Kamino: Efficient VM Allocation at Scale with
Latency-Driven Cache-Aware Scheduling

Thomas Moscibroda
Microsoft Azure

Kuan Liu
Microsoft Azure

Marco Molinaro
Microsoft Research

Sudarsun Kannan
Rutgers University

Ishai Menache
Microsoft Research

David Domingo” Hugo Barbalho
Rutgers University Microsoft Research
Abhisek Pan David Dion
Microsoft Azure Microsoft Azure
Abstract

In virtual machine (VM) allocation systems, caching repeti-
tive and similar VM allocation requests and associated reso-
lution rules is crucial for reducing computational costs and
meeting strict latency requirements. While modern allocation
systems distribute requests among multiple allocator agents
and use caching to improve performance, current schedulers
often neglect the cache state and latency considerations when
assigning each new request to an agent. Due to the high
variance in costs of cache hits and misses and the associ-
ated processing overheads of updating the caches, simple
load-balancing and cache-aware mechanisms result in high
latencies. We introduce Kamino, a high-performance, latency-
driven and cache-aware request scheduling system aimed at
minimizing end-to-end latencies. Kamino employs a novel
scheduling algorithm grounded in theory which uses partial
indicators from the cache state to assign each new request
to the agent with the lowest estimated latency. Evaluation of
Kamino using a high-fidelity simulator on large-scale pro-
duction workloads shows a 42% reduction in average request
latencies. Our deployment of Kamino in the control plane of a
large public cloud confirms these improvements, with a 33%
decrease in cache miss rates and 17% reduction in memory
usage.

1 Introduction

Large cloud providers invest billions of dollars in infras-
tructure to accommodate the growing demand for different
forms of virtual machines (VMs) [16]. The VM allocation
systems, which assign VM requests to the physical hardware,
are therefore considered critical in the cloud stack. These
systems are designed to satisfy two main goals: (i) complete
the VM assignment within a stringent latency upper bound
(in the order of tens of milliseconds); (ii) achieve “high qual-
ity" allocations, which accounts for a variety of provider and
customer preferences; one example here is placing the VMs
in a way that servers are highly utilized, which leads to high

*Part of this work was done during an internship at Microsoft Research,
Redmond

infrastructure Return of Investment (ROI) [16]. Unfortunately,
these two design goals are inherently at odds as high-quality
allocations require considering numerous objectives and con-
straints that must be evaluated over huge inventories (e.g.,
hundreds of thousands of servers). This typically makes the
process computationally intensive [13,31,36], and a potential
bottleneck at high-load scenarios [6, 16].

Cloud providers have dedicated substantial efforts to sus-
taining low VM allocation latencies without giving up on
adequate quality. One standard approach is to utilize multiple
allocation agents (or instances) over the same hardware inven-
tory (e.g., an availability zone). A common design choice is to
include multiple such allocator agents (henceforth referred to
as AA) in a single node (a physical server) and further scale
out by using multiple nodes [16,36,41]. Intra-node scaling of
AAs exploits multicore parallelism and reduces the commu-
nication, consistency, and resource usage overheads that arise
from scaling AAs across multiple nodes. This paper focuses
on the mechanism for deciding which AA should be assigned
to handle each incoming request.

In addition to having multiple AAs, a complementary ap-
proach to reduce latency and increase throughput when re-
solving allocation requests is to employ in-memory caching.
State-of-the-art VM allocators, such as those employed in
Azure, use a domain-specific caching layer [16,41,43]. How-
ever, unlike traditional caches that store only data objects, VM
allocators store a combination of rules with fully or partially
computed inventory state and a preferred set of servers for
each allocation request type. Additionally, each cache entry
size can vary from 10 to 100 MB, which enforces limits on
the number of in-memory cache slots. A cache hit involves
a combination of cache lookups and minor computations. In
contrast, a cache miss might increase the latency to hundreds
of milliseconds due to computational and data access costs,
which vary significantly based on the complexity of alloca-
tion request types. Finally, some VM allocators use private
AA caches to avoid concurrency control and synchronization
overheads [16].

A key limitation of the state-of-the-art VM allocator de-

signs is the lack of synergy between scheduling a request to an
AA and the underlying caching mechanism. More precisely,
state-of-the-art VM allocators resort to standard load balanc-
ing techniques [16,43], where requests are scheduled to an
AA even if the request type does not reside in the AA’s cache.
The schedulers use simple strategies such as round-robin,
work-stealing, uniform random assignment, or more complex
hashing-based approaches to balance requests across the AA.
Unfortunately, these strategies might lead to cache misses and
computational overheads at production scale, with thousands
of request types over a large inventory of up to hundreds of
thousands servers, resulting in excess allocation latencies.

A different approach is to take inspiration from other do-
mains, such as processor caches [26], content delivery net-
works (CDNGs) [48], and storage caching [4], to design cache-
aware request scheduling to the AAs. A plausible cache-aware
scheduling policy would send requests of the same type to the
same set of AAs. However, such simple cache-aware schedul-

ing results in the following critical challenges: @ Popu-
lar requests in certain workloads could create hot spots by
scheduling requests to the same AA, increasing queuing de-

lays and raising both average and tail latency. @ A distinct
challenge specific to VM allocators is that caches are gener-
ally hierarchical, with a smaller top-level cache that stores the
information about the request type and a lower-level cache
whose content may be consumed by different request types.
Consequently, it is hard to a-priori estimate the resulting out-
come of assigning a request to an AA; for example, partial hits
are common, latencies are highly variable as a function of the
request type, cache state, and system load, and different parts
of that cache require more processing time to get up-to-date.

In view of the above challenges, we design and implement
Kamino — a hybrid latency- and cache-aware VM allocation
request scheduling framework for minimizing end-to-end re-
quest latency. At a high level, each AA is augmented with
arequest queue, and Kamino assigns each request to one of
the queues based on latency considerations. The underlying
algorithmic problem turns out to be a generalization of the
classical problem of optimal online job scheduling for latency
minimization [5], which is known to be notoriously hard in
theory [5,7]. Intuitively, our problem is even harder than the
classical one because now the requests’ processing times are
not fixed and depend on which information is in the cache,
which in turn depends on the scheduler’s previous decisions.
Nonetheless, the theoretical conceptualization allows us to
design our scheduling algorithm based on first principles. We
design a novel hybrid algorithm called LatCache, a latency-
driven request scheduling algorithm that estimates latency
even with access to only a set of partial indicators such as the
type of requests in each queue and their cache hit predictions.

At its core, the key insight of the LarCache algorithm is to
estimate the request latency within the target AAs’ queues
based on estimated processing time of the requests in each
queue, and assign a new request to the queue where the end-

to-end latency (queuing time + processing time) would be
minimal. The processing time estimates are derived by an ef-
ficient analysis of the current cache state and how the queued
requests effect the cache state as they are processed. This
enables Kamino to dynamically adapt to any arrival pattern,
while exploiting the AA caches (§2.2.1). While cache-aware
load-balancing has been applied in previous works (see §7),
a key novelty in our approach is considering the cache state,
and in particular cache hit rates, as only one of the compo-
nents contributing to end-to-end request latency, which is our
actual metric of interest. Thus, we need to combine the state
of different components (e.g., cache and queue) to efficiently
estimate the request latency on the fly, also taking into account
our hierarchical cache structure.

We implement and validate the effectiveness of Kamino
and LarCache, first through high-fidelity simulations and then
on Azure’s production control plane. Kamino’s architecture
preserves a clear separation between the internal logic of VM
assignments to physical machines and LatCache to isolate fre-
quent modifications of the former. To sustain high throughput,
we pipeline individual stages of Kamino, such as the request
classification and queue assignment.

We compare Kamino against state-of-the-art techniques,
including Protean, Azure’s VM allocation system, and con-
sistent hashing, which is widely used for workload balancing
in other distributed systems [47]. Our simulation using multi-
region production allocation traces indicate that Kamino ob-
tains an average 42% reduction in latency over the latency
agnostic scheduler. As a by product, LatCache accommodates
up to 2x more throughput, which is especially significant in
bursty load periods.

We deployed Kamino with a simple version of the Lat-
Cache algorithm in all production zones (with up to hundreds
of thousands of machines each), reducing allocation latency
by 11.9% at the 90th percentile and reducing cache misses by
33%. Additionally, the memory footprint per AA is reduced
by up to 17%, enabling more AAs and other services per
control-plane machine.

In more detail, the practical significance of these improve-
ments is the following: the tail latency reduction ensures
that resource provisioning remains reliable, especially for
latency-sensitive workloads like data analytics platforms, on-
line gaming, and virtual desktops. High tail latency in VM
allocation can delay autoscaling, causing unpredictable in-
stance availability and degrading application performance.
The improved cache miss rate reduces the number of ma-
chines required for AA, which decreases contention and com-
munication overheads, and in turn conflicts and retries in the
allocation system. This results in more efficient request han-
dling and overall system stability. The AAs run in ringfenced
control plane nodes instead of the general cloud fleet for better
predictability and security, and share resources with hundreds
of other control-plane microservices. Thus, having resource
efficiency solutions, specifically memory efficiency, is critical.

The combined improvements in latency, throughput and re-
source consumption are enabling Azure to consistently serve
hundreds of thousands VM requests in a zone, while free-
ing up compute for a growing number of other control-plane
services.

Beyond VM allocators, we believe that our approach can
extend to systems with variable request latencies, including
Log-Structured Merge Trees (LSMs), distributed databases,
content delivery networks (CDNs), and microservices archi-
tectures. Indeed, we conducted preliminary experiments em-
ploying latency and cache-centric mechanisms in an LSM-
based key-value store. By accounting for the differing request
latencies and locality awareness across multiple levels (as in
Kamino), our results show a reduction in the overall request
latencies (§A.1).

In summary, we make the following contributions:

e We provide a detailed analysis of the challenges in han-
dling VM allocation requests at scale, zooming-in on is-
sues related to latency and resource consumption.

e We propose novel latency- and cache-aware (LatCache)
request scheduling algorithms that are theoretically sound
and are based on careful estimation of latencies based on
cache and queue state.

e We realize the algorithms by designing and implementing
the Kamino framework. We first develop a high-fidelity
request scheduling simulator and subsequently deploy the
scheduling framework in production zones.

e We evaluate the benefits and implications of Kamino
through an exhaustive simulation study of various plausi-
ble algorithmic approaches, followed by measurements
from our large-scale production zones.

2 Background and Motivation

We provide a background on VM allocation followed by
challenges on reducing VM allocation request latency, re-
source inefficiencies, and scaling the number of AAs.

2.1 Background on VM allocation systems

Designing low-latency VM (or container) allocators is crit-
ical for reducing the instantiation time of application ser-
vices. It is crucial to do so while also satisfying the large vari-
ety of VM/container deployment requirements. State-of-the-
art VM allocators like Protean and resource managers, such
as Omega [36], Kubernetes [27], Twine [41], and VMWare
DRS [15], achieve this through the use of filter predicates
or policies that encapsulate allocation constraints to narrow
down the available inventory into a set of candidate machines
for a given request. Subsequently, these systems implement
designated preferences and priorities to sort these candidate
machines, ultimately establishing a preferred pool from which
a machine can be selected.

Computationally-intensive rule-based allocations. VM
allocators, like Protean, utilize rule-based allocations, where

Time | Request Cached objects Hits Misses
1 req(ay,by) None cons(ay,by)
Ri(ai,b1) Ry(ay)
2 req(ay,bs) cons(ay,by) Ry(ay) cons(ay,bs)
Ri(a1,b1) Ra(ar) R\ (a1,b2)
3 req(ay,by) cons(ay,by) cons(ay,by) cons(ay,by)
) Ri(ai,b1) Ra(a1) Ri(ay,b2)

Table 1: Illustration of the hierarchical cache for a system
with 2 rules, Ry, R, where the latter depends on only one
the a-attribute of the request. Each request has 2 attributes, a
and b. cons(-) denotes the consolidated node list for a given
request. When a request comes, both its consolidated list and
rule evaluation for R; and R; are brought into the cache, if
not already present.

each rule defines the logic for filtering and ranking available
inventory based on specified allocation constraints or prefer-
ences. These constraints and preferences can either be user-
defined, such as VM type, or internally defined to enhance
allocation strategies. Rules can be added to accommodate
additional constraints or preferences as platform offerings
grow and allocation strategies evolve.

Evaluating and fulfilling an allocation request and its con-
straints is computationally intensive, involving the following
steps: First, relevant rules are selected and sorted by priority,
with constraints taking precedence. Then, each rule is applied
to the inventory, yielding machine sets that satisfy specific
constraints. The intersection of these sets is calculated and
ordered using preference rules, resulting in a final candidate
set that is ranked by both quality and preference, from which
one of the top-ranked machine(s) is selected.

The benefits of hierarchical caching. To speed up allo-
cation and reduce computation costs, state-of-the-art cluster
managers use caching techniques [16,36,41,43]. The cache
design is centered around the observation that requests sub-
mitted close in time exhibit locality regarding constraints.
State-of-the-art VM allocators like Protean use cache slots
(logical cache entries) for minimizing re-computation. Specif-
ically, Protean uses hierarchical caching, with two levels of
caching: a top-level cache (fast path), which is used for re-
solving identical allocation requests, and a lower-level cache
(slow path), used for requests that are non-identical but have
a subset of identical traits or constraints (e.g., requests for the
same VM size, but with different priority); see Table | for an
illustration, and §4.2.3 for details. A fast path cache hit can
have a significantly lower rule computation cost than a slow
path hit. Ultimately, the fast path reduces the hit latency of
identical requests, whereas the slow path reduces miss latency
for non-identical requests. Finally, each cache slot could have
a variable memory size, typically ranging from 10 to 100s of
megabytes, depending on the complexity of the rules. This
limits the number of slots reserved for an AA.

Cluster-level and node-level scaling of AAs. To operate at
a large scale and serve thousands of allocation requests per
second, scaling the number of allocators is critical. Scaling
increases throughput and, importantly, can reduce request la-

tency by increasing cache hits and reducing time spent waiting
for requests to be served. Protean employs two levels of scal-
ing: (1) deploying multiple allocation agents (AAs) on nodes
distributed across multiple clusters; (2) using multiple AAs
within a single node to exploit multi-core parallelism. In the
case of multi-node AAs, a frontend load-balancer dispatches
requests to a specific node with one or more AAs. Within a
node, multiple AAs form a pool, and agents in the pool pull
and serve requests from the head of a global queue when they
become free.

The distributed AAs operate concurrently and optimisti-
cally without frequent synchronization. However, concur-
rency may lead to conflicts in placement decisions. Hence,
after evaluating requests, AA commits assignments as trans-
actions to a global inventory store, establishing the inventory
state. Conflicts are detected in the inventory store, prompting
failed requests to be returned to AAs for rapid reevaluation.
Successful allocations are committed, and changes are trans-
mitted to an inventory pub/sub service, updating all AAs.

Despite these steps, distributing the AAs across multi-
ple nodes increases communication costs, conflict resolution
costs, and under-utilization of per-node system resources.
Therefore, increasing the number of AAs within a single sys-
tem is critical to exploit resources such as multi-core CPUs
and reduce the communication and synchronization cost in-
curred by distributed AAs. The number of AAs in a node
is dependent on the core count and memory available for
caching besides using them for other management services.

Challenges of shared caches in scaling AAs. When scaling
AAs, managing caches becomes a critical challenge. Sharing
caches across multiple AAs can increase capacity and re-
duce redundancy but introduces significant drawbacks. First,
shared caches incur heavy locking and synchronization over-
heads, limiting multi-core CPU efficiency and negating scala-
bility benefits. These challenges are amplified in hierarchical
caching, where distinct operations for fast and slow levels
with substantially different cache hit and miss costs increase
contention. Third, shared caches require periodic synchro-
nization with a shared database, adding latency and commu-
nication costs. Compared to private caches, these issues make
shared caches less efficient and more prone to stalling under
high throughput, ultimately hindering scalability and perfor-
mance. To our knowledge, state-of-the-art systems do not
share caches across AAs. For example, Protean divides cache
memory into slots and partitions it across AAs for maximum
concurrency. However, reducing the number of per-AA cache
slots to increase AA counts can lead to higher cache misses
and poor request scaling (see §2.2).

Request assignment and scheduling algorithms. Request
scheduling strategies play a crucial role in allocating incom-
ing requests to AAs to achieve objectives such as latency
reduction, throughput maximization, or resource utilization
efficiency. While large-scale cloud providers often lack doc-

Hit Latency (ms)

0 400 800 1,200
Miss Latency (ms)

1,600 2,000 2,400

Figure 1: Scatter plot of avg. hit/miss latencies of 400
popular request types.

umentation on VM allocation request scheduling methods,
systems like Protean utilize cache-oblivious scheduling poli-
cies like Round-Robin. Although effective in distributing
requests with simplicity and generality, this approach’s lack
of cache awareness may lead to suboptimal performance. Sim-
ilar strategies are employed in widely deployed systems like
Kubernetes for container POD allocator scheduling [27,29].

Cache-aware scheduling policies can leverage informa-
tion about the AAs’ caches and request types to assign each
request type to a specific AA, maximizing cache hits and
reducing request latencies. Prior works [9, 25, 47] on vari-
ous other domains, including processor caches, CDNs, web
caches, and distributed data caches, optimize performance by
relying on cache affinity and utilizing dynamic mechanisms
to handle potential load imbalances and adapting to workload
changes. However, for VM allocation such strategies might
lead to significantly higher latencies (see §6.2). Instead, our
design primarily takes a latency-centric approach incorporat-
ing cache awareness, utilizing latency estimation to induce
lower latencies. Intuitively, our approach can be viewed as
‘load-balancing’ in terms of the total ‘work’ done by each
allocation agent (rather than traditional load-balancing, e.g.,
based on queue sizes or request types).

2.2 Evidence from production

To understand the challenges and limitations in state-of-the-
art VM allocators, we characterize the latency performance
of Protean, followed by assessing resource inefficiencies. We
use traces from over 50 allocator nodes for our analysis, each
containing a day’s worth of requests.

2.2.1 Need for latency-driven scheduling

Our comprehensive study of latency characteristics in large-
scale production traces emphasizes the necessity for a latency-
driven scheduling framework.

Observation 1: Cache hit and miss latencies vary substan-
tially across heterogeneous request types: In contrast to
traditional data caching systems, the latencies for hit-and-
miss events vary significantly based on the complexity of VM
allocation queries among different request types. Figure 1
illustrates the distribution of hit/miss latencies observed by a
single allocator node (hit and miss here refer to the top level of
the cache). Some request types incur higher cache-hit latency
than miss latency for others, contradicting typical assumptions

Node | Avg. Memory Usage | Avg. Peak CPU Usage
Node 1 ~92% ~50%
Node 2 ~92% ~61%
Node 3 ~90% ~T74%
Node 4 ~90% ~39%

Table 2: Approximate resource usage within 4 nodes running
allocation agents in a large availability zone.

that a cache hit is always faster than a miss. This variability
arises from two primary reasons. Firstly, as discussed ear-
lier, caches are hierarchical, and a request’s constraints and
preference rules may necessitate partial recomputation upon
a cache hit or full recomputation in the case of a miss. Our
analysis reveals up to a 5x variation in hit-and-miss latency
across request types. Secondly, bursts in allocation requests
stall and amplify the time it takes to resolve a request due to
inventory updates, regardless of a cache hit or miss, further
adding to variable request latency.

2.2.2 Need for cache-aware, latency-driven scheduling

Cache-awareness is critical for exploiting locality by plac-
ing similar requests on the same AAs. Consider a scenario
with two request types (type 1 and type 2) and two AAs, each
with a single cache slot for a specific request type, and a cache
policy that adds to the cache the last request type processed
by the AA. While cache-oblivious scheduling algorithms like
Round-Robin could result in 0% cache hit rate (e.g., on the
sequence with request types 1,2,2,1,1,2,2,...), the cache-
aware scheduling that pins a request type to a specific AA
could achieve a 100% cache hit rate, minimal queue lengths,
and low total latency.

Indeed, Figure 6 in §6.2 shows that simple strategies are
not effective enough: Round-Robin and random assignments
have respectively =~ 30% and ~ 60% higher tail latency than
Protean, which is essentially a pure work-stealing strategy.
Observation 2: Latency-driven cache-aware scheduling
is critical for handling dynamic workloads: Unfortunately,
just a cache-aware strategy like request-pinning or consistent-
hashing is not sufficient. As discussed in §2.2.1, under higher
load, with only a cache-aware approach, bursts of certain re-
quests could significantly affect the request-type distributions
across AAs. In contrast, an effective latency-driven scheduler
would dynamically adapt to changes in latency and, if needed,
spread out requests to other AAs even if it impacts locality.

2.2.3 Allocator scalability challenges

Increasing the number of AAs can reduce request wait
times and latencies by using multicore CPU and available
memory while ensuring sufficient throughput. However, scal-
ing AAs across nodes or even within a node can lead to
resource inefficiencies or increased latencies.

Observation 3: Resource imbalance between memory and
CPU use limits the number of AAs: Increasing the number
of AAs to reduce latency and improve throughput poses a
challenge of resource utilization imbalance. The majority of

> Wait Time Processing Time Hit Rate
g _100%

5 o8| SEV I

B 0.6 4 0 g 60%

z 0oL g 40% |
g 041 £ 20% i
5 02800 0%

Z 45678910 5678910

AA Count AA Count

Figure 2: Performance as the number of AAs increases.

nodes exhibit high memory usage while under-utilizing CPU
resources, as shown in Table 2. This imbalance arises from
two main factors: first, hierarchical request evaluation caches
require significant memory, with top-level slots encompassing
the entire feasible inventory for a specific request type and
lower-level slots containing feasible sets for each constraint.
Second, as discussed above, to maximize parallelism and
avoid synchronization bottlenecks, each AA maintains its
private cache instead of using a shared cache. Due to these
factors, our analysis system uses a maximum of four AAs per
node to avoid exceeding the available memory limit, even for
the largest zones. While scaling AAs across additional nodes
is a potential solution, it would exacerbate CPU waste and
communication and synchronization overheads.
Observation 4: Naively increasing the number of AAs by
dividing cache slots affects latency: An alternative approach
to increasing the number of AAs within a node is to divide
the total available memory for caching across them further.
However, reducing individual cache sizes can lead to more
misses and, consequently, higher latency. To illustrate this, we
simulate Protean and compare its performance with different
AA counts using a day’s worth of requests. We start with the
baseline configuration of 4 AAs, increasing the AA count
and keeping the cache size constant by reducing the size of
each AA’s private cache. We measure hit rate and latency and
present the results in Figure 2. Increasing the AA count to 6-8
reduces request wait times in the queue, improving average
latencies compared to the baseline (4 AAs). However, further
increases in AA counts lead to smaller cache sizes, resulting
in degraded hit rates and increased processing times due to a
lack of cache-aware scheduling, where AAs indiscriminately
pull requests off the node queue, failing to exploit locality
across the AAs’ caches.

The aforementioned four observations drive the design of
Kamino’s latency-driven, cache-aware algorithm and sup-
porting system implementation.

3 Kamino overview

We next provide a high-level overview of our VM allo-
cation system, focusing on the allocation path. In §5, we
describe the details of the actual architecture.

System overview. Kamino is designed to minimize VM re-
quest latencies through concurrency and latency- and cache-
aware scheduling; see Fig. 3. Each allocation node employs

Kamino

Clent services

| \
||| =g =
ﬁ Store : Request
! Classifier
v i
Pub/Sub 1 Latency {
Service |= Estimator_| Yo .

~
- ~

L [
H Selector

/| Allocation Agent \§

{ \
: | .
‘ | HEN |
] 1 1
1 ! 1

\ ! Cached |

=B = 8 1
:Evaluatlon ! U
i
i

State | Agent'sView | ,
. ! of Inventory ’_

e
7

Allocator Agents

— Allocation Request
—— Queue information
===» Placement Updates
---+ Request assignment

Figure 3: System Architecture with Kamino

multiple concurrent AAs tasked with evaluating rules and
assigning VM requests to machines. AAs utilize hierarchical
private caches for the evaluations and maintain queues for
pending requests. Additionally, AAs have access to real-time
data about the machines in the inventory, including available
resources like CPU cores and memory.

Request allocation path. When a request enters the system,
a gateway/load-balancer routes it to an allocator node. Within
the node, the request’s estimated latency is computed based
on historical latencies as well as the current queue and cache
states of each AA. The request is assigned to the AA that

is estimated to complete processing the request the earliest.

The selected agent runs the rules on the traits of the request,
using its hierarchical cache where possible. This results in a
list of machines that can receive the VM request, sorted by
preference (according to the rules). The VM request is sent
to one of the top-ranked machines of this list. The placement
decision is committed to a central placement store, and the
update is propagated across AAs.

4 LatCache Agent Assignment Algorithm

We now zoom in on a central part of our work: directing
the incoming VM requests to the AAs in a way that reduces
average and tail request latency by best utilizing their memory
(i.e., cache) and computing resources. Since each allocator
node is treated independently, we focus on a single node and
on selecting which of its AAs agents should handle a given
VM request, i.e., the design of the agent assigner algorithm.

4.1 Agent Assignment Task

We introduce the following task that captures the main
elements of the situation at hand and is used as a guide in the
design of our assignment algorithm.

An instance of the task consists of multiple AAs, and a
sequence of heterogeneous incoming requests to be processed

by the AAs. The AAs are identical and run in parallel. Each
AA can only process one request at a time, and no preemptions
are allowed. Requests cannot be dropped, and each AA has a
queue with enough space to hold its pending requests; queued
requests are processed in FIFO order.

Each AA has a private cache of bounded size that influ-
ences the processing time of a request. At a high level, the
current state of the cache affects the processing time in a
non-trivial way: it partially reduces the processing time, the
extent of which depends on how much of the request is cached
(i.e., which of its rule evaluations are cached, see §2.1), and
the same portion of the cache (i.e., rules) may help differ-
ent requests. In addition, even with the same cache state, the
processing time of a request may change over time. This is
because evaluating a cached rule depends on the changes to
the inventory since the last update, which depends on the load
of the system. Here, we abstract some of these details and
refer the reader to §4.2.3, where we provide lower-level de-
tails of our hierarchical cache and how exactly its state affects
processing time. Each AA also runs an independent caching
policy that decides what data is evicted when the cache is full.
Typically, after a request is processed by an AA, it is brought
into the AA’s cache, but this is not a required assumption.

When a new request arrives, it needs to be immediately
assigned to one of the AAs. The goal is to assign the incoming
requests to AAs so as to minimize the average latency, i.e.,
completion time (which includes waiting time) minus release
time, of the requests.

Figure 4 provides an illustration of the agent assignment
task. In this example, there are 2 AAs, each having a sim-
plified single-slot cache, and two request types (green and
orange). The left figure shows the state of the AAs’ caches,
queues, and current execution of AA 2 at time 1, when a new
request arrives, it needs to be assigned to one of the AAs; in
this case, it is assigned to AA 1. The middle figure shows
the state at time 7, when AA 2 finishes its first request and
will start processing the one in its queue; in this example,
the cache of AA 2 was updated upon completion of the first
request. The right figure shows the state at a later time 3. No-
tice that the processing time of the second request of AA 2 is
smaller, since its type was present in the cache when it started
being processed (time #;). Also, notice that the cache of AA 1
was updated due to the completion of the green request.

4.2 Latency-driven Cache-aware Assignment
4.2.1 Basic algorithm

We now describe LatCache, our proposed algorithm for
this agent assignment task. Being latency-driven, the main
component for making its decision is a careful estimation of
what would be the latency incurred by the incoming request
if it were assigned to a given AA.

To perform this estimation, we first break the latency into
3 separate components: processing time, queue time, and the
remaining processing time. Processing time is the estimated

a) Caches Queues

new ?
:

req"“t/ Allocator1]
\ﬁ Allocator 2 D Q

i —

1
-_—
t Time

b) Caches Queues

DD :D
DQ:

c) Caches Queues
o D —

1
—_—_—r

t t, Time 4 t,

Time

Figure 4: Illustration of the agent assignment task.

Caches Queues /rge;ggigmg queuing time p ro«t:;;gseing
A A \—
i
Allocator1 [] [| | |
i
]
Allocator2] [| | |
i
' Time

Figure 5: Illustration of LatCache’s latency estimation. A
new green request (marked by a green square pattern) is
considered to be placed on one of the two AAs, each with a
single cache slot. Non-solid colors represent estimations.

time it would take to process the incoming request on a given
AA, once it starts processing. Queue time is the estimated
time for processing all the requests in the queue of the AA.
Remaining processing time is the time left for the AA to finish
the request currently being processed. The estimated latency
of the request on an AA is obtained by adding the estimates
for these three components.

Notice that all these 3 component depend non-trivially on
the cache dynamics of the AA under consideration. For ex-
ample, the processing time of the request does not depend on
whether it is currently found (either fully or partially) in the
cache of the AA, but whether the request would be there by
the time it would start processing. This, in turn, depends on
the current cache of the AA, the requests in its queue, and the
caching policy it uses. Also note that a similar effect happens
with the gueue time of an AA, which depends on the process-
ing times of the requests in the queue, which in turn depend
on the extent that each request’s information is present in the
cache when processed. Thus, a crucial step in the algorithm
is to obtain an adequate cache-aware estimate of each of the
3 latency components. We defer the description of how we
estimate these components to §4.2.2.

Once the estimation of the latency of the request on each of
the AAs is performed, LatCache simply assigns the request
to the AA with the lowest estimated latency; see Algorithm |
for the pseudo-code.

Algorithm 1 LatCache (req : request)

1: Compute cache-aware estimates queueTime(a),
processingTime(a), and remainingProcTime(a) for
each allocation agent a

2: Assign req to the allocation agent a* where it
has minimum estimated latency queueTime(a*™) +
processingTime(a*) + remainingProcTime(a*)

The design of LatCache addresses the challenges high-
lighted in the previous section. First, being latency-driven,
it performs an adaptive load-balancing of requests to AAs,
regardless of the identity of incoming requests (contrasting
with the request-pinning strategy discussed in §2.2.2). Indeed,
we establish that our algorithm maintains the queue waiting
times of the AAs almost perfectly balanced; intuitively, if the
queue of an AA grows too long, this is factored into the la-
tency estimation of the algorithm which then chooses another
AA for future requests.

Theorem 1 (LatCache’s load-balancing). Consider the algo-
rithm LatCache with perfect latency estimation. Then, at all
times, it guarantees that for every pair of AAs, their queue
waiting times are within maxProcTime of each other, where
maxProcTime is the largest request processing time.

Moreover, no scheduler can guarantee that for every pair of
AAs a,d the difference in their queue waiting times is strictly
less than maxProcTime at all times.

We note that the assumption of perfect latency estimation
can be relaxed, and was made to simplify the bounds. In addi-
tion, with adequate cache-aware latency estimates LatCache
also promotes co-location of similar requests, which should
lead to higher cache hit rates and thus lower processing times:
By construction, LatCache only prefers an AA that does not
have (or has less of) the request in its cache over an AA that
has the request in the cache if the latter has worse latency,
e.g., due to significantly longer queuing time.

4.2.2 Cache-aware latency estimation

This desired behavior of LatCache is contingent on the
algorithm computing adequate estimates for the three latency
components, which we now address. Following up on previ-
ous discussion, the two key challenges here are: (1) It is not
obvious whether the current request and the queued requests
will be (fully or partially) found on an AA’s cache, given that
the state of the cache can change by the time each request is
processed; (2) Estimation errors on the hit and miss latencies
might accumulate (e.g., in the estimated queuing times) and
lead to highly-suboptimal decisions. With this in mind, the
latency components are estimated as follows:

Processing time. This is the main component to be estimated
and is used to compute the other components. To estimate
the processingTime(a) of the incoming request on AA a,
we employ optimism and assume that when this request is
processed on a (if assigned to it), the cache will still contain
all of its current content (i.e., none of it is evicted) and will

also completely contain all the requests that are currently in
the queue of a (we call this the “augmented cache state”).
The estimated processingTime(a) is then a function of this
“augmented cache state” and the traits of the current request
(exact details of how this is computed in our situation are
presented in §4.2.3, Algorithm 2).

We note that this optimistic cache state prediction is quite
accurate as long as the number of distinct type of requests
in the AAs’ queues is small compared to how many types a
cache can accommodate (which is what we see in practice
for VM allocations). In particular, we tested an alternative
estimation procedure that simulates future cache states and
did not find significant improvement in estimation quality.
Queuing time. Next, the queueTime(a) of an AA is obtained
by estimating the processing time for each request in its queue,
using the strategy outlined above. This is done without the
need to traverse the queues: when a request is added to the
queue of the AA a, the estimated processingTime of the re-
quest is added to the current queueTime(a), and when a re-
quest is dequeued its estimated processingTime is subtracted.
Note that by subtracting the estimated processing time on
dequeue, as opposed to the real processing time, limits the
accumulation of errors: once a request is dequeued, the effect
that any estimation error on its processing time had on the
queuing time is erased.

Remaining processing time. Finally, the estimation of
the remainingProcTime(a) of an AA is based on start
and proc_time information that is updated by the AA as
follows: whenever it starts processing a request, it sets
start to be the current time, and proc_time to be the es-
timated processing time based on the current state of the
cache (not the “augmented cache state”). With this infor-
mation, remainingProcTime(a) at time ¢ is estimated as
max(0, start + proc_time —t) if the AA a is currently busy,
else it is estimated as 0. Figure 5 illustrates these estimations.

4.2.3 Hierarchical cache structure and processing time
computation

We next discuss rule-based allocations and the cache struc-

ture, essential for computing estimated processing times in
Kamino.
Rule-based allocations. Our system utilizes rule-based allo-
cations, as discussed in §2.1. A rule evaluated over a request
returns a filtered (sorted) list of the current inventory based on
specified constraints or preferences (e.g., the list of machines
with enough free memory to accommodate the request). Each
rule only depends on a subset of the traits of the request; re-
quests with the same value on these traits produce the same
evaluation, and thus are considered equivalent with respect
to this rule. To fulfill a request, all rules are evaluated and
lists consolidated, and the request is placed on one of the
top-ranked machine(s) from the final list. These steps are
performed by the AA handling the request.

Cache structure. The cache present in the AAs is used to

speed up these steps. We employ a 2-level hierarchical cache:
The top level (fast path) stores the consolidated list of ma-
chines for (equivalent) requests, and the lower level (slow
path) stores the result of rule evaluations for equivalent re-
quests (with respect to the rule). The latter allows for “partial
cache hits” that benefit more requests since more requests
are equivalent relative to a single rule than relative to the
consolidated evaluation. See Table 1 for an illustration.

Since rule evaluations and their consolidated result depend
on the current state of the inventory, they need to be updated
even when present in cache; that is, both cache hits and misses
add to the latency of processing the request. An un-cached rule
evaluation (rule-miss) is computed from scratch, while cached
rule evaluations (rule-hit) are updated with only the changes
in the inventory change since its last update; this incremental
update is significantly faster than computing it from scratch.
If the consolidated evaluation for a given request is present
in the top-level cache (hit), then all of the rules it depends on
are updated, and the updates are inserted to/removed from the
consolidated result. We note that while a consolidated result
is present in the top-level cache, all rules that it depends on
are pinned to the lower-level cache, i.e., all are rule-hits.
Processing time computation. Given this cache structure,
Algorithm 2 describes our estimation of the processing time of
arequest req on a given AA. This procedure receives as input
the “augmented cache state” augCache of the AA, as defined
in §4.2.2, estimate hit for a cache top-level hit processing
time, and vectors rule-hits and rule-misses with estimates
for the rule-hit and rule-miss times of each rule. These input
estimates can be computed, for example, using historical data,
see §5. If the request is a top-level hit in the augCache, its
estimated latency is only hit. In case of a top-level miss, we
consider the “partial hit” based on the rules present in the
lower level of augCache.

Algorithm 2 ProcessingTime (req, augCache, hit, rule-hits
and rule-misses)

1: If the req is a top-level hit in augCache, then set
procTime to be equal hit

2: Else #top-level miss

3: For each rule r, add to procTime either its hit
time rule-hits[r] or miss time rule-misses[r| depending
whether augCache contains the evaluation of R for re-
quest (equivalent to) req

4: Return procTime

5 System Implementation

We describe the details of the Kamino request schedul-
ing framework implemented within the Protean system and
highlight some practical challenges of the implementation.
Overall system organization. A logical instance of the Pro-
tean system is responsible for handling all requests in a zone
or a region. The system consists of a pool of stateless AAs
backed by a persisted placement store for VM placement

decisions. Each AA uses a dedicated thread and private in-
memory state and caches to place VM requests to appropriate
servers in the inventory. It uses a specified number of cache
slots to limit its memory usage. Multiple AAs are grouped
within a process in an allocator node, and multiple nodes can
be employed to satisfy peak system demand.

The AAs follow an optimistic concurrency model: an agent
makes placement decisions based on its (potentially stale)
view of the inventory and persists each placement result to the
placement store. The placement store rejects results that are
invalid because of the staleness of the AA’s view so that the
requests can be retried. VM deletes are also persisted in the
placement store. The AAs learn about updates to the place-
ment store and other relevant inventory updates, such as those
related to server health and power consumption, through a
publish-subscribe platform. As an optimization, placement de-
cisions made by the AAs within an allocator node are shared
among each other through fast in-memory transfer. Figure 3
shows the overall system architecture.

Kamino request scheduling framework. The front-end
gateway/load-balancer service accepts the requests and routes
them to an allocator node, but Kamino is responsible for map-
ping the requests to AAs within a node. Kamino aims to
minimize overall request latency and improve the resource
efficiency of the AAs while incurring negligible computation
and memory overheads. To that end, Kamino is implemented
as part of the process the AA itself runs on, thus avoiding
any inter-process communication overheads. In addition, we
designed our scheduling logic in a computationally efficient
manner, resulting in minimal overhead in the order of mi-
croseconds per request, which is orders of magnitude lower
than request latencies (tens to hundreds ms); thus, the sched-
uler has negligible overhead on the total latency. Additionally,
slower time-scale computations required for making schedul-
ing decisions are done outside the request-handling critical
path and so do not introduce any relevant computational over-
head. Kamino consists of the Request classifier, Agent selec-
tor, and Latency estimator modules. The Request classifier
and Agent selector processes each request in the critical path,
whereas the Latency estimator runs outside the critical path.
We describe these modules below.

Request classifier. A request arriving at the node remains
queued until an instance of the request classifier becomes
available to handle it. The request classifier computes the
equivalence class key of the request depending on the rules
relevant to the request and the request traits they depend on
(see §2.1). The key uniquely identifies a class of requests that
are equivalent to each other as far as the allocation logic is
concerned. In other words, each key denotes a request type and
determines if an AA has a cached consolidated result for the
type. It decorates the request metadata with the computed key
and queues the request for further processing. The framework
allows for multiple instances of the request classifier (and
agent selector) modules in order to concurrently process the

requests, but in practice just one or two of these are enough
because the processing latency of these modules is negligible
compared to that of the AA.

Agent selector. Each AA has its own private queue to hold
pending requests. The agent selector assigns each request to
an AA’s queue. Once a request is assigned to a queue, the
assignment is never changed. This module implements the
core request scheduling algorithm LatCache. As described
in §4.2, this algorithm requires a few inputs: @ It needs
estimates of top-level cache hit times and hit and miss times
for the rules. This is obtained from the Latency estimator
module. @ It needs to check whether an incoming request
type is cached in an AA or is already queued in its private
queue. The agent selector probes the AA’s caches with the
request type’s key to check if it is cached. As part of the queue
metadata for each agent, it maintains a map of <Request type
key, Count> for the requests in the queue. This map is used
to check if a request type is already present in the queue and
is updated when requests are enqueued or dequeued. @ It
needs to check if an agent is busy. The agent selector holds a
reference to the last dequeued work item for each agent and
probes the work item to check if the agent is busy.

Latency estimator. This module is responsible for estimating
the hit and miss times. In its simplest form, it can provide
estimated hit or miss times from preset service configurations.
However, a more practical implementation takes the form of
a background task on each allocator node that tracks hit and
miss times and periodically produces an updated estimate
of their averages. The latest estimates are not only sent to
the Agent selector but are also persisted in order to have a
good initial estimate on process restart. Although we only
use a rough estimate of central tendency for hit and miss
times, LatCache is able to make good assignments and yield
a significant improvement in the relevant metrics (see §6.4).
Cache management policy. The AAs employ a hybrid cache
eviction policy — objects are evicted from the cache if it is full,
using a standard LRU replacement policy, or if they reach a
certain age. Age-based eviction allows us to reduce the agent
memory footprint during periods of low load.

6 Evaluation

We conduct extensive experiments to evaluate Kamino
using both a high-fidelity simulator and the production system.
The simulator experiments utilize real traces from production
across various geographical regions. Our experiments aim to
address the following questions:

e Does Kamino and its latency-driven LatCache algorithm

reduce VM allocation request latency over standard, well-
known algorithmic baselines?

e How effective is LatCache in reducing cache misses and
the overall cache memory consumption?

e How does LatCache perform across different loads, cache
sizes, and number of AAs?

e Do the benefits of the LatCache algorithm translate to
production-scale systems?

6.1 Workloads and Methodology

Our simulations utilize six real traces collected from high-
traffic allocator nodes across various zones. These traces en-
compass a diverse range of unique request types, with counts
varying between 500 and 1.7k. Additionally, certain zones
exhibit notably higher request rates and burstiness than oth-
ers. Each trace spans a 24-hour horizon and includes all VM
requests, providing information such as request id, arrival
time, and request traits. The trace also contains information
about the actual processing time of each request, which are
used to simulate hit and miss times. We have also deployed
Kamino with LatCache in all production zones and measure
performance in a subset of representative zones.

6.2 Effectiveness of LatCache on Latency

We first use our simulator to understand the impact of Lat-
Cache on reducing average and tail VM allocation request
latency. We compare it against the load-balancing algorithm
used by the state-of-the-art VM allocator Protean. We also
compare it against classical cache-oblivious load-balancing
algorithms (random assignment and round-robin). Finally, we
compare it against a cache-aware solution consisting of using
consistent-hashing assignment augmented with work-stealing
to reduce hotspots [47]. Thus, we compare LatCache against:

@ Protean with a shared queue. This consists of a single
FIFO per allocator node that receives all requests, and AAs
pull requests from this queue when idle. This is the algorithm
previously used in Protean.

@ Random assignment (Random). Assigns the incoming
requests uniformly at random to one of the AAs.

@ Round-Robin. Assign the incoming requests to the AAs
in a Round-Robin fashion.

Hash+WS. This uses consistent hashing + work steal-
ing, employed in other systems, to determine data location
and task execution [47]. The assignment to an AA is com-
puted by hashing the request traits, ensuring that requests with
the same cache objects are assigned to the same AA [21,32],
which promotes data locality and reduces cache replication.
Additionally, when an AA is idle, it steals a pending request
from the AA with the largest queue, if any, which helps reduce
hot spots caused by skewed request distributions.

Unfortunately, the scheduling algorithms of other large-
scale VM allocators [36, 41] have not been openly docu-
mented, preventing us from recreating and evaluating them.

We also evaluate two versions of LatCache: In addition to
LatCache-rule, the algorithm as described in §4, we consider
the variant LatCache-request that uses a simpler estimation of
the processing time of a request based only on its presence at
the top-level of the cache of the given AA, i.e., on a top-level
miss, instead of looking up the presence of individual rule
on the lower-level cache as in Algorithm 2, it assumes that

[0 Protean Rand Round-Robin
Hash+WS [LatCache-request] LatCache-rule

Average Latency Tail Latency p90

sl I o8
0+§ﬁ1 |~ é

Latency improvement (%)

20 =
40 | |
60 | | B
—80 t 1

Figure 6: Latency improvements for each algorithm

none of them is present in the lower-level cache. Its main
advantage is that it requires fewer and simpler (i.e., to a single
level) cache lookups. For this analysis, we fix the number of
AAs on each node to 4 to match our current production system.
We also reserve the total cache memory based on production
configuration (up to 58% of the node’s total memory); in §6.6,
we vary these parameters in our simulated environment.

Fig. 6 illustrates the percentage improvement in average
and 90th percentile tail allocation latency of the different
algorithms compared to the baseline Protean. Standard load-
balancing algorithms Random and Round-Robin exhibit ap-
proximately 20% worse performance on average compared
to the baseline. The cache-aware Hash+WS algorithm, which
promotes request co-location plus simple load-balancing,
achieves only 4.4% average latency improvement with high
variance and 9.1% improvement in tail latency. In contrast,
our LatCache-request and LatCache-rule algorithms achieve
significant improvements in both average and tail latency com-
pared to all other algorithms, with over 50% tail latency im-
provement over the baseline Protean. Notably, lighter-weight
LatCache-request is competitive with LatCache-rule, despite
ignoring lower-level cache content during processing time
estimation.

While request allocation latency is our main metric, the su-
periority of our algorithms also holds in terms of throughput,
albeit in a less striking manner. Nonetheless, in periods of
bursts of requests, we consistently see a 2x throughput im-
provement compared to Protean. Fig. 7 plots the throughput
profiles of the algorithms in a window with a burst of requests
(for clarity’s sake, Random, Round-Robin, and LatCache-
request were omitted).

6.3 Explaining why LatCache works well

Table 3 (second column) shows the top-level cache hit rates
for various algorithms. LatCache-rule and LatCache-request
achieve the highest hit rates (= 94%), significantly higher
than the cache-friendly Hash+WS (= 87%) and the cache-
oblivious Protean, Random, and Round-Robin (=~ 81%). This
validates LatCache’s superior ability to promote data locality,

v 30.0

Q = LatCache-rule

=~ = = Protean
20.0

g / \ Hash+WS

§ 10.0 4 ‘—‘\//\ /\‘7(‘/: Arrived

< 0.0 T T T T T

0 20 40 60 80
Time horizon (s)

Figure 7: Throughput Comparison. Results are shown
for two consecutive bursts of requests.

Algorithms Hit ratio (%) Norm. cache memory
Protean 80.7£2.9 1.00£0.00
Random 81.1+3.0 0.98+0.00
Round-Robin 80.6+3.0 1.00£0.00
Hash+WS 87.4+3.1 0.94+0.05
LatCache-request 93.1+£3.2 0.85+0.09
LatCache-rule 95.0+2.3 0.77+0.06

Table 3: Cache hit ratio and normalized memory use.

as a consequence of careful latency predictions that use both
current and projected cache states.

Next, Fig. 8 shows the breakdown of the average request
latency of the algorithms into the time waiting in the queue
of an AA and request processing time. LatCache algorithms
have the smallest processing times, due to their high cache
hit rates. However, the major part of LatCache’s latency im-
provement comes from a significant reduction in waiting time.
Two main reasons contribute to lower wait times: 1) higher
hit rates have a compounding effect on the multiple requests
in a queue, leading to faster turnaround; 2) the latency-driven
design with careful latency prediction accomplishes an effec-
tive request load-balancing across the AAs, as supported by
Theorem 1. This highlights the benefits of combining latency-
driven scheduling with cache-awareness.

6.4 Estimation accuracy and its impact

As mentioned earlier, the two main sources of inaccuracy
that might affect the total latency estimation quality are: (1)
(top-level) hit and miss event prediction; (2) estimation of
the individual hit and miss times of the requests. We now
quantify the accuracy of these estimations and their impact
on the quality of the assignments of LatCache-rule.

LatCache-rule [Z] Processing Time
LatCache-request [Waiting Time
Hash+WS |2
Round-Robin |::
Rand [
Protean T =777

0 0.5 1 1.5
Normalized Avg. Latency

Figure 8: Latency breakdown.

First, our optimistic prediction for hit/miss events using
the augmented cache state is highly accurate (99.1% across
both cache levels). Given that hit times are significantly lower
than miss times (average miss/hit time ratio: 5—10) and that
hit/miss predictions directly affect queue latencies estimates,
this level of accuracy is crucial for effective assignments.

Regarding the estimation of hit and miss times, we have
an average prediction error of 29%. While the error is not
small, using these estimates in conjunction with the accurate
hit/miss event predictions leads to good allocation decisions:
LatCache-rule selects the best allocator for 91.9% of the re-
quests (best allocator = lowest actual total latency for the
incoming request). Even when the best allocator is not se-
lected, the scheduling decision is nearly optimal — the total
latency percentage-gap between the selected allocator to the
best allocator is only 2.3% on average. To put these num-
bers into perspective, a naive version of LatCache-rule that
ignores the rule-level cache, future hit prediction, and allo-
cators’ remaining processing time chooses the best allocator
only 65.4% of the time and the resulting total latency can be
even 2x more than that of the best allocator.

We note that it is certainly possible to use more sophisti-
cated machinery for estimating hit and miss times, such as
applying machine learning techniques [12]. We observe, how-
ever, that the added value is not substantial. To quantify the
possible gains, we ran LatCache-rule fed with perfect pre-
dictions of hit and miss times, and observed an additional
improvement of 1.1% in tail allocation latency (vs. ~ 50%
improvement that both versions of our algorithm have com-
pared to the baseline). We conclude that the absolute hit and
miss time predictions matter less than predicting the actual
hit/miss event as well as capturing key elements of the allo-
cation process, particularly the hierarchical-cache dynamics
(see §4.2.2-4.2.3). The net outcome is that Kamino’s sched-
uler has a simple yet effective and robust latency estimation
that makes near-optimal allocation decisions.

6.5 Reduction in Memory Footprint

Table 3 presents the average cache memory size used
by the algorithms, normalized to the baseline Protean. All
cache-oblivious algorithms (Protean, Random, and Round-
Robin) exhibit very similar memory occupation. In contrast,
the cache-friendly Hash+WS demonstrates reduced usage
(94% of Protean’s memory usage), while our cache-aware
LatCache-request and LatCache-rule show significantly lower
usage (85% and 77% of Protean’s, respectively). This reduc-
tion is attributed to the LatCache algorithms, which enhance
cache hit rates and facilitate better reuse of cached rule ob-
jects by co-locating similar requests on the AAs. Notably,
LatCache-rule achieves the smallest memory usage by pro-
moting such co-location at the rule level, leveraging infor-
mation about the objects present on the lower cache level.
Overall, LatCache’s memory overhead is negligible: cache
states are probed at runtime, and hit/miss latencies are already

tracked for monitoring. Reduced memory use effectively al-
lows to increase the number of AAs on the same node by
decreasing the required cache-per-AA to store the necessary
items, a particularly important consideration in our production
system (see §2.2.3).

6.6 Sensitivity to System Parameters

Next, we analyze the performance of the algorithms across
different system parameters. For brevity, we drop Round-
Robin and Random from the analysis due to their highly
suboptimal performance observed earlier.

Sensitivity to the number of AAs: We vary the number of
AAs (R) on a node while keeping the total memory cache (M)
fixed, thereby changing the per-AA cache memory (M/R).
As shown in Fig. 9a, Protean and Hash+ WS algorithms scale
poorly with increasing AA count. The benefits of parallelism
from additional AAs are negated by cache fragmentation,
as smaller private caches reduce effectiveness. In contrast,
LatCache-request and LatCache-rule algorithms sustain their
performance, with reduced per-agent cache having a smaller
impact, consistent with their lower memory usage.
Sensitivity to allocation request load: We evaluate the
performance of the algorithms under high load. We reduce
the requests’ interarrival time by multiplying each request’s
arrival time by a parameter € < 1. The lower this € parameter,
the higher the frequency of requests. For analysis, we pick €
values that increase request frequency by 25%, 50%, 75%, and
100%. Fig. 9b shows tail latency improvement over Protean
baseline. As shown, the benefits of cache-aware algorithms
over Protean increase as the load increases, with LatCache
algorithms exhibiting scalability and consistent gains over
Hash+WS across all loads.

Sensitivity to cache size: We evaluate the performance of
the algorithms under varying system memory for caching
across AAs. Fig. 9c shows tail latency gains over Protean
for each cache size, where 100% represents the size used in
previous experiments. First, even with smaller cache sizes,
cache-friendly algorithms like Hash+WS, LatCache-request,
and LatCache-rule outperform the cache-oblivious Protean.
Furthermore, LatCache algorithms consistently exceed both
Protean and Hash+WS, even under limited cache memory.
Second, for larger reserved cache sizes, LatCache-request
and LatCache-rule still outperform Protean and Hash+ WS,
albeit with more modest gains. The gains diminish as larger
caches accommodate more objects, reducing the importance
of data locality.

6.7 Performance on Production Zones

We evaluate Kamino’s performance impact with LatCache
in production on a subset of zones. We deploy the LatCache-
request algorithm due to its simpler integration with the cur-
rent cache API and plan to roll out LatCache-rule later. We
collect performance metrics across 5 production zones, com-
prising tens of thousands of nodes, over 15 days before and
after deployment with LatCache-request (Kamino-LatCache).

Latency Protean Kamino-LatCache Improve.
Avg. (ms) 185.6+20.4 1463+ 17.4 21.1%
90p (ms) 378.8£90.8 333.5+£64.7 11.9%

Table 4: Allocation latencies before (Protean) and after
deploying Kamino.

Impact on latency. We compare allocation latencies before
(Protean) and after deploying Kamino-LatCache. Table 4
shows average and 90t/ percentile latencies with standard
deviations. We observe a 21.1% reduction in average latency
and an 11.9% reduction at the 90t/ percentile, aligning with
simulation results. However, modest gains arise from factors
not modeled in the simulator, such as conflicts and retries
when multiple AAs place VMs on the same physical machine,
causing infeasible placements. Fig. 10 shows disaggregated
latency performances of Protean and Kamino, highlighting
consistent gains across all zones.

Impact on cache hit rate. To display the impact of Kamino-
LatCache on cache hit ratios, we aggregate the measurements
of the five zones and plot in Fig. 11 the hit rate over 2 months;
the dotted line (in early Feb.) marks where Kamino-LatCache
replaces Protean. Overall, cache hits increase from 80% to
86.6% on average across the five zones; thus, the total cache
misses reduced by 33%. Two main factors contribute to the
differences in cache hit gains between the simulation and
production systems: (a) varying memory cache sizes across
the fleet and (b) dynamic workload changes over 15 days on
production compared to 24-hour simulation traces.

We also observed that a significant reduction in cache

misses reduces the number of AA nodes, lowers contention
and communication overhead, and minimizes allocation re-
tries, yielding more efficient request handling and improved
system stability.
Reduction in CPU and memory resource usage. We evalu-
ate Kamino-LatCache’s impact on resource efficiency in allo-
cator nodes, focusing on aggregate working memory and CPU
usage across AAs per node. On average, Kamino-LatCache
reduces memory usage by 17% and CPU usage by 18.6%,
consistent with simulation results (Table 3). By promoting
data locality through co-locating similar requests on AAs,
Kamino-LatCache reduces cache content replication, saving
memory. This reduction also lowers CPU usage, as less com-
putation is needed for cache updates. Measurements confirm
this, showing a 10-20% drop in cache updates per minute.

7 Related Work

In addition to our earlier overview of allocator systems, we
survey related work in resource management.
Request scheduling and cache-awareness. Prior re-
search has focused on efficient request scheduling and load-
balancing to minimize latency, especially for sub-second la-
tencies. They include using OS techniques like per-CPU
caches, optimizing CPU allocation for application threads,

Hash+WS [0 LatCache-request

B LatCache-rule

60 -
40 -
20 -

s

20 |-

1.75

(b) Trace scale up factor

25% 50% 75% 100% 125% 150% 175% 200%

i
2.00
(c) Cache Sizes

Figure 9: Sensitivity to System Parameters: Tail Latency p90 improvement (%)

§ [0 Protean
g | |

” 80 _ | |
2 50| 1

o Hﬁ H 60 -
E ol-m - I

> U H 40 |-

g 50

L~ [N [=
3 20]
— T T T T 0 \ - T
= 4 6 8 10 1.00 125 1.50

(a) Number of AAs

- m Protean m Kamino-LatCache

o

(]

S5 1

%5 I

23 08 @ @ é %

E j%jo 0.6 % %

= O

> 041
% <
Z Zone A Zone B Zone C Zone D Zone E

Figure 10: Production: Average latencies before and after
deployment, normalized by the largest latency in the zone.

T T T
90%

Protean

80% - Kamino-LatCache |

Hit rate (%)

70% [\ \ L \ \ -
Jan 01 Jan 11 Jan 21 Jan 31 Feb 10 Feb 20 Mar 01

Figure 11: Production: Hit rates before and after deployment
day. Dashed line indicates deployment day.

reducing queue wait times and scheduling costs [20, 33, 34].
Web services research explores static and adaptive schedul-
ing strategies to address latency and throughput challenges
[23,28,39]. However, techniques like preemptive work sus-
pension and network queue polling are unsuitable for VM re-
quest scheduling. Cache-aware scheduling has been explored,
with Google’s search system using hypergraph partitioning
for load-balancing [4], and [37] proposing similar methods
for Facebook’s web traffic and storage sharding. Other stud-
ies improve latencies through dynamic cache partitioning of
shared caches or adapting cache policies, often using hit rates
as latency proxies [10,48]. To our knowledge, Kamino is the
first publicly reported VM allocation framework integrating
cache awareness and latency considerations for scheduling.

Cluster and resource scheduling. A huge body of work
addresses sharing distributed resources across computa-
tions. Frameworks like Omega [36], Twine [41], and oth-

ers [13,14,17,18,31,44,46] optimize resource utilization for
jobs or tasks. Similar approaches target container schedul-
ing (e.g., Kubernetes [27, 29]) and VM deployment (e.g.,
Protean [16]). Others focus on resource allocation with
service-level objectives (SLOs) [19] and dynamic alloca-
tion policies leveraging predictions and continual optimiza-
tion [6, 11, 12,22,24, 30, 35, 38, 40, 50]. However, no prior
work integrates caching with resource efficiency for VM or
container allocation.

Algorithms for scheduling and paging. There is a rich body
of theoretical work on page replacement algorithms for single-
cache systems [3,8,26] and scheduling algorithms for latency
minimization, though most focus on systems without caches
(e.g., job scheduling models) [5,7]. The intersection of these
areas remains underexplored. [45] addresses scheduling in
multi-cache systems but focuses on minimizing cache misses.

8 Conclusion

We design and implement Kamino — a latency-driven and
cache-aware VM request scheduling framework. Our algo-
rithm, LatCache, relies on clever estimates of latency based
on the cache state. An extensive simulation study with real
traces, followed by measurements from large-scale produc-
tion zones show increased resource efficiency and sizeable
reductions in end-to-end latency. One interesting direction
for future work is examining incorporating fast and persistent
storage devices such as SSDs to serve as a secondary cache
to alleviate memory bottlenecks [4,42,49].

Acknowledgments

We would like to thank our shepherd, Akshitha Sriraman,
and the anonymous OSDI reviewers for their detailed and
insightful feedback that has improved the presentation of
the paper. We also want to thank Esaias E Greeff, Ricardo
Binachini and Johannes Gehrke for helpful discussions.

Sudarsun Kannan and David Domingo were supported in
part by NSF CNS grants 1910593, 2231724, 2319944, and
NSF CAREER grant 2443438. A part of this work also used
the experimental platform funded by the NSF II-EN grant
1730043.

A Appendix

A.1 Applying LatCache Principles Beyond VM
Allocators

To evaluate the generalizability and feasibility of apply-
ing LatCache ’s principles—combining locality awareness
with latency-aware queuing—to systems with hierarchical
data tiers, we built a proof-of-concept prototype that applies
LatCache scheduling to log-structured merge (LSM) trees.

To test latency- and cache-aware scheduling beyond virtual
machine allocation, we adapt LatCache’s principles to opti-
mize lookups in Log-Structured Merge (LSM) Trees [1, 2].
Our prototype shows reduced lookup latency and lower com-
putational overhead. Below, we briefly review LSM trees,
followed by our approach for latency and cache-sensitive
scheduling.

LSM background. LSM trees underpin many key—value
stores, including LevelDB and RocksDB [1,2]. An LSM tree
is organized into multiple levels that grow in size from top
(level 0) to bottom. New writes buffer in memory and flush
as sorted table files at level 0. As levels fill, files merge and
compact downward. This design yields high write throughput
but can slow reads: each lookup may scan levels sequentially
until the key is found or all levels are exhausted. To mitigate
read amplification, each SSTable maintains a Bloom filter—a
compact, probabilistic structure that can definitively rule out
a key or indicate it might be present. By checking the Bloom
filter before probing an SSTable, lookups skip files unlikely to
contain the key, reducing unnecessary I/O and cache pollution.
However, Bloom filters can produce false positives and still
require sequential filter checks across levels, so lookups may
probe multiple levels and incur latency and cache churn.

Latency and cache-sensitive request scheduling. Our de-
sign uses Bloom-filter—based locality hints in LSM trees to
direct lookups to the levels most likely to contain the target
key and incorporates per-level latency estimates to decide
when parallel searches are warranted. This approach reduces
redundant computation and cache pollution while still exploit-
ing parallelism.

In our LevelDB-based LSM prototype, this approach
achieves a 22% reduction in average lookup latency compared
to searching serially across LSM tiers. Although this proto-
type uses a single worker thread for each level, increasing
CPU assignments and refining latency models should yield
further gains. These preliminary results confirm that combin-
ing locality awareness with latency-aware queuing strikes an
effective balance between throughput and resource efficiency
in hierarchical storage. Our future work will characterize the
trade-offs under mixed read—write and tail-latency—sensitive
workloads and generalize LatCache ’s benefits across diverse
architectures.

References

[1] Google/leveldb: Leveldb is a fast key-value storage li-
brary written at google that provides an ordered mapping
from string keys to string values.

[2] Rocksdb: A persistant key-value store.

[3] Susanne Albers. Online algorithms: a survey. Math.
Program., 97(1-2):3-26, 2003.

[4] Aaron Archer, Kevin Aydin, MohammadHossein Bateni,
Vahab Mirrokni, Aaron Schild, Ray Yang, and Richard
Zhuang. Cache-aware load balancing of data center
applications. 2019.

[5] Nikhil Bansal. Minimum Flow Time, pages 531-533.
Springer US, Boston, MA, 2008.

[6] Hugo Barbalho, Patricia Kovaleski, Beibin Li, Luke
Marshall, Marco Molinaro, Abhisek Pan, Eli Cortez,
Matheus Leao, Harsh Patwari, Zuzu Tang, et al. Vir-
tual machine allocation with lifetime predictions. Pro-
ceedings of Machine Learning and Systems, 5:232-253,
2023.

[7] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-
Spaccamela, and Kirk Pruhs. Flow Time Minimization,
pages 320-322. Springer US, Boston, MA, 2008.

[8] L. A. Belady. A study of replacement algorithms for a
virtual-storage computer. IBM Systems Journal, 5(2):78—
101, 1966.

[9] Ben Berg, Daniel Berger, Sara McAllister, Isaac Grosof,
Sathya Gunasekar, Jimmy Lu, Michael Uhlar, Jim Car-
rig, Nathan Beckmann, Mor Harchol-Balter, et al. The
cachelib caching engine: Design and experiences at
scale. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 2020), 2020.

[10] Daniel S Berger, Benjamin Berg, Timothy Zhu, Sid-
dhartha Sen, and Mor Harchol-Balter. RobinHood:
Tail latency aware caching—dynamic reallocation from
Cache-Rich to Cache-Poor. In I3th USENIX Sympo-
sium on Operating Systems Design and Implementation

(OSDI 18), pages 195-212, 2018.

[11] Niv Buchbinder, Yaron Fairstein, Konstantina Mellou,
Ishai Menache, and Joseph Naor. Online virtual machine
allocation with lifetime and load predictions. ACM
SIGMETRICS Performance Evaluation Review, 49(1):9—
10, 2021.

[12] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource central: Understanding and predicting work-
loads for improved resource management in large cloud
platforms. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 153-167, 2017.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Christina Delimitrou, Daniel Sanchez, and Christos
Kozyrakis. Tarcil: Reconciling scheduling speed and
quality in large shared clusters. In Proceedings of the
Sixth ACM Symposium on Cloud Computing, pages 97—
110, 2015.

Ionel Gog, Malte Schwarzkopf, Adam Gleave,
Robert NM Watson, and Steven Hand. Firmament:
Fast, centralized cluster scheduling at scale. In /2th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 99—115, 2016.

Ajay Gulati, Anne Holler, Minwen Ji, Ganesha Shanmu-
ganathan, Carl Waldspurger, and Xiaoyun Zhu. Vmware
distributed resource management: Design, implementa-
tion, and lessons learned. VMware Technical Journal,
1(1):45-64, 2012.

Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan,
Esaias E Greeff, David Dion, Star Dorminey, Shailesh
Joshi, Yang Chen, Mark Russinovich, et al. Protean:VM
allocation service at scale. In /4th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pages 845-861, 2020.

Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for Fine-
Grained resource sharing in the data center. In 8th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 11), 2011.

Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
fair scheduling for distributed computing clusters. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 261-276, 2009.

Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, et al. Morpheus: towards
automated SLOs for enterprise clusters. In /2th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 117-134, 2016.

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazieres, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for usecond-scale tail
latency. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
345-360, 2019.

David Karger, Eric Lehman, Tom Leighton, Rina Pani-
grahy, Matthew Levine, and Daniel Lewin. Consistent
hashing and random trees: Distributed caching protocols

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

for relieving hot spots on the world wide web. In Pro-
ceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pages 654-663, 1997.

Ajaykrishna Karthikeyan, Nagarajan Natarajan, Gagan
Somashekar, Lei Zhao, Ranjita Bhagwan, Rodrigo Fon-
seca, Tatiana Racheva, and Yogesh Bansal. Selftune:
Tuning cluster managers. In 20th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 23), pages 1097-1114, 2023.

Jing Li, Kunal Agrawal, Sameh Elnikety, Yuxiong He,
I-Ting Angelina Lee, Chenyang Lu, and Kathryn S
McKinley. Work stealing for interactive services to
meet target latency. In Proceedings of the 21st ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 1-13, 2016.

Jianheng Ling, Pratik Worah, Yawen Wang, Yunchuan
Kong, Chunlei Wang, Clifford Stein, Diwakar Gupta, Ja-
son Behmer, Logan A. Bush, Prakash Ramanan, Rajesh
Kumar, Thomas Chestna, Yajing Liu, Ying Liu, Ye Zhao,
Kathryn S. McKinley, Meeyoung Park, and Martin Maas.
Lava: Lifetime-aware vm allocation with learned distri-
butions and adaptation to mispredictions. Proceedings
of Machine Learning and Systems, 2025.

Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. DistCache: Provable load balancing for Large-
Scale storage systems with distributed caching. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), pages 143-157, 2019.

Alejandro Lépez-Ortiz and Alejandro Salinger. Paging
for multi-core shared caches. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Confer-
ence, ITCS 12, page 113-127, New York, NY, USA,
2012. Association for Computing Machinery.

Marko Luksa. Kubernetes in action. Simon and Schus-
ter, 2017.

Sarah McClure, Amy Ousterhout, Scott Shenker, and
Sylvia Ratnasamy. Efficient scheduling policies for
Microsecond-Scale tasks. In 79th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 22), pages 1-18, 2022.

Tarek Menouer. Kcss: Kubernetes container scheduling
strategy. The Journal of Supercomputing, 77(5):4267—
4293, 2021.

Andrew Newell, Dimitrios Skarlatos, Jingyuan Fan, Pa-
van Kumar, Maxim Khutornenko, Mayank Pundir, Yirui
Zhang, Mingjun Zhang, Yuanlai Liu, Linh Le, et al.
Ras: Continuously optimized region-wide datacenter re-
source allocation. In Proceedings of the ACM SIGOPS

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

28th Symposium on Operating Systems Principles, pages
505-520, 2021.

Kay Ousterhout, Patrick Wendell, Matei Zaharia, and
Ion Stoica. Sparrow: distributed, low latency scheduling.
In Proceedings of the twenty-fourth ACM symposium on
operating systems principles, pages 69-84, 2013.

M. Tamer Ozsu and Patrick Valduriez. Principles of
Distributed Database Systems, 4th Edition. Springer,
2020.

George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. In Proceedings of the 26th Symposium
on Operating Systems Principles, pages 325-341, 2017.

Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and
John OQusterhout. Arachne: Core-Aware thread man-
agement. In I3th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
145-160, 2018.

Sultan Mahmud Sajal, Luke Marshall, Beibin Li, Shan-
dan Zhou, Abhisek Pan, Konstantina Mellou, Deepak
Narayanan, Timothy Zhu, David Dion, Thomas Mosci-
broda, and Ishai Menache. Kerveros: Efficient and scal-
able cloud admission control. In /7th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 23), pages 227-245, Boston, MA, July 2023.
USENIX Association.

Malte Schwarzkopf, Andy Konwinski, Michael Abd-
El-Malek, and John Wilkes. Omega: flexible, scalable
schedulers for large compute clusters. In Proceedings
of the 8th ACM European Conference on Computer
Systems, pages 351-364, 2013.

Alon Shalita, Brian Karrer, Igor Kabiljo, Arun Sharma,
Alessandro Presta, Aaron Adcock, Herald Kllapi, and
Michael Stumm. Social hash: An assignment frame-
work for optimizing distributed systems operations on
social networks. In /3th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 16),
pages 455468, Santa Clara, CA, March 2016. USENIX
Association.

Junjie Sheng, Yiqiu Hu, Wenli Zhou, Lei Zhu, Bo Jin,
Jun Wang, and Xiangfeng Wang. Learning to schedule
multi-numa virtual machines via reinforcement learning.
Pattern Recognition, 121:108254, 2022.

Bhavana Vannarth Shobhana, Srinivas Narayana, and
Badri Nath. Load balancers need in-band feedback
control. In Proceedings of the 21st ACM Workshop on
Hot Topics in Networks, pages 76-84, 2022.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Suruchi Talwani, Jimmy Singla, Gauri Mathur, Navneet
Malik, NZ Jhanjhi, Mehedi Masud, and Sultan Aljahdali.
Machine-learning-based approach for virtual machine al-
location and migration. Electronics, 11(19):3249, 2022.

Chungiang Tang, Kenny Yu, Kaushik Veeraraghavan,
Jonathan Kaldor, Scott Michelson, Thawan Kooburat,
Aravind Anbudurai, Matthew Clark, Kabir Gogia, Long
Cheng, et al. Twine: A unified cluster management sys-
tem for shared infrastructure. In /4th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pages 787-803, 2020.

Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar,
and Kai Li. RIPQ: Advanced photo caching on flash
for facebook. In 13th USENIX Conference on File and
Storage Technologies (FAST 15), pages 373-386, 2015.

Muhammad Tirmazi, Adam Barker, Nan Deng, Md E
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: the next generation. In
Proceedings of the fifteenth European conference on
computer systems, pages 1-14, 2020.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, et al. Apache hadoop yarn: Yet another resource
negotiator. In Proceedings of the 4th annual Symposium
on Cloud Computing, pages 1-16, 2013.

Rahul Vaze and Sharayu Moharir. Paging with multiple
caches. In 2016 14th International Symposium on Mod-
eling and Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOpt), pages 1-8, 2016.

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In Pro-
ceedings of the Tenth European Conference on Com-
puter Systems, pages 1-17, 2015.

Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan
Truong, Ashish Motivala, and Thierry Cruanes. Build-
ing an elastic query engine on disaggregated storage.
In Proceedings of the 17th Usenix Conference on Net-
worked Systems Design and Implementation, NSDI’20,
page 449-462, USA, 2020. USENIX Association.

Gang Yan and Jian Li. Towards latency awareness for
content delivery network caching. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pages
789-804, 2022.

Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Mer-
chant, and Homer Wolfmeister. CacheSack: Admission
optimization for google datacenter flash caches. In 2022

[50]

USENIX Annual Technical Conference (USENIX ATC
22), pages 1021-1036, 2022.

Yunqgi Zhang, George Prekas, Giovanni Matteo Fu-
marola, Marcus Fontoura, Inigo Goiri, and Ricardo Bian-
chini. History-Based harvesting of spare cycles and
storage in Large-Scale datacenters. In /2th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 755-770, 2016.

	Introduction
	Background and Motivation
	Background on VM allocation systems
	Evidence from production
	Need for latency-driven scheduling
	Need for cache-aware, latency-driven scheduling
	Allocator scalability challenges

	Kamino overview
	LatCache Agent Assignment Algorithm
	Agent Assignment Task
	Latency-driven Cache-aware Assignment
	Basic algorithm
	Cache-aware latency estimation
	Hierarchical cache structure and processing time computation

	System Implementation
	Evaluation
	Workloads and Methodology
	Effectiveness of LatCache on Latency
	Explaining why LatCache works well
	Estimation accuracy and its impact
	Reduction in Memory Footprint
	Sensitivity to System Parameters
	Performance on Production Zones

	Related Work
	Conclusion
	Appendix
	Applying LatCache Principles Beyond VM Allocators

