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ABSTRACT

This study explores a data-driven approach that combines flood forcing factors
from observation and reanalysis datasets, antecedent flood extent maps, and deep
learning to forecast daily flood extents in Rwanda. We extend the architecture used
in ClimaX (transformer weather and climate foundation model), investigate its
pretrained representations for flood forecasting, and compare performance against
a U-Net baseline. Our results demonstrate that a ClimaX variant trained from
scratch with a linear projection decoder outperforms the U-Net and other ClimaX
variants, highlighting its potential as an effective tool for flood extent forecasting.
This work underscores the potential of data-driven deep learning models for flood
extent forecasting with implications for improving disaster preparedness and flood
risk assessment in vulnerable regions.

1 INTRODUCTION

Floods represent the most widespread and devastating natural disasters, impacting millions annually
and causing immense economic losses. In 2022 alone, floods affected over 57 million people glob-
ally and resulted in 8,000 fatalities (Fraehr et al., 2023). The frequency and severity of flood-related
disasters have more than doubled since 2000 (WMO, 2021)), with future impacts expected to worsen
due to climate change, population growth, and urbanization (Lee et al.l 2023} |[Nevo et al.| [2022).
Rwanda is particularly vulnerable due to its mountainous terrain, frequent heavy rainfall, and the
impacts of climate change. This, combined with inadequate drainage and deforestation, leads to
frequent and severe flooding and landslides, resulting in significant loss of life, displacement, and
infrastructure damage. Low and middle-income countries are therefore disproportionately affected
due to lack of adequate flood mitigation measures and having densely populated floodplains (Alfieri
et al.,2018). As aresult, there is urgent need for improved flood forecasting and effective mitigation
strategies to minimize the devastating impacts of flooding events.

Flood inundation modeling (FIM), which utilizes hydrodynamic models to estimate critical flood
parameters like extent and depth, offers essential insights for scientists and risk managers. Its appli-
cations in flood susceptibility mapping and real-time forecasting makes it a valuable tool for flood
risk assessment and mitigation. However, large-scale hydrodynamic modeling is constrained by its
reliance on many parameters — such as topographic data, initial water levels, resistance factors, and
runoff coefficients — which are often unavailable in regions that are poorly monitored, leading to
poorly constrained parameters and significant calibration uncertainties. As a result, these physics-
based numerical models often fail to capture the non-linear dynamics and complex interactions of
flood forcings. Furthermore, the high computational cost of fine-resolution modeling limits their
feasibility for large-scale operational applications.

Machine learning methods on the other hand have demonstrated significant potential for flood in-
undation modeling, providing a computationally efficient alternative to physically-based hydrody-
namic models (Kabir et al.| 2020; |Guo et al., 2021} [Liao et al.,|2023}; |Chu et al., [2020; |Chang et al.,
2018} [Sun et al., |2023). However, a key limitation has been the scarcity of accurate flood depth
and extent target data, which hinders model development and accuracy (Chu et al., 2020; |Guo et al.,
2021} |Chang et al., |2018). This data limitation has led research to focus primarily on fluvial (river)
flooding caused by excessive upstream flow, while pluvial flooding—driven by intense rainfall and
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poor drainage—has received less attention. As a result, pluvial floods, which are more frequent and
can lead to substantial economic losses, remain understudied (Liao et al., [2023). However, the in-
creasing availability of Earth observation data including analysis, forecasts, and climate simulations
is opening new avenues for applying machine learning models to flood forecasting (Nearing et al.,
2024} Kumar et al., 2023} |[Kratzert et al.,[2019}; Brunner et al.,[2021)) and is mitigating the scarcity of
flood depth and extent data (Bonafilia et al.,2020; Misra et al., 2024). These datasets provide exten-
sive spatio-temporal coverage, capturing a broad range of environmental variables that are crucial
for understanding and predicting flood events.

In this study, we introduce a transformer-based model to forecast daily flood extent maps in Rwanda
using 30 days of past meteorological, land, and geographical forcings. We extend the architecture
used in ClimaX, a transformer-based weather and climate foundation model by |[Nguyen et al.| (2023)),
for flood forecasting and investigate whether ClimaX’s learned weather and climate representations
can be effectively leveraged for flood prediction. Additionally, we train a U-Net model (Ronneberger
et al.| 2015) for comparison. Given the increasing need for accurate flood forecasting in a changing
climate, our approach aims to enhance disaster preparedness, inform risk management strategies,
and support climate resilience efforts.

2 DATA

To build effective data-driven models for flood extent forecasting, we need to employ suitable in-
put data that allows the model to learn spatio-temporal patterns, capture complex variable inter-
actions, and generalize to unobserved flood events. Previous studies have identified several key
flood-triggering factors which we use in this study. These include:

* Meteorological factors. These are weather-related variables that drive atmospheric and
hydrological changes, significantly influencing flood occurrence and severity. In this study,
we include daily aggregates of total precipitation, 2-m temperature, and surface pressure, all
obtained from the ERA5-Land reanalysis dataset (Munoz-Sabater et al.,[2021)) and accessed
via Google Earth Engine.

* Geographical factors. These variables determine how water flows and accumulates in
a given area. Elevation and slope, derived from the Shuttle Radar Topography Mission
(SRTM) digital elevation dataset (Jarvis et al., 2010), were used in this study and retrieved
through Google Earth Engine.

¢ Soil and Land use factors. These variables influence water infiltration and runoff, affect-
ing flood susceptibility. We also included volumetric soil water content from the ERAS-
Land reanalysis dataset, also accessed through Google Earth Engine.

To enhance the model’s ability to generalize across diverse regions, researchers have incorporated
spatial coordinates as additional inputs. This allows the model to establish relationships between
input features and their spatial locations, as demonstrated by [Sun et al|(2023). The target variable
in this study is daily flood extent maps, sourced from Misra et al.[(2024). These flood extent maps
were generated using a neural network trained on Sentinel-1 SAR imagery, offering nearly a decade
of global flood extent data. In this study, all data were standardized to a 1 km resolution (0.009°).

3 METHODOLOGY

We formulate flood extent prediction as an image-to-image translation task, treating both the input
and output as image rasters representing different datasets. This allows for the input data to be
mapped into the desired flood extent map using any image architecture such as U-Net (Ronneberger
et al.l [2015)), ResNet(He et al.l [2016) or Vision Transformer (Dosovitskiy, [2020). Given the input
variables (flood forcing factors + spatial coordinates + antecedent flood extent maps) X at a partic-
ular time ¢ , the main objective is to predict where a flood will occur at a time ¢, which can be treated
as a binary classification process to label a given pixel with ”flood” or non flood”.

To handle the use of multiple flood forcing variables through time, the model needs to be able to
combine diverse data types and provide meaningful, physically consistent outputs across space and
time. One such available neural network is ClimaX (Nguyen et al., 2023). ClimaX is a weather
and climate foundation model built upon Vision Transformers (ViT) and uses variable tokenization
and variable aggregation to handle heterogeneous datasets. Variable Tokenization divides each
variable’s spatial map (H x W) into h x w patches, resulting in V' x h X w patches, where V' represents
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the number of variables. These patches are then embedded into vectors of size D, producing a final
output of dimension V' x h X w x D. Variable aggregation on the other hand uses a learnable query
to merge these tokens into a unified representation of size h X w x D reducing computational costs
and creating unified tokens with universal semantics of all variables involved.

To perform flood extent forecasting, some modifications are made to the original ClimaX architec-
ture. To predict for a specific day, we use a 30-day history of input variables, resulting in an input
with dimensions 7' x V' x H x W. Each time slice of the input goes through variable tokenization
and variable aggregation before additional information such as positional embedding, time history
embedding and day of the year embedding are added to the input tokens. The spatio-temporal rich
input tokens are then processed by the transformer’s attention layers, producing a feature tensor with
dimensions 7" x h x w x D, where D represents the embedding size. This tensor is then summarized
across its patches using a global average pooling layer, reducing its dimension to 7" x D. Finally, a
cross-attention layer aggregates information across the temporal features and passes this to an MLP
decoder which linearly maps the D-dimensional feature vector to a H x W flood extent map. A
sigmoid is then applied to obtain the final flood extent map. These designs are inspired by (Nguyen
et al.} 2023 Nearing et al.,|2024). We refer to this variant as ClimaX-MLP (see Figure ; experi-
ments include training from scratch and fine-tuning a pre-trained ClimaX model (1.40625 °version).
In this work, a ViT with 8 attention layers, an embedding size of 1024 and a hidden dimension of
1024 x 4 was used.

Building on the approach proposed by (Strudel et al., 2021}, a second ClimaX variant was developed
to generate patch-level class logits. Similar to the first variant, the ClimaX encoder processes input
forcing factors resulting in a feature tensor of shape 7" x N x D, where N = h X w represents the
number of spatial patches. These features are then aggregated across the temporal dimension using a
learnable query, resulting in a spatial feature map 27, € RV and passed to a patch-level decoder.
The decoder applies a linear layer to the patch encodings to generate class logits for each patch,
resulting in 27;, € RY*X where K denotes the number of classes. This sequence is subsequently
reshaped into a 2D feature map h x w and bilinealy upsampled to the original image size H x W.
A sigmoid is then applied to obtain the final flood extent map. We refer to this version as ClimaX-
Interpolate.

For a baseline, we considered a U-Net model adapted from (Gupta & Brandstetter, 2022). We
trained our models by minimizing a weighted pixel-wise binary cross-entropy loss using the AdamW
optimizer at a learning rate of 6e 4, and early stopping to prevent overfitting. Model performance is
evaluated using two metrics; Mean Intersection over Union (mIloU) which measures the overlap
between predicted and actual flood extent maps and Recall which assesses the model’s ability to
correctly identify flooded areas.

4 RESULTS

Table 1| summarizes the results obtained across different model configurations, including a baseline
U-Net, ClimaX variants trained from scratch, and fine-tuned versions of ClimaX while Figure E]
provides a qualitative comparison.

Table 1: Performance of various models for flood extent forecasting, evaluated using mIOU and
recall metrics.

Model mlIOU | Recall
Unet 0.5061 | 0.5144
From scratch ClimaX (ClimaX-MLP) 0.5292 | 0.5720
Fine-tune ClimaX (ClimaX-MLP) 0.5002 | 0.5137
From scratch ClimaX (ClimaX-Interpolate) | 0.4986 | 0.4753
Fine-tune ClimaX (ClimaX-Interpolate) 0.4982 | 0.4066

5 DISCUSSION AND FUTURE WORK

The results presented in this study highlight the potential of surrogate deep learning models for
flood extent forecasting. The ClimaX variant trained from scratch with a linear projection decoder
(ClimaX-MLP) achieved superior performance compared to the baseline U-Net, highlighting its
ability to effectively learn from diverse input variables and capture complex spatio-temporal dy-
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Figure 1: Sample flood extent predictions generated by all evaluated models. The figure qualitatively
highlights differences in model performance, particularly in capturing fine-grained flood boundaries
and spatial extent.

namics associated with flood events. This indicates that the ClimaX architecture, with its inherent
ability to model weather and climate data, can be effectively adapted for flood forecasting tasks.
Although the linear projection head decoder performed best, the baseline U-Net remains competi-
tive and could offer a simpler alternative to transformer-based approaches. Future work will involve
incorporating more flood forcing factors such as land use factors, hyrological factors such as river
discharge, and vegetation and water indexes to improve models’ performance. The superior perfor-
mance of the ClimaX-MLP model compared to the ClimaX-Interpolate model suggests that bilinear
interpolation might not have been sufficient to capture spatial interactions or accurately delineate
flood boundaries as shown in Figure |1} suggesting further decoder optimization for this task. It is
noteworthy that the performance of the fine-tuned ClimaX models was not consistently better than
the models trained from scratch which could be attributed to several factors. ClimaX, trained on
coarse global spatial resolution of 1.40625°(128 x 256 grid points), may have had difficulty captur-
ing the fine-grained spatial details crucial for accurate flood prediction at 0.009°in Rwanda. Future
work will involve introducing an intermediate pretraining step where the model is exposed to high
resolution regional flood datasets to bridge the gap between coarse global patterns and localized
flood dynamics.

6 CONCLUSION

This study demonstrates the potential of data-driven deep learning models for flood extent fore-
casting, focusing on adapting the ClimaX architecture and a U-Net, to predict flood extent maps in
Rwanda. By leveraging the growing availability of observational and reanalysis data, along with
advancements in deep learning, this work establishes a foundation for improving flood forecasting
models.
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A APPENDIX

— g ClimaX

B8 Tokenization Aggregation

Aggregation

‘ Scalar Embed

{
| N I Patch Embed

Forcing Factors I Cross-attention

Figure 2: Variant of ClimaX (Nguyen et al [2023)) architecture used in this study for flood extent
forecasting.
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