
Code Researcher: Deep Research Agent for
Large Systems Code and Commit History

Ramneet Singh∗ Sathvik Joel∗ Abhav Mehrotra Nalin Wadhwa
Ramakrishna B Bairi Aditya Kanade Nagarajan Natarajan

Microsoft Research
{ramneet2001,ksjoe30,abhavm1,nalin.wadhwa02}@gmail.com

{ram.bairi,kanadeaditya,nagarajan.natarajan}@microsoft.com

Filtered Context Memory

Crash Report

Analysis Trajectory

Write the results of actions to memory

Generate the patch

Filter the contents 

of memory 

Take multiple 

actions to discover 

more information

if enough context is 
gathered

 then go to step        

else reason over the 

memory using strategiesCrash Report

Crash Report

Rich development 

history

Crash reproducing script

FailureSuccess

Codebase

Global interactions

Large and complex

Crash Report

Noisy

Multiple

stack traces

Ambiguous

Reasoning Strategies

Causal analysis over historic commits

Chasing control and data flow chains

Searching patterns and anti-patterns

Actions

search_code(regex)

search_definition(sym)

search_commits(regex)

Structured 

Context 

Memory

Code snippets

Past commits

Symbol 

definitions

Analysis

Patch

Synthesis

12

3

4

4

5

Validation

Inputs

Figure 1: Code Researcher conducts deep research over code in three phases: (1) Starting with
the codebase and crash report as input, the Analysis phase performs multi-step reasoning about
semantics, patterns, and commit history of code. It gathers context in a structured memory. (2) The
Synthesis phase filters the contents of the memory to keep relevant context and generates a patch.
(3) The Validation phase uses external tools to validate the patch.

Abstract

Large Language Model (LLM)-based coding agents have shown promising results
on coding benchmarks, but their effectiveness on systems code remains underex-
plored. Due to the size and complexities of systems code, making changes to a
systems codebase is a daunting task, even for humans. It requires researching about
many pieces of context, derived from the large codebase and its massive commit
history, before making changes. Inspired by the recent progress on deep research
agents, we design the first deep research agent for code, called Code Researcher,
and apply it to the problem of generating patches for mitigating crashes reported in
systems code. Code Researcher performs multi-step reasoning about semantics,
patterns, and commit history of code to gather sufficient context. The context is
stored in a structured memory which is used for synthesizing a patch. We evaluate
Code Researcher on kBenchSyz [23], a benchmark of Linux kernel crashes, and
show that it significantly outperforms strong baselines, achieving a crash-resolution
rate of 58%, compared to 37.5% by SWE-agent [40]. On an average, Code Re-
searcher explores 10 files in each trajectory whereas SWE-agent explores only
1.33 files, highlighting Code Researcher’s ability to deeply explore the codebase.
Through another experiment on an open-source multimedia software, we show the
generalizability of Code Researcher . Our experiments highlight the importance of
global context gathering and multi-faceted reasoning for large codebases.

∗Equal contribution

Preprint. Under review.



1 Introduction

Automating coding using Large Language Models (LLMs) and LLM-based agents has become a
very active area of research. Popular benchmarks like LiveCodeBench [16] and SWE-bench [17]
respectively test coding abilities on standalone competitive coding problems and GitHub issues over
library or application code. Despite the demonstrated progress of LLM-based coding agents on these
benchmarks, they are yet to scale to complex tasks over an important class of code, systems code.

Systems code powers critical and foundational software like file and operating systems, networking
stacks, distributed cloud infrastructure and system utilities. Systems codebases have multiple dimen-
sions of complexity. Firstly, they are very large, containing thousands of files and millions of lines of
code. Secondly, systems code often interfaces directly with the hardware and is performance critical.
This results in complex low-level code (involving pointer and bit manipulations, compile-time macros,
etc.) in languages like C/C++, and global interactions between different parts of the codebase for
concurrency, memory management, maintenance of data-structure invariants, etc. Finally, founda-
tional systems codebases have rich development histories spanning years or even decades, containing
contributions by hundreds or thousands of developers, which are important references on legacy
design decisions and code changes.

Due to the size and complexities of systems code, making changes to a systems codebase is a daunting
task, even for humans. Automating such changes requires a different type of agents, agents that can
research about many pieces of context, derived automatically from the large codebase and its massive
commit history, before making changes. Recently, deep research agents have been developed to
solve complex, knowledge-intensive problems that require careful context gathering and multi-step
reasoning, before synthesizing the answer. The agents and techniques have mostly focused on long-
form document generation or complex question-answering over web contents [32, 30, 7, 31, 20, 38]
and enterprise data [1, 25]. Inspired by these advances, we propose the first deep research agent
for code, called Code Researcher , and apply it to the problem of generating patches for mitigating
crashes reported in systems code.

As shown in Figure 1, Code Researcher works in three phases: (1) Analysis: Starting with the
crash report and the codebase, this phase performs multi-step reasoning over semantics, patterns, and
commit history of code. The “Reasoning Strategies” block shows the reasoning strategies used. Each
reasoning step is followed by invocations of tools (labeled “Actions” in Figure 1) to gather context
over the codebase and its commit history. The information gathered is stored in a structured context
memory. When the agent is able to conclude that it has gathered sufficient context, it moves to the
next phase. (2) Synthesis: The Synthesis phase uses the crash report, the context memory, and
the reasoning trace of the Analysis phase to filter out irrelevant memory contents. Then, it identifies
one or more buggy code snippets from memory, possibly spread across multiple files, and generates
patches. (3) Validation: Finally, the Validation phase checks if the generated patches prevent the
crash from occurring using external tools. A successful patch is presented to the user.

The Linux kernel [21] is a canonical example of a systems codebase with complex low-level code
and massive size (75K files and 28M lines of code), and has rich development history. Mathai
et al. [23] recently proposed a benchmark, called kBenchSyz, of 279 Linux kernel crashes detected
by the Syzkaller fuzzer [12]. Through extensive experimentation on this challenging benchmark,
we evaluate the effectiveness of Code Researcher and compare it to strong baselines. Most of the
existing coding agents are geared towards resolving bugs in moderately-sized codebases given issue
descriptions, as exemplified by the popular SWE-bench [17] benchmark. The issue descriptions are
written by humans, wherein they explain the nature of the bug and which files are likely relevant.
Coding agents [40, 36] are designed to take advantage of this and quickly navigate the repository
to reach the buggy files. They do not expend much efforts in gathering codebase-wide context. In
our setting, the bugs are described by stack traces which are devoid of natural language hints and
typically contain a much larger number of files and functions than an issue description. Therefore,
multi-step reasoning and context gathering becomes more important. Our experimental results bear a
strong witness to this.

As a strong baseline, we customized SWE-agent [40], a SOTA open-source agent on SWE-bench, for
kernel crash resolution. Code Researcher resolved 48% crashes compared to 31.5% of SWE-agent
with a budget of 5 trajectories each and GPT-4o as the LLM. Code Researcher explored about 10 files
per trajectory compared to a much smaller number 1.33 of files explored by SWE-agent. Further, in a

2



direct comparison on 90 bugs where both Code Researcher and SWE-agent edit all the ground-truth
buggy files, the resolution rate of Code Researcher is 61.1% compared to 37.8% of SWE-agent. This
clearly shows that Code Researcher is able to research and gather more useful context. Using o1 only
for patch generation, Code Researcher’s performance improves to 58%, showing that well-researched
context enables a reasoning model to improve the performance significantly.

Concurrent to our work, Mathai et al. [24] have proposed a specialized agent for resolving Linux
kernel crashes. However, they perform evaluation in the assisted setting wherein (a) the agent is
provided the ground-truth buggy files to edit, and (b) they build Linux-kernel specific tooling to scale.
In contrast, we evaluate in the realistic, unassisted setting in which Code Researcher has to identify
the buggy files by itself, using general search tools. Another factor that distinguishes our work is the
use of commit history, which to the best of our knowledge, none of the existing coding agents do.
Commit history is known to contain important information [18]. With an ablation study, we show
that searching over commits plays an important role in the success of Code Researcher .

In addition to the thorough experimentation on kBenchSyz, we also experiment on an open-source
multimedia software, FFmpeg [3]. Code Researcher was able to generate crash-preventing patches
for 7/10 crash reports tested, establishing its generalizability.

In summary, we make the following main contributions:
(1) We design the first deep research agent for code, Code Researcher, capable of handling large
systems code and resolving crashes. Recognizing the importance of commit history in systems code,
we equip the agent with a tool to efficiently search over commit histories.
(2) We evaluate Code Researcher on the challenging kBenchSyz benchmark [23] and achieve a crash
resolution rate of 58%, outperforming strong baselines. We also demonstrate generalizability of Code
Researcher on a multimedia software, FFmpeg.
(3) Through a comprehensive evaluation, we provide insights such as (i) how our deep research agent
outperforms agents that do not focus on gathering relevant context, (ii) that this advantage persists
even if the existing SOTA agent is given higher inference-time compute, and (iii) reasoning models
improve performance significantly if given well-researched context.

2 Related work

LLM-powered software development subfield has produced several autonomous coding agents [40,
39, 36, 42, 35], predominantly evaluated on SWE-bench [17]. SWE-bench focuses on GitHub issues
from small to medium-sized Python repositories. However, systems code, the focus of our work,
presents unique challenges. We highlight and contrast key related work in this context.

Coding agents Agents like SWE-agent [40] or OpenHands [36] use a single ReAct-style [41] loop
endowed with shell commands or specialized tools for file navigation and editing. However, agents
like these do not use program structure to traverse the codebase (e.g., following data and control
flow chains) and are not designed to reason about complex interactions and gather context. As a
result, they tend to explore a small number of files per bug and make an edit, without gathering and
reasoning over the full context of the bug (see Section 5.3). AutoCodeRover [42] uses tools based
on program structure to traverse the codebase (albeit limited to Python code). It performs explicit
localization of the functions/classes to edit using these tools, and those are later repaired. Code
Researcher does not explicitly localize the functions to edit; instead it gathers relevant context for
patch generation and decides what to edit in the Synthesis phase. Code Researcher is also the first
agent to incorporate causal analysis over historical commits; this is critical to handling subtle bugs
introduced by code evolution in long-lived systems codebases.

Deep research agents Deep research is a fast emerging subfield in agentic AI [25, 30, 7, 31], to
tackle complex, knowledge-intensive tasks, that can take hours or days even for experts. Academic
work so far has focussed on long-form document generation [5, 32], scientific literature review
[38, 14], and complex question-answering [20, 37] based on the web corpus. The key challenges
in deep research for such complex tasks include (a) intent disambiguation, (b) exploring multiple
solution paths (breadth of exploration), (c) deep exploration (iterative tool interactions and reasoning),
and (d) grounding (ensuring that the claims in the response are properly attributed). Most of the
aforementioned challenges also apply to our setting. To the best of our knowledge, our work is the
first to design and evaluate a deep research strategy for complex bug resolution in large codebases.

3



Most recently, OpenAI’s Deep Research model has been integrated with GitHub repos for report
generation and QA over codebases [29]. However, (a) it does not support agentic tasks like bug fixing,
and (b) there is no report on its effectiveness in real-world developer tasks.

Long context reasoning Support for increasing context length sizes in LLMs has been an active
area of research [33, 15], opening up the possibility of feeding the entire repository into an LLM’s
context and generating a patch. But there are a few complications. First, note that the Linux kernel
has over 75K files and 28 Million lines of code. In contrast, state of the art models today (e.g.,
Gemini 2.5 Pro) support at most 2M tokens in the context window [8, 9], roughly corresponding
to around 100K lines of code [8]. Second, long-context models do not robustly make use of the
information in context. They often get “lost in the middle” [22], performing highest when relevant
information occurs at the beginning or end of the input context, and significantly worse when they
must access relevant information in the middle of long contexts. Li et al. [19] found that long-context
LLMs struggle with processing long, context-rich sequences and reasoning over multiple pieces of
information (which is important for any automated software development task).

Automated kernel bug detection and repair Prior work for detecting Linux kernel bugs includes
various types of sanitizers, e.g., Kernel Address Sanitizer (KASAN) [10], and the Syzkaller kernel
fuzzer [12], an unsupervised coverage-guided fuzzer that tries to find inputs on which the kernel
crashes. Code Researcher , complementary to this, generates patches from crash reports. We use some
traditional software engineering concepts like deviant pattern detection [4] and reachability analy-
sis [26], but leverage LLMs to scale to large codebases (Section 3). As noted earlier, CrashFixer [24]
targets Linux kernel crashes but assumes that buggy files are known a priori. This assumption is
unrealistic for large codebases like the Linux kernel. In contrast, Code Researcher autonomously
locates buggy files using general search tools.

3 Design of Code Researcher

Large systems codebases, owing to their critical nature, undergo strict code development and review-
ing practices by expert developers. The bugs that still sneak in are subtle and involve violations of
global invariants (e.g., a certain data structure should be accessed only after holding a specific lock)
and coding conventions (e.g., use of a specific macro to allocate memory), and past changes that
cause unintended side effects. To fix such bugs, an agent needs to gather sufficient context about
the codebase and its commit history, before it can generate any hypotheses about the cause of a bug
and attempt to fix it. With this insight, we design our deep research agent, Code Researcher. As
shown in Figure 1, Code Researcher comprises of three phases: (1) Analysis, (2) Synthesis and (3)
Validation. We discuss the design of these phases in details now. The detailed prompts for all these
phases are provided in the supplementary material.

3.1 Analysis phase

The Analysis phase of Code Researcher is responsible for performing deep research to understand the
cause of a reported crash. We equip this phase with (a) actions to efficiently search over the codebase
and the commit history, (b) reasoning strategies for code, and (c) a structured context memory.

3.1.1 Actions to search over codebase and commit history

We support the following actions: (1) search_definition(sym): To search for the definition(s) of
the specified symbol, which can be the name of a function, struct, global constant, union or macro and
so on. It can be optionally passed the file name to limit the search to a file. (2) search_code(regex):
To search the codebase for matches to the specified regular expression. This is a simple yet powerful
tool, which can be used for searching for any coding pattern such as call to a function, dereferences to
a pointer, assignment to a variable and so on. (3) search_commits(regex): To search for matches
to a regular expression over commit messages and diffs associated with the commits. The regular
expression offers expressiveness, e.g., to search for occurrence of a term (“memory leak”) in the
commit messages or coding patterns in code changes (diffs). In addition, the agent can invoke (4)
done to indicate that it has finished the Analysis phase and (5) close_definition(sym): To
remove the definition of a symbol from the memory if the symbol is deemed irrelevant to the task.

4



3.1.2 Reasoning strategies for code

We ask the agent to explore the codebase to figure out the root cause of a crash and gather sufficient
context to propose a fix. The crash reports consist of stack traces and additional information generated
by diagnostic tools such as an address sanitizer [10] that detects memory corruption, a concurrency
sanitizer [11] that detects data races or an undefined behavior sanitizer [13] that detects undefined
behavior at runtime. We provide a brief description of these tools in the prompt to help the agent
interpret the diagnostic information. We induce the following reasoning strategies through prompting
to guide the exploration of the codebase and its commit history. As shown in Figure 1, each reasoning
step is followed by one or more actions. Additionally, we present the agent with a simple scratchpad
at each step (shown as a markdown list of strings in the prompt), where it can add any important
discoveries about the bug that should be emphasized for future steps.

Chasing control and data flow chains The control flow [26] of a code snippet refers to the
functions that are called and the branches in it, including conditional statements, loops, gotos and
even conditional compilation macros. Given a crash report and some code, the agent is asked to reason
about control flow to understand how execution flows between different functions and how it leads to
the crash. Similarly, data flow [26] refers to how values of variables get passed to different functions
and how one variable is used to define another. So the agent should also reason about how data flows
in the code. As a result of this reasoning, the agent may invoke a search_definition(sym) action
(optionally also specifying the file to search in) to search for the definition of sym if it suspects that
sym may have something to do with the buggy behavior and needs more information about sym to
confirm or dispel the suspicion. It can also use other actions as suitable, e.g., search_code(x\s*=)
to look for assignments to a variable named x, with \s* indicating zero or more whitespaces.

Searching for patterns and anti-patterns Traditional software engineering literature thinks of
bugs as anomalies – patterns of code that are deviant [4]. It follows that, to diagnose and understand
a bug, one can find certain patterns of frequent behavior in the repository and check if a given piece
of code deviates from it. Code Researcher reasons about which behavior is common or “normal” as
well as which code snippets look anomalous. It can then perform a search_code(regex) action to
search for these patterns and anti-patterns using regular expressions. A classic case is checking a
pointer for null value after allocation. If the agent notices a missing null check for ptr, it can perform
search_code(if\s*\(ptr==NULL\)) to search for null checks throughout the codebase on ptr.
Similarly, it can perform search_code(ptr\s*=.*alloc\(.*\)) to search for all allocations to
ptr and actually verify whether other parts of the codebase typically perform a null check or not.

Causal analysis over historical commits An interesting and challenging aspect of a codebase
that has been in development for a long time, as many foundational systems codebases have, is
the rich history of commits. Because of continuous development, it is likely that a new bug has
some past commits that can prove helpful in understanding or solving it. Indeed, developers often
reference other commits when they come up with patches. Code Researcher reasons about how
the codebase has evolved and how that evolution is related to the crash report. It can issue a
search_commits(regex) action to search over past commit messages and diffs. For instance,
the regular expression handle->size | crypto_fun\( matches commits that add or remove a
handle->size access, or a call to crypto_fun.

Iterative process of deep research As shown in Figure 1, in each reasoning step, Code Researcher
is asked to decide if it has acquired sufficient context to understand and solve the crash. If yes, it
moves to the next phase of synthesizing the patch (Section 3.2). Initially, the context is empty and it
starts its reasoning process by analyzing the contents of the stack trace and the diagnostic information
provided as input. In each step, the agent gets to evaluate the context accrued so far, as a whole, in
the light of all possible reasoning strategies it can use. Based on this, it can decide which lines of
exploration to extend, and issue multiple search actions simultaneously.

3.1.3 Structured context memory

We maintain a structured context memory to keep a list of (action, result) pairs for every reasoning
step. Examples of actions and their results are given in Appendix A. The contents of the memory are
reviewed by the agent in each reasoning step.

5



3.2 Synthesis and Validation phases

The contents of memory and the reasoning trace of the Analysis phase are passed to the Synthesis
phase, along with the crash report. The Analysis phase has the flexibility to follow multiple paths of
inquiry simultaneously. It can thus end up collecting information that does not turn out to be relevant,
which also happens when a human does research on some topic. The Synthesis phase first filters the
memory and discards (action, result) pairs that are deemed irrelevant to the task of fixing the crash.
The agent then uses the filtered information to generate a hypothesis about the nature of the bug and
a potential remedy, and the corresponding patch. Finally, in the Validation phase, the patch is applied
to the codebase, and the codebase is compiled. The user-space program that had originally caused a
crash is run. If the crash is reproduced, the patch is rejected. If not, it is accepted.

4 Experimental setup

Benchmarks We use the kBenchSyz benchmark [23] of 279 past Linux kernel crashes found by
the fuzzing tool Syzkaller [12]. Each instance in the benchmark consists of (1) a reproducer file,
containing the user-space program, that triggers the crash, (2) the ground-truth commit that fixed
the bug, i.e., the commit after which the kernel no longer crashes on the reproducer, and (3) the
crash report at the parent commit of the fix commit (we run Code Researcher and other competing
tools at this parent commit). The benchmark also has the kernel config used to compile the crashing
kernel and the list of kernel subsystems involved in each bug. We validated the 279 instances
(i.e., the reproducers and the ground-truth fixes), and ruled out 9 instances for which we could not
run the kernel at the parent commit, 27 for which the kernel at the parent commit did not crash,
and 43 where the kernel still crashed after applying the fix. So, for our experiments, we use the
remaining 200 instances that we successfully validated. For reproducibility, we use the crash reports
generated during our validation instead of the crash reports originally present in kBenchSyz. To show
generalizability, we also evaluated Code Researcher on 10 recent crashes reported for an open-source
multimedia software, FFmpeg [3] (more details in Section 5.5).

Evaluation metrics We compute Pass@k (P@k) defined as P@k = 1, if at least one of the k
candidate patches generated by the tool prevents the crash, i.e., after applying the patch, the compiled
kernel does not crash on the reproducer anymore, or P@k = 0 otherwise. We report (1) Crash
Resolution Rate (CRR) which is average P@k, (2) average recall, i.e., the fraction of files modified
in the ground-truth commit (the ground-truth buggy files) in the set of files edited by the agent,
averaged over the k candidate patches, and (3) the percentage of candidate patches where All, Any or
None of the ground-truth buggy files are edited. When a tool does not produce a patch (e.g., it runs
out of LLM call budget), the set of edited files is assumed to be empty. All the metrics are averaged
over the 200 instances in the benchmark.

LLMs, sampling parameters, and budget We employ GPT-4o (v. 2024-08-06) for Code Re-
searcher and for the competing tools. We also experiment with o1 (v. 2024-12-17) in the Synthesis
phase of Code Researcher. All our experiments have a context length limit of 50K tokens. In the
Analysis phase, we use a temperature of 0.6 and independently sample k trajectories. For the
Synthesis phase, we sample with increasing temperatures (0, 0.3, 0.6) until the agent produces a
correctly-formatted patch, with a maximum of 3 attempts (more sampling details in Appendix B).
We allow Code Researcher and SWE-agent a budget of at most max calls LLM calls per trajectory.

Baselines We evaluate Code Researcher in the unassisted setting (i.e., the ground-truth buggy
files that are part of the fix commits are not divulged to the tool) and compare it against the following
baselines and state-of-the-art techniques:
(1) o1 [28] and GPT-4o [27] in the assisted setting, i.e., we directly give the ground-truth files that
are part of the fix commits, truncated to the context length limit and the crash report as input. We
prompt the model to generate a hypothesis about the root cause of the crash and a patch.
(2) o1 and GPT-4o in the stack context setting, where we give the contents of the files mentioned in
the crash report (truncated to the context length limit) as input besides the crash report.
(3) SWE-agent 1.0 [40], a SOTA coding agent on the SWE-bench benchmark, in the unassisted
setting. For fairness, we added a Linux kernel-specific example trajectory and background about
the kernel to its prompts. We sample k (for Pass@k) SWE-agent trajectories independently using a

6



Table 1: Crash resolution rate (CRR) for different tools on the kBenchSyz benchmark (200 bugs).
LLMs used by the agentic tools are in parentheses. ∗CrashFixer numbers are from [24], out of 279
bugs; results wrt to the 200 bugs (Section 4) will be updated when available.

Setting Tool Max calls P@k CRR (%)

Assisted
GPT-4o 1 P@5 36.00

o1 1 P@5 51.00
CrashFixer (Gemini 1.5 Pro-002)∗ ≥ 4 P@16 49.22∗

Stack context GPT-4o 1 P@5 29.50
o1 1 P@5 40.00

Unassisted
SWE-agent (GPT-4o) 15 P@5 31.50

Code Researcher (GPT-4o) 15 P@5 48.00
Code Researcher (GPT-4o + o1) 15 P@5 58.00

Unassisted
+ Scaled

SWE-agent (GPT-4o) 30 P@5 32.00
Code Researcher (GPT-4o) 30 P@5 47.50

SWE-agent (GPT-4o) 15 P@10 37.50
Code Researcher (GPT-4o) 15 P@10 54.00

temperature of 0.6.
(4) CrashFixer [24], state-of-the-art agent for Linux kernel crash resolution, in the assisted setting,
as it requires the ground-truth files to generate patches. If a patch fails to build or crashes with the
ground-truth reproducer, it iteratively refines it using the respective error messages.
(5) Additionally, we consider an unassisted + test-time scaled setting, where we increase the
test-time compute for Code Researcher and SWE-agent along two axes, i.e., max calls and P@k.

Additional details The detailed prompts and necessary configurations for Code Researcher and
the baselines will be made available in an updated version. The details about crash reproduction
setup and implementation of the search actions are presented in Appendix B.

5 Experimental results

In this section, we present comprehensive evaluation results that show (a) the effectiveness of Code
Researcher in helping resolve Linux kernel crashes compared to state-of-the-art coding agents and
baselines, (b) the importance of context gathered by Code Researcher , and (c) the impact of historical
commits on Code Researcher’s performance. We provide additional results in the Supplementary.

5.1 RQ1: How effective are different tools at resolving Linux kernel crashes?

Our main results are presented in Table 1, organized by setting, namely, assisted, stack context,
unassisted, and unassisted + test-time scaled (Section 4).

The assisted setting establishes that given the contents of the ground-truth buggy files, LLMs like
GPT-4o are quite capable of resolving crashes. Using a reasoning model like o1 significantly boosts
this performance (from 36% to 51%). CrashFixer achieves 49.22% CRR using 4 parallel searches
with tree depth of 4 and branching factor of 1 each (resulting in P@16) where each tree node employs
multiple LLM calls (exact budget is not known, we estimate it as at least 4 calls) to arrive at the patch.

However, the assumption that an oracle can tell us exactly which files need to be edited is impractical.
To show the gap between the assisted (idealistic) setting and the practical unassisted setting, we
present results on the simple but effective stack context setting. Here, the models are given the
contents of all the files mentioned in the crash report (truncated to fit the context length limit) along
with the crash report as input. This is a strong baseline because all the ground-truth buggy files
are present in the crash report for 74.50% bugs in our dataset. We find that o1 achieves a CRR of
40%, which is impressive, albeit a drop of 11% in absolute points from that of the assisted setting.
Importantly, Code Researcher (GPT-4o) in the unassisted setting with 48% CRR, (a) significantly
outperforms both GPT-4o and o1 models in the stack context setting, as well as SWE-agent (GPT-4o)

7



in the unassisted setting, (b) even improves on GPT-4o’s CRR in the assisted setting. Furthermore,
using GPT-4o for the Analysis phase and o1 for the Synthesis phase, Code Researcher achieves the
best CRR of 58% on the dataset. These results indicate that Code Researcher’s Analysis produces
context that is much more effective than giving file contents based on the crash report, and is even
better than directly giving all the contents of the files to be edited.

Finally, we show how test-time scaling, in terms of total inference budget (max calls × num
trajectories k), impacts performance. We find that doubling the max calls budget, i.e., making
the trajectories of the agents longer, has a negligible effect on the CRR. Increasing the number of
trajectories sampled, on the other hand, improves SWE-agent’s CRR to 37.50% and Code Researcher
(GPT-4o)’s CRR to 54.00%.

5.2 RQ2: How well do the files edited by the tools match those modified in developer fixes?

Table 2: Average recall and All/Any/None percentages (metrics defined in Section 4) for the two
agentic tools. LLMs used by the tools are in parentheses.

Setting Tool Max
calls P@k Avg.

Recall All/Any/None (%)

Stack context GPT-4o 1 P@5 0.45 42.5/7.8/49.7
o1 1 P@5 0.42 39.7/7.7/52.6

Unassisted
SWE-agent (GPT-4o) 15 P@5 0.37 35.1/5.6/59.3

Code Researcher (GPT-4o) 15 P@5 0.51 48.2/7.8/44.0
Code Researcher (GPT-4o + o1) 15 P@5 0.52 50.0/7.6/42.4

Unassisted
+ Scaled

SWE-agent (GPT-4o) 30 P@5 0.40 37.9/6.4/55.7
Code Researcher (GPT-4o) 30 P@5 0.52 49.5/8.0/42.5

SWE-agent (GPT-4o) 15 P@10 0.36 34.3/5.4/60.2
Code Researcher (GPT-4o) 15 P@10 0.51 48.4/7.8/43.8

We now investigate whether the tools edited the same files as developers did. Since the ground-truth
buggy files are already divulged to tools in the assisted setting, we focus on the stack context and
unassisted settings. The results are in Table 2. We note that Code Researcher variants (both GPT-4o
and GPT-4o + o1) have significantly higher average recall than GPT-4o and o1 in the stack context
setting, as well as SWE-agent in the unassisted setting. In addition, Code Researcher (GPT-4o) edits
all the ground-truth buggy files in 48.2% of the candidate patches, and at least one in an additional
7.8% of the patches, totaling 56%. These metrics are significantly better than that of all other tools
in the stack context and unassisted settings. Finally, for Code Researcher and SWE-agent, scaling
test-time compute (via increasing max calls or P@k) preserves the degree of overlap between the
edited files and the ground-truth buggy files.

5.3 RQ3: How effective is context gathering for resolving Linux kernel crashes?

Recall from Table 1 that Code Researcher (GPT-4o) significantly outperforms GPT-4o in the assisted
and stack context settings. This points to the usefulness of the context gathered by Code Researcher .
On the other hand, SWE-agent (GPT-4o) in Table 1 also gathers context, but its performance is not
on par. Below, we investigate this discrepancy along multiple axes:

1) Code Researcher gathers much more context than SWE-agent: Figure 2 (a) shows the
distribution of the number of unique files read by Code Researcher and SWE-Agent (both using
GPT-4o, P@5, 15 max calls) for each bug (i.e., all unique files read in the 5 trajectories). Code
Researcher really performs deep research over the codebase, reading 29.13 unique files across 5
top-level directories on average for each bug. In stark contrast, SWE-agent reads only 1.91 files
on average for each bug. When averaged by trajectory, Code Researcher explores 10 unique files
compared to only 1.33 files explored by SWE-agent. One reason for this huge difference is that
existing coding agents have been designed with respect to benchmarks like SWE-bench [17]. Tasks
in these benchmarks do not require deep context gathering and reasoning, unlike tasks over complex
systems codebases where deep exploration and reasoning is crucial (as is evident from our results).

8



0 10 20 30 40 50
Unique files opened (clipped at 50)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

no
rm

al
iz

ed
co

un
t o

f c
ra

sh
es

SWE-agent
CodeResearcher
SWE-agent Avg: 1.9
CodeResearcher Avg: 29.1

(a) Files explored for each crash (summed over 5
trajectories).

11 4452

SWE-agent
CodeResearcher

(b) Overlap of crashes resolved.

Figure 2: SWE-agent vs Code Researcher (both at GPT-4o, P@5, 15 max calls)

2) Code Researcher has better overlap with developer-referenced context: We use LLM-as-judge
to analyze the context gathered by Code Researcher (GPT-4o) and SWE-agent; and determine the
overlap of the contexts with the context mentioned by the developer in the fix commit message
(details in Appendix D). This context overlap is 54.18% (over candidate patches) for SWE-agent
compared to 63.7% for Code Researcher . This suggests that Code Researcher does a much better job
of identifying relevant context that the developer explicitly relied on when making the fix.

3) Code Researcher has a significantly higher CRR than SWE-agent when both the tools
correctly identify all the ground-truth modified files: To isolate the impact of the gathered context,
we consider the subset of 90 bugs, where both Code Researcher (GPT-4o) and SWE-agent edited
all the ground-truth files in at least one candidate patch generated by each tool. Now, if both the
tools are editing the ground-truth files and using the same model for patch generation (GPT-4o), we
can attribute the success (or failure) of the tools on these bugs to the context gathered. We find that
Code Researcher resolves 55/90 = 61.10% of crashes in this subset, while SWE-agent resolves only
34/90 = 37.78% (note that we discount crash-resolving patches from each tool that do not edit all
the ground-truth files). This suggests that Code Researcher’s context is more relevant to the task of
crash resolution than that of SWE-agent.

5.4 RQ4: How important are historical commits for resolving crashes in the Linux kernel?

Table 3: Effectiveness of access to historical commits.

Tool Max
Calls P@k CRR(%) Avg.

Recall All/Any/None(%)

Code Researcher (GPT-4o) 15 P@5 48.00 0.51 48.2/7.8/44.0
W/O search_commits1 15 P@5 38.00 0.33 32.6/2.4/65.0

1 We do this ablation only on the 96 bugs resolved by Code Researcher (GPT-4o, Pass@5, 15 max calls).

To the best of our knowledge, Code Researcher is the first agent to explicitly leverage the rich
development history of codebases. To evaluate the importance of historical commits, we perform
an ablation study, where we run Code Researcher without the search_commits action on the set
of 96 bugs that were successfully resolved by Code Researcher (GPT-4o, Pass@5, 15 max calls).
The results are in the second row of Table 3. We observe that removing the search_commits action
leads to a 10% drop in the crash resolution rate. More importantly, both recall and the model’s ability
to identify all or any of the ground-truth modified files decrease substantially. This highlights that
the search_commits action plays a crucial role in guiding the agent toward relevant context and in
correctly localizing the files to be fixed. Notably, for the example in Appendix C.1, we also observe
that Code Researcher navigates to the same buggy commit that the developer identified as the source
commit that originally introduced the bug being repaired.

9



5.5 RQ5: Does Code Researcher generalize to other systems codebases?

To demonstrate that Code Researcher generalizes with a little effort to other codebases, we experiment
with the task of crash resolution in the FFmpeg [3] codebase. FFmpeg is a leading open-source
multimedia framework, that supports ability to decode, encode, transcode, mux, demux, stream, filter
and play all existing media formats. Since it needs to handle a wide range of formats, from very old
to the cutting edge, low-level data manipulation is common in the codebase. FFmpeg has ∼ 4.8K
files and ∼ 1.46M lines of code, primarily comprising C / C++ and also some handwritten assembly
code for performance.

Dataset We use vulnerabilities discovered by the OSS-Fuzz service [6] that runs fuzzers on various
open source projects and creates alerts for the bugs detected. We focus on security issues, which
are assigned the top priority by OSS-Fuzz. These include heap-based buffer overflows, stack-based
buffer overflows, use-after-frees, etc. We build a small dataset of 10 FFmpeg crashes, taking the 11
most recent crashes (as of May 14, 2025) that have been verified as fixed and skipping 1 that we
could not validate. 2 We use the instructions recommended by OSS-Fuzz for building FFmpeg and
testing whether a crash reproduces. 3 The dataset contains the commit at which OSS-Fuzz found the
crash, a reproducer file that triggered the crash, and the crash report that we generated by reproducing
the crash (the crash reports found by OSS-Fuzz are not publicly visible). The dataset and the detailed
prompts will be made available in an updated version.

Results To run Code Researcher on these crashes, we keep the same core prompts, adding a
one-paragraph preamble about FFmpeg and replacing the few-shot examples for the Linux kernel
with corresponding ones for FFmpeg.

Code Researcher, in the unassisted setting using GPT-4o for the Analysis phase and o1 for the
Synthesis phase, with a max calls budget of 15, resolves 7 out of the 10 crashes in our dataset
at Pass@1, i.e., we sample only one patch per crash. Code Researcher achieves an average recall
of 0.78, edits all the ground-truth modified files in 7 crashes and none of the ground-truth
modified files in 2 crashes. 4 While this suggests that FFmpeg crashes are typically not as complex
to resolve as Linux kernel crashes, our results show that Code Researcher’s techniques generalize
easily and effectively to other systems codebases.

5.6 Qualitative evaluation

Even if a patch prevents the crash, that does not guarantee that it actually fixes the underlying issue.
Any form of test-based evaluation (as is done even in other benchmarks like SWE-bench [17]) has
the limitation that it cannot ensure preservation of functionality that the tests do not cover. Testing the
full functionality of the kernel easily and reliably is a hard open research problem. While perusing
the crash-preventing patches, we came across the following types of patches:
(1) Accurate These patches correctly identify and fix the root cause of the crash in a manner that
closely resembles the developer solution. For example, for a crash in the JFS filesystem (Listing 1,
Appendix E), Code Researcher generated a patch equivalent to the developer’s solution.
(2) Overspecialized These patches successfully prevent the crash but may be overspecialized. As
shown in (Listing 2, Appendix E) for a crash in the Bluetooth HCI H5 driver, Code Researcher
correctly identified that hu->serdev could be NULL. However, while the developer simply added a
NULL check around the existing code, Code Researcher’s patch included additional error handling
with a diagnostic message and explicit return values.
(3) Incomplete These patches correctly identify the problem area and approach, but may not be
complete. They provide significant debugging insights and could accelerate the path to a proper fix.
For example, in the QRTR networking subsystem (Listing 3, Appendix E), Code Researcher correctly
identifies a concurrency bug involving radix tree traversal without RCU protection and inserts the
appropriate synchronization in one affected function, but not in others.
(4) Incorrect These patches fail to address the root cause or may introduce new issues. In the QRTR

2https://issues.oss-fuzz.com/issues?q=project:ffmpeg%20type:vulnerability%
20status:verified&s=modified_time:desc&p=1

3https://google.github.io/oss-fuzz/advanced-topics/reproducing/
4For 1 crash where we couldn’t find the ground-truth fix (and hence the ground-truth modified files), we

exclude it from the calculation of recall and All/Any/None numbers.

10

https://issues.oss-fuzz.com/issues?q=project:ffmpeg%20type:vulnerability%20status:verified&s=modified_time:desc&p=1
https://issues.oss-fuzz.com/issues?q=project:ffmpeg%20type:vulnerability%20status:verified&s=modified_time:desc&p=1
https://google.github.io/oss-fuzz/advanced-topics/reproducing/


networking subsystem (Listing 4, Appendix E), Code Researcher failed to infer the root cause of the
issue which is an integer truncation problem when handling large u32 port numbers. Code Researcher
instead added checks that reject ports with port < 0.

6 Conclusions, limitations, and future work

In this work, we take a concrete step forward in the fast emerging field of LLM-based coding agents,
extending them to deep research scenarios arising in resolving complex issues in large systems
codebases. We show that (a) we can exploit the rich history of development in the codebases
(commits), and (b) design effective deep exploration strategies for gathering rich context often needed
to root-cause and patch code crashes. We establish state-of-the-art results on the latest and challenging
benchmark of Linux kernel crashes.

Our work currently targets the crash resolution problem, but there are other equally important
problems faced by systems software such as slow response times, excessive resource usage and
flakiness. It remains to be seen if our deep research strategy could generalize to these scenarios. Deep
research for code is a new subfield of agentic AI. We intend to explore novel usecases and strategies
beyond the ones presented in the paper.

References
[1] Anthropic. Claude takes research to new places, 2025. URL https://www.anthropic.com/

news/research.

[2] ccache. ccache. URL https://github.com/ccache/ccache.

[3] F. community. Ffmpeg, 2025. URL https://ffmpeg.org/.

[4] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behavior: a general
approach to inferring errors in systems code. SIGOPS Oper. Syst. Rev., 35(5):57–72, Oct. 2001.
ISSN 0163-5980. doi: 10.1145/502059.502041. URL https://doi.org/10.1145/502059.
502041.

[5] A. Godbole, N. Monath, S. Kim, A. S. Rawat, A. McCallum, and M. Zaheer. Analysis of
plan-based retrieval for grounded text generation. arXiv preprint arXiv:2408.10490, 2024.

[6] Google. Oss-fuzz | documentation for oss-fuzz. URL https://google.github.io/
oss-fuzz/.

[7] Google. Gemini deep research, 2025. URL https://gemini.google/overview/
deep-research.

[8] Google. Generative ai | documentation | long context. https://cloud.google.com/
vertex-ai/generative-ai/docs/long-context, 2025. Accessed: 2025-03-13.

[9] Google. Generative ai | documentation | gemini 2.5 pro. https://cloud.google.com/
vertex-ai/generative-ai/docs/models/gemini/2-5-pro, 2025. Accessed: 2025-05-
16.

[10] Google. Kasan, 2025. URL https://github.com/google/kernel-sanitizers/blob/
master/KASAN.md.

[11] Google. Kcsan, 2025. URL https://github.com/google/kernel-sanitizers/blob/
master/KCSAN.md.

[12] Google. Syzkaller, 2025. URL https://github.com/google/syzkaller/.

[13] Google. Ubsan, 2025. URL https://github.com/google/kernel-sanitizers/blob/
master/UBSAN.md.

[14] J. Gottweis, W.-H. Weng, A. Daryin, T. Tu, A. Palepu, P. Sirkovic, A. Myaskovsky, F. Weis-
senberger, K. Rong, R. Tanno, et al. Towards an ai co-scientist. arXiv preprint arXiv:2502.18864,
2025.

11

https://www.anthropic.com/news/research
https://www.anthropic.com/news/research
https://github.com/ccache/ccache
https://ffmpeg.org/
https://doi.org/10.1145/502059.502041
https://doi.org/10.1145/502059.502041
https://google.github.io/oss-fuzz/
https://google.github.io/oss-fuzz/
https://gemini.google/overview/deep-research
https://gemini.google/overview/deep-research
https://cloud.google.com/vertex-ai/generative-ai/docs/long-context
https://cloud.google.com/vertex-ai/generative-ai/docs/long-context
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro
https://github.com/google/kernel-sanitizers/blob/master/KASAN.md
https://github.com/google/kernel-sanitizers/blob/master/KASAN.md
https://github.com/google/kernel-sanitizers/blob/master/KCSAN.md
https://github.com/google/kernel-sanitizers/blob/master/KCSAN.md
https://github.com/google/syzkaller/
https://github.com/google/kernel-sanitizers/blob/master/UBSAN.md
https://github.com/google/kernel-sanitizers/blob/master/UBSAN.md


[15] D. Guo, C. Xu, N. Duan, J. Yin, and J. McAuley. Longcoder: A long-range pre-trained
language model for code completion. In International Conference on Machine Learning, pages
12098–12107. PMLR, 2023.

[16] N. Jain, K. Han, A. Gu, W.-D. Li, F. Yan, T. Zhang, S. Wang, A. Solar-Lezama, K. Sen, and
I. Stoica. Livecodebench: Holistic and contamination free evaluation of large language models
for code. arXiv preprint arXiv:2403.07974, 2024.

[17] C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. R. Narasimhan. SWE-
bench: Can language models resolve real-world github issues? In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=VTF8yNQM66.

[18] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxonomy of approaches for mining
software repositories in the context of software evolution. Journal of software maintenance and
evolution: Research and practice, 19(2):77–131, 2007.

[19] T. Li, G. Zhang, Q. D. Do, X. Yue, and W. Chen. Long-context llms struggle with long
in-context learning. arXiv preprint arXiv:2404.02060, 2024.

[20] X. Li, J. Jin, G. Dong, H. Qian, Y. Zhu, Y. Wu, J.-R. Wen, and Z. Dou. Webthinker: Empowering
large reasoning models with deep research capability. arXiv preprint arXiv:2504.21776, 2025.

[21] Linus Torvalds. Linux, 1991. URL https://github.com/torvalds/linux.

[22] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang. Lost in
the middle: How language models use long contexts. Transactions of the Association for
Computational Linguistics, 12:157–173, 2024.

[23] A. Mathai, C. Huang, P. Maniatis, A. Nogikh, F. Ivančić, J. Yang, and B. Ray. Kgym: A
platform and dataset to benchmark large language models on linux kernel crash resolution.
Advances in Neural Information Processing Systems, 37:78053–78078, 2024.

[24] A. Mathai, C. Huang, S. Ma, J. Kim, H. Mitchell, A. Nogikh, P. Maniatis, F. Ivančić, J. Yang,
and B. Ray. Crashfixer: A crash resolution agent for the linux kernel. arXiv preprint
arXiv:2504.20412, 2025.

[25] Microsoft. Introducing researcher and analyst in microsoft 365 copilot, 2025.
URL https://www.microsoft.com/en-us/microsoft-365/blog/2025/03/25/
introducing-researcher-and-analyst-in-microsoft-365-copilot/.

[26] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program analysis. springer, 2015.

[27] OpenAI. Introducing openai o1-preview, 2024. URL https://openai.com/index/
hello-gpt-4o/.

[28] OpenAI. Introducing openai o1-preview, 2024. URL https://openai.com/index/
introducing-openai-o1-preview/.

[29] OpenAI. Openai deep research integration with github, 2025. URL https://help.openai.
com/en/articles/11145903-connecting-github-to-chatgpt-deep-research.

[30] OpenAI. Introducing deep research, 2025. URL https://openai.com/index/
introducing-deep-research/.

[31] Perplexity. Introducing perplexity deep research, 2025. URL https://www.perplexity.ai/
de/hub/blog/introducing-perplexity-deep-research.

[32] Y. Shao, Y. Jiang, T. A. Kanell, P. Xu, O. Khattab, and M. S. Lam. Assisting in writing wikipedia-
like articles from scratch with large language models. arXiv preprint arXiv:2402.14207, 2024.

[33] G. Team, P. Georgiev, V. I. Lei, R. Burnell, L. Bai, A. Gulati, G. Tanzer, D. Vincent, Z. Pan,
S. Wang, et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of
context. arXiv preprint arXiv:2403.05530, 2024.

12

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://github.com/torvalds/linux
https://www.microsoft.com/en-us/microsoft-365/blog/2025/03/25/introducing-researcher-and-analyst-in-microsoft-365-copilot/
https://www.microsoft.com/en-us/microsoft-365/blog/2025/03/25/introducing-researcher-and-analyst-in-microsoft-365-copilot/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://help.openai.com/en/articles/11145903-connecting-github-to-chatgpt-deep-research
https://help.openai.com/en/articles/11145903-connecting-github-to-chatgpt-deep-research
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://www.perplexity.ai/de/hub/blog/introducing-perplexity-deep-research
https://www.perplexity.ai/de/hub/blog/introducing-perplexity-deep-research


[34] universal-ctags. ctags. URL https://github.com/universal-ctags/ctags.

[35] N. Wadhwa, A. Sonwane, D. Arora, A. Mehrotra, S. Utpala, R. B. Bairi, A. Kanade, and
N. Natarajan. MASAI: Modular architecture for software-engineering AI agents. In NeurIPS
2024 Workshop on Open-World Agents, 2024. URL https://openreview.net/forum?id=
NSINt8lLYB.

[36] X. Wang, B. Li, Y. Song, F. F. Xu, X. Tang, M. Zhuge, J. Pan, Y. Song, B. Li, J. Singh, H. H.
Tran, F. Li, R. Ma, M. Zheng, B. Qian, Y. Shao, N. Muennighoff, Y. Zhang, B. Hui, J. Lin,
R. Brennan, H. Peng, H. Ji, and G. Neubig. Openhands: An open platform for AI software
developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=OJd3ayDDoF.

[37] J. Wu, J. Zhu, and Y. Liu. Agentic reasoning: Reasoning llms with tools for the deep research.
arXiv preprint arXiv:2502.04644, 2025.

[38] W. Wu, S. Huang, Y. Jiang, P. Xie, F. Huang, and H. Zhao. Unfolding the headline: Iterative self-
questioning for news retrieval and timeline summarization. arXiv preprint arXiv:2501.00888,
2025.

[39] C. S. Xia, Y. Deng, S. Dunn, and L. Zhang. Agentless: Demystifying llm-based software
engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

[40] J. Yang, C. E. Jimenez, A. Wettig, K. Lieret, S. Yao, K. Narasimhan, and O. Press. Swe-
agent: Agent-computer interfaces enable automated software engineering, 2024. URL https:
//arxiv.org/abs/2405.15793.

[41] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing rea-
soning and acting in language models. In International Conference on Learning Representations
(ICLR), 2023.

[42] Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury. Autocoderover: Autonomous program
improvement. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2024, page 1592–1604, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400706127. doi: 10.1145/3650212.3680384. URL
https://doi.org/10.1145/3650212.3680384.

13

https://github.com/universal-ctags/ctags
https://openreview.net/forum?id=NSINt8lLYB
https://openreview.net/forum?id=NSINt8lLYB
https://openreview.net/forum?id=OJd3ayDDoF
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://doi.org/10.1145/3650212.3680384


A Example of agent trajectory

In this section, we show an example Analysis trajectory generated by Code Researcher while solving
a kernel crash from the dataset5. The truncated crash report that initiates the investigation of the
example is shown in Figure 3.

The trajectory begins in Figure 4. Code Researcher identifies a warning in smsusb_term_device
related to __flush_work and forms an initial hypothesis about workqueue synchronization issues.
The agent then explores the codebase by examining the __flush_work implementation and analyzing
the smsusb_stop_streaming function’s synchronous URB cancellation pattern in Figure 5, while
also searching for relevant commit history to identify potential race conditions.

In Figures 6–8, Code Researcher traces prior fixes for related bugs in smsusb_term_device,
inspects synchronization behavior in cancel_work_sync and __cancel_work_timer. It uncovers
a critical misstep where work item initialization via INIT_WORK in smsusb_onresponse can be
bypassed, resulting in NULL work->func pointers that explain the observed warning.

Finally, in Figure 9, Code Researcher confirms the root cause: though smsusb_onresponse correctly
initializes work structures with INIT_WORK, it is not sufficient. If smsusb_stop_streaming is called
before any URB completion occurs, the system attempts to cancel uninitialized work items, triggering
warnings in __flush_work when it encounters NULL function pointers.

smsusb:smsusb_probe: board id=7, interface number 0

------------[ cut here ]------------ 

WARNING: 

CPU: 0 PID: 9 at kernel/workqueue.c:3182 __flush_work+0x95c/0xbf0 kernel/workqueue.c:3182

Call Trace:

 <TASK>

 __cancel_work_timer+0x3e6/0x580 kernel/workqueue.c:3276

 smsusb_stop_streaming drivers/media/usb/siano/smsusb.c:182 [inline]

 smsusb_term_device+0xef/0x300 drivers/media/usb/siano/smsusb.c:344

 smsusb_init_device+0xb60/0xd10 drivers/media/usb/siano/smsusb.c:419

 smsusb_probe+0x5b1/0x10c0 drivers/media/usb/siano/smsusb.c:567

 usb_probe_interface+0x307/0x930 drivers/usb/core/driver.c:396

…
worker_thread+0x687/0x1110 kernel/workqueue.c:2552

kthread+0x33a/0x430 kernel/kthread.c:379

ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308

 </TASK>

Figure 3: Crash report of the kernel crash example discussed in Appendix A.

5Bug in syzkaller: https://syzkaller.appspot.com/bug?id=35dd38010e383ee37d27b39f6b50eb25b4c92dd2

14

https://syzkaller.appspot.com/bug?id=35dd38010e383ee37d27b39f6b50eb25b4c92dd2


The results of actions are added to memory

You are analyzing a kernel crash report. Your task is to explore the repository using available tools 

and gather enough context to completely understand all possible root causes of the crash and how to 

fix it.

STEP 0 of 9

BUG TITLE : WARNING in  smsusb_term_device

CRASH REPORT:

{crash_report}

AVAILABLE ACTIONS (write one action per line with no formatting inside <actions> tags):

<actions>

close_definition(filePath, symbolName, startLine) 
Close a definition that is not relevant to the bug (e.g. debug functions like dump_stack)

search_definition(filePath, symbolName)    
Open the definition of a specified symbol, which can be a function name, a struct name, a constant, 

a union or a macro

search_definition(symbolName)              
Open the definition of a symbol when you don't know its file path. Use this to search for the 

definition of symbols whose file you don't know.

search_code("regex pattern")              
Search through all tracked files in the repository using git grep with regex pattern. Shows 2 context 

lines before and after each match, limited to 5 matches total.

done End exploration because you have gathered enough context to 

understand the bug and propose a fix. You must only take this action if you are satisfied with the 

justification you provided in the thoughts section. If unsure, continue exploring. You should also 

write your justification after this action inside <justification></justification> tags. (followed by 

justification in <justification> tags)

</actions>

You should examine the evidence and write your thoughts about the current state… Focus on 

gathering all the relevant context and understanding the bug step-by-step, through careful reasoning 

steps.

The crash report indicates a warning in the `smsusb_term_device` function. The warning is triggered 

during a call to `__flush_work` in `kernel/workqueue.c`.

…

The issue appears to be related to the handling of work items, possibly involving improper 

synchronization or misuse of workqueues. To understand the root cause, I need to examine the 

`smsusb_term_device` function and the `smsusb_stop_streaming` function to see how work 

items are managed and flushed. Additionally, I should explore how `__flush_work` is used and 

what could lead to the warning in this context.

<actions> 
search_definition("drivers/media/usb/siano/smsusb.c", "smsusb_term_device") 
search_definition("drivers/media/usb/siano/smsusb.c", "smsusb_stop_streaming") 
search_code("__flush_work") 
</actions>

Figure 4: Code Researcher trajectory while solving the crash described in Figure 3: Step 0 of 9

15



The contents from the memory are added to prompt

From the definitions, `smsusb_stop_streaming` iterates over an array of URBs, cancelling each 

work item synchronously. This synchronous cancellation could be problematic if there's a race 

condition or if the workqueue is not in a proper state when the function is called. 

To understand the root cause, I need to investigate how `cancel_work_sync` is used in 

conjunction with work items and what specific conditions in `__flush_work` might lead to the 

warning…. Additionally, I should search for past commits related to `smsusb_term_device`, 

`smsusb_stop_streaming`, and workqueue handling to see if there have been any recent changes 

or known issues. …

<actions> 
search_definition("cancel_work_sync")
search_commits("smsusb_term_device")
search_commits("smsusb_stop_streaming")
search_commits("cancel_work_sync")
</actions>

STEP 1 of 9

PREVIOUS SEARCHES AND RESULTS:

Query: search_code("__flush_work")
Results: 

include/linux/workqueue.h=447=extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork);
include/linux/workqueue.h-448-
include/linux/workqueue.h:449:extern void __flush_workqueue(struct workqueue_struct *wq);
include/linux/workqueue.h-450-extern void drain_workqueue(struct workqueue_struct *wq);
include/linux/workqueue.h-451-

===

include/linux/workqueue.h=575=extern void __warn_flushing_systemwide_wq(void)
--
include/linux/workqueue.h-615- if (0)        \
include/linux/workqueue.h-616-  __warn_flushing_systemwide_wq();   \
include/linux/workqueue.h:617: __flush_workqueue(system_wq);     \
include/linux/workqueue.h-618-})
include/linux/workqueue.h-619-

( … more results of this query are not shown in this figure due to space constraints )

CURRENTLY OPEN DEFINITIONS: 

File: drivers/media/usb/siano/smsusb.c 
Symbol: smsusb_term_device Lines 337 to 355
 ```c
337| static void smsusb_term_device(…)
338|{
… ( we show the complete definition in the actual prompt )

355| }
```

File: drivers/media/usb/siano/smsusb.c  
Symbol: smsusb_stop_streaming  
Lines 176 to 189
```c
176| static void smsusb_stop_streaming(…)
177|{
… ( we show the complete definition in the actual prompt )

189| }
```

The results of actions are added to memory

Figure 5: Code Researcher trajectory while solving the crash described in Figure 3: Step 1 of 9

16



The results of actions are added to memory

<actions> 
search_definition("__cancel_work_timer")
search_definition("kernel/workqueue.c", "__flush_work")
</actions>

STEP 2 of 9

PREVIOUS SEARCHES AND RESULTS:

Query: search_commits("smsusb_term_device")
Results: 
Commit message:

commit 31e0456de5be379b10fea0fa94a681057114a96e

Author: Alan Stern <stern@rowland.harvard.edu> 

Date: Tue May 7 12:39:47 2019 -0400

media: usb: siano: Fix general protection fault in smsusb…

Patch:

diff --git a/drivers/media/usb/siano/smsusb.c b/drivers/media/usb/siano/smsusb.c
@@ -400,6 +400,7 @@ static int smsusb_init_device(struct usb_interface *intf, int board_id)
(… we provide the complete commit in the prompt truncated at 100 Lines )

===

Commit message:

786baecfe78f8e25547c628b48a60fc8e5636056

Author: Mauro Carvalho Chehab <mchehab@kernel.org>

Date:   Thu Jun 14 16:35:56 2012 -0300

[media] dvb-usb: move it to drivers/media/usb/dvb-usb…

Patch:

diff --git a/drivers/media/usb/siano/smsusb.c b/drivers/media/usb/siano/smsusb.c
(… we provide the complete commit in the prompt truncated to 100 Lines )

( … more results of this and other search_commit query are not shown in this figure due to space constraints )

CURRENTLY OPEN DEFINITIONS: 

( … the previously opened definitions of `smsusb_term_device` and `smsusb_stop_streaming` are still shown 
here in the prompt, but not shown in this figure to save space )

File: kernel/workqueue.c  Symbol: cancel_work_sync  Lines 3310 to 3313
```c
3310| bool cancel_work_sync(struct work_struct *work)
3311| {
3312| return __cancel_work_timer(work, false);
3313| }
```

The commit history reveals some interesting points:

1. There was a fix for a general protection fault in the `smsusb` driver related to endpoint initialization, which 

suggests that endpoint management might have been problematic in the past.

2. A past commit addresses use-after-free bugs caused by `do_submit_urb()`, which is relevant since improper 

URB management could lead to synchronization issues.

3. Changes to `cancel_work_sync` function suggest potential race conditions or synchronization problems 

involving work items.

The definition of `cancel_work_sync` is straightforward, but I need to examine `__cancel_work_timer`

The contents from the memory are added to prompt

Figure 6: Code Researcher trajectory while solving the crash described in Figure 3: Step 2 of 9

17



STEP 3 of 9

CURRENTLY OPEN DEFINITIONS:

( … The previously opened definitions of `smsusb_term_device`, `smsusb_stop_streaming` and 
`cancel_work_sync` are still shown here in the prompt )

File: kernel/workqueue.c  Symbol: __cancel_work_timer  Lines 3228 to 3290

```c
3228| static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3229| {
… ( we show the complete definition in the actual prompt )

3290| }
```

File: kernel/workqueue.c  Symbol: __flush_work  Lines 3175 to 3195
```c
3175| static bool __flush_work(struct work_struct *work, bool from_cancel)
3176| {
… ( we show the complete definition in the actual prompt )

3195| }
```

The fact that `__flush_work` is called within `__cancel_work_timer` when the workqueue is online indicates 

that the warning could be triggered if `work->func` is NULL at this point.

The root cause of the warning likely involves improper initialization or handling of work items, specifically ensuring 

that the function pointer is set before the work item is queued or flushed. This could be due to a bug in how work 

items are initialized or how they are managed in the `smsusb_stop_streaming` function.

To confirm this hypothesis, I need to verify how the work items (`dev->surbs[i].wq`) are initialized and assigned 

their function pointers…

<actions> 
search_code("INIT_WORK")
search_commits("work->func")
search_commits("smsusb_device_t")
</actions>

The results of actions are added to memory

The contents from the memory are added to prompt

Figure 7: Code Researcher trajectory while solving the crash described in Figure 3: Step 3 of 9

18



STEP 4 of 9

PREVIOUS SEARCHES AND RESULTS:

Query: search_code("INIT_WORK")
Results: 

drivers/media/usb/siano/smsusb.c=86=static void smsusb_onresponse(struct urb *urb)
--
drivers/media/usb/siano/smsusb.c-144-
drivers/media/usb/siano/smsusb.c-145-exit_and_resubmit:
drivers/media/usb/siano/smsusb.c:146: INIT_WORK(&surb->wq, do_submit_urb);
drivers/media/usb/siano/smsusb.c-147- schedule_work(&surb->wq);
drivers/media/usb/siano/smsusb.c-148-}
===
kernel/workqueue.c=520=static inline void debug_work_deactivate(struct work_struct *work)
--
kernel/workqueue.c-523-}
kernel/workqueue.c-524-
kernel/workqueue.c:525:void __init_work(struct work_struct *work, int onstack)
kernel/workqueue.c-526-{
kernel/workqueue.c-527- if (onstack)

( … more results of this query are not shown in this figure due to space constraints )

Query: search_commits("work->func")
Results:

Commit message:

commit c76feb0d5dfdb90b70fa820bb3181142bb01e980

Author: Paul E. McKenney paulmck@kernel.org

 workqueue: Make show_pwq() use run-length encoding …

(… we provide the complete commit in the prompt 
truncated to 100 Lines )

(… we show the top 5 commits matching the query, not 
shown here due to space constraints)

Query: search_commits("smsusb_device_t")
Results:

Commit message:

commit dd47fbd40e6ea6884e295e13a2e50b0894258fdf

Author: Mauro Carvalho Chehab mchehab@kernel.org

 [media] smsusb: don't sleep while atomic…

(… we provide the complete commit in the prompt 
truncated to 100 Lines )

(… we show the top 5 commits matching the query, not 
shown here due to space constraints)

The results of actions are added to memory

The contents from the memory are added to prompt

The search results show that the work items (`dev->surbs[i].wq`) are initialized using `INIT_WORK(&surb-
>wq, do_submit_urb)` in the `smsusb_onresponse` function. The function pointer `do_submit_urb` is 

assigned during initialization. This means that if the work items are not properly initialized or if the initialization 

logic is bypassed, the function pointer `work->func` could be NULL, leading to the warning observed in 

`__flush_work`….

I should verify the sequence of operations leading to the initialization of work items and their cancellation. …

<actions> 
search_code("smsusb_onresponse")
search_commits("smsusb_onresponse")
search_commits("smsusb_stop_streaming")
search_commits("race condition")
</actions>

(…the previously opened definitions are still shown here in the prompt, not included in this figure to save space)

Figure 8: Code Researcher trajectory while solving the crash described in Figure 3: Step 4 of 9

19



STEP 5 of 9

PREVIOUS SEARCHES AND RESULTS:

Query: search_code("smsusb_onresponse")
Results: 

drivers/media/usb/siano/smsusb.c=63=static int smsusb_submit_urb(struct smsusb_device_t *dev,
--
drivers/media/usb/siano/smsusb.c-66-/*
drivers/media/usb/siano/smsusb.c-67- * Completing URB's callback handler - bottom half (process context)
drivers/media/usb/siano/smsusb.c:68: * submits the URB prepared on smsusb_onresponse()
drivers/media/usb/siano/smsusb.c-69- */
drivers/media/usb/siano/smsusb.c-70-static void do_submit_urb(struct work_struct *work)
===
drivers/media/usb/siano/smsusb.c-84- * @param urb pointer to a completing urb object
drivers/media/usb/siano/smsusb.c-85- */
drivers/media/usb/siano/smsusb.c:86:static void smsusb_onresponse(struct urb *urb)
drivers/media/usb/siano/smsusb.c-87-{
drivers/media/usb/siano/smsusb.c-88- struct smsusb_urb_t *surb = (struct smsusb_urb_t *) urb->context;

( … more results of this query are not shown in this figure due to space constraints )

Query: search_commits("smsusb_onresponse")
Results:

Commit message:

dd47fbd40e6ea6884e295e13a2e50b0894258fdf

Author: Mauro Carvalho Chehab <mchehab@kernel.org>

[media] smsusb: don't sleep while atomic …

(… we provide the complete commit in the prompt 
truncated at 100 Lines )

(… we show the top 5 commits matching the query, not 
shown here due to space constraints)

Query: search_commits("smsusb_stop_streaming")
Results:

No matches found

Query: search_commits(“race condition")
Results:

Commit message:

1d40329736907587ac5995d2d4b3263759ff84e3

Author: Qu Wenruo wqu@suse.com

btrfs: scrub: remove unused path inside scrub_stripe()…

(… we provide the complete commit in the prompt 
truncated at 100 Lines )

(… we show the top 5 commits matching the query, not 
shown here due to space constraints)

The contents from the memory are added to prompt

The `smsusb_onresponse` function is called as a callback for URB completion, and it initializes the work 

structure with `INIT_WORK(&surb->wq, do_submit_urb)`. …  However, if `smsusb_stop_streaming` is 

called before any URB completes, the work items might be canceled without being initialized, leading to the 

warning observed in `__flush_work`.

To fix the bug, I need to ensure that work items are only canceled after they have been initialized. This might 

involve adding checks to ensure URB completion has occurred or modifying the logic to handle uninitialized work 

items gracefully during cancellation.

I believe I have gathered enough context to understand the bug and propose a fix. The sequence of initialization and 

cancellation of work items is clear, and the potential for uninitialized work items leading to warnings is evident.

<actions> 
done
</actions>

(…The previously opened definitions are still shown here 
in the prompt, not included in this  figure to save space)

The results of actions are added to memory

Figure 9: Code Researcher trajectory while solving the crash described in Figure 3: Step 5 of 9
Analysis phase

B Experimental setup: additional details

Dataset details We use the kBenchSyz dataset containing 279 instances from Mathai
et al. [23]. The dataset is publicly available at https://github.com/Alex-Mathai-98/
kGym-Kernel-Playground and is under an MIT License. The subset of 200 instances that we were
able to reproduce will be made available in an updated version.

20

https://github.com/Alex-Mathai-98/kGym-Kernel-Playground
https://github.com/Alex-Mathai-98/kGym-Kernel-Playground


Sampling details In the Synthesis phase, we ask the agent to generate a hypothesis and patch
in the following format. It has to write the hypothesis inside <hypothesis> tags and the patch
inside <patch> tags. The content inside the <patch> tags is a list of <symbol> tags covering all the
symbols whose definitions the agent wants to change in its patch. With each tag, the agent has to
provide file, name and start line attributes and inside each tag, it has to rewrite the complete
definition of the symbol (after making the desired changes). We use successively higher temperatures
(0, 0.3, 0.6) until the agent gives a correctly formatted patch. For o1, since its API does not support a
temperature parameter, we sample the desired number of patches by setting the n parameter (number
of completions) in the OpenAI Chat Completions API.

Crash reproduction setup Our setup for building the Linux kernel and running it on reproducer
files is built on top of the kGym platform (MIT Licensed, publicly available at https://github.
com/Alex-Mathai-98/kGym-Kernel-Gym) [23] and has a couple of major modifications. First,
while kGym runs only on the Google Cloud platform, our setup can run locally on any machine
and uses cloud storage for preserving compiled kernels, crash reports, etc. Second, we use ccache
[2] for caching build files generated during kernel compilation and our own logic for caching git
checkouts.

kGym has a distributed setup featuring five workers - kBuilder, kReproducer, kScheduler, kDash-
board and kmq. (1) kBuilder takes as input a source commit, a kernel config, and (optionally) a
patch. It checks out the kernel at the source commit, applies the patch, compiles the kernel and
uploads the build artifacts (kernel image, vmlinux binary, etc.) to cloud storage. (2) kReproducer
takes as input the build artifacts and a reproducer file and runs the kernel on the reproducer while
monitoring for crashes. To handle non-deterministic bugs, we launch 4 VMs in parallel, each of
which runs the reproducer. Each VM further runs multiple processes where system calls can execute
in parallel so concurrency bugs can also be reproduced. If any of these VMs crash within 10 minutes
or if kReproducer loses connection to the VMs, we say that the kernel crashes on the reproducer. It
then uploads the crash reports to cloud storage. (3) kScheduler serves an API where we can send
reproduction jobs with the source commit, config, reproducer and (optionally) patch. It communicates
with kBuilder and kReproducer through the message queue kmq and orchestrates the overall flow of
build with kBuilder followed by reproduction with kReproducer . (4) Finally, kDashboard displays
each job’s logs and results in a web UI.

Compute resources We setup 10 replicas of the distributed setup (containing 5 workers) described
above. Each machine was equipped with an AMD EPYC 7V13 Processor running at 2.50 GHz, had
24 cores and 220 GB RAM. For one evaluation run on our dataset of 200 instances for any tool in the
P@5 setting (i.e., for evaluating 1000 patches on whether they prevent a crash or not), we divided the
instances among the 10 replicas, and the overall time ranged from 10 to 15 hours.

SWE-agent details We use SWE-agent [40] as one of our baselines. The codebase is publicly
available at https://github.com/SWE-agent/SWE-agent/tree/main and is under the MIT
License. We use version 1.0.1 of SWE-agent, and add a Linux kernel-specific example trajectory and
background about the Linux kernel to its prompts. We will provide the complete configuration file
(including all prompts and the example trajectory) in an updated version.

Implementation of the search actions We implement the search_definition(sym) action
using the ctags [34] tool to generate (and read) an index file of language objects found in source
files for programming languages. The index file is constructed once at the start of Code Researcher’s
run, usually taking a few minutes for the Linux kernel codebase, and is used throughout the Analysis
trajectory. Whenever we show a symbol definition in the prompt, for each line of code that is
mentioned in the crash report, we additionally add an annotation (as a C-style comment at the end
of the line) saying that this line is important. For search_code(regex), we use the git grep -E
command to search over all the tracked files in the codebase and show 2 lines of context before and
after each matching line. Finally, for search_commits(regex), we use the git log -E -G and
git log -E –grep commands to search over historical commits matching in the code changes and
commit messages, respectively. The message and patch of each relevant commit are returned as
output, truncated to a maximum of 100 lines. Each action can return a maximum of 5 results. To
make these searches over an extremely large repository faster, we progressively search over the files
of the symbol definitions present in context memory, then those mentioned in the crash report, then

21

https://github.com/Alex-Mathai-98/kGym-Kernel-Gym
https://github.com/Alex-Mathai-98/kGym-Kernel-Gym
https://github.com/SWE-agent/SWE-agent/tree/main


those in the kernel subsystems of the bug, and finally all the files in the codebase. This prioritization
strategy allows us to use a timeout of 60 seconds for the git log commands (which usually take the
longest time) while still getting relevant results in a large number of cases.

C Importance of causal analysis over historical commits

C.1 Illustrative example

Figures 10–12: Illustration of Code Researcher analyzing and repairing a real-world memory
leak bug6 from the kBenchSyz dataset (the complete trajectory of Code Researcher is truncated
and only the relevant parts are shown due to space constraints). Figure 10 shows the developer’s
original commit, including the fix and a "Fixes:" tag that references the buggy commit where the
issue originated: commit 6679f4c5e5a6 —highlighted in yellow. This section is shown in the
orange box . The developer’s fix is available at the following link7. Figure 11 displays a subset

of actions taken by Code Researcher in the Analysis phase, specifically several search_commits
steps ( green box ), which reveal how the agent retrieves both the buggy commit and other related
commits that involve memory management. These retrieved historical commits provide guidance
in the Synthesis phase. Figure 12 presents the patch and analysis synthesized by Code Researcher
( blue box ) during the Synthesis phase, which correctly identifies the missing deallocation and
inserts the appropriate kfree(bt_const_extended) call. Notably, Code Researcher successfully
navigates to the same buggy commit identified by the developer’s "Fixes:" tag, demonstrating its
ability to infer causality and leverage prior commits to localize and fix bugs.

<patch>
static struct gs_can *gs_make_candev(unsigned int channel,
    dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended->dbrp_inc); 
    dev->can.data_bittiming_const = &dev->data_bt_const; 
+
+       kfree(bt_const_extended); 
    } 
     
    SET_NETDEV_DEV(netdev, &intf->dev);
</patch>

commit 50d34a0
author Marc Kleine-Budde
Fixes       6679f4c5e5a6 ("can: gs_usb: add extended bt_const feature")

…The information must be read with an USB control message. The memory for this message is allocated but 

not free()ed (in the non error case). This patch adds the missing free.

Developer commit 

message and patch

Figure 10: Developer commit message and patch.

6Bug in Syzbot dashboard: https://syzkaller.appspot.com/bug?id=
92a742e993c8b9e769f8502a0497c88c0afa78af.

7Developer’s fix commit: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=50d34a0d151dc7abbdbec781bd7f09f2b3cbf01a.

22

https://syzkaller.appspot.com/bug?id=92a742e993c8b9e769f8502a0497c88c0afa78af
https://syzkaller.appspot.com/bug?id=92a742e993c8b9e769f8502a0497c88c0afa78af
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=50d34a0d151dc7abbdbec781bd7f09f2b3cbf01a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=50d34a0d151dc7abbdbec781bd7f09f2b3cbf01a


Actions taken by Code Researcher

search_commits("bt_const_extended|memory leak")

commit 6679f4c5e5a6
Author: Peter Fink

can: gs_usb: add extended bt_const feature

… phase to reach maximum    performance at higher speeds. …

<patch>
static struct gs_can *gs_make_candev(unsigned int channel, 
     struct net_device *netdev;
     int rc;
     struct gs_device_bt_const *bt_const;
+    struct gs_device_bt_const_extended *bt_const_extended; u32 feature;
    bt_const = kmalloc(sizeof(*bt_const), GFP_KERNEL); 
</patch>

 search_commits(“kfree|memory management”)

commit 5cda3ee5
Author: Marc Kleine-Budde
Date:   Sun Jun 4 14:03:42 2017 +0200    

can: gs_usb: fix memory leak in gs_cmd_reset()    

This patch adds the missing kfree() in gs_cmd_reset() to free the    memory that is not used anymore after 

usb_control_msg().

<patch>
static int gs_cmd_reset(struct gs_usb *gsusb, struct gs_can *gsdev) 
     sizeof(*dm),
     1000);
+    kfree(dm);
+    
      return rc; 
}
</patch>

Figure 11: Code Researcher actions (search_commits in green box).

23



The crash report indicates a memory leak in the gs_usb_probe function… The search results and past commits 

provide examples of similar memory management issues …The patch should add a kfree call 

for bt_const_extended after its data has been used to populate the data_bt_const fields in 

the gs_make_candev function. 

 <patch>
static struct gs_can *gs_make_candev(unsigned int channel, 
         dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended->dbrp_inc);

         dev->can.data_bittiming_const = &dev->data_bt_const;
+ 
+        kfree(bt_const_extended); // Free the allocated memory for bt_const_extended 
     }

     SET_NETDEV_DEV(netdev, &intf->dev);
</patch>

Analysis and patch

by Code Researcher

Figure 12: Code Researcher patch and analysis.

D LLM-as-Judge evaluation of overlap between developer commit and
tool-gathered context

We use LLM-as-judge to analyze the context gathered by Code Researcher and SWE-agent to
determine the overlap of context in their trajectory with the context mentioned by the developer in the
ground-truth fix commit message. We first identify code symbols mentioned in the commit message
for a given bug b, which we denote as s∗b . Then for each candidate patch i, we find the overlap of
s∗b with the symbols whose definitions are seen in its trajectory. We denote this overlap by sb,i. The
prompts used to retrieve these results are included in the supplementary material. We define symbol
ratio SR for each candidate patch as

SRb,i =
|sb,i|
|s∗b |

.

We consider patch i to have overlapping symbol context with the developer commit if SRb,i ≥ 0.33.
We label all candidate patches with this criterion. As mentioned in Section 5.3 (2), we find that
SWE-agent has 54.01% overlapping symbol context patches, while Code Researcher has 63.7%
overlapping symbol context patches. This indicates that Code Researcher is more effective at
identifying relevant context.

Additionally, we also measure the impact of finding relevant context on the crash resolution rate
(CRR) as:

P (patch resolves crash | overlapping symbol context) = 0.309,

P (patch resolves crash | non-overlapping symbol context) = 0.116.

This suggests that patches with overlapping symbol context have a significantly higher probability of
resolving crashes than patches without.

In addition to symbols, we also identify commit IDs mentioned in the commit message for a given
bug b which we denote as c∗b . Then for each candidate patch i, we find the overlap of c∗b with the
commits retrieved in its trajectory, denoted as cb,i. We note that c∗b is typically a small number, with a
maximum value of 3 in our dataset of 200 bugs. Therefore, instead of a ratio, we label patch i to have
overlapping commit context when all the commits in c∗b are present in cb,i (i.e., |cb,i|

|c∗b |
= 1). We find

that 30.8% of patches produced by Code Researcher have overlapping commit context (recall that
SWE-agent does not search over commit IDs). Further, we find that overlapping commit context also
has a positive impact on CRR:

P (patch resolves crash | overlapping commit context) = 0.315,

P (patch resolves crash | non-overlapping commit context) = 0.205.

Overall, these results bring out the utility of effective context retrieval.

24



E Qualitative evaluation and examples

Example A: jfs_dmap.c boundary check. Listing 18 compares the developer’s ground-truth
patch with the patch generated by Code Researcher. Both fixes add a lower-bound check on
bmp->db_agl2size alongside the existing upper-bound check; the only difference is the ordering of
the two disjuncts in the if condition, an immaterial variation in this case. This illustrates the class of
Accurate patches.

Listing 1: Semantically equivalent patch produced by Code Researcher for the jfs_dmap.c crash.

1 --- a/fs/jfs/jfs_dmap.c /* developer */
2 +++ b/fs/jfs/jfs_dmap.c
3 @@ -193,7 +193,8 @@ int dbMount(struct inode *ipbmap)
4 bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
5 bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
6 bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
7 - if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG) {
8 + if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG ||
9 + bmp->db_agl2size < 0) {

10 err = -EINVAL;
11 goto err_release_metapage;
12 }
13

14 --- a/fs/jfs/jfs_dmap.c /* generated */
15 +++ b/fs/jfs/jfs_dmap.c
16 @@ -193,7 +193,7 @@ int dbMount(struct inode *ipbmap)
17 bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
18 bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
19 bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
20 - if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG) {
21 + if (bmp->db_agl2size < 0 || bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG)

{↪→

22 err = -EINVAL;
23 goto err_release_metapage;
24 }

Example B: hci_h5.c null-check addition. In Listing 29, both the developer and Code Researcher
address an unsafe access to hu->serdev->dev, but the generated patch goes beyond the developer’s
fix. While the developer simply guards the power management calls with a null check, Code
Researcher adds an else branch that logs an error and returns -ENODEV. This reflects a conservative
design that prevents execution in the event of a null pointer, even though the surrounding kernel
code may already guarantee that hu->serdev is non-null. Such overspecialization can be seen as a
benign deviation: the patch is functionally correct and improves robustness, but at the risk of silently
diverging from upstream assumptions. This illustrates the class of overspecialized patches.

Listing 2: Overspecialized patch generated for hci_h5.c.

1 --- a/drivers/bluetooth/hci_h5.c /* developer */
2 +++ b/drivers/bluetooth/hci_h5.c
3 @@ -587,9 +587,11 @@ static int h5_recv(...)
4 count -= processed;
5 }
6

7 - pm_runtime_get(&hu->serdev->dev);
8 - pm_runtime_mark_last_busy(&hu->serdev->dev);
9 - pm_runtime_put_autosuspend(&hu->serdev->dev);

8Example A in Syzkaller: https://syzkaller.appspot.com/bug?id=
5eb8a5d29d77f8a364cf3270bf9625eb4d4ffc52

9Example B in Syzkaller: https://syzkaller.appspot.com/bug?id=
1bc76a5779300075e3466a0e2abcd753df212779

25

https://syzkaller.appspot.com/bug?id=5eb8a5d29d77f8a364cf3270bf9625eb4d4ffc52
https://syzkaller.appspot.com/bug?id=5eb8a5d29d77f8a364cf3270bf9625eb4d4ffc52
https://syzkaller.appspot.com/bug?id=1bc76a5779300075e3466a0e2abcd753df212779
https://syzkaller.appspot.com/bug?id=1bc76a5779300075e3466a0e2abcd753df212779


10 + if (hu->serdev) {
11 + pm_runtime_get(&hu->serdev->dev);
12 + pm_runtime_mark_last_busy(&hu->serdev->dev);
13 + pm_runtime_put_autosuspend(&hu->serdev->dev);
14 + }
15

16 return 0;
17 }
18

19

20 --- a/drivers/bluetooth/hci_h5.c /* generated */
21 +++ b/drivers/bluetooth/hci_h5.c
22 @@ -587,9 +587,14 @@ static int h5_recv(...)
23 count -= processed;
24 }
25

26 - pm_runtime_get(&hu->serdev->dev);
27 - pm_runtime_mark_last_busy(&hu->serdev->dev);
28 - pm_runtime_put_autosuspend(&hu->serdev->dev);
29 + if (hu->serdev) {
30 + pm_runtime_get(&hu->serdev->dev);
31 + pm_runtime_mark_last_busy(&hu->serdev->dev);
32 + pm_runtime_put_autosuspend(&hu->serdev->dev);
33 + } else {
34 + bt_dev_err(hu->hdev, "serdev is not initialized");
35 + return -ENODEV;
36 + }
37

38 return 0;
39 }

Example C: ns.c RCU read lock insertion. In Listing 310 both the developer and Code Re-
searcher address the unsafe traversal of a radix tree without proper RCU synchronization. The
developer applies a comprehensive fix, wrapping all relevant radix_tree_for_each_slot iter-
ations with rcu_read_lock() and rcu_read_unlock() across multiple functions. In contrast,
Code Researcher focuses only on the ctrl_cmd_new_lookup() function, inserting the necessary
locking primitives in that scope alone. While this partial patch is not directly mergeable due to
its incompleteness, it demonstrates an accurate understanding of the underlying concurrency issue
and correctly applies the mitigation in the context it modifies. As such, it exemplifies the class of
incomplete patches, offering concrete insight into the nature and location of the bug, and accelerating
the path toward a complete and upstreamable fix.

Listing 3: Developer and plausible patches for ns.c.

1 --- a/net/qrtr/ns.c /* developer */
2 +++ b/net/qrtr/ns.c
3 @@ -193,12 +193,13 @@ static int announce_servers(struct sockaddr_qrtr *sq)
4 struct qrtr_server *srv;
5 struct qrtr_node *node;
6 void __rcu **slot;
7 - int ret;
8 + int ret = 0;
9

10 node = node_get(qrtr_ns.local_node);
11 if (!node)
12 return 0;
13

10Example C in Syzkaller: https://syzkaller.appspot.com/bug?id=
07c9d71dc1a215b19c6a245c68f502bc57dbdb83

26

https://syzkaller.appspot.com/bug?id=07c9d71dc1a215b19c6a245c68f502bc57dbdb83
https://syzkaller.appspot.com/bug?id=07c9d71dc1a215b19c6a245c68f502bc57dbdb83


14 + rcu_read_lock();
15 /* Announce the list of servers registered in this node */
16 radix_tree_for_each_slot(slot, &node->servers, &iter, 0) {
17 srv = radix_tree_deref_slot(slot);
18 @@ -206,11 +207,14 @@ static int announce_servers(struct sockaddr_qrtr *sq)
19 ret = service_announce_new(sq, srv);
20 if (ret < 0) {
21 pr_err("failed to announce new service\n");
22 - return ret;
23 + goto err_out;
24 }
25 }
26

27 - return 0;
28 +err_out:
29 + rcu_read_unlock();
30 +
31 + return ret;
32 }
33

34 static struct qrtr_server *server_add(unsigned int service,
35 @@ -335,7 +339,7 @@ static int ctrl_cmd_bye(struct sockaddr_qrtr *from)
36 struct qrtr_node *node;
37 void __rcu **slot;
38 struct kvec iv;
39 - int ret;
40 + int ret = 0;
41

42 iv.iov_base = &pkt;
43 iv.iov_len = sizeof(pkt);
44 @@ -344,11 +348,13 @@ static int ctrl_cmd_bye(struct sockaddr_qrtr *from)
45 if (!node)
46 return 0;
47

48 + rcu_read_lock();
49 /* Advertise removal of this client to all servers of remote node

*/↪→

50 radix_tree_for_each_slot(slot, &node->servers, &iter, 0) {
51 srv = radix_tree_deref_slot(slot);
52 server_del(node, srv->port);
53 }
54 + rcu_read_unlock();
55

56 /* Advertise the removal of this client to all local servers */
57 local_node = node_get(qrtr_ns.local_node);
58 @@ -359,6 +365,7 @@ static int ctrl_cmd_bye(struct sockaddr_qrtr *from)
59 pkt.cmd = cpu_to_le32(QRTR_TYPE_BYE);
60 pkt.client.node = cpu_to_le32(from->sq_node);
61

62 + rcu_read_lock();
63 radix_tree_for_each_slot(slot, &local_node->servers, &iter, 0) {
64 srv = radix_tree_deref_slot(slot);
65

66 @@ -372,11 +379,14 @@ static int ctrl_cmd_bye(struct sockaddr_qrtr *from)
67 ret = kernel_sendmsg(qrtr_ns.sock, &msg, &iv, 1,

sizeof(pkt));↪→

68 if (ret < 0) {
69 pr_err("failed to send bye cmd\n");
70 - return ret;

27



71 + goto err_out;
72 }
73 }
74

75 - return 0;
76 +err_out:
77 + rcu_read_unlock();
78 +
79 + return ret;
80 }
81

82 static int ctrl_cmd_del_client(struct sockaddr_qrtr *from,
83 @@ -394,7 +404,7 @@ static int ctrl_cmd_del_client(struct sockaddr_qrtr

*from,↪→

84 struct list_head *li;
85 void __rcu **slot;
86 struct kvec iv;
87 - int ret;
88 + int ret = 0;
89

90 iv.iov_base = &pkt;
91 iv.iov_len = sizeof(pkt);
92 @@ -434,6 +444,7 @@ static int ctrl_cmd_del_client(struct sockaddr_qrtr

*from,↪→

93 pkt.client.node = cpu_to_le32(node_id);
94 pkt.client.port = cpu_to_le32(port);
95

96 + rcu_read_lock();
97 radix_tree_for_each_slot(slot, &local_node->servers, &iter, 0) {
98 srv = radix_tree_deref_slot(slot);
99

100 @@ -447,11 +458,14 @@ static int ctrl_cmd_del_client(struct sockaddr_qrtr
*from,↪→

101 ret = kernel_sendmsg(qrtr_ns.sock, &msg, &iv, 1,
sizeof(pkt));↪→

102 if (ret < 0) {
103 pr_err("failed to send del client cmd\n");
104 - return ret;
105 + goto err_out;
106 }
107 }
108

109 - return 0;
110 +err_out:
111 + rcu_read_unlock();
112 +
113 + return ret;
114 }
115

116 static int ctrl_cmd_new_server(struct sockaddr_qrtr *from,
117 @@ -554,6 +568,7 @@ static int ctrl_cmd_new_lookup(struct sockaddr_qrtr

*from,↪→

118 filter.service = service;
119 filter.instance = instance;
120

121 + rcu_read_lock();
122 radix_tree_for_each_slot(node_slot, &nodes, &node_iter, 0) {
123 node = radix_tree_deref_slot(node_slot);
124

28



125 @@ -568,6 +583,7 @@ static int ctrl_cmd_new_lookup(struct sockaddr_qrtr
*from,↪→

126 lookup_notify(from, srv, true);
127 }
128 }
129 + rcu_read_unlock();
130

131 /* Empty notification, to indicate end of listing */
132 lookup_notify(from, NULL, true);
133

134

135 --- a/net/qrtr/ns.c /* generated */
136 +++ b/net/qrtr/ns.c
137 @@ -554,6 +554,7 @@ static int ctrl_cmd_new_lookup(struct sockaddr_qrtr

*from,↪→

138 filter.service = service;
139 filter.instance = instance;
140

141 + rcu_read_lock(); // Add RCU read lock
142 radix_tree_for_each_slot(node_slot, &nodes, &node_iter, 0) {
143 node = radix_tree_deref_slot(node_slot);
144

145 @@ -568,6 +569,7 @@ static int ctrl_cmd_new_lookup(struct sockaddr_qrtr
*from,↪→

146 lookup_notify(from, srv, true);
147 }
148 }
149 + rcu_read_unlock(); // Add RCU read unlock
150

151 /* Empty notification, to indicate end of listing */
152 lookup_notify(from, NULL, true);

Example D: qrtr.c port validation. In Listing 411, the developer correctly replaces idr_alloc()
with idr_alloc_u32() to avoid integer truncation when handling large u32 port numbers.
By contrast, Code Researcher adds defensive checks that reject ports with port < 0, both in
qrtr_port_assign and __qrtr_bind. This patch reflects a misunderstanding of the root issue:
port is an int, but the incoming value originates from __u32 sq_port, and special constants like
QRTR_PORT_CTRL (defined as 0xfffffffeu) are valid and widely used in the subsystem. Interpret-
ing these as negative values and rejecting them causes legitimate use cases to fail. The patch not only
fails to address the original warning in idr_alloc(), but also introduces a regression by breaking
valid assignments. This is a clear instance of incorrect patches, where the fix appears misdiagnoses
the problem and undermines correct behavior.

Listing 4: Developer and incorrect patches for qrtr.c.

1 --- a/net/qrtr/qrtr.c /* developer */
2 +++ b/net/qrtr/qrtr.c
3 @@ -692,23 +692,25 @@ static void qrtr_port_remove(struct qrtr_sock *ipc)
4 */
5 static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
6 {
7 + u32 min_port;
8 int rc;
9

10 mutex_lock(&qrtr_port_lock);
11 if (!*port) {
12 - rc = idr_alloc(&qrtr_ports, ipc,

11Example D in Syzkaller: https://syzkaller.appspot.com/bug?id=
ca2299cf11b3e3d3d0f44ac479410a14eecbd326

29

https://syzkaller.appspot.com/bug?id=ca2299cf11b3e3d3d0f44ac479410a14eecbd326
https://syzkaller.appspot.com/bug?id=ca2299cf11b3e3d3d0f44ac479410a14eecbd326


13 - QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET +
1,↪→

14 - GFP_ATOMIC);
15 - if (rc >= 0)
16 - *port = rc;
17 + min_port = QRTR_MIN_EPH_SOCKET;
18 + rc = idr_alloc_u32(&qrtr_ports, ipc, &min_port,

QRTR_MAX_EPH_SOCKET, GFP_ATOMIC);↪→

19 + if (!rc)
20 + *port = min_port;
21 } else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN))

{↪→

22 rc = -EACCES;
23 } else if (*port == QRTR_PORT_CTRL) {
24 - rc = idr_alloc(&qrtr_ports, ipc, 0, 1, GFP_ATOMIC);
25 + min_port = 0;
26 + rc = idr_alloc_u32(&qrtr_ports, ipc, &min_port, 0,

GFP_ATOMIC);↪→

27 } else {
28 - rc = idr_alloc(&qrtr_ports, ipc, *port, *port + 1,

GFP_ATOMIC);↪→

29 - if (rc >= 0)
30 - *port = rc;
31 + min_port = *port;
32 + rc = idr_alloc_u32(&qrtr_ports, ipc, &min_port, *port,

GFP_ATOMIC);↪→

33 + if (!rc)
34 + *port = min_port;
35 }
36 mutex_unlock(&qrtr_port_lock);
37

38 --- a/net/qrtr/qrtr.c /* generated */
39 +++ b/net/qrtr/qrtr.c
40 @@ -695,7 +695,9 @@ static int qrtr_port_assign(struct qrtr_sock *ipc, int

*port)↪→

41 int rc;
42

43 mutex_lock(&qrtr_port_lock);
44 - if (!*port) {
45 + if (*port < 0) {
46 + rc = -EINVAL;
47 + } else if (!*port) {
48 rc = idr_alloc(&qrtr_ports, ipc,
49 QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET +

1,↪→

50 GFP_ATOMIC);
51 @@ -759,6 +761,9 @@ static int __qrtr_bind(struct socket *sock,
52 return 0;
53

54 port = addr->sq_port;
55 + if (port < 0)
56 + return -EINVAL;
57 +
58 rc = qrtr_port_assign(ipc, &port);
59 if (rc)
60 return rc;

30


	Introduction
	Related work
	Design of Code Researcher
	Analysis phase
	Actions to search over codebase and commit history
	Reasoning strategies for code
	Structured context memory

	Synthesis and Validation phases

	Experimental setup
	Experimental results
	RQ1: How effective are different tools at resolving Linux kernel crashes?
	RQ2: How well do the files edited by the tools match those modified in developer fixes?
	RQ3: How effective is context gathering for resolving Linux kernel crashes?
	RQ4: How important are historical commits for resolving crashes in the Linux kernel?
	RQ5: Does Code Researcher generalize to other systems codebases?
	Qualitative evaluation

	Conclusions, limitations, and future work
	Example of agent trajectory
	Experimental setup: additional details
	Importance of causal analysis over historical commits
	Illustrative example

	LLM-as-Judge evaluation of overlap between developer commit and tool-gathered context
	Qualitative evaluation and examples

