate models, noisy signal handling, etc. (§ 3.2.2).
We will then highlight one a specific technique in detail that can
be used to improve sample efficiency through transfer learning of
similar workloads and predictability through drift detection.

Example: Workload Identification

Motivation: Comparing Systems. Assume that by some opti-
mization process we have found the best configuration for a certain
system and workload. Now, as it typically happens in the cloud
scenario, we want to find other systems and workloads that can
benefit from the same setup. Doing so could help reduce the cost of
optimization and improve overall service experience. However, we
can’t use system metrics for this task, as the goal of autotuning is
often to reduce system resources, which would lead to an unstable
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signal. Thus, we need to use application-level workload request
info. Yet, even if we have access to the query logs and telemetry
data from all systems (which is not always possible for privacy
reasons), it is not immediately clear how to measure the similarity
between them. This is where Machine Learning can help.

Theory: Embeddings. One approach is to represent each workload
as a vector, or point in a high-dimensional space [31]. Such vector
representation of a complex input is called an embedding and is
widely used in Machine Learning, e.g., in Natural Language Process-
ing [38], Computer Vision [39], and Recommender Systems [24].

Once we have such vector representations, it is trivial to measure
the similarity between the workloads, e.g., using the Euclidean dis-
tance or cosine similarity [4, 48, 55]. We can also use the dimension-
ality reduction techniques to project them into a lower-dimensional
space, e.g., using UMAP [34], t-SNE [50], PCA [6], for visualization,
or use directly for clustering, classification, and other ML tasks [29].
Applications and Challenges. Capturing the embedding of a
workload is not trivial for a number of reasons:

e Query Representation. Queries can be represented in either
raw or structured forms. Raw queries often appear as the text
of SQL statements, such as those found in MySQL slow query
logs [4, 29]. Structured representations include Abstract Syntax
Trees (ASTs), Logical Execution Plans, or Physical Execution
Plans [29, 31]. DB2une introduces QBERT, a query featuriza-
tion method that uses a transformer-based model trained on a
masked-query plan template prediction task. It leverages query
execution plan structures and associated statistics for effective
representation. QTune develops Query2Vector, which extracts
query plans and estimated costs from the database engine and
converts this information into a meaningful vector representa-
tion. ResTune applies TF-IDF (Term Frequency-Inverse Docu-
ment Frequency) to transform raw SQL query text into vectors,
using reserved SQL keywords (e.g., SELECT, UPDATE, JOIN)
to identify query patterns [60].

o Runtime Statistics. Runtime information, such as execution
Directed Acyclic Graphs (DAGs) or query statistics, can provide
a detailed characterization of queries. LITE [31] combines run-
time information from stage-level code and DAGs provided by
the scheduler. It creates token-level embeddings for code and
node-level embeddings for DAGs. Using a combination of Con-
volutional Neural Networks (CNNs) and Graph Convolutional
Networks (GCNs), LITE generates joint embeddings based on
the proposed NECS framework. OtterTune [48, 55] featurizes
workloads using runtime characteristics such as query exe-
cution metrics, resource utilization (e.g., CPU, memory), and
lock/contention metrics, providing a holistic view of workload
behavior. [30, 41] leverage SparkEventLogs to construct fea-
tures to measure workload similarity, summarizing stage-level
(Spark actions/transformations) and task-level (CPU, memory
usage) information. In [30], a total of 75 meta-features are
used to characterize tasks, which are then leveraged for meta-
learning to accelerate optimization across similar tasks. To mea-
sure task similarity, instead of capturing the characteristics of
the query, OpAdviser uses performance model rankings from
historical tasks to measure similarity to the target task [63].

Brian Kroth, Sergiy Matusevych, and Yiwen Zhu

Workload identification is also widely used in applications such as
query optimization where query behavior modeling is needed. A
detailed review of such work can be found at [11].

3.5 MLOS

This session includes a hands-on overview and demonstration of
MLOS [25], a framework for autotuning and experimentation. We
will show how to use MLOS [25] for tuning Linux kernel param-
eters for Redis, and a DBMS like MySQL or Postgres in order to
improve VM and application configurations in the cloud to enhance
performance and efficiency, highlighting the advantages of auto-
mated benchmarking and optimization and a flexible framework to
also allow further research into the space. Azure cloud resources
will be provided for attendees to use during the demo. MLOS can
be used in a browser via Github CodeSpaces [21] or locally using a
devcontainer [36] with all the requirements already available, so
requirements are minimal.
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