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Abstract

Distributed data-parallel computations are critical for both tradi-
tional big data applications and emerging large language model
tasks. The efficiency of these computations largely depends on
reducer performance, particularly in handling extensive data ac-
cess. This paper introduces a novel reduction fusion algorithm that
optimizes distributed data-parallel programs by fusing dependent
reducers and mappers into a single, unified reducer. Employing
inverse recomputation, the algorithm preserves partial aggregation
and reduces storage, network I/O, memory, and cache overheads.
Our preliminary evaluation reveals performance improvements of
up to 2.47X, demonstrating the practicality and effectiveness of this
approach, while also highlighting its potential to address challenges
posed by extensive data access in modern distributed computing
environments.
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1 Introduction

Distributed data-parallel computations have been critical in many
application areas for decades, including evidence-based medicine,
fraud detection, personalized education, and large language model
(LLM) training. MapReduce [10] is the pioneering programming
model designed for processing big datasets in parallel across a clus-
ter of machines. Subsequent general-purpose distributed computing
systems, such as SCOPE [5], DryadLINQ [37], Pig Latin [30], Apache
Hive [4], and Apache Spark [39], provide developers with more
convenient, SQL-like programming models that greatly simplify
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various data-processing tasks. These models typically decompose
a sophisticated computation into a series of map and reduce (also
known as aggregate or fold in functional programming) procedures,
where mappers independently manipulate individual data items
and reducers aggregate groups of them.

A major performance challenge in executing a series of depen-
dent reducers and mappers arises from extensive data access [15, 36].
These computations require continuous reading and writing of large
amounts of data from the original input and intermediate results.
Extensive data access imposes significant overhead on the storage
subsystem, as all input and intermediate results must be retained
until the corresponding computations are complete. Moreover, it
substantially elevates network I/O across the entire cluster and
intensifies memory traffic and cache invalidation on individual
machines, resulting in severe runtime performance degradation.
This issue is further amplified in LLM tasks due to the constrained
capacity of GPU L1 cache and shared memory (e.g., up to 256 KB for
NVIDIA H100 [29]). As a result, computations like SOFTMAX [14] in
attention layers [7, 35] can become critical performance bottlenecks,
primarily due to the extended latency introduced by frequent data
transfers between GPU memory and cache.

This paper presents a novel reduction fusion algorithm that op-
timizes distributed data-parallel programs by minimizing overhead
caused by extensive data access. The proposed algorithm identifies
opportunities to fuse a series of dependent reducers and mappers
into a single, unified reducer through inverse recomputation. Our
approach hinges on the idea that the fused reducer can speculatively
execute all associated reducers and mappers based on their depen-
dencies, using only a portion of the initial input data. When new
data items are introduced, the algorithm begins with the partial
result and reconstructs the input data for each reducer and mapper
by applying their inverse functions. Given that reducers are not
necessarily injective (i.e., they may produce the same output for
different inputs), the algorithm can potentially reproduce much
less input data than was originally processed. Once the initial input
data is reconstructed, the fused reducer appends the newly received
items and reruns the computations in the forward direction. As a
result, if the inverse reproduction of data items by the reducers is
sufficiently efficient in terms of data size (as with the MIN, MAX, and
SUM reducers in Figure 2), the reduction fusion can outperform the
original computations. This improvement is achieved by trading
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1 static V reduce(Func<T, V, V> g, V v@, List<T> input) {

2 var res = v0;

3 foreach (var item in input) {

4 res = g(item, res);

5 }

6 return res;

7%

8 static List<U> map(Func<T, V, U> f, V v@, List<T> input) {
9 var res = new List<U>();

10 foreach (var item in input) {
11 var out_item = f(v@, item);

12 if (out_item != null) {
13 res.Add(out_item);

14 3}

15 }

16 return res;

17 }

Figure 1: General interface and illustrative C# implementa-
tion of reducers and mappers. T, V, and U represent generic
types. The Func delegate encapsulates a function that accepts
one or more parameters and returns a value.

CPU/GPU recomputation for substantial reductions in overhead
associated with storage, network I/O, memory, and cache usage.
Moreover, our approach retains the capability of partial aggre-
gation [1, 18, 22, 27, 38], provided that each reducer supports it.
Our preliminary evaluation shows that the approach achieves a
substantial performance speedup of up to 2.47X (see Section 4).
In summary, this paper makes the following contributions:

(1) Identification of a significant, challenging research problem
arising from extensive data access.

(2) Proposal of a novel algorithm consolidating multiple depen-
dent reducers and mappers into a single reducer through
inverse recomputation. The reduction fusion eliminates un-
necessary overhead and enhances runtime performance.

(3) Demonstration of practicality and effectiveness through pre-
liminary evaluation results.

2 Background and Motivation

Figure 1 presents a generalized interface [17] and an illustrative
implementation of reducers and mappers in the C# programming
language. The general reduce function takes an accumulator [22]
gof type T — V — V for result aggregation, an initial value
v of type V (i.e., the default result for empty lists), and a list of
data items input of type [T] as its parameters. Such a function
sequentially processes the dataset item by item, using g and the
previous aggregated value to produce a new value; it finally returns
aresult of type V. Because of their sequential semantics, the runtime
performance of reducers at scale is critical for distributed data-
parallel computations—not only in traditional big data applications
but also in emerging deep learning and LLM tasks.

Fusion techniques [2, 12, 19, 20, 24, 32] have shown promise
in program optimization, particularly by consolidating multiple
loops, functions, or program segments into a singular, efficient
unit. However, prior research primarily focuses on code written
in traditional programming languages such as C, C++, Java, or
Haskell, thereby limiting its direct applicability to distributed data-
parallel programs due to substantial differences in their structural
representations. Partial aggregation [1, 18, 22, 27, 38] is a crucial
optimization that decreases the volume of network I/O needed for
data transmission across machines. Specifically, the system locally
aggregates intermediate data grouped by a specific key on each

1 static double softmax_test(List<double> input) {
// SOFTMAX Begin

double max = input.Max();

var y1 = input.Select(x => x - max);

var y2 = yl.Select(x => (double)Math.Exp(x));
double sum = y2.Sum();

var y = y2.Select(x => x / sum);

// SOFTMAX End

return y.Min();
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}

Figure 2: Distributed data-parallel example in C# LINQ that
applies SOFTMAX to a list of floating-point numbers, and then
retrieves the minimum value.

worker machine in parallel. It then combines these partial results
using hierarchical aggregation trees and performs a final reduction
on the sequence of aggregated partial results, ultimately computing
the end result.

Figure 2 presents an example of distributed data-parallel pro-
cessing using C# LINQ [25], demonstrating the application of the
SOFTMAX operation [14] to a list of double-precision floating-point
numbers, followed by retrieving their minimum value. This illus-
trative implementation decomposes SOFTMAX into two reducers
(i.e., MAX and SUM) and three mappers (lines 4, 5, and 7). Retriev-
ing the minimum adds one additional data access, resulting in a
total of six data processing steps. This example highlights the fea-
sibility of efficiently reconstructing data items through inverse
operations. For instance, the MIN and MAX reducers, which return
the minimum and maximum values from a list of data items, respec-
tively, have computationally equivalent yet simple inverse func-
tions: MIN™! () = [y],MAX~(y) = [y]. Another example is the SUM
reducer, which performs sum calculations. Its inverse function uses
uniform value replication, expressed as SUM~!(y) = [%] " The no-
tation [%] " represents an abbreviation for an n-sized list in which
each item has the same value % with n being the length of the
original input. This format enables efficient storage by storing only
the value and the length, rather than the entire list.

3 Methodology
3.1 Problem Definition

Dependent reducers and mappers are formally modeled as a directed
acyclic graph (DAG), also referred to as an execution plan or a
computation graph: G = (V = {u;},E = {(u;,uj)}iz;). In this
representation, a source node represents either an initial input
or an initial value, while a sink node denotes a final output. An
internal node corresponds to a reducer or a mapper. A directed
edge (u;,uj) signifies that the output of node u;—which may be
a list of data items or a single value—is passed as input to node
uj, enforcing the constraint that u; can begin execution only after
u; has completed its task. The entire graph G can be viewed as a
mathematical function denoted Fg.

Assume that the initial input set of G is given by X = {X; :
[T1], X2 : [T2],- - . Xm : [Tm]}, and the initial value set is vy =
{vo1 : V1,005 : Va,- -+ ,0g; : V;}. In this context, each X; represents
a list of data items of type [T;], and each vp; is an initial value of
type V;. We assume that all X; have the same length; otherwise, data
packing is employed. Similarly, let y = {y1 : Vo1, y2: Vigo, - -+, Yn ¢
Vien} represent the final outputs from all sink nodes. To enable
the fused reducer to process both the initial input set and the final
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output set, we make a few adjustments to X and y. First, we merge
all X; into a single list X, where each item is a tuple combining
elements from the respective X;, yielding a type [T] such that
T =T; X Tp X --- X Tj. Second, we introduce a sum type [31]
U=Vi+--+Vi+Vyy+---+V,, torepresent a vy; or ay;. We
then construct a list o9 = [091, 009, - - - , vo;], With type [U], to serve
as the initial value for the fused reducer. Lastly, the final output
of the fused reducer is expressed as a list y = [y1,y2, -+ , yn], also
with type [U]. Using these notations, we define reduction fusion
as follows [23].

Definition 1. An algorithm A qualifies as a reduction fusion
algorithm if it meets the following two conditions:

(1) Syntactic Legality. For any given DAG G, algorithm A
generates a valid reducer ryz; (as illustrated in Figure 1):

Gtra rgg = [T1 > [Ul Ag = T—[U] - [U]

Ao = [U].

(2) Semantic Equivalence. For any valid input, the outputs of

G and the reducer r 7 must always match:

y=FcX,0) ra y= rg,a()_() .

The symbols g, T, U, y, X, Y, vo, 09, and X are defined in the
previous section.

3.2 Inverse Function

Let rg., be a valid reducer. We define rg/ 11,0, the inverse function
of 74,4,, which takes an aggregated result of type V as input and
returns a list of data items of type [T], as follows:

roan Vo [T]

9%
[t xn] = rgh () = ¥ = gy (x1. -+ xn])

Since the relation H = {(y, [x1," -, xn]) | y = rgu, ([x1,- -+ . xn])}
is non-empty, the inverse function r,, ,%0 C H must exist by the
Axiom of Choice [13]. However, rg, ZI,O does not necessarily return
the original data items. It is important to note that the accumulator
g and the initial value g are crucial for defining r,, 2 In subsequent
sections, we may use r~! for simplicity, provided that omitting g
and vy does not affect the discussion. Below, we list the inverse
functions of several common reducers:

MIN'(y) = [y],  MAX"'(y) = [y],

sy = 4], Vel = [y, conT ) = 1Y

In SUM~! and AVG™1, we retain n, the number of original data items.
As noted earlier, [y]" represents an abbreviation for an n-sized
list where each item has the same value y. This format enables
efficient storage of only the value and length, simplifying inverse
recomputation. The underscore “_” in COUNT~! indicates that any
value can be used in its place.

Similarly, for a mapper m ., , we define its inverse function m}i}o
We observe that my,, processes each data item independently;
therefore we must first define the inverse function f~! for the
functor f. Since the computation of f depends on vg, we adjust the
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Figure 3: Execution graph (left) and augmented reverse exe-

cution graph (right) for the SOFTMAX program in Figure 2. The
internal numbers represent line numbers in the code.

function type of £~ to accept v as an additional parameter.

flueVvosU—ST mt o [U] - [T]

x = f"(v0.y) = y = f(00,x)
mey (L oyn]) = [F (00.y1) . 7 (00 yn)]

As stated earlier, f ~1 must exist; therefore, m7! also exists.
»00

f.o

3.3 Reduction Fusion

This section introduces an algorithm designed to fuse a series of
reducers and mappers into a single, unified reducer. Consider a DAG
G with K sink nodes su; where 1 < i < K. Assume that the inverse
functions corresponding to the reducers and mappers are already
known. In the preparation phase, we first compute a backward slice
G; for each su; by tracing backward along the dependency edges of
G starting from su;. In other words, G; is a subgraph of G, consisting
of nodes (including su; itself) that influence the computation of su;.
The left panel of Figure 3 illustrates the execution graph for the
SOFTMAX program shown in Figure 2. The numbers inside the circles
represent line numbers in the code, with solid circles denoting
reducers and hollow circles indicating mappers.

Next, we compute G;” !, the reverse graph of G;, by substituting
the internal nodes with their respective inverse functions and re-
versing the direction of the edges in G;. A challenge arises when
mappers or initial input nodes have multiple incoming edges in
Gi_l, complicating reverse execution due to the difficulty of meet-
ing computational constraints across multiple paths. To address
this, we apply the node splitting transformation [11], where a map-
per or initial input node u with k incoming edges is replaced by k
clones uy, - - - , ug, and each incoming edge to the original node is
redirected to exactly one of the new nodes. The original outgoing
edges of u are then replicated to each of uy, - - - , ug. The result is

an augmented graph, denoted as G;” 1, As an example, the right
panel of Figure 3 presents the augmented reverse execution graph
for the SOFTMAX program, where certain original nodes are divided
into two or three nodes (e.g., node () is split into §) and ). The
reverse graph of Gi_l, referred to as G, is then computed and used
for forward computation after incorporating new data items. Addi-
tionally, we aggregate the original initial values into a list, denoted
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as vy, which serves as the new initial value for the fused reducer r,
as discussed in Section 3.1.

We now describe the functioning of the accumulator g within
the fused reducer r. Our analysis reveals that all sink nodes in the
DAG G operate independently of each other. This independence
allows g to perform inverse recomputations for each sink node
separately, ensuring that the process is both efficient and logically
coherent. For a given sink node su;, the accumulator g initiates
the process by retrieving the corresponding partial result that has
been previously computed. This partial result serves as input to

the augmented reverse graph G;” 1, Subsequently, G 1 is executed
starting from su; and proceeding along the reversed dependency
edges. Through this reverse execution, g reconstructs the partial
initial inputs that are computationally equivalent to those origi-
nally provided. Afterward, g augments such reconstructed inputs
by appending the corresponding new data items. These inputs are
then fed into G;, triggering a forward computation that mirrors the
original processing sequence. This forward computation ensures
that the new output produced by G; accurately reflects the com-
bined effects of both the original initial inputs and any subsequent
new data. Note that the updated values of all v for the internal
reducers and mappers (e.g., the max and sum variables in Figure 2)
are saved for the next round of inverse recomputation. Once all su;
have been individually processed in this manner, the accumulator
g proceeds to consolidate the new outputs generated by each Gi
into a new partial result.

This comprehensive approach ensures that the final result pro-
duced by the fused reducer r remains consistent with that of the
original DAG G. If the inverse reproduction of data items during

the execution of each G;° 1 js sufficiently efficient in terms of data
size, the accumulator g can significantly optimize the utilization
of storage, network I/O, memory, and cache, leading to substantial
performance gains.

3.4 Partial Aggregation

As established earlier, if all reducers in a DAG G support partial
aggregation, then the fused reducer ry g also exhibits this prop-
erty. The combiner and FinalReduce functions operate in a manner
closely analogous to the accumulator g. Building on the work of

Liu et al. [22], we derive the following key result:

Theorem 1. For any two valid initial inputs X and X, if

—  — — =
rg,vfo(X@X)ng’%(X @X),

then I'gz5 SUpports partial aggregation. Here, rg;z5 is computation-
ally equivalent to G, and @ denotes the concatenation operation on

two lists.

Due to page constraints, we omit the detailed proof here; it will
be included in an extended version of this paper.

4 Preliminary Evaluation

We conducted a preliminary evaluation of the SOFTMAX program
(Figure 2) on a production distributed computing platform. The
raw input dataset comprised 24° double-precision floating-point
numbers, totaling 8 TiB of data in memory. The fused version of
the program was implemented following the algorithm described
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in Section 3.3, incorporating the inverse functions outlined in Sec-
tion 3.2. The correctness of such an approach can be rigorously
proven through induction [7, 26]. We executed both the original and
fused versions of the SOFTMAX program as standard jobs using 256,
512, 1,024, and 2,048 CPU cores, with only partial reduction enabled.
Our approach achieved substantial end-to-end speedups of 1.58X,
1.76x, 1.81X, and 2.47X across these configurations, highlighting
its efficiency and potential for performance optimization.

5 Future Plan

The primary challenge of our reduction fusion algorithm lies in
constructing inverse functions for the relevant reducers and map-
pers. This task is essentially a nondeterministic program inversion
problem [6, 16, 22, 33, 34], which is inherently difficult to solve. To
address this challenge, we will pursue three key strategies. First,
we have prebuilt inverse functions for several commonly used oper-
ators in data-parallel computations, including aggregate (e.g., MIN,
MAX, AVG, SUM, and COUNT), arithmetic (e.g., addition, subtraction,
multiplication, division, and exponentiation), and bitwise (e.g., AND
and OR) operators. We plan to enhance this library by predefining
inverse functions for a broader set of common reducers and map-
pers. Second, we aim to design an interface that enables developers
to write their own inverse functions and seamlessly integrate them
with our algorithm. Additionally, we will employ verification tech-
niques, such as SMT solvers [8, 9], to ensure the correctness of these
functions. Third, we intend to analyze user-written programs to
automatically infer their inverse functions, drawing on techniques
from program analysis [28], symbolic execution [3, 21], and SMT
solvers.

The second challenge is that the selection of inverse functions
varies based on the nature of the data-parallel computations. For
example, it is feasible to manually prove the correctness of our pro-
posed inverse functions by induction for the SOFTMAX test illustrated
in Figure 2 [7, 26]. However, this process becomes more complex
if computations on lines 4 or 5 are modified. In such scenarios,
new inverse functions for SUM, MAX, and MIN would be required. To
address this challenge, we aim to leverage formal methods, includ-
ing program analysis and symbolic execution, to infer appropriate
inverse functions automatically. These methods will help ensure
the correctness of the computation across varying configurations.

To make our algorithm more practical and impactful, we intend
to integrate it into the query optimizers of widely used distributed
computing systems, such as SCOPE [5] and Apache Spark [39]. We
also plan to explore applications of our technique in the emerging
fields of deep learning and large language models [7].

6 Conclusion

This paper presents a reduction fusion algorithm that optimizes
distributed data-parallel computations through the fusion of de-
pendent reducers and mappers. The proposed approach can sig-
nificantly reduce various overheads by leveraging inverse recom-
putation and preserving partial aggregation. Preliminary results
validate the effectiveness of this approach. We believe that this
work contributes valuable insights for the future development of
distributed data-parallel programs.
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