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A Scalable Algorithm for Fair Influence
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Abstract—This paper studies the fair influence maximization problem with efficient algorithms. In particular, given a graph G, a
community structure C consisting of disjoint communities, and a budget k, the problem asks to select a seed set S (|S| = k) that
maximizes the influence spread while narrowing the influence gap between different communities. This problem derives from some
significant social scenarios, such as health interventions (e.g. suicide/HIV prevention) where individuals from racial minorities or
LGBTQ communities may be disproportionately excluded from the benefits of the intervention. To depict the concept of fairness in the
context of influence maximization, researchers have proposed various notions of fairness, where the welfare fairness notion that better
balances fairness level and influence spread has shown promising effectiveness. However, the lack of efficient algorithms for optimizing
the objective function under welfare fairness restricts its application to networks of only a few hundred nodes. In this paper, we modify
the objective function of welfare fairness to maximize the exponentially weighted sum and the logarithmically weighted sum over all
communities’ influenced fractions (utility). To achieve efficient algorithms with theoretical guarantees, we first introduce two unbiased
estimators: one for the fractional power of the arithmetic mean and the other for the logarithm of the arithmetic mean. Then, by
adapting the Reverse Influence Sampling (RIS) approach, we convert the optimization problem to a weighted maximum coverage
problem. We also analyze the number of reverse reachable sets needed to approximate the fair influence at a high probability. Finally,
we present an efficient algorithm that guarantees 1− 1/e− ε (positive objective function) or 1 + 1/e+ ε (negative objective function)
approximation for any small ε > 0. Experiments demonstrate that our proposed algorithm could efficiently handle large-scale networks
with good performance.

Index Terms—Influence maximization, scalable algorithm, fairness, reverse influence sampling, unbiased estimator.

✦

1 INTRODUCTION1

D Erived from social advertising, influence maximization2

(IM) is a widely studied problem in social network3

analysis. The formal definition of the problem can be de-4

scribed as follows: given a graph G and a budget k (positive5

integer), the objective is to find a node set S (|S| ≤ k) that6

can disseminate information to trigger the largest expected7

number of remaining nodes. In real-world applications,8

diverse scenarios have generated varying demands for IM9

algorithms, resulting in the development of several variants10

of the classic influence maximization problem. These vari-11

ants address specific challenges, such as adaptive influence12

maximization [1], multi-round influence maximization [2],13

competitive influence maximization [3], budgeted influence14

maximization [4], limited access influence maximization [5]15

and time-critical influence maximization [6]. Influence maxi-16

mization and its variants have a broad range of applications17

in social contexts, including viral marketing, health inter-18

ventions, rumor control, etc [7].19
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Given the context of when disseminating public health 20

interventions, such as suicide or HIV prevention [8] pro- 21

grams or promoting community preparedness against nat- 22

ural disasters, selecting individuals to act as peer leaders 23

can help maximize outreach by leveraging the principles of 24

influence maximization. However, solutions to the classic 25

IM problem may often lead to discriminatory outcomes, as 26

individuals from racial minorities or LGBTQ communities 27

might be disproportionately excluded from the benefits of 28

the intervention [9] when community structure is disre- 29

garded. Consequently, fairness in influence maximization, 30

derived from such significant social scenarios, has become a 31

focus of attention for recent researchers [6], [10]–[12]. 32

Generally, fair influence maximization seeks to improve 33

the fraction of individuals influenced within communities 34

where coverage may otherwise be disproportionately low. 35

Currently, a universally accepted definition of fair influ- 36

ence maximization remains elusive. Recent studies have at- 37

tempted to incorporate fairness into influence maximization 38

by proposing various notions of fairness, such as maximin 39

fairness [10], diversity constraints [10], equity fairness [13], 40

equality fairness [13], and welfare fairness [9]. Among 41

these notions, welfare fairness has demonstrated several 42

attractive features. Its objective functions are in the form 43

of
∑

c∈C ncu
α
c /α for α < 1, α ̸= 0 and

∑
c∈C nc log(uc) 44

for α = 0, where C denotes the community structure, nc 45

denotes the number of nodes in c, uc represents the utility 46

(influenced fraction) of c, and α is the inequality aversion 47

parameter. Based on the Cardinal Welfare theory [14], both 48

objective functions satisfy monotonicity and submodularity, 49

which naturally enables (if positive) a greedy algorithm 50

0000–0000/00$00.00 © 2021 IEEE

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3564283

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: CHINA UNIVERSITY OF MINING AND TECHNOLOGY. Downloaded on May 01,2025 at 14:50:21 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

with a 1− 1/e approximation factor [15]. However, despite51

Rahmattalabi et al.’s [9] comprehensive analysis of welfare52

fairness, no efficient algorithm currently exists to optimize53

its objective function with a provable guarantee. This lim-54

itation restricts the practical application of their approach55

to small-scale networks, typically containing only a few56

hundred nodes.57

In this study, we focus on 0 ≤ α < 1 and adapt the58

objective of welfare fairness to Fα(S) =
∑

c∈C ncuc(S)
α for59

0 < α < 1 and F0(S) =
∑

c∈C nc ln(uc(S)) for α = 0,60

which we both refer to as the fair influence of the seed61

set S. Fair influence can be viewed as the weighted sum62

(with community size as the weight) of the fractional power63

or the logarithm of the expected proportion of activated64

nodes within each community. The fractional exponent α is65

the inequality aversion parameter, allowing one to balance66

between fairness and influence spread, with α tending to 167

for influence spread and α tending to 0 for fairness. When68

α = 0, it becomes a peculiar case that asks all communities69

to be reached from S. If any community remains unreached,70

the objective function becomes negative infinity.71

To efficiently maximize fair influence with theoretical72

guarantees, one may leverage Reverse Influence Sampling73

(RIS), a common approach adopted in many efficient IM74

algorithms [16]–[19]. Nevertheless, adapting the RIS ap-75

proach to the welfare fairness objective presents two key76

challenges: (1) how to achieve an unbiased estimation of77

the fractional power and the logarithm of the expected78

proportion of activated nodes in each community, as directly79

obtaining an unbiased estimate of the expected proportion80

and then taking its fractional power or logarithm results is81

biased (revealed by Jensen’s inequality); and (2) how the82

designed unbiased estimation can be integrated into the RIS83

framework to estimate fair influence using reverse reachable84

sets, enabling straightforward seed selection based on maxi-85

mum coverage? In this paper, we address both challenges86

and propose a new scalable fair influence maximization87

algorithm with theoretical guarantees.88

Our contributions can be summarized as follows:89

• We propose two unbiased estimators: one for the90

fractional power of the arithmetic mean and another for the91

logarithm of the arithmetic mean, by leveraging Taylor ex-92

pansion techniques. These estimators enable us to accurately93

estimate the fair influence under welfare fairness.94

• Based on the above unbiased estimators, we adapt the95

RIS approach to approximate the fair influence with Reverse96

Reachable (RR) sets and propose the FIMM algorithm that97

works efficiently while guaranteeing the (1 − 1/e − ε)-98

approximation for the positive objective or (1 + 1/e + ε)-99

approximation for the negative objective. Our theoretical100

analysis needs to address the concentration of the unbiased101

estimator of fractional power or logarithm, which is much102

more involved than the standard RIS analysis.103

• We carry out a detailed experimental analysis on eight104

real social networks to investigate the trade-off between105

fairness and total influence spread. Our experiments eval-106

uate the performance of the proposed algorithms under107

varying fairness parameters, influence probabilities, seed108

budgets, and community structures. Moreover, the inclusion109

of a large-scale network demonstrates the scalability and110

robustness of our proposed algorithms.111

This paper is an in-depth extension of our conference 112

paper [20]. We have extended both of our algorithms’ 113

technical contribution and empirical evaluation. The main 114

extensions in this paper are summarized as follows: (1) First, 115

in addition to the objective function
∑

c∈C ncu
α
c , 0 < α < 1 116

studied in [20], this paper introduces the other objective 117

function
∑

c∈C nc ln(uc) specifically for α = 0. Note that 118

this represents a fundamentally different scenario where the 119

objective requires all communities to be reached. (2) Second, 120

to address this new case, we propose a new unbiased 121

estimator for
∑

c∈C nc ln(uc) and incorporate it into our 122

algorithms. We also analyze the lower bound under the 123

new objective, which complements the theoretical study 124

of fair influence maximization under social welfare. (3) 125

Third, we evaluate our algorithm across a broader range of 126

datasets, varying in scale and explicit group structures, with 127

the entire experimental framework redesigned. This allows 128

us to assess the performance of our proposed algorithms 129

under more complex parameter combinations, leading to a 130

comprehensive discussion and a deeper understanding of 131

fair influence maximization within the context of welfare 132

fairness. (4) Additionally, we provide a more extensive 133

review of related works, particularly focusing on algorithms 134

for the fair influence maximization problem. 135

2 RELATED WORK 136

2.1 Influence Maximization 137

Influence maximization (IM) is first studied as an algo- 138

rithmic problem by Domingos and Richardson [21], [22]. 139

Then, Kempe et al. [23] mathematically formulate IM as 140

a discrete optimization problem and prove it is NP-hard. 141

They also provide a naive Greedy algorithm with 1 − 1/e 142

approximation based on the submodularity and monotonic- 143

ity of the problem. Hence, many works have been pro- 144

posed to improve the efficiency and scalability of influence 145

maximization algorithms [16]–[18], [24]–[33]. For example, 146

Leskovec et al. [24] proposed the CELF algorithm, which ex- 147

ploits the submodularity of the IM problem and accelerates 148

the naive Greedy about 700 times faster. Goyal et al. [25] 149

extended CELF to CELF++, which additionally maintains 150

the marginal gain for the node that had the previous best 151

marginal gain. Wang et al. [26] derived an upper bound for 152

the spread function and proposed the UBLF algorithm that 153

enhances CELF by 2-10 times. To improve the efficiency of 154

estimating influence spread, Chen et al. [27] proposed New- 155

Greedy, and Cheng et al. [30] introduced StaticGreedy. Both 156

algorithms utilize the idea of estimating influence through 157

a series of pre-generated snapshots. Subsequently, Ohsaka 158

et al. [31] proposed the PMC algorithm which applies in- 159

telligent pruning strategies to further improve scalability. 160

Beyond these methods, the most recent and the state-of-the- 161

art is the reverse influence sampling (RIS) approach [16]– 162

[18], [32], [33], where the IMM algorithm [18] is one of the 163

representative implementations. The idea of RIS approaches 164

is to generate a suitable number of reverse reachable sets 165

(a.k.a. RR sets), and then the influence spread can be ap- 166

proximated at a high probability based on these RR sets. 167

Therefore, the greedy approach can be easily applied by 168

iteratively selecting the node that could bring the maximum 169

marginal gain in terms of influence spread as a seed node. 170
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2.2 Fairness in Influence Maximization171

In recent years, the study of fair influence maximization172

has attracted considerable attention. Researchers have at-173

tempted to incorporate their designed notions of fairness174

into the influence maximization framework. Stocia et al. [34]175

propose the prototype of equality constraints, which require176

that the number of seed nodes in each community is propor-177

tional to the population ratio of that community. It focuses178

on the fair distribution among the seed nodes without179

considering whether the influence is fairly allocated among180

communities. Based on the Rawlsian theory, the maximin181

fairness [10], [35] aims to maximize the influence fraction182

of the worst-off community. Inspired by the game theoretic183

notion of core, diversity constraints [10] require that every184

community obtains an influenced fraction higher than when185

it receives resources proportional to its size and allocates186

them internally. Equity-based notion [36] strives for equal187

influenced fraction across all communities. However, these188

notions can hardly balance fairness and total influence and189

usually lead to a high influence reduction. Especially, strict190

equity [36] is rather hard to achieve in influence maximiza-191

tion. To address these shortcomings, Rahmattalabi et al. [9]192

propose the welfare fairness that can control the trade-193

off between fairness and total influence by an inequality194

aversion parameter.195

Based on the cardinal welfare theory [14], the objective196

function of welfare fairness is to maximize the weighted197

sum over the exponential influenced fraction of all commu-198

nities. Similarly, Fish et al. [37] also follow welfare functions199

and propose ϕ-mean fairness, where the objective function200

becomes MMF when ϕ = −∞. However, they only consider201

fairness at the individual level and do not address the202

challenge of unbiased estimation of the fractional power.203

2.3 Algorithms for Fair Influence Maximization204

Currently, most algorithms addressing the fair influence205

maximization problem are based on either mixed integer206

programming or multi-objective optimization.207

Rahmattalabi et al. [35] express the objective of max-208

imin fairness as the optimal objective value of a covering209

problem, which is equivalent to the two-stage linear robust210

problem. They try to address the problem with a mixed211

integer bilinear program. Farnadi et al. [13] develop a gen-212

eral formalism for different notions of fairness (including213

maximin, equality, equity, and diversity), where the problem214

defined in this formalism can be then solved using efficient215

mixed integer programming solvers. Moreover, Becker et216

al. [11] study two different variants of maximin fairness,217

allowing for randomized strategies in choosing seeds rather218

than being restricted to deterministic strategies (i.e., sets219

of size k). They further show that the problem can be220

approximated to within a constant factor using a specific221

kind of linear programming algorithm.222

Tsang et al. [10] show that optimizing either the utility223

function of maximin fairness or diversity constraints re-224

duces to multi-objective submodular maximization. Their225

proposed algorithm employs a Frank-Wolfe style approach226

to simultaneously optimize the multilinear extensions of227

the discrete objectives. Similarly, Rahmattalabi et al. [9]228

view welfare fairness as a multi-objective submodular op- 229

timization with the utility of each community being a 230

separate objective and follow the algorithm proposed by 231

Tsang et al. [10]. However, the multi-objective solver is time- 232

consuming, restricting their algorithms to only hundred- 233

scale networks. 234

Recent studies have attempted to propose efficient algo- 235

rithms for fair influence maximization. In 2023, Lin et al. [19] 236

address the scalability problem by applying attribute-aware 237

reverse influence sampling. Although their proposed algo- 238

rithms demonstrated efficiency, they did not provide a guar- 239

antee on the approximation ratio between their solutions 240

and the optimal one. In the same year, Feng et al. [12] pro- 241

pose an approach based on learning node representations 242

(embeddings) from diffusion cascades for fair spread, rather 243

than social connectivity. In this way, the method can handle 244

very large graphs but requires a substantial number of 245

diffusion cascades as prior knowledge. Thus, to the best of 246

our knowledge, we are the first to study scalable algorithms 247

with theoretically guaranteed solutions in the context of fair 248

influence maximization. 249

3 PRELIMINARIES AND PROBLEM DEFINITION 250

3.1 Information Diffusion Model 251

In this paper, we adopt the well-studied Independent Cascade 252

(IC) model [23] as the basic information diffusion model. 253

Under the IC model, a social network is viewed as a directed 254

influence graph G = (V,E, p), where V is the set of vertices 255

(nodes) and E ⊆ V × V is the set of directed edges that 256

connect pairs of nodes. For an edge (vi, vj) ∈ E, p(vi, vj) 257

indicates the probability that vi influences vj . In the IC 258

model, the diffusion of information or influence proceeds 259

in discrete time steps. At time t = 0, the seed set S is 260

selected to be active, denoted as A0. At each time t ≥ 1, all 261

nodes in At−1 try to influence their inactive neighbors with 262

a one-shot attempt for each neighbor, following influence 263

probability p(vi, vj) ∈ V × V . The set of activated nodes at 264

step t is denoted as At. The diffusion process ends when 265

there is no more node activated in a time step, i.e., At = ∅ 266

after diffusion. 267

An important metric in influence maximization is the 268

influence spread, denoted as σ(S), which is defined as the 269

expected number of active nodes when the propagation 270

from the given seed set S ends. For the IC model, σ(S) = 271

E[|A0 ∪A1 ∪A2 ∪ . . . |] = E[|A0|+ |A1|+ |A2|+ . . . ]. In this 272

paper, we use ap(v, S) to represent the probability that node 273

v is activated given the seed set S, and then it establishes 274

that σ(S) =
∑

v∈V ap(v, S). 275

3.2 Live-edge Graph 276

Given the influence probability p(vi, vj) ∈ V × V , we 277

can construct the live-edge graph L = (V,E(L)), where 278

each edge (vi, vj) is selected independently to be a live- 279

edge with the probability p(vi, vj). The influence diffusion 280

in the IC model is equivalent to the deterministic propaga- 281

tion via bread-first traversal in a random live-edge graph 282

L [23]. Let Γ(G,S) denote the set of nodes in graph G 283

that can be reached from the node set S. By the above 284

live-edge graph model, we have σ(S) = EL[|Γ(L, S)|] = 285
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L Pr[L|G] · |Γ(L, S)|, where the expectation is taken over286

the distribution of live-edge graphs, and Pr[L|G] is the287

probability of sampling a live-edge graph L in graph G.288

3.3 Reverse Influence Sampling289

Many efficient influence maximization algorithms such as290

IMM [18] are based on the Reverse Influence Sampling (RIS)291

approach, which generates a suitable number of reverse-292

reachable (RR) sets for influence estimation. Let L be a293

random live-edge graph generated from G = (V,E, p),294

which maps to an arbitrary diffusion instance. An RR set295

RR(v) (rooted at node v ∈ V ) can be generated by reversely296

simulating the influence diffusion process starting from the297

root v, and then adding all nodes reached by reversed sim-298

ulation into this RR set. Assume both the above-mentioned299

L and the simulated RR(v) come from the same diffusion300

instance, then RR(v) is equivalent to collecting all nodes301

that can reach v in that random live-edge graph L, denoted302

by Γ′(L, v).303

Intuitively, each node u ∈ RR(v) if selected as a seed304

would activate v in this random diffusion instance. We305

say that S covers an RR set RR(v) if S ∩ RR(v) ̸= ∅.306

If we use RR(v) to represent a randomly generated RR307

set when v is not specified, i.e., RR(v) = Γ′
L∼U(PL)(L, v)308

where PL is the space of all live-edge graphs and U(·)309

denotes the uniform distribution. Then, the expected acti-310

vated probability ap(v, S) is equivalent to the probability311

that S covers a randomly generated v-rooted RR set [16],312

i.e., ap(v, S) = E[Pr{RR(v) ∩ S ̸= ∅}].313

3.4 Approximation Solution314

A set function f : V → R is called submodular if for all315

S ⊆ T ⊆ V and u ∈ V \ T , f(S ∪ {u}) − f(S) ≥316

f(T ∪ {u})− f(T ). Intuitively, submodularity characterizes317

the diminishing return property often occurring in eco-318

nomics and operation research. Moreover, a set function f319

is called monotone if for all S ⊆ T ⊆ V , f(S) ≤ f(T ). It320

is shown in [23] that the influence spread σ(·) for the IC321

model is a monotone submodular function. A non-negative322

monotone submodular function allows a greedy solution to323

its maximization problem with 1− 1/e approximation [15],324

which provides the technical foundation for most influence325

maximization tasks.326

3.5 Fair Influence Maximization327

For a given graph G with nG nodes, the classic influence328

maximization problem is to choose a seed set S consisting329

of at most k seeds to maximize the influence spread σ(S,G).330

Assuming each node belongs to one of the disjoint commu-331

nities c ∈ C := {1, 2, . . . , C}, such that V1∪V2∪· · ·∪VC = V332

where Vc (nc = |Vc|) denotes the set of nodes that be-333

longs to community c. Generally, fair influence maximization334

(FIM) aims to narrow the influence gap between different335

communities while maintaining the total influence spread336

as much as possible. In this paper, we adapt the notion337

of fairness proposed by Rahmattalabi et al. [9], where the338

welfare function is used to aggregate the cardinal utilities339

of different communities. The goal is to select at most340

k seed nodes, such that the objective functions Fα(S) or341

F0(S) (also referred to as fair influence in this paper) are 342

maximized, where Fα(S) =
∑

c∈C ncuc(S)
α, 0 < α < 1, 343

and F0(S) =
∑

c∈C nc ln(uc(S)), α = 0. The utility uc(S) 344

denotes the expected proportion of influenced nodes in the 345

community c with the seed set S. The exponent α is the 346

inequality aversion parameter that controls the trade-off 347

between fairness and total influence, with α approaching 348

1 favoring influence spread and α approaching 0 favoring 349

fairness. When α = 0, it becomes a unique case in which 350

all communities are asked to be reached from S. We thus 351

define the fair influence maximization problem in this paper 352

as follows: 353

Definition 1. The Fair Influence Maximization (FIM) under 354

the independent cascade model is the optimization task where 355

the input includes the directed influence graph G = (V,E, p), 356

the non-overlapping community structure C, and the budget k. 357

The goal is to find a seed set S∗ to maximize the fair influ- 358

ence, i.e., S∗ = argmaxS:|S|=k Fα(S) for 0 < α < 1, and 359

S∗ = argmaxS:|S|=k F0(S) for α = 0. 360

According to [9], the adapted fair influence Fα(S) and 361

F0(S) in this paper still satisfies both monotone and sub- 362

modular, which provides the theoretical basis for our effi- 363

cient algorithm design, to be presented in the next section. 364

4 METHODOLOGY 365

The fair influence objective function possesses monotonic- 366

ity and submodularity, which allows the natural way of 367

utilizing a greedy approach for maximization. However, 368

as frequently noted in influence maximization studies, im- 369

plementing a greedy strategy directly leads to significant 370

computational costs. This is primarily due to the need for 371

a large number of Monte Carlo simulations to accurately 372

estimate the influence spread. In this section, we aim to 373

TABLE 1
Important symbols appeared in this paper.

Symbol Explanation

G = (V,E, p) A network;
V Node set of the network;
E Edge set of the network;
nG The number of nodes in G, i.e. nG = |V |;
p(vi, vj) The probability that vi influence vj ;
C = {c1, c2, · · · } Community structure;
C The number of communities in C;
Vc The node set in community c;
nc The number of nodes in community c, i.e. nc = |Vc|;
S A seed set;
S∗ The optimal seed set for fair influence maximization;
ap(v, S) The expected probability that v is activated by S;
σ(S) Influence spread of S, i.e. σ(S) =

∑
v∈V ap(v, S);

uc The utility of c (expected influenced fraction in c);
Fα(S) The fair influence of S for 0 < α < 1;
F0(S) The fair influence of S for α = 0;
R A set of RR sets;
Rc The set of RR sets rooted in community c;
F̂α(S,R) The unbiased estimator for Fα(S) based on R;
θ The total number of RR sets;
θc The number of RR sets rooted in community c;
α The aversion parameter regarding fairness;
Q The approximation parameter for Taylor expansion;
ε The accuracy parameter;
ℓ The confidence parameter.
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significantly speed up the greedy approach by adapting the374

reverse influence sampling (RIS) [16]–[18], which provides375

both theoretical guarantee and high efficiency. We propose376

the FIMM algorithm that is efficient when the number377

of communities is relatively small, which is hopefully a378

common situation such as gender and ethnicity. Basically,379

our proposed FIMM algorithm follows the idea of the IMM380

algorithm [18], with a new challenge lying in accurately381

estimating two new objective functions of fair influence382

without introducing bias.383

For the convenience of reading, we list the most impor-384

tant symbols featured in this paper in Table 1.385

4.1 Unbiased Fair Influence386

To estimate the influence spread, we may generate a number387

of live-edge graphs L = {L1, L2, · · · , Lt} as samples. Then,388

for a given seed set S, σ̂(L, S) = 1
t

∑t
i=1 |Γ(Li, S)| is an389

unbiased estimator of σ(S).390

However, situations are completely different for fair391

influence. For each community c, its corresponding fair392

influence is ncu
α
c . If we still generate a number of live-edge393

graphs and estimate uc by ûc(L, S) = 1
t

∑t
i=1 |Γ(Li, S) ∩394

Vc|/|Vc|, then ûc(L, S) is an unbiased estimator for uc, but395

ûc(L, S)α is a biased estimator of uα
c for 0 < α < 1, and396

ln(ûc(L, S)) is a biased estimator of ln(uc) for α = 0. In fact,397

the value of uα
c and ln(uc) would be generally higher than398

the true value, which is revealed by the following Jensen’s399

inequality.400

Fact 1. (Jensen’s inequality) If X is a random variable and ϕ is a401

concave function, then402

E[ϕ(X)] ≤ ϕ(E[X]).

Therefore, our first challenge in dealing with the wel-403

fare fairness objective is to provide unbiased estimators404

for the fractional power value of uα
c and the logarithm405

value of ln(uc). We meet this challenge by incorporating406

Taylor expansion as in Lemma 1. It is worth noting that the407

bias introduced by Jensen’s inequality may not significantly408

impact the seed selection process. Adopting such a biased409

estimator can still yield empirically good performance with410

high probability. However, it does not offer any theoretical411

guarantee, which is precisely the aspect this paper aims to412

address.413

Lemma 1. For a given seed set S and an inequality aversion414

parameter α, the fair influence415

Fα(S) =
∑
c∈C

nc

(
1− α

∞∑
n=1

η(n, α)
(
1− uc(S)

)n)
, (1)

η(n, α) =

{
1, n = 1,
(1−α)(2−α)...(n−1−α)

n! , n ≥ 2,

and416

F0(S) = −
∑
c∈C

nc

∞∑
n=1

1

n

(
1− uc(S)

)n
. (2)

Proof. By Taylor expansion of the binomial series, we have417

(1 + x)α = 1 +
∞∑

n=1

(
α

n

)
xn,

(
α

n

)
=

α(α− 1)...(α− n+ 1)

n!
.

By definition of the fair influence Fα(S), we have 418

Fα(S) =
∑
c∈C

nc

(
1 +

(
uc(S)− 1

))α
=
∑
c∈C

nc

(
1 +

∞∑
n=1

(
α

n

)(
uc(S)− 1

)n)

=
∑
c∈C

nc

(
1− α

∞∑
n=1

η(n, α)
(
1− uc(S)

)n)
, (3)

where 419

η(n, α) =

{
1, n = 1,
(1−α)(2−α)...(n−1−α)

n! , n ≥ 2.

Using the Taylor expansion of the logarithm series, we have 420

ln(1 + x) =
∞∑

n=1

1

n
(−1)n−1xn.

By the definition of the fair influence F0(S), we have 421

F0(S) =
∑
c∈C

nc ln
(
1 +

(
uc(S)− 1

))
=
∑
c∈C

nc

( ∞∑
n=1

1

n
(−1)n−1(uc(S)− 1)n

)

= −
∑
c∈C

nc

∞∑
n=1

1

n

(
1− uc(S)

)n
. (4)

This concludes the proof. 422

Lemma 1 demonstrates that the calculation of fair in- 423

fluence with fractional powers can be transformed into 424

the summation of integral powers. Further, we can get an 425

unbiased estimator for integral powers of arithmetic mean 426

as given in the following Lemma 2. 427

Lemma 2. [38] Suppose that a simple random sample of size m 428

is to be drawn, with replacement, in order to estimate the mean 429

µn. An unbiased estimator for µn (n ≤ m) is 430

µ̂n =
(m− n)!

m!
{
∑

xi1xi2 · · ·xin}(i1 ̸= i2 ̸= · · · ̸= in), (5)

where the summation extends over all permutations of all sets of 431

n observations in a sample subject only to the restriction noted. 432

4.2 Unbiased Fair Influence with RR sets 433

As mentioned above, many efficient influence maximization 434

algorithms such as IMM [18] are based on the Reverse Influ- 435

ence Sampling (RIS) approach, which generates a suitable 436

number of reverse-reachable (RR) sets for influence estima- 437

tion. Recall that an RR set RR(v) is generated by reversely 438

simulating the influence diffusion (a random diffusion in- 439

stance) from the root v. The seed set S covering RR(v) 440

implies that S could reach (influence) v in that random 441

diffusion instance. 442

Let Xc be the random event that indicates whether a ran- 443

domly selected node in community c would be influenced 444

in a diffusion instance by the given seed set S. As given in 445

Section 3.3, an RR set maps to a random diffusion instance. 446

Assuming we generate R consisting of θ RR sets in total and 447
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each community c gets θc RR sets. Let Rc be the set of RR448

sets that are rooted in the community c, i.e., |Rc| = θc. Let449

Xi
c (i ∈ [θc]) be a random variable for each RR set Ri ∈ Rc,450

such that Xi
c = 1 if Ri

c ∩ S ̸= ∅, and Xi
c = 0 otherwise.451

Then, we have E[Xc] = uc and E[Xc] = 1− uc.452

Based on Lemma 1 and Lemma 2, we can get the unbi-453

ased estimator of E[Xc]
α through RR sets as454

E[Xc]
α = 1− α

∞∑
n=1

η(n, α)(1− E[Xc])
n

= 1− α

( θ∑
n=1

η(n, α)(1− E[Xc])
n + ξ(θc)

)
, (6)

where455

ξ(θc) =
∞∑

n=θc+1

η(n, α)(1− E[Xc])
n

≤
∞∑

n=θc+1

1

n
· (1− E[Xc])

n

≤ 1

θc + 1
· (1− E[Xc])

θc+1

E[Xc]
(7)

Thus, we get the unbiased estimator1 of E[Xc]
α as456

Ê[Xc]
α = 1− α

θc∑
n=1

η(n, α)
(θc − n)!

θc!

∑ n∏
d=1

Xid
c (8)

Further, we can get the unbiased estimator of Fα(S) as457

F̂α(S,R) =
∑
c∈C

nc

(
1− α

θc∑
n=1

η(n, α)
(θc − n)!

θc!

∑ n∏
d=1

Xid
c

)

=
∑
c∈C

nc

(
1− α

θc∑
n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i

)
, (9)

where πc = θc −
∑

i∈[θc]
Xi

c.458

Similarly, we can get the unbiased estimator of F0(S) as459

F̂0(S,R) = −
∑
c∈C

nc

θc∑
n=1

1

n

n−1∏
i=0

πc − i

θc − i
, (10)

In the following, we consider Eq.(9) and Eq.(10) as our460

objective functions to deal with the fair IM problem.461

4.3 The Proposed Algorithm FIMM462

For a given seed set S, let φ[c] denote the number of all u-463

rooted (u ∈ Vc) RR sets covered by S, and κ[v][c] denote the464

number of all u-rooted (u ∈ Vc) RR sets that covered by v465

(v ∈ V \ S) but not by S, then the marginal fair influence466

gain of v w.r.t. Fα(S) and F0(S) is467

F̂α(v|S) =
∑
c∈C

nc

(
1− α

θc∑
n=1

η(n, α)

n−1∏
i=0

θc − κ[v][c]− φ[c]− i

θc − i

)

−
∑
c∈C

nc

(
1− α

θc∑
n=1

η(n, α)

n−1∏
i=0

θc − φ[c]− i

θc − i

)

1. ξ(θc) is sufficiently small and can be viewed as 0 since θ is usually
large enough. Thus, Ê[Xc]α can be treated as an unbiased estimator.

=
∑
c∈C

αnc

θc∑
n=1

η(n, α)

·

(
n−1∏
i=0

θc − φ[c]− i

θc − i
−

n−1∏
i=0

θc − κ[v][c]− φ[c]− i

θc − i

)
,

(11)

F̂0(v|S) = −
∑
c∈C

nc

θc∑
n=1

1

n

n−1∏
i=0

θc − κ[v][c]− φ[c]− i

θc − i

+
∑
c∈C

nc

θc∑
n=1

1

n

n−1∏
i=0

θc − φ[c]− i

θc − i
,

=
∑
c∈C

nc

θc∑
n=1

1

n

·

(
n−1∏
i=0

θc − φ[c]− i

θc − i
−

n−1∏
i=0

θc − κ[v][c]− φ[c]− i

θc − i

)
.

(12)

If we only consider n = 2, the marginal fair influence gain 468

becomes 469

F̂ 2
α(v|S) =

∑
c∈C

αncκ[v][c] ·
(
(4− 2α)θc − 3 + α

θc(θc − 1)

− (1− α)φ[c] + (1− α)(φ[c] + κ[v][c])

θc(θc − 1)

)
, (13)

F̂ 2
0 (v|S) =

∑
c∈C

ncκ[v][c] ·
4θc − 3− φ[c]− (φ[c] + κ[v][c])

θc(θc − 1)
.

(14)

Note that κ[v][c] is monotonically decreasing, and both 470

φ[c] and φ[c] + κ[v][c] are monotonically increasing with the 471

expansion of S. Therefore, both F 2
α(v|S) and F 2

0 (v|S) are still 472

monotonically decreasing, which enables a lazy-updating strat- 473

egy to effectively select seeds with the maximal marginal fair 474

influence gain. 475

Following the calculation of the marginal fair influence 476

gain, when generating RR sets, we have to count κ[v][c] which 477

indicates the community-wise coverage for v and record η[v] 478

which indicates the linked-list from v to all its covered RR 479

sets, as shown in Algorithm 1. As shown in lines 6∼9, when 480

generating a random v-rooted RR set RR(v), we count all nodes 481

u ∈ RR(v) and raise all κ[u][c(v)] by 1, where c(v) indicates v’s 482

community label. It should be noted that modifying κ[u][c(v)] 483

Algorithm 1: RR-Generate: Generate RR sets

Input: Graph G = (V,E, p), community C, budget k,
number of RR sets for each community θc

Output: RR sets R, community-wise coverage κ,
linked-list η from nodes to covered RR sets

1 Initialize κ[v][c] = 0 for all v ∈ V , c ∈ C;
2 Initialize η[v] = ∅ for all v ∈ V ;
3 R = ∅;
4 for c ∈ C do
5 for i = 1 to θc do
6 Select a random node v in community c;
7 Sample a random RR set Ri = RR(v);
8 for u ∈ R do
9 κ[u][c(v)] = κ[u][c(v)] + 1;

10 R = R∪ {Ri};
11 η[v] = η[v] ∪ {Ri};
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can be accomplished simultaneously when generating RR(v)484

by the reverse influence sampling.485

Based on the RR sets generated by Algorithm 1, we present486

our FIMM algorithm (Algorithm 2) to select k seed nodes487

that maximize Eq.(9) and Eq.(10) through a greedy approach,488

i.e., iteratively selecting a node with the maximum alternative489

marginal fair influence gain as presented in Eq.(11) and Eq.(12).490

Apparently, it costs O(C) to calculate F̂α(v|S) or F̂0(v|S) for491

any v where C is the number of communities. When C is small492

(i.e., a constant), it would be efficient to compute F̂ (v|S) for all493

v ∈ V in O(CnG). Additionally, since F̂ (S,R) is submodular494

and monotone, we can adopt a lazy-update strategy [24] that495

selects v with the maximal F̂ (v|S) as a seed node if F̂ (v|S)496

is still the maximum after updating. This lazy-update strategy497

(lines 10∼12) can significantly reduce redundant time costs,498

achieving empirical speeds up to 700 times faster than a simple499

greedy algorithm [24].500

There are two vital counting arrays in Algorithm 2, i.e., φ[c]501

and κ[v][c]. φ[c] records and updates the number of RR sets502

covered by S in community-wise. By lines 20∼24, κ[v][c] keeps503

updating and always indicates the extra coverage of v on all504

u-rooted (u ∈ Vc) RR sets besides S. It establishes a convenient505

way for updating φ(c) that only needs to increase φ(c) by κ[v][c]506

where v is the newly selected node for all c ∈ C. If we denote the507

original community-wise coverage as κ′, which means (∼, κ′,∼508

) =RR-Generate(G, C, k, θc), then it holds κ′[v][c] = κ[v][c] +509

φ[c] for all v ∈ V and c ∈ C.510

Now we discuss the time complexity of Algorithm 2. Ap-511

Algorithm 2: FIMM: Fair Influence Maximization

Input: Graph G = (V,E, p), community C, budget k,
approximation parameter Q

Output: Seed set S
1 (R, κ, η) = RR-Generate(G, C, k, θc)
2 Initialize γ(v) according to Eq.(11-12) for all v ∈ V ;

//indicating initial marginal gain
3 Initialize φ[c] = 0 for all c ∈ C; //indicating the

number of covered RR sets rooted in c
4 Initialize covered[R] = false for all R ∈ R;
5 Initialize updated[v] = true for all v ∈ V ;
6 S = ∅;
7 for i = 1 to k do
8 while true do
9 v = argmaxu∈V \S γ(u);

10 if updated(v) == false then
11 Updating γ(v) according to Eq.(11-12);
12 updated(v) = true;

13 else
14 S = S ∪ {v};
15 for v ∈ V do
16 updated(v) = false;

17 break;

18 for c ∈ C do
19 φ[c] = φ[c] + κ[v][c];

20 for all R ∈ η[v] ∧ covered[R] == false do
21 covered[R] = true;
22 r = root(R);
23 for all u ∈ R ∧ u ̸= v do
24 κ[u][c(r)] = κ[u][c(r)]− 1;

parently, the initialization of γ(v) in line 2 can be conducted 512

simultaneously with generating RR sets in line 1. Lines 3∼5 513

take O(C + θ + nG) for initialization where θ is the number of 514

RR sets in R. Line 7 takes k rounds to select k seed nodes. In 515

each round, lines 8∼17 take O(nG) to select v with maximal 516

γ(v), and take O(CnG) to calculate γ(v) for at most n nodes. 517

Lines 18∼19 take O(C) to update φ[c]. Since covered[R] will be 518

set to false if ever covered by S, each RR set would only be 519

traversed at most once during lines 20∼24, which results in a 520

O(
∑

R∈R |R|) time cost independent of k. In summary, the seed 521

selection process in Algorithm 2 takes O(C+θ+nG)+O(knG)+ 522

O(kCnG) +O(kC) +O(
∑

R∈R |R|) = O(kCnG +
∑

R∈R |R|). 523

4.4 Number of RR sets 524

In this subsection, we discuss the number of RR sets 525

needed to approximate the fair influence with high proba- 526

bility. Let OPTα and OPT0 denote the optimal solution of 527

the FIM problem with S∗ denote the corresponding opti- 528

mal seed set, i.e., OPTα = Fα(S
∗) =

∑
c∈C ncuc(S

∗)α = 529∑
c∈C nc

(
1− α

∑∞
n=1 η(n, α)

(
1− uc(S

∗)
)n) for 0 < α < 530

1, and OPT0 = F0(S
∗) =

∑
c∈C nc ln(uc(S

∗)) = 531

−
∑

c∈C nc

∑∞
n=1

1
n

(
1 − uc(S

∗)
)n for α = 0. It should be 532

noted that S∗ can be different for OPTα ∈ (0,+∞) and 533

OPT0 ∈ (−∞, 0). Since this paper deals with the fair IM 534

problem, we thus assume that the maximal community utility 535

maxc∈Cuc(S
#) ≥ maxc∈Cuc(S

∗) of an arbitrary seed set S#
536

would not be too big. 537

Lemma 3. Let δ1 ∈ (0, 1), ε1 ∈ (0, 1), and θ1 = 12Q2 ln(C/δ1)

ε21(1−b)
538

where Q is the approximation parameter, b = max(uc(S
∗)), ∀c ∈ C, 539

and S∗ = argmaxS:|S|≤k Fα(S) denotes the optimal solution for the 540

FIM problem based on R, then F̂α(S
∗,R) ≥ (1− ε1) ·OPTα holds 541

with at least 1− δ1 probability if θ ≥ Cθ1. 542

Lemma 4. Let δ2 ∈ (0, 1), ε2 = ( e
e+1

)ε − ε1, and θ2 = 543

8Q2 ln(C(nG
k )/δ2)

ε22(1−b0)
where Q is the approximation parameter, b0 = 544

max(uc(S
#)), ∀c ∈ C where S# could be an arbitrary fair solution. 545

For each bad S (which indicates Fα(S) < (1 − 1/e − ε) · OPTα), 546

F̂α(S,R) ≥ (1− 1/e)(1− ε1) ·OPTα holds with at most δ2/
(
nG
k

)
547

probability if θ ≥ Cθ2. 548

Please refer to the Appendix for the detailed proof of 549

Lemma 3 and Lemma 4. 550

Theorem 1. For every ε > 0, ℓ > 0, 0 < α < 1, and Q ≥ 2, by 551

setting δ1 = δ2 = 1/2nℓ
G and θ ≥ C · max(θ1, θ2), the output S 552

of FIMM satisfies Fα(S) ≥ (1− 1/e− ε)Fα(S
∗), where S∗ denotes 553

the optimal solution with probability at least 1− 1/nℓ
G. 554

Proof. Combining Lemma 3 and Lemma 4, we have F̂α(S,R) ≥ 555

(1−1/e− ε) ·OPTα at least 1− δ1− δ2 probability based on the 556

union bound. If we set δ1 = δ2 = 1/2nℓ
G, then, following the 557

standard analysis of IMM, our FIMM algorithm provides (1 − 558

1/e− ε)-approximation with probability at least 1− 1/nℓ
G. 559

Since F0(S) is a non-positive monotone submodular func- 560

tion, it leads to a greedy solution with a 1− 1/e approximation, 561

plus an additional F0(∅)/e. However, as ln(0) is undefined, 562

F0(∅) cannot be computed. To address the problem, we assume 563

the existence of an activated virtual node that connects to cer- 564

tain marginal nodes in each community, where those marginal 565

nodes are unlikely to be influenced by S∗. Consequently, uc(S) 566

would be positive when S = ∅. Let uc(∅) = uc(S
∗)2 (e.g., if 567

uc(S
∗) is 0.2, uc(∅) is only 0.04), then we have F0(∅) = 2F0(S

∗), 568

which yields a greedy solution with a 1 + 1/e approximation. 569

Lemma 5. Let δ1 ∈ (0, 1), ε1 ∈ (0, 1), and θ1 = 12Q2 ln(C/δ1)

ε21(1−b)
570

where Q is the approximation parameter, b = max(uc(S
∗)), ∀c ∈ C, 571

and S∗ = argmaxS:|S|≤k F0(S) denotes the optimal solution for the 572
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FIM problem based on R, then F̂0(S
∗,R) ≥ (1 + ε1) ·OPT0 holds573

with at least 1− δ1 probability if θ ≥ Cθ1.574

Lemma 6. Let δ2 ∈ (0, 1), ε2 = ( e
e−1

)ε − ε1, and θ2 =575

8Q2 ln(C(nG
k )/δ2)

ε22(1−b0)
where Q is the approximation parameter, b0 =576

max(uc(S
#)), ∀c ∈ C where S# could be an arbitrary fair solution.577

For each bad S (which indicates F0(S) < (1 + 1/e + ε) · OPT0),578

F̂0(S,R) ≥ (1 + 1/e)(1 + ε1) · OPT0 holds with at most δ2/
(
nG
k

)
579

probability if θ ≥ Cθ2.580

Similarly, please refer to the Appendix for the detailed proof581

of Lemma 5 and Lemma 6.582

Theorem 2. For every ε > 0, ℓ > 0, 0 < α < 1, and Q ≥ 2, by583

setting δ1 = δ2 = 1/2nℓ
G and θ ≥ C · max(θ1, θ2), the output S584

of FIMM satisfies F0(S) ≥ (1 + 1/e+ ε)F0(S
∗), where S∗ denotes585

the optimal solution with probability at least 1− 1/nℓ
G.586

Proof. Combining Lemma 5 and Lemma 6, we have F̂0(S,R) ≥587

(1+1/e+ ε) ·OPT0 at least 1− δ1 − δ2 probability based on the588

union bound. If we set δ1 = δ2 = 1/2nℓ
G, then, following the589

standard analysis of IMM, our FIMM algorithm provides (1 +590

1/e+ ε)-approximation with probability at least 1− 1/nℓ
G.591

It should be noted that Fα(S) is always positive and F0(S)592

is always negative for S ̸= ∅, thus yielding two different lower593

bounds in Theorem 1 and Theorem 2. In addition, for both594

Theorem 1 and Theorem 2, if we set δ1 = δ2 = 1

2nℓ
G

and595

ε1 = ε · e
e−1

·
√
3τ1√

3τ1+
√
2τ2

where τ1 =
√
lnC + ℓ lnnG + ln 2 and596

τ2
2 = τ2

1 + ln
(
nG
k

)
, then a possible setting of θ could be θ =597

( e−1
e

)2 · 4CQ2(
√

3τ1+
√
2τ2)

2

ε2(1−b0)
, which satisfies θ ≥ C ·max(θ1, θ2).598

5 EXPERIMENTS599

5.1 Dataset600

Email: The Email dataset [39] is generated using email data601

from a large European research institution, where every node is602

a member of the research institution and a directed edge (v, u)603

indicates that v has sent u at least one email. It contains 1,005604

nodes and 25,571 directed edges. Moreover, this dataset also605

contains "ground-truth" community memberships of nodes,606

where each member belongs to exactly one of 42 departments607

at the research institute.608

UVM: The UVM dataset [40] is generated using the Facebook609

social network data in UVM (University of Vermont), where610

every node is a member (Faculty or Student) of UVM. The611

network is preprocessed by Lin. et al. [19] who remove the612

nodes without user information in the network profile. It con-613

tains 7,322 nodes and 191,197 undirected edges and is either614

divided by the Status feature into Faculty (12%) and Student615

(88%) or divided by the Grade feature into Senior (40%) and616

Junior (60%).617

UCSC: The UCSC dataset [40] is generated using the Facebook618

social network data in UCSC (University of California at Santa619

Cruz), where every node is a member of UCSC. The network620

contains 8,990 nodes and 224,545 undirected edges and is either621

divided by the Status feature into Faculty (10%) and Student622

(90%) or divided by the Gender feature into Male (45%) and623

Female (55%).624

Flixster: The Flixster dataset [41] is a network of American625

social movie discovery services. To transform the dataset into626

a weighted graph, each user is represented by a node, and a627

directed edge from node u to v is formed if v rates one movie628

shortly after u does so on the same movie. It contains 29,357629

nodes and 212,614 directed edges. It also provides the learned630

influence probability between each node pair, which can be631

incorporated into the IC model. Since it has no community632

information, we construct the biased community structure by 633

categorizing individuals according to their susceptibility of 634

being influenced to highlight the level of inequality and get 635

two different divisions consisting of 10 and 100 communities. 636

Amazon: The Amazon dataset [42] is collected based on 637

Customers Who Bought This Item Also Bought feature of the 638

Amazon website. If a product i is frequently co-purchased with 639

product j, the graph contains an undirected edge between i 640

to j. The dataset also provides the ground-truth community 641

structure which indicates the product categories. The original 642

network has 334,863 nodes and 925,872 undirected edges. After 643

Pruning low-quality communities (whose size is no more than 644

10 nodes), the Amazon network tested in our experiments 645

contains 9,239 nodes, 29,370 edges, and 229 communities. 646

Youtube: The Youtube dataset [42] is a network of the video- 647

sharing web site that includes social relationships. Users form 648

friendship each other and users can create groups which other 649

users can join. The friendship between users is regarded as 650

undirected edges and the user-defined groups are considered as 651

ground-truth communities. The original network has 1,134,890 652

nodes and 2,987,624 undirected edges. After screening high- 653

quality communities, it remains 20,707 nodes, 95,403 edges, and 654

379 communities. 655

DBLP: This paper adopts two different DBLP datasets, which 656

will be referred to as DBLP1 and DBLP2 in the following 657

context. The DBLP1 dataset [42] is the co-authorship network 658

where two authors are connected if they have ever published 659

a paper together. Publication venues, such as journals or con- 660

ferences, define an individual ground-truth community, and 661

authors who publish to a certain journal or conference form 662

a community. The original network has 717,080 nodes and 663

1,049,866 undirected edges. We also perform the network prun- 664

ing and finally obtain 59,028 nodes, 215,335 edges, and 193 665

communities. Similar to DBLP1, the DBLP2 dataset [43] is also 666

the co-authorship network but attached with a gender feature. 667

The network has 280,200 nodes (23% female and 77% male) and 668

750,601 undirected edges. 669

5.2 Evaluation Metrics 670

Let SI denote the seed set returned by IMM [18] (which is one 671

of the state-of-the-art IM algorithms with 1 − 1/e theoretical 672

guarantee), SF denote the seed set returned by FIMM, the 673

performance of SF towards fairness can be evaluated via the 674

Price of Fairness (PoF) and the Effect of Fairness (EoF) as 675

PoF =
σ(SI)− σ(SF )

σ(SI)− k
,

EoFα =
Fα(SF )− Fα(SI)

Fα(SI)− k
,

EoF0 =
F0(SF )− F0(SI)

−F0(SI)− k
.

where |SI | = |SF | = k, σ(·) denotes the influence spread, and 676

both Fα(·) (≥ 0) and F0(·) (≤ 0) are the fair influence. PoF 677

measures the loss of influence spread σ(S) by calculating the 678

relative gap between a fair IM algorithm and the IMM algo- 679

rithm. In contrast, EoFα and EoF0 measure the improvement of 680

fair influence (corresponding to Fα(S) and F0(S), respectively) 681

by calculating the relative gap between a fair IM algorithm and 682

the IMM algorithm. Intuitively, PoF implies how much it costs 683

to access fairness and two EoFs imply to what extent it steps 684

towards fairness. 685

5.3 Results 686

We test IMM and our proposed FIMM algorithm in the exper- 687

iment, where FIMMα and FIMM0 denote our algorithm frame- 688

work combined with Fα(S) and F0(S), respectively. In all tests, 689
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Fig. 1. Results on Email network (testing influence probability p).

we run 20,000 Monte-Carlo simulations to evaluate both the690

influence spread and the fair influence under the IC model.691

We test different influence probability p, inequality aversion692

parameter α, and seed budget k under different datasets.693

5.3.1 Email694

The Email network has only 1005 nodes but is allocated into695

42 communities. The two largest communities have 109 and 92696

nodes, while the three smallest communities have only 1 node.697

For the Email network, we set α = 0.5, k = 50, and apply698

the Uniformed IC model where the influence probability is the699

same across all edges. We test different probabilities that range700

from 0.001 to 0.01 with the step of 0.001. The results include the701

influence spread σ(S), the Price of Fairness PoF , and the Effect702

of Fairness EoFα and EoF0, which are shown in Fig. 1.703

As the influence probability p increases, both PoF and704

EoF show a downward trend. This may be attributed to the705

increased challenges faced by disadvantaged communities in706

being influenced when p is small. Besides, though FIMMα holds707

a lower PoF than FIMM0 across different p, they give nearly the708

same performance on both EoFα and EoF0, where the mean709

EoFα are 9.83% and 9.60%, and the mean EoF0 are 8.72% and710

8.83% for FIMMα and FIMM0, respectively. But still, FIMMα711

is slightly better in terms of EoFα while FIMM0 is slightly712

better in terms of EoF0, which accords with their corresponding713

objective functions.714

Moreover, we compare our method with equality-based715

fairness which is in favor of fair result-aware seeding to explore716

the difference between welfare fairness and equality fairness.717

The Equality asks to divide the budget k proportionally to the718

cluster sizes, i.e., |S ∩ Vc| ≈ k · nc/nG. To select seeds under719

the Equality criterion, we adopt two strategies: (1) selecting720

the highest-degree node within each community, referred to as721

SC-HD; and (2) running the IMM algorithm independently within722

each community, referred to as SC-IMM. Since FIMMα and FIMM0723

give rather similar performances, we only involve the results of724

FIMMα and test PoF and EoFα.725

Table 2 below exhibits the comparison results, where SFIMM,726

SC-HD, and SC-IMM refer to seeds selected by our FIMMα727

method, seeds selected by community-aware highest degree,728

and community-aware IMM, respectively. PoF and EoFα are 729

calculated based on the IMM algorithm. 730

As can be seen from the results, both PoF (the lower the 731

better) and EoFα (the higher the better) of SFIMM are always 732

better than that of SC-HD and SC-IMM. In other words, SC-HD pays 733

more price of fairness yet achieves a lower degree of fairness. 734

Compared with SC-HD, SC-IMM yields a better performance. 735

Moreover, as p increases, the fair influence of both SC-HD and 736

SC-IMM is even lower (leading to negative EoFα) than that 737

of IMM, which does not even contribute to fairness at all. 738

The reason is that community-aware seeding only highlights 739

fairness in the process of seed allocation, while welfare fairness 740

(also, maximin fairness and equity fairness) highlights fairness 741

in the spreading results. The former could have an explicit fair 742

distribution in seeding, but may still lead to unfair results. 743

TABLE 2
Comparison with equality-based methods

p
PoF EoFα

SFIMM SC-HD SC-IMM SFIMM SC-HD SC-IMM

0.001 20.53% 31.99% 21.56% 27.97% 20.32% 20.94%
0.002 17.29% 31.50% 20.56% 19.04% 13.92% 15.14%
0.003 12.77% 30.73% 20.76% 13.84% 10.09% 11.72%
0.004 9.00% 29.63% 19.11% 10.92% 4.40% 6.73%
0.005 7.43% 28.85% 17.63% 6.48% 2.72% 5.58%
0.006 5.39% 28.25% 17.96% 5.60% 0.15% 3.26%
0.007 4.83% 27.06% 16.21% 4.15% -1.75% 1.84%
0.008 4.33% 26.03% 15.77% 3.07% -3.13% 0.64%
0.009 3.41% 24.65% 14.88% 2.74% -4.63% -0.73%
0.01 2.68% 24.07% 15.64% 2.24% -5.18% -1.51%

5.3.2 UVM & UCSC 744

These two networks can be partitioned in two distinct ways, 745

each resulting in a structure of two communities. Specifically, 746

the UVM network, comprising 7,322 nodes, can be divided 747

either into Faculty (899 nodes) and Student (6,423 nodes) or 748

into Senior (2,884 nodes) and Junior (4,438 nodes). Similarly, 749

the UCSC network, with 8,990 nodes, can be split either into 750
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Fig. 2. Results on UVM network (testing seed budget k).

5 10 15 20 25 30 35 40 45 50
k

200

300

400

500

600

700

(S
)

IMM
FIMM

FIMM
0

(a) σ(S) (Status)

5 10 15 20 25 30 35 40 45 50
k

-0.2

0

0.2

0.4

0.6

P
oF

 (
%

)

FIMM

FIMM
0

(b) PoF (Status)

5 10 15 20 25 30 35 40 45 50
k

0

0.1

0.2

0.3

0.4

E
oF

 (
%

)

FIMM

FIMM
0

(c) EoFα (Status)

5 10 15 20 25 30 35 40 45 50
k

-0.04

-0.02

0

0.02

0.04

0.06

0.08

E
oF

0
 (

%
)

FIMM

FIMM
0

(d) EoF0 (Status)

5 10 15 20 25 30 35 40 45 50
k

200

300

400

500

600

700

(S
)

IMM
FIMM

FIMM
0

(e) σ(S) (Gender)

5 10 15 20 25 30 35 40 45 50
k

-0.5

0

0.5

1

P
oF

 (
%

)

FIMM

FIMM
0

(f) PoF (Gender)

5 10 15 20 25 30 35 40 45 50
k

0

0.1

0.2

0.3

0.4

0.5

0.6
E

oF
 (

%
)

FIMM

FIMM
0

(g) EoFα (Gender)

5 10 15 20 25 30 35 40 45 50
k

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
oF

0
 (

%
)

FIMM

FIMM
0

(h) EoF0 (Gender)

Fig. 3. Results on UCSC network (testing seed budget k).

Faculty (930 nodes) and Student (8,060 nodes) or into Male751

(4,006 nodes) and Female (4,984 nodes) groups. Since both752

networks have a large average degree, we set p = 0.01, α = 0.5,753

and test the variation of the seed budget k from 5 to 50. The754

results on these two networks are shown in Fig. 2 and Fig. 3.755

As shown in these two figures, the influence spread of the756

three methods remains consistently similar, regardless of how757

the communities are divided (i.e., by Status or by Gender).758

Correspondingly, the PoF of FIMMα and FIMM0 is almost759

always lower than 1%, showing that both algorithms return760

high-quality seed sets even in terms of influence spread. This761

consistency may be due to the presence of only two commu-762

nities, which are divided based on node attributes rather than763

community criteria such as modularity. As a result, the nodes764

are well-connected across different groups. In such a case, the765

high-quality seeds selected by IMM are also likely to influence a766

significant ratio of nodes across different communities. There-767

fore, both EoFα and EoF0 are always lower than 1% as well,768

revealing that the gap of fairness between IMM and FIMM is769

relatively small on these two networks.770

However, the results still show a trend that FIMMα usually771

produces a better EoFα while FIMM0 achieves a higher EoF0.772

Meanwhile, FIMMα usually pays a lower price in influence773

spread. The reason is that FIMM0 requires the utility of any774

community to be non-zero, which significantly affects the seed775

selection process at the initial stage, causing a lower influence776

spread.777

5.3.3 Flixster 778

The Flixster dataset provides the learned influence probabili- 779

ties. Thus, we test the inequality aversion parameter α which 780

ranges from 0.1 to 0.9 with the step of 0.1 under k = 50. We also 781

test the seed budget k that ranges from 5 to 50 with the step of 782

5 under α = 0.5. 783

To highlight the level of inequality between different com- 784

munities, we construct the biased community structure by 785

dividing individuals according to their degree of being influ- 786

enced. Since we generate the same number of RR sets for each 787

node, we can calculate the total size of RR sets for each node 788

and sort them decreasingly. The size indicates how easily a 789

node can be influenced by random seeds. We then divide those 790

sorted nodes into C communities where all communities have 791

the same size. Consequently, nodes in the head communities 792

are easier to be influenced and nodes in the tail communities 793

can hardly be influenced. In practice, assuming we divide the 794

network into C communities, the ⌈n/C⌉ individuals that are 795

easiest to be influenced are put into Vc1. Then, we put the 796

⌈n/C⌉ individuals that are next easiest to be influenced are put 797

into Vc2. Analogously, the network will ultimately be divided 798

into C communities where individuals in different communities 799

exhibit a gradient probability pattern of being influenced. 800

Following the above strategy, we divide the Flixster net- 801

work into 10 and 100 communities, the results of which are 802

shown in Fig. 4 and Fig. 5. It should be noted that the change of 803

α does not affect IMM and FIMM0, therefore their performance 804

in Fig. 4 (e),(f),(h) and Fig. 5 (d),(e) remains a straight line. 805

Besides, when the network is divided into 100 communities, 806
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Fig. 4. Results on Flixster network with 10 communities (testing seed budget k and aversion parameter α).

the seeds selected by IMM fail to cover all the groups, which807

makes it impossible to calculate EoF0 for FIMMα and FIMM0.808

As shown in Fig. 4 and Fig. 5, the PoF of FIMM0 is always809

significantly higher than that of FIMMα. The reason is that810

FIMM0 must attempt to influence all the communities even811

when k is very small, resulting in a greater loss of influence812

spread. Meanwhile, FIMMα and FIMM0 exhibit clear superiority813

in their respective objective functions, i.e., Fα(·) and F0(·).814

As k increase, PoF , EoFα, and EoF0 of both FIMMα and815

FIMM0 all tend to rise. Since communities are divided based on816

their susceptibility to influence, selecting more seeds makes it817

easier to achieve a fairer utility distribution. When α increases,818

PoF , EoFα, and EoF0 of FIMMα shows a downward trend. The819

reason lies that communities experience greater promotions in820

fair influence when α is smaller. Moreover, there is hardly any821

fairness when α ≥ 0.7 where the gap between uα and u is just 822

too small. 823

5.3.4 Amazon 824

The Amazon network is a disconnected network that contains 825

42 connected components with 229 communities. Therefore, 826

we only test FIMMα and Fα(·) on this dataset since F0(·) is 827

unavailable unless all communities are influenced. Like the 828

above experiments, α is set to 0.5, and k ranges from 5 to 50 829

with step of 5. Since the network has a more complex topology, 830

we set p(vi, vj) = 1/din(vj) where din denotes the in-degree as 831

the influence probability following the weighted IC model [23]. 832

Corresponding results are shown in Fig. 6. 833

Generally, FIMM tends to produce a noticeably fairer output 834

when k is small. It reflects the idea that enforcing fairness as a 835

5 10 15 20 25 30 35 40 45 50
k

200

400

600

800

1000

1200

1400

(S
)

IMM
FIMM

FIMM
0

(a) σ(S) (C = 100)

5 10 15 20 25 30 35 40 45 50
k

0

5

10

15

20

25

30

35

P
oF

 (
%

)

FIMM

FIMM
0

(b) PoF (C = 100)

5 10 15 20 25 30 35 40 45 50
k

-10

-8

-6

-4

-2

0

2

E
oF

 (
%

)

FIMM

FIMM
0

(c) EoFα (C = 100)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
900

1000

1100

1200

1300

1400

(S
)

IMM
FIMM

FIMM
0

(d) σ(S) (C = 100)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

P
oF

 (
%

)

FIMM

FIMM
0

(e) PoF (C = 100)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-30

-20

-10

0

10

E
oF

 (
%

)

FIMM

FIMM
0

(f) EoFα (C = 100)

Fig. 5. Results on Flixster network with 100 communities (testing seed budget k and aversion parameter α).
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constraint becomes easier when abundant resources are avail-836

able. However, there are also some exceptions where smaller837

k leads to a lower EoF, e.g., k = 15. This may be attributed838

to the fact that the seed selection in FIMM follows a pattern of839

remedying the previously fair solutions in each round.840
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Fig. 6. Results on Amazon network (testing seed budget k).

5.3.5 Youtube & DBLP841

Different from the Amazon network, Youtube, DBLP1, and842

DBLP2 are fully connected networks, where both Fα(·) and843

F0(·) are tested. Similarly, we set α = 0.5 and p(vi, vj) = 844

1/din(vj). We test k ranging from 5 to 50 (step = 5) on Youtube 845

and from 10 to 100 (step = 10) on both DBLP1 and DBLP2 as 846

shown in Fig. 7, 8, and 9, respectively. 847

On Youtube and DBLP1, FIMMα produces a comparatively 848

higher EoFα at a low PoF . On the contrary, FIMM0 performs 849

badly in terms of EoFα, the value of which is even negative 850

when k is small. Meanwhile, the PoF of FIMM0 is also relatively 851

higher, especially when k = 5 for Youtube and k = 10 for 852

DBLP1. It is caused by the mandatory requirement of FIMM0 to 853

cover all the communities with the first seed. However, as k in- 854

creases, FIMM0 keeps remedying the previously fair solutions, 855

leading to a similar PoF and EoFα compared with FIMMα. For 856

EoF0, FIMM0 is generally better than FIMMα. This accords with 857

the aim of FIMM0 to maximize F0(S) =
∑

c∈C nc ln(uc(S)). It 858

seems counter-intuitive that FIMMα gets a better EoF0 when 859

k is small. The reason is that though the first several seeds se- 860

lected by FIMMα may not be able to influence all the communi- 861

ties, the subsequent seeds gradually fill the gap. Consequently, 862

FIMMα could output a higher EoF0 since it has a generally 863

higher utility distribution. 864

Since DBLP2 includes only two groups divided by gender, 865

its results are similar to those on the UVM and UCSC. As 866

shown in Fig. 9, the PoF of FIMMα and FIMM0 remains below 867

1.5%, while both EoFα and EoF0 are always less than 0.2%. 868

Interestingly, FIMMα consistently achieves better EoFα, while 869
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Fig. 7. Results on Youtube network (testing seed budget k).
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Fig. 8. Results on DBLP1 network (testing seed budget k).
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Fig. 9. Results on DBLP2 network (testing seed budget k).
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FIMM0 always performs better in terms of EoF0. This obser-870

vation confirms that FIMMα and FIMM0 strive towards similar871

yet fundamentally distinct objectives. Notably, the results on872

DBLP2 exhibit a different pattern compared to those on UVM873

and UCSC. This may be attributed to the fact that DBLP2 is874

significantly larger and has a much lower average degree. As875

a result, nodes from different communities are less likely to be876

connected, leading to a more distinct utility distribution.877

5.3.6 Running Time878

The number of RR sets is mainly determined by both the size of879

the network and the structure of communities. In the following,880

we exhibit the runtime of our algorithm with the scale of881

networks. Note that our algorithm is currently implemented882

in Matlab 2023a, thus it costs more time to generate RR sets883

(generating RR sets in C++ could be at least 100 times faster).884

In Table 3, RRsets refers to the time (seconds) used to generate885

RR sets, IMM, FIMMα and FIMM0 denote their corresponding886

time used to select seeds based on the generated RR sets,887

respectively.888

TABLE 3
Running time (seconds).

Network nG C RRsets IMM FIMMα FIMM0

Email 1005 42 2.559 0.009 0.033 0.065
UVM 7322 2 61.284 0.040 0.360 0.457

UCSC 8990 2 43.703 0.049 0.462 0.675
Amazon 9239 229 31.415 0.006 0.146 0.438
Youtube 20707 379 13.252 0.008 0.544 1.570
Flixster 29357 10 49.259 0.036 2.659 7.519
DBLP1 59028 193 192.194 0.027 9.827 13.046
DBLP2 280200 2 650.581 0.114 15.821 19.958

The runtime on UVM and UCSC networks is averaged889

across two different community structures. The Flixster net-890

work is tested with the structure of 10 communities.891

Generally, the runtime of FIMMα and FIMM0 scales with892

the size of networks, and FIMM0 usually costs more time than893

FIMMα. When u is small, ln(u) experiences a much large894

change compared with uα as u varies. Therefore, FIMM0 needs895

to update the marginal gain of more nodes even under the lazy-896

update strategy. The results demonstrate the strong scalability897

of our proposed algorithms, as evidenced by their efficient898

performance on a network with 280,200 nodes.899

5.3.7 Difference between FIMMα and FIMM0900

We summarize the above results of FIMMα and FIMM0 (except901

for UVM, UCSC, and DBLP2 where the results are all close to902

0) and show their average value in Table 4.903

TABLE 4
General results.

Method PoF EoFα EoF0

FIMMα 3.68% 3.46% 4.31%
FIMM0 13.25% 0.57% 5.76%

Overall, FIMMα and FIMM0 perform well in their respective904

scenarios. FIMMα typically incurs a lower cost in influence905

spread while achieving a strong level of fairness, even across906

both objectives. In comparison, FIMM0 has to pay a higher cost907

in influence spread to achieve notable fairness, but only within908

its specific objective.909

Therefore, when seeking welfare fairness, FIMMα is a more910

general choice, as it delivers better fairness at a lower cost.911

However, in scenarios where covering all communities is es-912

sential, FIMM0 becomes the preferred option.913

6 CONCLUSION 914

This paper focuses on the fair influence maximization problem 915

with efficient approximation algorithms. Particularly, We study 916

the problem under the notion of welfare fairness, the objective 917

of which is the weighted sum of the fractional power of the ex- 918

pected proportion of activated nodes within every community. 919

Existing methods that optimize the welfare objective lack effi- 920

ciency, restricting their application to hundred-scale networks. 921

In this paper, we first tackle the challenge of carrying out the 922

unbiased estimation of the fractional power of the expected 923

proportion of activated nodes in each community. Then, we 924

deal with the challenge of integrating unbiased estimation into 925

the Reverse Influence Sampling (RIS) framework. By meeting 926

these two challenges, we propose an (1−1/e−ε) approximation 927

algorithm FIMM to maximize the fair influence. We further give 928

a theoretical analysis that addresses the concentration of the 929

unbiased estimator of the fractional power. The experiments 930

validate that our algorithm is both scalable and effective, which 931

is consistent with our theoretical analysis. 932

There are several future directions from this research. One 933

direction is to find some other unbiased estimators for the fair 934

influence that would be easier to calculate through RIS. Another 935

direction is to develop a more efficient seed selection strategy 936

that can handle cases with a large number of communities. 937

Finally, exploring the fairness bound is a meaningful research 938

direction that could enhance our understanding of fairness. 939
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APPENDIX

6.1 Proofs

Fact 2. (Chernoff bound) Let X1, X2, . . . , XR be R independent
random variables with Xi having range [0, 1], and there exists
µ ∈ [0, 1] making E[Xi] = µ for any i ∈ [R]. Let Y =

∑R
i=1 Xi,

for any γ > 0,

Pr{Y − tµ ≥ γ · tµ} ≤ exp(− γ2

2 + 2
3γ

tµ).

For any 0 < γ < 1,

Pr{Y − tµ ≤ −γ · tµ} ≤ exp(−γ2

2
tµ).

Lemma 3. Let δ1 ∈ (0, 1), ε1 ∈ (0, 1), and θ1 =
12Q2 ln(C/δ1)

ε21(1−b)
where Q is the approximation parameter, b =

max(uc(S
∗)),∀c ∈ C, and S∗ = argmaxS:|S|≤k Fα(S) de-

notes the optimal solution for the FIM problem based on R, then
F̂α(S

∗,R) ≥ (1 − ε1) · OPTα holds with at least 1 − δ1
probability if θ ≥ Cθ1.

Proof. Let Xi
c be the random variable for each Ri ∈ R (Ri

rooted in c), such that Xi
c = 1 if S∗∩Rc(i) ̸= ∅, and Xi

c = 0
otherwise. Let πc = θc −

∑
i∈[θc]

Xi
c, then

Pr
{
F̂α(S

∗,R) < (1− ε1) ·OPTα

}
= Pr

{∑
c∈C

nc

(
1− α

θc∑
n=1

η(n, α)
(θc − n)!

θc!

∑ n∏
d=1

Xid
c

)
< (1− ε1) · Fα(S

∗)

}

= Pr

{∑
c∈C

nc

(
1− α

θc∑
n=1

η(n, α)
(θc − n)!

θc!

∑ n∏
d=1

Xid
c

)
< (1− ε1)

∑
c∈C

nc (uc(S
∗))

α

}

= Pr

{∑
c∈C

nc

(
1− α

θc∑
n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i

)
< (1− ε1)

∑
c∈C

nc

(
1− α

θc∑
n=1

η(n, α)
(
1− uc(S

∗)
)n)}

≤ 1−
∏
c∈C

(
1− Pr

{
1− α

θc∑
n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i
< (1− ε1)

(
1− α

θc∑
n=1

η(n, α)
(
1− uc(S

∗)
)n)})

. (15)

For each community c in Eq.(15), let ε′1 =
1−α

∑θc
n=1 η(n,α)

(
1−uc(S

∗)
)n

α
∑θc

n=1 η(n,α)
(
1−uc(S∗)

)n · ε1, thus ε′1 ≥ ε1 when α ≤ 1/2, and

Pr

{
1− α

θc∑
n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i
< (1− ε1)

(
1− α

θc∑
n=1

η(n, α)
(
1− uc(S

∗)
)n)}

= Pr

{
1− α

θc∑
n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i
< 1− α

θc∑
n=1

η(n, α)
(
1− uc(S

∗)
)n − ε1

(
1− α

θc∑
n=1

η(n, α)
(
1− uc(S

∗)
)n)}

= Pr

{
α

θc∑
n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i
> α

θc∑
n=1

η(n, α)
(
1− uc(S

∗)
)n

+ ε1

(
1− α

θc∑
n=1

η(n, α)
(
1− uc(S

∗)
)n)}

= Pr

{
θc∑

n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i
> (1 + ε′1)

θc∑
n=1

η(n, α)
(
1− uc(S

∗)
)n}

≤ Pr

{
πc∑
n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i
> (1 + ε′1)

πc∑
n=1

η(n, α)
(
1− uc(S

∗)
)n}

(16)

≤ Pr

{
πc∑
n=1

η(n, α)(
πc

θ
)n > (1 + ε′1)

πc∑
n=1

η(n, α)
(
1− uc(S

∗)
)n}

(17)

Then,

Eq.( 17) ≤ 1− Pr
{
(
πc

θ
)πc < (1 + ε′1)

(
1− uc(S

∗)
)πc
}

= Pr
{
(
πc

θ
)πc ≥ (1 + ε′1)

(
1− uc(S

∗)
)πc
}

(
Let 1 + ε0 = πc

√
1 + ε′1

)
= Pr

{πc

θ
≥ (1 + ε0)

(
1− uc(S

∗)
)}

= Pr
{
πc − θc

(
1− uc(S

∗)
)
≥ ε0θc

(
1− uc(S

∗)
)}

≤ exp

(
−ε20

3
θc
(
1− uc(S

∗)
))

(18)

Since 0 ≤ ϵ
2x ≤ x

√
1 + ϵ − 1 ≤ ϵ

x for 0 ≤ ϵ ≤ 1 and

x ≥ 1, it holds 2x
ϵ ≥ 1

x
√
1+ϵ−1

. Let θc ≥ 12π2
c ln(C/δ1)

ε21

(
1−uc(S∗)

) ≥
3 ln(C/δ1)(

πc
√

1+ε′1−1
)2(

1−uc(S∗)
) = 3 ln(C/δ1)

ε20

(
1−uc(S∗)

) , then

Eq.(18) = exp

(
−ε20

3
θc
(
1− uc(S

∗)
))

≤ exp

(
−ε20

3

3 ln(C/δ1)

ε20
(
1− uc(S∗)

)(1− uc(S
∗)
))

= δ1/C (19)

Therefore,

Eq.(15) ≤ 1−
∏
c∈C

(1− δ1/C) ≤ δ1 (20)
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To limit Eq.(16) to the first Q (Q ≥ 2) terms, it becomes

Pr

{
Q∑

n=1

η(n, α)
n−1∏
i=0

πc−i

θc−i
> (1+ε′1)

πc∑
n=1

η(n, α)
(
1−uc(S

∗)
)n}

≤ Pr

{
Q∑

n=1

η(n, α)(
πc

θ
)n>(1+ε′1)

πc∑
n=1

η(n, α)
(
1−uc(S

∗)
)n}

≤ 1− Pr
{
(
πc

θ
)Q < (1 + ε′1)

(
1− uc(S

∗)
)Q}

≤ Pr
{
(
πc

θ
)Q ≥ (1 + ε′1)

(
1− uc(S

∗)
)Q}(

Let 1 + ε0 = Q

√
1 + ε′1

)
= Pr

{
πc − θc

(
1− uc(S

∗)
)
≥ ε0θc

(
1− uc(S

∗)
)}

≤ exp

(
−ε20

3
θc
(
1− uc(S

∗)
))

(21)(
Let θc ≥

12Q2 ln(C/δ1)

ε21
(
1− uc(S∗)

) ≥ 3 ln(C/δ1)

ε20
(
1− uc(S∗)

))

≤ δ1/C (22)

Therefore,

Eq.(15) ≤ δ1 (23)

It indicates Pr
{
F̂α(S

∗,R) ≥ (1− ε1) ·OPTα

}
≥ 1 − δ1,

thus concludes the proof.

Lemma 4. Let δ2 ∈ (0, 1), ε2 = ( e
e+1 )ε − ε1, and θ2 =

8Q2 ln(C(nG
k )/δ2)

ε22(1−b0)
where Q is the approximation parameter, b0 =

max(uc(S
#)),∀c ∈ C where S# could be an arbitrary fair

solution. For each bad S (which indicates Fα(S) < (1 − 1/e −
ε) ·OPTα), F̂α(S,R) ≥ (1− 1/e)(1− ε1) ·OPTα holds with
at most δ2/

(nG

k

)
probability if θ ≥ Cθ2.

Proof. Let Xi
c be the random variable for each Ri ∈ R (Ri

rooted in c), such that Xi
c = 1 if S ∩Rc(i) ̸= ∅, and Xi

c = 0
otherwise. Let πc = θc −

∑
i∈[θc]

Xi
c, then

Pr

{
F̂α(S,R) ≥ (1− 1

e
)(1− ε1) ·OPTα

}
≤ Pr

{
F̂α(S,R) ≥ (1 + ε2)Fα(S)

}
= Pr

{∑
c∈C

nc

(
1− α

θc∑
n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i

)
≥ (1 + ε2)

∑
c∈C

nc

(
1− α

θc∑
n=1

η(n, α)
(
1− uc(S)

)n)}

≤ 1−
∏
c∈C

(
1− Pr

{
1− α

θc∑
n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i
≥ (1 + ε2)

(
1− α

θc∑
n=1

η(n, α)
(
1− uc(S)

)n)})
(24)

For each community c in Eq.(24), let ε′2 =
1−α

∑θc
n=1 η(n,α)

(
1−uc(S)

)n
α
∑θc

n=1 η(n,α)
(
1−uc(S)

)n · ε2, thus ε′2 ≥ ε2 when α ≤ 1/2, and

Pr

{
1− α

θc∑
n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i
≥ (1 + ε2)

(
1− α

θc∑
n=1

η(n, α)
(
1− uc(S)

)n)}

= Pr

{
1− α

θc∑
n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i
≥ 1− α

θc∑
n=1

η(n, α)
(
1− uc(S)

)n
+ ε2

(
1− α

θc∑
n=1

η(n, α)
(
1− uc(S)

)n)}

= Pr

{
α

θc∑
n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i
≤ α

θc∑
n=1

η(n, α)
(
1− uc(S)

)n − ε2

(
1− α

θc∑
n=1

η(n, α)
(
1− uc(S)

)n)}

= Pr

{
θc∑

n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i
≤ (1− ε′2)

θc∑
n=1

η(n, α)
(
1− uc(S)

)n}
(25)

To limit Eq.(25) to the first Q (Q ≥ 2) terms, let y = (1−uc(S))Q+1

(Q+1)uc(S) , x =
yθ2

c

θc−πc+yθc
, Eq.(25) becomes

Pr

{
Q∑

n=1

η(n, α)
n−1∏
i=0

πc − i

θc − i
≤ (1− ε′2)

θc∑
n=1

η(n, α)
(
1− uc(S)

)n}

= Pr

πc

θc
− (1− ε′2)

θc∑
n=Q+1

η(n, α)
(
1− uc(S)

)n
+

Q∑
n=2

η(n, α)
n−1∏
i=0

πc − i

θc − i
≤ (1− ε′2)

Q∑
n=1

η(n, α)
(
1− uc(S)

)n
≤ Pr

{
πc

θc
− y +

Q∑
n=2

η(n, α)
n−1∏
i=0

πc − i

θc − i
≤ (1− ε′2)

Q∑
n=1

η(n, α)
(
1− uc(S)

)n}

≤ Pr

{
πc − x

θc − x
+

Q∑
n=2

η(n, α)
n−1∏
i=0

πc − i

θc − i
≤ (1− ε′2)

Q∑
n=1

η(n, α)
(
1− uc(S)

)n}

≤ Pr

{
Q∑

n=1

η(n, α)(
πc −Q+ 1

θc −Q+ 1
)n ≤ (1− ε′2)

Q∑
n=1

η(n, α)
(
1− uc(S)

)n}
(when x ≤ Q− 1)
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≤ 1− Pr

{
(
πc −Q+ 1

θc −Q+ 1
)Q > (1− ε′2)

(
1− uc(S)

)Q}
= Pr

{
(
πc −Q+ 1

θc −Q+ 1
)Q ≤ (1− ε′2)

(
1− uc(S)

)Q}
(

Let 1− ε0 = Q

√
1− ε′2

)
= Pr

{
πc −Q+ 1

θc −Q+ 1
≤ (1− ε0)

(
1− uc(S)

)}
(26)

;

Pr
{
F̂0(S

∗,R) < (1 + ε1) ·OPT0

}
= Pr

{
−
∑
c∈C

nc

θc∑
n=1

1

n

(θc − n)!

θc!

∑ n∏
d=1

Xid
c < (1 + ε1)

∑
c∈C

nc ln (uc(S
∗))

}

= Pr

{
−
∑
c∈C

nc

θc∑
n=1

1

n

n−1∏
i=0

πc − i

θc − i
< −(1 + ε1)

∑
c∈C

nc

θc∑
n=1

1

n

(
1− uc(S

∗)
)n}

≤ 1−
∏
c∈C

(
1− Pr

{
θc∑

n=1

1

n

n−1∏
i=0

πc − i

θc − i
> (1 + ε1)

θc∑
n=1

1

n

(
1− uc(S

∗)
)n})

. (29)

For each community c in Eq.(29), it has

Pr

{
θc∑

n=1

1

n

n−1∏
i=0

πc−i

θc−i
> (1+ε1)

θc∑
n=1

1

n

(
1−uc(S

∗)
)n}

≤ Pr

{
πc∑
n=1

1

n

n−1∏
i=0

πc−i

θc−i
> (1+ε1)

πc∑
n=1

1

n

(
1−uc(S

∗)
)n}

(30)

≤ Pr

{
πc∑
n=1

1

n
(
πc

θc
)n > (1 + ε1)

πc∑
n=1

1

n

(
1− uc(S

∗)
)n}

≤ Pr
{
(
πc

θ
)πc ≥ (1 + ε1)

(
1− uc(S

∗)
)πc
}

(
Let 1 + ε0 = πc

√
1 + ε1

)
= Pr

{πc

θ
≥ (1 + ε0)

(
1− uc(S

∗)
)}

= Pr
{
πc − θc

(
1− uc(S

∗)
)
≥ ε0θc

(
1− uc(S

∗)
)}

≤ exp

(
−ε20

3
θc
(
1− uc(S

∗)
))

(31)

Following the previous proof of Lemma 3, we have

Eq.(31) ≤ exp

(
−ε20

3

3 ln(C/δ1)

ε20
(
1− uc(S∗)

)(1− uc(S
∗)
))

= δ1/C

Therefore,

Eq.(29) ≤ 1−
∏
c∈C

(1− δ1/C) ≤ δ1 (32)

To limit Eq.(30) to the first Q (Q ≥ 2) terms, Eq.(30)
becomes

Pr

{
Q∑

n=1

1

n

n−1∏
i=0

πc − i

θc − i
> (1 + ε1)

θc∑
n=1

1

n

(
1− uc(S

∗)
)n}

≤ Pr

{
Q∑

n=1

1

n
(
πc

θc
)n > (1 + ε1)

θc∑
n=1

1

n

(
1− uc(S

∗)
)n}

≤ Pr
{πc

θ
≥ (1 + ε1)

(
1− uc(S

∗)
)}

= Pr
{
(
πc

θ
)Q ≥ (1 + ε1)

(
1− uc(S

∗)
)Q}

(
Let 1 + ε0 = Q

√
1 + ε1

)
= Pr

{
πc − θc

(
1− uc(S

∗)
)
≥ ε0θc

(
1− uc(S

∗)
)}

≤ exp

(
−ε20

3
θc
(
1− uc(S

∗)
))

(33)(
Let θc ≥

12Q2 ln(C/δ1)

ε21
(
1− uc(S∗)

) ≥ 3 ln(C/δ1)

ε20
(
1− uc(S∗)

))
≤ δ1/C (34)

Therefore,

Eq.(29) ≤ δ1 (35)

It indicates Pr
{
F̂α(S

∗,R) ≥ (1 + ε1) ·OPTα

}
≥ 1 − δ1,

thus concludes the proof.

Lemma 6. Let δ2 ∈ (0, 1), ε2 = ( e
e−1 )ε − ε1, and θ2 =

8Q2 ln(C(nG
k )/δ2)

ε22(1−b0)
where Q is the approximation parameter, b0 =

max(uc(S
#)),∀c ∈ C where S# could be an arbitrary fair

solution. For each bad S (which indicates F0(S) < (1 + 1/e +
ε) · OPT0), F̂0(S,R) ≥ (1 + 1/e)(1 + ε1) · OPT0 holds with
at most δ2/

(nG

k

)
probability if θ ≥ Cθ2.

Proof. Let Xi
c be the random variable for each Ri ∈ R (Ri

rooted in c), such that Xi
c = 1 if S ∩Rc(i) ̸= ∅, and Xi

c = 0
otherwise. Let πc = θc −

∑
i∈[θc]

Xi
c, then

Pr

{
F̂0(S,R) ≥ (1 +

1

e
)(1 + ε1) ·OPT0

}
≤ Pr

{
F̂0(S,R) ≥ (1− ε2)F0(S)

}
(36)
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= Pr

{
−
∑
c∈C

nc

θc∑
n=1

1

n

n−1∏
i=0

πc − i

θc − i
≥ −(1− ε2)

∑
c∈C

nc

θc∑
n=1

1

n

(
1− uc(S)

)n}

≤ 1−
∏
c∈C

(
1− Pr

{
nc

θc∑
n=1

1

n

n−1∏
i=0

πc − i

θc − i
≤ (1− ε2)nc

θc∑
n=1

1

n

(
1− uc(S)

)n})
(37)

For each community c in Eq.(37), it equals to

Pr

{
θc∑

n=1

1

n

n−1∏
i=0

πc−i

θc−i
≤(1−ε2)

θc∑
n=1

1

n

(
1−uc(S)

)n}
(38)

Similar to the proof of Lemma 4, we limit Eq.(38) to the
first Q (Q ≥ 2) terms as

Pr

{
Q∑

n=1

1

n

n−1∏
i=0

πc−i

θc−i
≤(1−ε2)

θc∑
n=1

1

n

(
1−uc(S)

)n}
(when x ≤ Q− 1)

≤ Pr

{
Q∑

n=1

1

n
(
πc−Q+1

θc−Q+1
)n≤(1−ε2)

Q∑
n=1

1

n

(
1−uc(S)

)n}

≤ Pr

{
(
πc −Q+ 1

θc −Q+ 1
)Q ≤ (1− ε2)

(
1− uc(S)

)Q}
(
Let 1− ε0 = Q

√
1− ε2

)
= Pr

{
πc −Q+ 1

θc −Q+ 1
≤ (1− ε0)

(
1− uc(S)

)}
(39)

Then, similar to the proof of Lemma 4, let ε′0 = ε0 +
θc
πc

πc−Q+1
θc−Q+1 − 1, ε0 ≥ ε′0 ≥ 1− θc

πc

πc−Q
θc−Q , Eq.(39) becomes

Pr

{
πc −Q+ 1

θc −Q+ 1
≤ (1− ε0)

(
1− uc(S)

)}
= Pr

{
πc

θc
≤ (1− πc

θc

θc −Q+ 1

πc −Q+ 1
ε′0)
(
1− uc(S)

)}
≤ exp

(
−ε′20

2
θc
(
1− uc(S)

))
≤ 1

C
· δ2/

(
nG

k

)
(40)

Therefore,

Eq.(37) ≤ 1−
∏
c∈C

(1− 1

C
· δ2/

(
nG

k

)
) ≤ δ2/

(
nG

k

)
(41)

It indicates Pr
{
F̂0(S,R) ≥ (1 + 1/e)(1 + ε1) ·OPT0

}
≤

δ2/
(nG

k

)
, thus concludes the proof.
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