Autotuning Systems: Techniques, Challenges, and Opportunities

Brian Kroth Sergiy Matusevych Yiwen Zhu
Microsoft Microsoft Microsoft
Gray Systems Lab Gray Systems Lab Gray Systems Lab

Madison, WI, USA
bpkroth@microsoft.com

Abstract

The rapid growth of cloud computing and systems has introduced
significant complexity in managing and optimizing configurations
to meet diverse workload demands across a wide array of hardware.
Autotuning systems, leveraging advancements in machine learning
and optimization, offer an effective solution to these challenges.
By automating configuration tuning, these systems can dynam-
ically adapt to workload changes, optimize performance in real
time, and reduce the burden on system administrators. This tutorial
provides both theoretical foundations and practical demonstrations
of systems autotuning software, with a focus on offline and online
optimization methodologies. We present a comprehensive review
of state-of-the-art autotuning systems and discuss how they ad-
dress key challenges, such as handling large configuration spaces,
mitigating noise in real-world environments, and ensuring safe and
efficient exploration during tuning. To conclude, we offer a hands-
on session where participants can experiment with an open-source
system and gain experience with real-world tuning scenarios.

CCS Concepts

« Computer systems organization — Cloud computing; - Com-
puting methodologies — Machine learning.

Keywords

Bayesian Optimization, Autotuning, Performance Tuning, Noise
Reduction, Performance Variability

ACM Reference Format:

Brian Kroth, Sergiy Matusevych, and Yiwen Zhu. 2025. Autotuning Sys-
tems: Techniques, Challenges, and Opportunities. In Companion of the 2025
International Conference on Management of Data (SIGMOD-Companion °25),
FJune 22-27, 2025, Berlin, Germany. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3722212.3725638

1 Introduction

The rapid growth of cloud platforms has led to the collection of
vast amounts of workload traces and system telemetry from mil-
lions of users and applications [20, 42]. This abundance of data,
coupled with advances in instrumentation, monitoring, and ma-
chine learning (ML) techniques, provides a fertile foundation for the
development of autonomous services. Automation in this context

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGMOD-Companion °25, Berlin, Germany

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1564-8/2025/06

https://doi.org/10.1145/3722212.3725638

Redmond, WA, USA
sergiym@microsoft.com

Mountain View, CA, USA
yiwzh@microsoft.com

facilitates critical tasks such as resource provisioning [66], sched-
uling [10], data systems query optimization [28, 33], execution,
and service tuning [9, 40, 68], achieving significant gains in perfor-
mance and cost efficiency. Such automation substantially reduces
the workload of systems administrators (e.g., DBAs) and has given
rise to the concept of autotuning systems—which may also include
self-tuning, self-adaptive, or self-managing systems—which have
garnered significant attention in modern systems, especially data
systems’ management. These systems have found widespread ap-
plications in real-world database environments [55, 66], driving
the evolution of autonomous data services [68]. In this tutorial, we
explore recent advancements in configuration tuning, a critical area
of research that has garnered significant attention due to its poten-
tial to further enhance the performance, cost efficiency, reliability,
and adaptability of systems with minimum overhead. We provide
an overview of the area, deconstructed under the lens of deploy-
ment strategy (e.g., offline and online tuning), and further discuss
some of the tuning challenges of each (e.g., efficiency, robustness,
safety, predictability, etc.), as well as some of the mitigation strate-
gies for overcoming them (e.g., workload identification, transfer
learning, space reduction, range biasing, guardrails, etc.).

Armed with a theoretical background, we then present attendees
with a hands-on lab session using MLOS [12, 25], an open-source
framework for full-stack autotuning experimentation, to provide a
practical demonstration of some concepts discussed in the tutorial.

2 Tutorial Information

2.1 Target Audience

This tutorial targets systems and database practitioners, researchers,
and industry professionals interested in machine learning for sys-
tems. It introduces auto-tuning challenges, techniques, and oppor-
tunities, requiring no prior knowledge of databases or ML.

2.2 Tutorial Breakdown

The tutorial spans 1.5 hours, extendable to 3 hours, and consists of
two parts:

Section 1: Foundations of Autotuning Systems (75 mins).

(1) Deployment Scenarios We begin by categorizing auto-tuning

by deployment context to orient attendees.

Offline Optimization. (25 mins)

e Bayesian Optimization: Using trial history to guide tuning
via Gaussian Processes and related methods.

e Applications and Challenges: Survey of ML approaches
and systems, covering issues like dimensionality reduction,
noise, and workload diversity.

Online Optimization. (25 mins)


https://orcid.org/0000-0002-5108-6743
https://orcid.org/0009-0002-4774-0965
https://orcid.org/0009-0005-6857-7505
https://doi.org/10.1145/3722212.3725638
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3722212.3725638

SIGMOD-Companion ’25, June 22-27, 2025, Berlin, Germany

e Adapting in Real-Time: Systems that adjust continuously
to evolving workloads.

e Theory and Methods: Overview of online learning and
reinforcement learning.

e Applications: Production challenges and state-of-the-art
online tuning systems.

(2) Common Challenges and Strategies (25 mins) We highlight
recurring issues (e.g., efficiency, safety) and strategies including
test acceleration, space pruning, noise handling, and transfer
learning.

e Focus: Workload Identification A key technique enabling

better generalization across systems and workloads.

- Motivation: Transferability and drift adaptation using
similarity metrics.

— Theory: ML-based embeddings for compact workload rep-
resentation.

— Applications: Real-world use and challenges in scaling
workload identification to cloud systems.

Section 2: Hands-On with MLOS (15 mins).

(1) Intro to MLOS Overview of the MLOS framework and its
integration of discussed techniques for experimentation and
optimization.

(2) (Optional) Lab Demo (30 mins)

Hands-on session with:

e Full-stack autotuning using MLOS.

e Experiments across VMs, OS kernels, and DBMS.
o Result visualization and framework extensibility.

3 Tutorial Outline

As outlined above, we begin with a high level overview of the end
goal, autotuning systems, and describe the two main deployment
methods: offline and online tuning.

3.1 Introduction

Motivation: Manual Tuning. “You can’t improve what you don’t
measure.” — This well-known adage, often attributed to Peter Drucker,
captures the essence of the optimization process. A system may per-
form adequately under a given workload and configuration, but how
can we ascertain whether it is truly optimal? The answer lies in sys-
tematic benchmarking and experimentation. To assess optimality,
we must evaluate the system under diverse conditions and mea-
sure performance metrics that align with our specific goals—such
as throughput, tail latency, robustness to workload variation, and
operational cost. Optimization becomes even more complex when
multiple objectives must be balanced, necessitating techniques such
as Pareto frontiers or multi-objective optimization [53].

To illustrate the challenges of manual tuning, we developed an
interactive online “game” in which Spark experts adjust commonly
tuned configuration parameters, including maxPartitionBytes,
autoBroadcastJoinThreshold, shuffle.partitions, and others.
Users can observe the hypothetical execution time for each configu-
ration and make informed decisions about subsequent adjustments.
Typically, one parameter is modified at a time, enabling a straight-
forward rollback if performance degradation is observed.

Brian Kroth, Sergiy Matusevych, and Yiwen Zhu

The manual tuning approach underscores the necessity for au-
tomation. The exponential growth in the number of possible con-
figurations with each additional parameter makes manual testing
infeasible. Moreover, as the number of required experiments in-
creases, so does the time (cost) required to conduct them. To address
these challenges, two high-level strategies are often applied to im-
prove a major challenge—sample efficiency:

o Accelerating each trial, possibly by adopting surrogate met-
rics or a series of progressively complex tests (e.g., by adjust-
ing duration or scale factor in a DB benchmark), and

e Reducing the number of trials needed to find a good config.

These strategies are complementary and can be synergistically
applied. This tutorial will discuss both strategies, focusing primarily
on (1) offline auto-tuning and (2) employing machine learning for
sample-efficient optimization.

Introduction to Autotuning Systems. We classify system tun-
ing into two main approaches: (a) online, where production sys-
tem parameters are adjusted at runtime under safety constraints
(e.g., [29, 35]); and (b) offline, where more flexible tuning is con-
ducted in isolated environments (e.g., [52, 57, 59]). Both approaches
face distinct challenges and employ various mitigation strategies.

This tutorial highlights workload identification, a technique that
enables insight transfer across systems by characterizing work-
loads [37]. In large-scale cloud deployments, recognizing similar
instance behavior supports efficient configuration transfer and cost
optimization. Due to workload diversity, accurate classification and
similarity assessment are essential.

We explore offline tuning in Section 3.2, online tuning in Sec-
tion 3.3, shared challenges in Section 3.4, and workload identifica-
tion in Section 3.4.2. Importantly, these methods can be combined:
offline optimizers can be seeded with results from similar systems
via workload identification, and online tuning can refine configura-
tions using offline data, creating a feedback loop.

3.2 Offline Optimization

3.2.1 Theory: Introduction to Bayesian Optimization. From
the optimizer perspective, it is convenient to treat the system under
optimization as a black box: as long as we can specify how to set
the parameters and measure the performance of the system, we
can use a variety of strategies to pick the next configuration to test,
and, eventually, choose the best-performing configuration.

Grid search and random search are two basic strategies for offline
optimization. Both have an advantage of being easy to parallelize:
we can run multiple trials in parallel and pick the best configuration
at the end. The disadvantage is that they are not sample-efficient,
and the information gained in one trial or experiment is not used
in the subsequent ones. As a result, the system can spend a lot of
time testing configurations that are not promising or outright bad.

This is where ML-based optimization comes into play: we can
build a model that uses the results of previous trials to suggest
the next configuration to test [64]. A more sophisticated model
can also use the data from other systems as well as the telemetry
data from the system under optimization, and incorporate the user-
defined and learned constraints to further narrow down the search
space [43, 48, 55].



Autotuning Systems: Techniques, Challenges, and Opportunities

We will start with the most basic and widely used ML model for
optimization: Bayesian Optimization (BO), that has been used by
many tuning systems [4, 7, 25, 27, 48, 55, 58]. In this approach, the
Gaussian Process (GP) models the objective function (both in mean
and variance) for each configuration. An acquisition function, such
as Expected Improvement (EI) or Upper Confidence Bound (UCB)
can be used to select the optimal candidate for the next round [45].

3.22 Applications, Techniques, and Challenges. Even though
for many practical applications, optimizing a handful of parameters
using simple BO on synthetic benchmarks already yields good
results [35], every system optimization practitioner very soon faces
a number of challenges that make the solution hard to scale.

Curse of Dimensionality. Regardless of the optimization method,
the number of possible configurations in the real-world scenario
grows exponentially with the number of parameters. Hence, it is
highly desirable to restrict the search space before and during the
optimization process. Below we will survey the main methods for
dimensionality reduction in the context of system optimization.

e Dimensionality Reduction. Many systems reduce configura-
tion space complexity by encoding configurations into lower-
dimensional representations. Db2une prioritizes high-impact
regions using telemetry [4], while Proto-X and LlamaTune
use latent-space embeddings and projections to enhance sam-
ple efficiency [23, 57]. Rover leverages SHAP and expert feed-
back [44], and OtterTune applies Bayesian optimization guided
by past workloads [48]. DBTune selects knobs via Lasso [58],
and OpAdviser transfers promising regions across tasks. Re-
cent work explores using LLMs to propose knobs and ranges
from documentation and source code [14, 27, 47].

o Inter-Parameter Dependencies. Encoding known parameter
relationships (e.g., constraints or feature toggles) can shrink
the search space. Techniques include constrained Bayesian op-
timization [18], clustering via correlation [1], and structure
learning with graphical models [51]. Though data-hungry, such
models are promising in transfer learning scenarios. DBTune
may aid in inferring dependencies [61].

e Feature Priors. Another strategy is constraining each parame-
ter’s value range using expert rules, LLMs [27], or learned priors.
Methods include scaling, value quantization, and prior distri-
butions (e.g., Beta, Normal). Proto-X uses histogram-based
quantization [57].

Execution Speed-up. The systems optimization process is often
limited by the execution time of the trials. It makes sense, therefore,
to reduce the time it takes to run each trial, run multiple trials in
parallel, and use the surrogate models to predict the performance
or feasibility of the configurations that have not been tested yet.

o Parallelization. It is trivial to speed up the optimization pro-
cess with grid search or random search by executing multiple
trials in parallel, since each can be executed independently.
With the ML-based optimization, the situation is more com-
plicated: the model needs to be updated after each trial, and
the next configuration to test is selected based on the updated
model. The model, therefore, must be able to generate mul-
tiple suggestions at once, and make sure the configurations

SIGMOD-Companion ’25, June 22-27, 2025, Berlin, Germany

planned for parallel execution are not too close to each other
and together make a good coverage of the search space [15].

e Early Stopping. For tests optimizing task runtime, if a given
trial takes too long to run, it makes sense to stop it early and
inform the optimizer that the proposed configuration is clearly
suboptimal. Here we can use information from earlier trials to
set the cut-off time. One can also use the telemetry collected
during the trial to make such a decision.

e Surrogate Models. Instead of running an expensive bench-
mark, one can use a surrogate model to predict the perfor-
mance of the configuration. This scheme is widely used in the
context of Reinforcement Learning, such as QTune [29] and
CDBTune [56]. OtterTune [48, 55] uses a machine learning
model to predict the feasibility of the configuration suggested
by the optimizer and discard the configurations that are likely
to perform poorly. OpAdviser introduces a meta-learner to
predict the most suitable optimizer based on task character-
istics, further improving the convergence of the tuning [63].
GPTuneBand [65] and MFIX [8] incorporates multi-fidelity
testing into surrogate modeling to enhance the efficiency and
accuracy of performance predictions by leveraging data of vary-
ing fidelities (such as from similar tasks).

Noise Mitigation. Despite decades of research into isolation by the
systems community, real-world systems remain inherently noisy:
performance can vary between runs due to factors such as hard-
ware variability, resource contention, and interference in shared
cloud environments [30]. Noise like this significantly impacts the
optimization process, as optimizers can be misled by unreliable
measurements and select suboptimal configurations [16]. The state
of the art has typically been statistical measures, e.g., ResTune [60]
performs each experiment three times and averages the results to
reduce observation variances. Duet Benchmarking [5] instead
proposed side by side measures to evaluate relative performance
differences for code changes, which can be akin to config changes.
OtterTune [48, 55] employs Factor Analysis to reduce dimensional-
ity before clustering workloads for configuration selection, thereby
mitigating the impact of noise in the observational data. [30] intro-
duces Gaussian white noise into the Gaussian Process (GP) model
to enhance prediction accuracy in the presence of noise. In this
section, we discuss several other potential strategies to mitigate
noise, improve sample efficiency, and enhance the robustness of
optimizers, including TUNA [17].

e Micro-Benchmarks. Instead of evaluating the full workload,
micro-benchmarks focus on isolated components of the sys-
tem to provide a controlled, low-variance measurement of spe-
cific performance aspects. These benchmarks are faster to exe-
cute and allow optimizers to test configurations in an environ-
ment with minimized noise, offering more reliable feedback for
fine-tuning individual parameters. However, short runs or mi-
crobenchmarks may not be entirely predictive of the full system
behavior, leading to the need for multi-fidelity optimization.

o Sideband Signals. Additional signals or metrics, known as
sideband signals, can provide valuable context during the op-
timization process. For example, delayed signals (e.g., CPU
usage, memory pressure, or system logs) can be analyzed to



SIGMOD-Companion ’25, June 22-27, 2025, Berlin, Germany

re-evaluate noisy benchmarks post hoc. Fluctuations in mi-
crobenchmarks can be used to infer resource interference [26].
These sideband signals can also be incorporated into surrogate
models as auxiliary data to help predict performance more ac-
curately, smoothing out noise and improving the optimizer’s
decision-making process. For instance, [1] proposes to leverage
multi-task Bayesian Optimization to optimize multiple perfor-
mance objectives simultaneously, such as maximizing IOPS
(input/output operations per second) while minimizing write
amplification and latency.

e Outlier Detection and Smoothing. Detecting and filtering
outliers from noisy observations helps prevent the optimizer
from being misled. Techniques such as moving averages, weighted
smoothing, or statistical outlier detection methods (e.g., z-score
analysis) can be applied to stabilize performance metrics, en-
suring that optimization decisions are based on reliable trends
rather than isolated noisy measurements [16].

By combining these strategies, optimization systems can effec-
tively mitigate noise, ensuring sample efficiency and more consis-
tent and reliable performance improvements even in dynamic and
noisy real-world environments.

Non-Representative Benchmarks. Finally, at the end of this sec-
tion, we have to point out to the elephant in the room: synthetic
benchmarks used for the optimization process are often not repre-
sentative of the real-world workloads [13, 49]. The reasons for that
are numerous: the benchmarks are often designed to stress-test the
system, they are not updated to reflect the changes in the system or
the workload or the new usage scenarios, and so on. In the sections
that follow, we will show how online optimization and workload
identification help to mitigate this issue by periodically selecting
configs from similar workloads tuned offline and then fine tuning
online, and further discuss the ways to make the benchmarks more
representative of the real-world workloads.

3.3 Online Optimization

Motivation: Adapting in Real-Time. While offline tuning ad-
dresses the configuration tuning for specific workloads in a more
optimal way, in production environments, online tuning also be-
comes attractive in many scenarios due to: (1) Dynamic workloads:
The data size, query patterns, or resource demands may change
significantly even for the same requests structure. There may be
rarely the need to execute identical queries multiple times, and
under varying conditions, as the optimal configuration may differ;
and (2) Environmental changes: Factors such as software updates,
hardware upgrades, or shifts in network conditions can alter system
performance, necessitating real-time adjustments.

Though recommendations obtained from offline tuning can be
periodically reapplied, with online tuning, the configuration can
be further adaptive to account for changes during the runtime
through a tighter loop iterative process. However, there are still
several challenges:

e Workload shifting. Rapid changes in workload characteris-
tics can lead to suboptimal configuration selections unless the
system adapts promptly.

Brian Kroth, Sergiy Matusevych, and Yiwen Zhu

e Performance regression. Dynamic adjustments can some-
times degrade performance in unpredictable ways, requiring
mechanisms to ensure stability during configuration transitions
for Service Level Agreement (SLA) compliance.

o Explainability. Studies show that both customers and support
engineers often struggle with online approaches due to their
potential for unexplainable or hard-to-debug behavior.

e Noisy data in production environments. Various factors,
such as resource contention, hardware heterogeneity, and un-
predictable external influences, can introduce noise into system
data, complicating optimization convergence efforts.

In this section, we discuss techniques designed to address these
challenges effectively.

Theory: Online Tuning Algorithms. Reinforcement Learning
(RL) is a machine learning paradigm where an agent learns to
make decisions by interacting with an environment, aiming to max-
imize cumulative rewards [22]. In the context of online tuning,
RL involves three key components: (1) State: Represents the en-
vironment’s status, which may include workload characteristics,
resource usage, and current configurations; (2) Action: Defines the
set of adjustments the agent can make to configuration parameters,
such as increasing, decreasing, or setting a specific value; and (3)
Reward: Provides scalar feedback to evaluate the quality of an
action. Rewards are often derived from performance metrics such
as throughput, latency, or cost efficiency.

Classic Q-learning algorithms can be used to train the model
where a Q-table is learned, representing the value of a state taking
a specific action [56]. Actor-Critic methods are commonly used
in RL-based tuning systems. These combine policy optimization
(actor) and value function estimation (critic) to iteratively improve
decision-making [29, 57]. Other methods, such as Monte Carlo
Tree Search (MCTS), explore configuration spaces efficiently by
balancing exploration and exploitation [52].

Genetic Algorithms (GA) are also widely used in online tuning
frameworks due to their ability to handle high-dimensional and
complex configuration spaces and easy implementation. GAs oper-
ate by: (1) Evaluating configurations using a fitness function that
measures their quality relative to an optimization goal; (2) Selecting
high-performing configurations as parents; and (3) Generating new
configurations (offspring) by combining features of parent config-
urations (crossover) or adding small random changes (mutation).
The iterative process explores the search space efficiently, avoiding
local optima and refining solutions until a stopping criterion is met.

Several other approaches extend beyond Reinforcement Learn-
ing (RL) and Genetic Algorithms (GA) to address specific chal-
lenges in online tuning. Greedy search, for example, simplifies the
optimization process by iteratively selecting the best immediate
configuration adjustments without exploring a broader set of pos-
sibilities [2]. Hybrid bandits combine contextual bandit algorithms
with perturbation strategies to dynamically refine configurations,
improving sample efficiency and adaptability [46]. As in offline
mode, multi-objective optimization is also possible [32]. These ap-
proaches complement RL and GA by offering alternative strategies
suited to specific use cases and constraints in system tuning. [67]
introduced a divide-and-conquer approach to recursively explore
the parameter space by discretizing the parameter ranges.



Autotuning Systems: Techniques, Challenges, and Opportunities

Applications: Online Tuning. Reinforcement Learning (RL) has
been successfully applied in various online tuning systems. For in-
stance, QTune leverages deep RL to dynamically optimize database
query performance by adjusting configurations in real-time [29].
Similarly, Proto-X employs RL to coordinate the tuning of multiple
components in database systems, using synthesized proto-actions
to achieve optimal configurations [57]. HUNTER [6] introduces a
hybrid architecture by adjusting configurations dynamically based
on real-time feedback combining Genetic Algorithms (GA) and
Deep Reinforcement Learning (DRL). Genetic Algorithms (GA) are
also widely used for their effectiveness in handling complex, high-
dimensional configuration spaces. DAC utilizes GA to adaptively
tune high-dimensional configurations for distributed systems [54],
while RFHOC combines GA with a random forest-based model to
optimize Hadoop configurations [3]. AutoSteer uses greedy search
to optimize SQL database queries by iteratively improving configu-
rations [2], and LITE employs adaptive modeling techniques for
tuning Spark configurations based on performance feedback [31].

Workload Shifting. While most online tuning algorithms demon-
strate good adaptability to workload shifts, several advanced tech-
niques have been developed to further enhance the generalization
of trained models in the face of workload changes:

e OnlineTune [62] embeds environmental factors as contextual
features in its optimization model, enabling dynamic adaptation
to changing workloads and environments. By leveraging prior
workload context, such as data size and query plan variations,
OnlineTune efficiently handles workload shifts using contextual
Bayesian Optimization.

OPPerTune [46] introduces the AutoScoper component to in-
ject additional contextual information, such as job type and
requests per second (RPS), into its Hybrid Bandit algorithm.
AutoScoper uses a decision tree model to select the appropriate
tuning instance for a given context, ensuring that the learned
tuning strategies align with the operational realities of produc-
tion for each specific scope.

Performance Regression. To ensure performance guarantees
during the tuning process, several methods have been proposed:

e OnlineTune [62] reduces the optimization process over the
entire configuration space into a sequence of subspace optimiza-
tions centered around the best configuration estimated so far,
gradually converging toward the optimal solution. Addition-
ally, OnlineTune assesses the safety of candidate configurations
using the model’s lower-bound performance estimates.

o LOCAT: Employs Safe Bayesian Optimization to explore Spark
SQL configurations while minimizing the risk of performance
regressions, ensuring stability during the tuning process.

o AutoSteer [2] uses a greedy search strategy to incrementally
improve configurations, balancing exploration and exploitation
to avoid significant regressions.

o HUNTER [6] implements a cloned Cloud Database (CDB) strat-
egy, where cloned database instances are used to verify con-
figuration impacts. This approach isolates tuning experiments,
ensuring that suboptimal configurations do not affect the pro-
duction system. As such, this can be viewed as a hybrid online-
offline approach.

SIGMOD-Companion ’25, June 22-27, 2025, Berlin, Germany

e OPPerTune [46] combines contextual bandits with a probabilis-
tic approach to perturb configurations around the “current best”
candidate, limiting exploration to safe regions of the configura-
tion space and minimizing performance risks at the expensive
of potentially achieving a global optimum.

e [30] introduces safe exploration by defining a safe region us-
ing Gaussian Process predictions, selecting configurations that
satisfy constraints, such as runtime thresholds.

LLM-Related Advancements. Recent advancements in Large
Language Models (LLMs) have led to several novel applications in
database tuning, leveraging the power of LLMs to enhance efficiency
and performance:

e DBBert [47] extracts tuning hints from text documents to iden-
tify optimal tuning knobs using large, pre-trained language
models, specifically the BERT model.

e A-Tune [19] explores the feasibility of replacing the entire tun-
ing process with LLM calls. In this approach, all configurations
are generated by LLMs as prompts, and an additional configu-
ration selector is developed to identify the optimal candidate.

e LATuner [14] utilizes LLMs to identify critical knobs and
warm-start the tuning process. Two surrogate models are em-
ployed: one based on a Gaussian Process and another guided by
LLM-generated prompts to predict performance. Additionally,
LATuner uses LLMs to sample effectively in high-value spaces
based on sampling prompts.

e GPTuner [27] leverages LLMs to aggregate domain knowl-
edge from diverse sources and transforms this knowledge into
a structured format, focusing on attributes such as suggested
values, minimum and maximum values, and special values for
each knob. During the tuning process, GPTuner also employs an
LLM-based knob selection mechanism to reduce tuning dimen-
sionality and integrates with Bayesian Optimization to explore
the configuration space effectively.

3.4 Common Challenges and Strategies

3.4.1 Challenges. As outlined above, both offline and online tun-
ing approaches must address a number of challenges which we
summarize here, including sample efficiency during exploration
and predictability or robustness during exploitation.

3.4.2 Strategies. In this section we will summarize some of the
commonalities of the strategies used to address those challenges
presented in the previous sections such as space reduction, test
acceleration, surrogate models, noisy signal handling, etc. (§ 3.2.2).
We will then highlight one a specific technique in detail that can
be used to improve sample efficiency through transfer learning of
similar workloads and predictability through drift detection.

Example: Workload Identification

Motivation: Comparing Systems. Assume that by some opti-
mization process we have found the best configuration for a certain
system and workload. Now, as it typically happens in the cloud
scenario, we want to find other systems and workloads that can
benefit from the same setup. Doing so could help reduce the cost of
optimization and improve overall service experience. However, we
can’t use system metrics for this task, as the goal of autotuning is
often to reduce system resources, which would lead to an unstable



SIGMOD-Companion ’25, June 22-27, 2025, Berlin, Germany

signal. Thus, we need to use application-level workload request
info. Yet, even if we have access to the query logs and telemetry
data from all systems (which is not always possible for privacy
reasons), it is not immediately clear how to measure the similarity
between them. This is where Machine Learning can help.

Theory: Embeddings. One approach is to represent each workload
as a vector, or point in a high-dimensional space [31]. Such vector
representation of a complex input is called an embedding and is
widely used in Machine Learning, e.g., in Natural Language Process-
ing [38], Computer Vision [39], and Recommender Systems [24].

Once we have such vector representations, it is trivial to measure
the similarity between the workloads, e.g., using the Euclidean dis-
tance or cosine similarity [4, 48, 55]. We can also use the dimension-
ality reduction techniques to project them into a lower-dimensional
space, e.g., using UMAP [34], t-SNE [50], PCA [6], for visualization,
or use directly for clustering, classification, and other ML tasks [29].
Applications and Challenges. Capturing the embedding of a
workload is not trivial for a number of reasons:

e Query Representation. Queries can be represented in either
raw or structured forms. Raw queries often appear as the text
of SQL statements, such as those found in MySQL slow query
logs [4, 29]. Structured representations include Abstract Syntax
Trees (ASTs), Logical Execution Plans, or Physical Execution
Plans [29, 31]. DB2une introduces QBERT, a query featuriza-
tion method that uses a transformer-based model trained on a
masked-query plan template prediction task. It leverages query
execution plan structures and associated statistics for effective
representation. QTune develops Query2Vector, which extracts
query plans and estimated costs from the database engine and
converts this information into a meaningful vector representa-
tion. ResTune applies TF-IDF (Term Frequency-Inverse Docu-
ment Frequency) to transform raw SQL query text into vectors,
using reserved SQL keywords (e.g., SELECT, UPDATE, JOIN)
to identify query patterns [60].

o Runtime Statistics. Runtime information, such as execution
Directed Acyclic Graphs (DAGs) or query statistics, can provide
a detailed characterization of queries. LITE [31] combines run-
time information from stage-level code and DAGs provided by
the scheduler. It creates token-level embeddings for code and
node-level embeddings for DAGs. Using a combination of Con-
volutional Neural Networks (CNNs) and Graph Convolutional
Networks (GCNs), LITE generates joint embeddings based on
the proposed NECS framework. OtterTune [48, 55] featurizes
workloads using runtime characteristics such as query exe-
cution metrics, resource utilization (e.g., CPU, memory), and
lock/contention metrics, providing a holistic view of workload
behavior. [30, 41] leverage SparkEventLogs to construct fea-
tures to measure workload similarity, summarizing stage-level
(Spark actions/transformations) and task-level (CPU, memory
usage) information. In [30], a total of 75 meta-features are
used to characterize tasks, which are then leveraged for meta-
learning to accelerate optimization across similar tasks. To mea-
sure task similarity, instead of capturing the characteristics of
the query, OpAdviser uses performance model rankings from
historical tasks to measure similarity to the target task [63].

Brian Kroth, Sergiy Matusevych, and Yiwen Zhu

Workload identification is also widely used in applications such as
query optimization where query behavior modeling is needed. A
detailed review of such work can be found at [11].

3.5 MLOS

This session includes a hands-on overview and demonstration of
MLOS [25], a framework for autotuning and experimentation. We
will show how to use MLOS [25] for tuning Linux kernel param-
eters for Redis, and a DBMS like MySQL or Postgres in order to
improve VM and application configurations in the cloud to enhance
performance and efficiency, highlighting the advantages of auto-
mated benchmarking and optimization and a flexible framework to
also allow further research into the space. Azure cloud resources
will be provided for attendees to use during the demo. MLOS can
be used in a browser via Github CodeSpaces [21] or locally using a
devcontainer [36] with all the requirements already available, so
requirements are minimal.

4 Biography

Brian Kroth is a Principal Research Software Development
Engineer at Microsoft’s Gray Systems Lab (GSL), focusing on sys-
tems, databases, and machine learning for systems. He earned both
his Bachelor’s and Master’s degrees in Mathematics and Computer
Science from the University of Wisconsin-Madison and has been
in the IT industry for 25 years. At Microsoft, Brian has worked
on resource management and auto-tuning for various parts of the
Azure Data systems, optimized software for storage, virtualization,
and autoscaling performance, and is one of the primary contribu-
tors to the development of MLOS, an infrastructure for automated
performance engineering.

Sergiy Matusevych is a Principal Data Scientist at Microsoft
Grey Systems Lab (GSL), where he applies Machine Learning for
Workload Identification and System Optimization. Sergiy has devel-
oped the Inference Engine for Teams, worked on Deep Noise Sup-
pression models, ML.NET framework, and served as a PMC Chair
of the Apache REEF project. Prior to joining Microsoft, Sergiy was
a Research Data Engineer at Yahoo! Research and tried his hand at
several ML startups, all of which have failed spectacularly.

Yiwen Zhu is a Principal Scientist at Microsoft’s Gray Sys-
tems Lab (GSL). Her research interests center on the vision of
autonomous cloud systems, utilizing machine learning, statistical
inference, and operation research techniques. Additionally, Yiwen
leads the development of an internal large language model (LLM)
application aimed at improving workflows for software engineers.

Acknowledgments

We would like to acknowledge the many people who have been
involved in some aspects of these efforts, including, but not lim-
ited to Aditya Lakra, Andreas Mueller, Arshdeep Sekhon, Ashit
Gosalia, Carlo Curino, Dario Bernal, Dhruv Relwani, Estera Kot,
Eu Jing Chua, Johannes Freischuetz, Karuna Sagar Krishna, Kelly
Kostopoulou, Konstantinos Kanellis, Long Tian, Mo Liu, Rahul Chal-
lapalli, Rathijit Sen, Roger Barga, Slava Oks, Adam Smiechowski,
Greg Lapinski, Rui Fang, Shaily Fozdar, Shivaram Venkataraman,
Subru Krishnan, Jordan Henkel, Sule Kahraman, Tengfei Huang,
Weihan Tang, Xin He, Yaseen Shady, and many others.



=

=

=

=

Autotuning Systems: Techniques, Challenges, and Opportunities

References
[1] Sami Alabed and Eiko Yoneki. 2021. High-Dimensional Bayesian Optimiza-

tion with Multi-Task Learning for RocksDB. In Proceedings of the 1st Work-
shop on Machine Learning and Systems (Online, United Kingdom) (EuroML-
Sys "21). Association for Computing Machinery, New York, NY, USA, 111-119.
https://doi.org/10.1145/3437984.3458841

Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithviraj
Pandian, Nikolay Laptev, and Ryan Marcus. 2023. AutoSteer: Learned Query
Optimization for Any SQL Database. Proc. VLDB Endow. 16, 12 (Aug. 2023),
3515-3527. https://doi.org/10.14778/3611540.3611544

Zhendong Bei, Zhibin Yu, Huiling Zhang, Wen Xiong, Chengzhong Xu, Lieven
Eeckhout, and Shengzhong Feng. 2016. RFHOC: A Random-Forest Approach
to Auto-Tuning Hadoop’s Configuration. IEEE Transactions on Parallel and
Distributed Systems 27, 5 (2016), 1470-1483. https://doi.org/10.1109/TPDS.2015.
2449299

Alexander Bianchi, Andrew Chai, Vincent Corvinelli, Parke Godfrey, Jarek
Szlichta, and Calisto Zuzarte. 2024. Db2une: Tuning Under Pressure via Deep
Learning. Proc. VLDB Endow. 17, 12 (Nov. 2024), 3855-3868. https://doi.org/10.
14778/3685800.3685811

Lubomir Bulej, Vojtéch Horky, Petr Tuma, Francois Farquet, and Aleksandar
Prokopec. 2020. Duet Benchmarking: Improving Measurement Accuracy in the
Cloud. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering (ICPE "20). ACM, 100-107. https://doi.org/10.1145/3358960.3379132
Baogqing Cai, Yu Liu, Ce Zhang, Guangyu Zhang, Ke Zhou, Li Liu, Chunhua
Li, Bin Cheng, Jie Yang, and Jiashu Xing. 2022. HUNTER: An Online Cloud
Database Hybrid Tuning System for Personalized Requirements. In Proceedings
of the 2022 International Conference on Management of Data (Philadelphia, PA,
USA) (SIGMOD °22). Association for Computing Machinery, New York, NY, USA,
646-659. https://doi.org/10.1145/3514221.3517882

Stefano Cereda, Stefano Valladares, Paolo Cremonesi, and Stefano Doni. 2021.
CGPTuner: a contextual gaussian process bandit approach for the automatic
tuning of IT configurations under varying workload conditions. Proc. VLDB
Endow. 14, 8 (April 2021), 1401-1413. https://doi.org/10.14778/3457390.3457404
Zhuo Chang, Xinyi Zhang, Yang Li, Xupeng Miao, Yanzhao Qin, and Bin Cui.
2024. MFIX: An Efficient and Reliable Index Advisor via Multi-Fidelity Bayesian
Optimization. In 2024 IEEE 40th International Conference on Data Engineering
(ICDE). 4343-4356. https://doi.org/10.1109/ICDE60146.2024.00331

Surajit Chaudhuri and Vivek Narasayya. 2007. Self-tuning database systems: a
decade of progress. In Proceedings of the 33rd international conference on Very
large data bases. 3-14.

Andrew Chung, Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Panagi-
otis Garefalakis, and Gregory R Ganger. 2019. Peering through the dark: An owl’s
view of inter-job dependencies and jobs’ impact in shared clusters. In Proceedings
of the 2019 International Conference on Management of Data. 1889-1892.

Gao Cong, Jingyi Yang, and Yue Zhao. 2024. Machine Learning for Databases:
Foundations, Paradigms, and Open problems. In Companion of the 2024 Interna-
tional Conference on Management of Data (Santiago AA, Chile) (SIGMOD/PODS
’24). Association for Computing Machinery, New York, NY, USA, 622-629.
https://doi.org/10.1145/3626246.3654686

Carlo Curino, Neha Godwal, Brian Kroth, Sergiy Kuryata, Greg Lapinski, Siqi Liu,
Slava Oks, Olga Poppe, Adam Smiechowski, Ed Thayer, et al. 2020. MLOS: An
infrastructure for automated software performance engineering. In Proceedings
of the Fourth International Workshop on Data Management for End-to-End Machine
Learning. 1-5.

[13] Jorg Domaschka, Mark Leznik, Daniel Seybold, Simon Eismann, Johannes

Grohmann, and Samuel Kounev. 2021. Buzzy: Towards Realistic DBMS Bench-
marking via Tailored, Representative, Synthetic Workloads: Vision Paper. In
Companion of the ACM/SPEC International Conference on Performance Engineer-
ing (Virtual Event, France) (ICPE "21). Association for Computing Machinery,
New York, NY, USA, 175-178. https://doi.org/10.1145/3447545.3451175
Chongjiong Fan, Zhicheng Pan, Wenwen Sun, Chengcheng Yang, and Wei-
Neng Chen. 2024. LATuner: An LLM-Enhanced Database Tuning System Based
on Adaptive Surrogate Model. In Machine Learning and Knowledge Discovery in
Databases. Research Track, Albert Bifet, Jesse Davis, Tomas Krilavi¢ius, Meelis
Kull, Eirini Ntoutsi, and Indré Zliobaité (Eds.). Springer Nature Switzerland,
Cham, 372-388.

Peter 1. Frazier. 2018. A Tutorial on Bayesian Optimization.
arXiv:1807.02811 [stat.ML] https://arxiv.org/abs/1807.02811

Johannes Freischuetz, Konstantinos Kanellis, Brian Kroth, and Shivaram
Venkataraman. [n.d.]. Performance Roulette: How Cloud Weather Affects ML-
Based System Optimization.

Johannes Freischuetz, Konstantinos Kanellis, Brian Kroth, and Shivaram
Venkataraman. 2025. Tuna: Tuning unstable and noisy cloud applications. In
Proceedings of the Twentieth European Conference on Computer Systems. 954-973.
Jacob R. Gardner, Matt J. Kusner, Zhixiang Xu, Kilian Q. Weinberger, and John P.
Cunningham. 2014. Bayesian optimization with inequality constraints. In Proceed-

ings of the 31st International Conference on International Conference on Machine
Learning - Volume 32 (Beijing, China) (ICML’14). JMLR.org, II-937-11-945.

[25

[26

[27

[28

[29

[30

[31

@
&,

(33]

[34

[35

'w
S

[37

[38

[39

[40

(41

"~
&

[43

SIGMOD-Companion ’25, June 22-27, 2025, Berlin, Germany

Victor Giannankouris and Immanuel Trummer. 2024. lambda-Tune: Har-
nessing Large Language Models for Automated Database System Tuning.
arXiv:2411.03500 [cs.DB] https://arxiv.org/abs/2411.03500

Alibaba Inc. 2024. Alibaba Open Cluster Trace. Retrieved April 5, 2024 from
https://github.com/alibaba/clusterdata/

Github Inc. 2024. Github CodeSpaces. https://github.com/features/codespaces
Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Rein-
forcement learning: A survey. Journal of artificial intelligence research 4 (1996),
237-285.

Konstantinos Kanellis, Cong Ding, Brian Kroth, Andreas Miiller, Carlo Curino,
and Shivaram Venkataraman. 2022. LlamaTune: sample-efficient DBMS configu-
ration tuning. Proceedings of the VLDB Endowment 15, 11 (2022), 2953-2965.
Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. Computer 42, 8 (2009), 30-37. https:
//doi.org/10.1109/MC.2009.263

Brian Kroth, Sergiy Matusevych, Rana Alotaibi, Yiwen Zhu, Anja Gruenheid,
and Yuanyuan Tian. 2024. MLOS in Action: Bridging the Gap Between Experi-
mentation and Auto-Tuning in the Cloud. Proc. VLDB Endow. 17, 12 (Nov. 2024),
4269-4272. https://doi.org/10.14778/3685800.3685852

Brian Paul Kroth, Carlo Aldo Curino, and Andreas Christian Mueller. 2023. Per-
formance evaluation of an application based on detecting degradation caused by
other computing processes. US Patent 11,816,364.

Jiale Lao, Yibo Wang, Yufei Li, Jianping Wang, Yunjia Zhang, Zhiyuan Cheng,
Wanghu Chen, Mingjie Tang, and Jianguo Wang. 2024. GPTuner: A Manual-
Reading Database Tuning System via GPT-Guided Bayesian Optimization. Proc.
VLDB Endow. 17, 8 (May 2024), 1939-1952. https://doi.org/10.14778/3659437.
3659449

Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. Qtune: A query-aware
database tuning system with deep reinforcement learning. Proceedings of the
VLDB Endowment 12, 12 (2019), 2118-2130.

Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. QTune: a query-aware
database tuning system with deep reinforcement learning. Proc. VLDB Endow. 12,
12 (Aug. 2019), 2118-2130. https://doi.org/10.14778/3352063.3352129

Yang Li, Huaijun Jiang, Yu Shen, Yide Fang, Xiaofeng Yang, Danqing Huang,
Xinyi Zhang, Wentao Zhang, Ce Zhang, Peng Chen, and Bin Cui. 2023. Towards
General and Efficient Online Tuning for Spark. Proc. VLDB Endow. 16, 12 (Aug.
2023), 3570-3583. https://doi.org/10.14778/3611540.3611548

Chen Lin, Junqing Zhuang, Jiadong Feng, Hui Li, Xuanhe Zhou, and Guoliang Li.
2022. Adaptive code learning for spark configuration tuning. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE). IEEE, 1995-2007.
Chenghao Lyu, Qi Fan, Philippe Guyard, and Yanlei Diao. 2024. A Spark Optimizer
for Adaptive, Fine-Grained Parameter Tuning. Proc. VLDB Endow. 17, 11 (Aug.
2024), 3565-3579. https://doi.org/10.14778/3681954.3682021

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making learned query optimization practical.
In Proceedings of the 2021 International Conference on Management of Data. 1275—
1288.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grofberger. 2018. UMAP:
Uniform Manifold Approximation and Projection. Journal of Open Source Software
3,29 (2018), 861. https://doi.org/10.21105/j0ss.00861

Microsoft. 2024. Configure Autotune for Fabric Spark. Retrieved June 27, 2024
from https://learn.microsoft.com/en-us/fabric/data-engineering/autotune?tabs=
sparksql

Microsoft. 2024. Developing inside a Container. https://code.visualstudio.com/
docs/devcontainers/containers

Parimarjan Negi, Matteo Interlandi, Ryan Marcus, Mohammad Alizadeh, Tim
Kraska, Marc Friedman, and Alekh Jindal. 2021. Steering query optimizers: A
practical take on big data workloads. In Proceedings of the 2021 International
Conference on Management of Data. 2557-2569.

OpenAl. 2024. New embedding models and API updates. Retrieved July 5, 2024
from https://openai.com/index/new-embedding-models-and-api-updates/

Jim R Parker. 2010. Algorithms for image processing and computer vision. John
Wiley & Sons.

Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, et al. 2017. Self-
Driving Database Management Systems.. In CIDR, Vol. 4. 1.

David Buchaca Prats, Felipe Albuquerque Portella, Carlos H. A. Costa, and
Josep Lluis Berral. 2020. You Only Run Once: Spark Auto-Tuning From a Sin-
gle Run. IEEE Transactions on Network and Service Management 17, 4 (2020),
2039-2051. https://doi.org/10.1109/TNSM.2020.3034824

Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A
Kozuch. 2012. Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. In Proceedings of the third ACM symposium on cloud computing. 1-13.
Yu Shen, Xinyuyang Ren, Yupeng Lu, Huaijun Jiang, Huanyong Xu, Di Peng,
Yang Li, Wentao Zhang, and Bin Cui. 2023. Rover: An Online Spark SQL Tuning
Service via Generalized Transfer Learning. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (Long Beach, CA, USA) (KDD
’23). Association for Computing Machinery, New York, NY, USA, 4800-4812.


https://doi.org/10.1145/3437984.3458841
https://doi.org/10.14778/3611540.3611544
https://doi.org/10.1109/TPDS.2015.2449299
https://doi.org/10.1109/TPDS.2015.2449299
https://doi.org/10.14778/3685800.3685811
https://doi.org/10.14778/3685800.3685811
https://doi.org/10.1145/3358960.3379132
https://doi.org/10.1145/3514221.3517882
https://doi.org/10.14778/3457390.3457404
https://doi.org/10.1109/ICDE60146.2024.00331
https://doi.org/10.1145/3626246.3654686
https://doi.org/10.1145/3447545.3451175
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/2411.03500
https://arxiv.org/abs/2411.03500
https://github.com/alibaba/clusterdata/
https://github.com/features/codespaces
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.14778/3685800.3685852
https://doi.org/10.14778/3659437.3659449
https://doi.org/10.14778/3659437.3659449
https://doi.org/10.14778/3352063.3352129
https://doi.org/10.14778/3611540.3611548
https://doi.org/10.14778/3681954.3682021
https://doi.org/10.21105/joss.00861
https://learn.microsoft.com/en-us/fabric/data-engineering/autotune?tabs=sparksql
https://learn.microsoft.com/en-us/fabric/data-engineering/autotune?tabs=sparksql
https://code.visualstudio.com/docs/devcontainers/containers
https://code.visualstudio.com/docs/devcontainers/containers
https://openai.com/index/new-embedding-models-and-api-updates/
https://doi.org/10.1109/TNSM.2020.3034824

SIGMOD-Companion ’25, June 22-27, 2025, Berlin, Germany

https://doi.org/10.1145/3580305.3599953

[44] Yu Shen, Xinyuyang Ren, Yupeng Lu, Huaijun Jiang, Huanyong Xu, Di Peng,
Yang Li, Wentao Zhang, and Bin Cui. 2023. Rover: An online Spark SQL tuning
service via generalized transfer learning. arXiv preprint arXiv:2302.04046 (2023).

[45] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in neural information
processing systems. 2951-2959.

[46] Gagan Somashekar, Karan Tandon, Anush Kini, Chieh-Chun Chang, Petr Husak,

Ranjita Bhagwan, Mayukh Das, Anshul Gandhi, and Nagarajan Natarajan. 2024.

{OPPerTune }:{Post-Deployment} Configuration Tuning of Services Made Easy.

In 21st USENIX Symposium on Networked Systems Design and Implementation

(NSDI 24). 1101-1120.

Immanuel Trummer. 2022. DB-BERT: A Database Tuning Tool that "Reads the

Manual". In Proceedings of the 2022 International Conference on Management of

Data (Philadelphia, PA, USA) (SIGMOD °22). Association for Computing Machin-

ery, New York, NY, USA, 190-203. https://doi.org/10.1145/3514221.3517843

[48] Dana Van Aken, Andrew Pavlo, Geoffrey ] Gordon, and Bohan Zhang. 2017.
Automatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM international conference on management
of data. 1009-1024.

[49] Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan Zhang,
Christian Bilien, and Andrew Pavlo. 2021. An inquiry into machine learning-
based automatic configuration tuning services on real-world database man-
agement systems. Proc. VLDB Endow. 14, 7 (March 2021), 1241-1253. https:
//doi.org/10.14778/3450980.3450992

[50] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.

Journal of machine learning research 9, 11 (2008).

Minh Vu and My T. Thai. 2020. PGM-Explainer: Probabilistic Graphical Model

Explanations for Graph Neural Networks. In Advances in Neural Information

Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin

(Eds.), Vol. 33. Curran Associates, Inc., 12225-12235. https://proceedings.neurips.

cc/paper_files/paper/2020/file/8fb134f258b1f7865a6ab2d935a897c9-Paper.pdf

[52] Junxiong Wang, Immanuel Trummer, and Debabrota Basu. 2021. UDO: universal
database optimization using reinforcement learning. Proc. VLDB Endow. 14, 13
(Sept. 2021), 3402-3414. https://doi.org/10.14778/3484224.3484236

[53] Wikipedia. 2023. Pareto front. https://en.wikipedia.org/wiki/Pareto_front.

[54] Zhibin Yu, Zhendong Bei, and Xuehai Qian. 2018. Datasize-Aware High Dimen-
sional Configurations Auto-Tuning of In-Memory Cluster Computing. SIGPLAN
Not. 53, 2 (March 2018), 564-577. https://doi.org/10.1145/3296957.3173187

[55] Bohan Zhang, Dana Van Aken, Justin Wang, Tao Dai, Shuli Jiang, Jacky Lao,

Siyuan Sheng, Andrew Pavlo, and Geoffrey J Gordon. 2018. A demonstration of

the ottertune automatic database management system tuning service. Proceedings

of the VLDB Endowment 11, 12 (2018), 1910-1913.

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,

Yangtao Wang, Tianheng Cheng, Li Liu, et al. 2019. An end-to-end automatic

cloud database tuning system using deep reinforcement learning. In Proceedings

of the 2019 International Conference on Management of Data. 415-432.

William Zhang, Wan Shen Lim, Matthew Butrovich, and Andrew Pavlo. 2024.

The Holon Approach for Simultaneously Tuning Multiple Components in a Self-

Driving Database Management System with Machine Learning via Synthesized

N
=

(51

(56

[57

[58

(59

[60

[61

[62

[63

(65

[66

[67

(68

Brian Kroth, Sergiy Matusevych, and Yiwen Zhu

Proto-Actions. Proceedings of the VLDB Endowment 17, 11 (2024), 3373-3387.
Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian Tan, Feifei Li, and Bin Cui. 2022.
Facilitating database tuning with hyper-parameter optimization: a comprehensive
experimental evaluation. Proceedings of the VLDB Endowment 15, 9 (2022), 1808—
1821.

Xinyi Zhang, Zhuo Chang, Hong Wu, Yang Li, Jia Chen, Jian Tan, Feifei Li, and
Bin Cui. 2023. A Unified and Efficient Coordinating Framework for Autonomous
DBMS Tuning. Proc. ACM Manag. Data 1, 2, Article 186 (June 2023), 26 pages.
https://doi.org/10.1145/3589331

Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying
Zhang, and Bin Cui. 2021. ResTune: Resource Oriented Tuning Boosted by Meta-
Learning for Cloud Databases. In Proceedings of the 2021 International Conference
on Management of Data (Virtual Event, China) (SIGMOD °21). Association for
Computing Machinery, New York, NY, USA, 2102-2114. https://doi.org/10.1145/
3448016.3457291

Xinyi Zhang, Hong Wu, Yang Li, Jian Tan, Feifei Li, and Bin Cui. 2022. Towards
dynamic and safe configuration tuning for cloud databases. In Proceedings of the
2022 International Conference on Management of Data. 631-645.

Xinyi Zhang, Hong Wu, Yang Li, Jian Tan, Feifei Li, and Bin Cui. 2022. Towards
Dynamic and Safe Configuration Tuning for Cloud Databases. In Proceedings
of the 2022 International Conference on Management of Data (Philadelphia, PA,
USA) (SIGMOD °22). Association for Computing Machinery, New York, NY, USA,
631-645. https://doi.org/10.1145/3514221.3526176

Xinyi Zhang, Hong Wu, Yang Li, Zhengju Tang, Jian Tan, Feifei Li, and Bin Cui.
2023. An Efficient Transfer Learning Based Configuration Adviser for Database
Tuning. Proc. VLDB Endow. 17, 3 (Nov. 2023), 539-552. https://doi.org/10.14778/
3632093.3632114

Xinyang Zhao, Xuanhe Zhou, and Guoliang Li. 2023. Automatic Database Knob
Tuning: A Survey. IEEE Transactions on Knowledge and Data Engineering 35, 12
(2023), 12470-12490. https://doi.org/10.1109/TKDE.2023.3266893

Xinran Zhu, Yang Liu, Pieter Ghysels, David Bindel, and Xiaoye S. Li. [n.d.].
GPTuneBand: Multi-task and Multi-fidelity Autotuning for Large-scale High Perfor-
mance Computing Applications. 1-13. https://doi.org/10.1137/1.9781611977141.1
arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611977141.1

Yiwen Zhu, Subru Krishnan, Konstantinos Karanasos, Isha Tarte, Conor Power,
Abhishek Modi, Manoj Kumar, Deli Zhang, Kartheek Muthyala, Nick Jurgens,
et al. 2021. KEA: Tuning an Exabyte-Scale Data Infrastructure. In Proceedings of
the 2021 International Conference on Management of Data. 2667-2680.

Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. BestConfig: tapping the perfor-
mance potential of systems via automatic configuration tuning. In Proceedings
of the 2017 Symposium on Cloud Computing (Santa Clara, California) (SoCC
’17). Association for Computing Machinery, New York, NY, USA, 338-350.
https://doi.org/10.1145/3127479.3128605

Yiwen Zhu, Yuanyuan Tian, Joyce Cahoon, Subru Krishnan, Ankita Agarwal,
Rana Alotaibi, Jesus Camacho-Rodriguez, Bibin Chundatt, Andrew Chung, Ni-
harika Dutta, et al. 2023. Towards Building Autonomous Data Services on Azure.
In Companion of the 2023 International Conference on Management of Data. 217—
224.


https://doi.org/10.1145/3580305.3599953
https://doi.org/10.1145/3514221.3517843
https://doi.org/10.14778/3450980.3450992
https://doi.org/10.14778/3450980.3450992
https://proceedings.neurips.cc/paper_files/paper/2020/file/8fb134f258b1f7865a6ab2d935a897c9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/8fb134f258b1f7865a6ab2d935a897c9-Paper.pdf
https://doi.org/10.14778/3484224.3484236
https://en.wikipedia.org/wiki/Pareto_front
https://doi.org/10.1145/3296957.3173187
https://doi.org/10.1145/3589331
https://doi.org/10.1145/3448016.3457291
https://doi.org/10.1145/3448016.3457291
https://doi.org/10.1145/3514221.3526176
https://doi.org/10.14778/3632093.3632114
https://doi.org/10.14778/3632093.3632114
https://doi.org/10.1109/TKDE.2023.3266893
https://doi.org/10.1137/1.9781611977141.1
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611977141.1
https://doi.org/10.1145/3127479.3128605

	Abstract
	1 Introduction
	2 Tutorial Information
	2.1 Target Audience
	2.2 Tutorial Breakdown

	3 Tutorial Outline
	3.1 Introduction
	3.2 Offline Optimization
	3.3 Online Optimization
	3.4 Common Challenges and Strategies
	3.5 MLOS

	4 Biography
	Acknowledgments
	References

