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Abstract
In recent years, deep learning has seen widespread adoption across
various domains, giving rise to large-scale models such as large
language models. Training these models, particularly in distributed
environments, presents substantial computational and communica-
tion challenges. A critical issue is the communication deadlock—a
state in which processes become indefinitely stalled while awaiting
network messages from others, which leads to resource wastage
and reduced productivity. Current approaches to deadlock handling
are either unsuitable for deep learning due to its unique hybrid
programming paradigm or limit optimization opportunities. This
paper presents dl2, a novel dynamic analysis tool designed to detect
communication deadlocks in deep learning jobs. dl2 models the
runtime trace of a job as an execution graph, detects unmatched
communications, and constructs a wait-for graph to identify dead-
lock cycles. dl2 can also handle nondeterministic communication
behaviors, providing replay and diagnostic support for root cause
analysis. We evaluate dl2 using PyTorch with a combination of
synthetic test cases and real-world deep learning workloads. The
experimental results show that dl2 successfully detects all com-
munication deadlocks, achieving 100% precision and recall, which
highlights its effectiveness.
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1 Introduction
Deep learning has achieved significant success in recent years
across various application domains, including natural language
processing, programming, gaming, drug discovery, and scientific
computing. The demand for training complex large-scale models,
particularly large language models (LLMs) such as the GPT [43],
Llama [54], DeepSeek [9], and Qwen [67] series, has surged dra-
matically, driven by the growing adoption of artificial intelligence
(AI). Distributed training has emerged as a practical and promis-
ing solution to manage the substantial computational and memory
requirements of these large models. This approach leverages nu-
merous or even clusters of computing resources to enable data,
model, and pipeline parallelism [44]. As an example, Meta trained
the Llama 3 models on two custom AI clusters, each consisting of
24K graphics processing units (GPUs) [25].

During distributed training, tens, hundreds, or even thousands of
computing processes work together by continually synchronizing
tensors through network messages. This extensive communica-
tion requires sophisticated timing coordination to ensure efficient
progress. However, due to the predominantly manual design of
distributed training programs and the lack of sufficient support in
current distributed training frameworks, a group of processes may
end up waiting indefinitely for messages from one another, leading
to a state of impasse where no further progress is possible. We
refer to this condition as a communication deadlock. For instance, a
deadlock can occur when both processes in a deep learning job per-
form synchronous send-then-receive operations in the same order,
preventing either from advancing. Communication deadlocks are a
known issue in deep learning workloads. After consulting with the
site reliability engineers (SREs) of Microsoft Platform-X, it was con-
firmed that communication deadlocks do occur in stalled training
jobs submitted by various product and research teams. Furthermore,
the absence of adequate tooling makes thorough identification and
in-depth root cause diagnosis of such deadlocks particularly chal-
lenging for the SREs. Another example comes from a developer
who reported and discussed a deadlock issue on GitHub [56]. The
developer’s job encountered a hang because one process failed to
enter the synchronization barrier, causing the entire system to stall.
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This highlights the common challenge of ensuring proper synchro-
nization across processes in distributed training environments.

Communication deadlocks in deep learning jobs pose a signif-
icant challenge in contemporary deep learning workflows, with
many practitioners and users reporting frequent encounters with
these issues [56–64]. Such deadlocks not only lead to considerable
resource wastage (e.g., GPU, CPU, storage, and network I/O) but
also substantially hinder development productivity. The impact is
even more severe in automated machine learning (AutoML) [18, 31]
or automated training parallelization scenarios [22, 70], where nu-
merous jobs from the same experiment run concurrently. In such
cases, if one job encounters a communication deadlock, hundreds of
other jobs with identical or highly similar communication patterns
may also experience deadlocks, causing widespread stalls.

Extensive research has been conducted using static analysis [3,
4, 10, 11, 14, 17, 21, 48, 69] or dynamic analysis [7, 46, 47, 55] to
address various types of deadlocks. These methods are typically
applied to multi-threaded or Message Passing Interface (MPI) [26]
programs written in traditional programming languages such as C,
C++, C#, Java, or Rust. However, deep learning jobs differ signifi-
cantly in their programming models and abstractions compared to
those of traditional programs studied in prior research. Develop-
ers typically employ a hybrid programming paradigm, where deep
learning models are constructed as tensor-oriented computation
graphs using built-in operators (i.e., mathematical operations such
as convolution and pooling) provided by training frameworks such
as TensorFlow [1] and PyTorch [39]. Communication, on the other
hand, is abstracted and hidden by the frameworks and underly-
ing libraries, including Meta’s Gloo [19], the NVIDIA Collective
Communications Library (NCCL) [34], and the proprietary CUDA
Toolkit [36]. As a result, existing approaches are not directly applica-
ble to deep learning jobs. More recently, researchers [5, 8, 38, 49, 68]
have proposed preventing deadlocks in deep learning jobs through
global coordination or enforcing a predetermined execution order
on operators. Nevertheless, these methods constrain the flexibility
of execution plans, limiting opportunities for further optimization.
Additionally, they do not provide capabilities for deadlock detection
or assist developers with root cause analysis.

In this paper, we present dl2, a dynamic analysis tool designed
to detect communication deadlocks in deep learning jobs. The
tool is built on the idea that the runtime trace of a job can be
modeled as an execution graph (EG) [13], where nodes represent
communication-related actions and edges depict the dependencies
between these actions. Common actions include point-to-point
message sending and receiving, collective communication such as
AllReduce, and synchronization across processes and GPU kernels.
A directed edge from action 𝐵 to action 𝐴 indicates a causal de-
pendency, meaning that action 𝐵 can only start once action 𝐴 has
finished. dl2 traverses the EG, identifies unmatched communica-
tions (e.g., a logically incomplete point-to-point communication
lacking a corresponding send or receive action), and constructs a
wait-for graph (WFG) [29] among the involved processes based on
these incomplete interactions. Cycles in the WFG signify potential
communication deadlocks.

Deep learning jobs rely on well-defined APIs provided by train-
ing frameworks and lower-level libraries (e.g., Gloo and NCCL) to
handle various types of communication. dl2 is designed to identify

all such APIs. It implements an interposition layer within the ad-
dress space of each computing process, allowing it to intercept the
invocations of these APIs. Upon interception, dl2 captures relevant
invocation details, such as process ID, API name, arguments, and
results. This data is used to represent actions in the EG. Addition-
ally, we thoroughly analyze the API semantics and establish a set
of rules to determine action dependencies (e.g., a receive action
depends on a prior matched send). To detect potential communica-
tion deadlocks, dl2 first runs the job in a native environment. As
actions are exposed, dl2 updates the EG by adding edges according
to the defined dependency rules. It then constructs an up-to-date
WFG and checks it for cycles, identifying any as deadlocks. For
developers seeking root cause diagnosis, dl2 offers a replay capa-
bility, faithfully reproducing the entire communication to aid in
debugging. As GPU computations dominate execution, dl2 employs
a stubbing technique that intercepts GPU kernels responsible for
computations (e.g., those executing operators) and returns mock
tensors without utilizing actual GPUs when they do not impact
communication. This approach significantly reduces the overhead
of trace collection. In cases where jobs exhibit nondeterministic
communication behavior, deadlocks may not appear in the current
recorded execution but could occur in other executions. To handle
this, dl2 tries to adjust the execution order of asynchronous ac-
tions or buffered synchronous actions in the EG while maintaining
consistency. If an action can be reordered, it will erroneously par-
ticipate in out-of-round communication, indicating the possibility
of a communication deadlock.

We have implemented dl2 for the PyTorch framework [39] and
evaluated it on both synthetic test cases utilizing collective commu-
nication operations [32] (AllToAll, AllReduce, AllGather, Broadcast,
and ReduceScatter) and real-world jobs involving the training of
representative models (GPT-2 [43], mBART [23], MLP [53], Open-
Fold [2], and Swin Transformer [24]). Experimental results indicate
that dl2 successfully identifies all communication deadlocks and
achieves 100% precision and recall [37], demonstrating its overall
effectiveness.

In summary, this paper makes the following contributions:

(1) We identify a critical, underexplored, and challenging re-
search problem in real-world development: communication
deadlocks in deep learning jobs.

(2) We propose a novel dynamic analysis approach for detecting
communication deadlocks.

(3) We develop a tool, dl2, which models the runtime trace of a
job as an execution graph and constructs a wait-for graph
for deadlock detection. dl2 also supports the detection of
potential nondeterministic communication deadlocks.

(4) We demonstrate the practical utility and effectiveness of dl2
through extensive experimental evaluation.

The remainder of this paper is structured as follows: Section 2
provides an overview of distributed training, collective communi-
cation primitives, and communication deadlocks. Section 3 outlines
the methodology behind dl2, while Section 4 delves into the imple-
mentation details. In Section 5, we present the experimental results.
Section 6 addresses threats to validity, as well as the practicality,
generality, and extensibility of our work. Related work is reviewed
in Section 7, and we offer concluding remarks in Section 8.
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2 Background
2.1 Deadlocks
In concurrent, parallel, or distributed computing, a deadlock occurs
when a group of processes reaches a state of impasse in which none
can make progress because each process is waiting for others to
perform actions, such as releasing a lock or receiving a message.
Deadlocks are generally categorized as either resource deadlocks or
communication deadlocks. In the first, processes compete for one or
more resources that are already held by other processes. A typical
example involves processes acquiring different locks for resources,
but an incorrect order of acquisition causes a halt. Communication
deadlocks occur when every process is waiting to communicate
with others in the same process group.

In 1971, E. G. Coffman, M. Elphick, and A. Shoshani [6] identified
four necessary and jointly sufficient conditions for deadlock, now
referred to as the Coffman conditions:

(1) Mutual Exclusion: Resources cannot be shared among multi-
ple processes. That is, each resource can be utilized by only
one process at a moment.

(2) Wait For : A process holds one or more resources while simul-
taneously waiting for additional resources that are already
allocated to other processes.

(3) No Preemption: A process cannot forcibly seize an allocated
resource unless the owner voluntarily releases it.

(4) Circular Wait: A circular chain of processes exists in which
each process is waiting for a resource that another process
in the chain is holding, forming a cycle of dependencies.

While these conditions were initially proposed for resource con-
texts, they can also be readily adapted for communication deadlocks.
Since circular wait is a fundamental characteristic of such situa-
tions, various detection tools—including our dl2—construct wait-for
graphs (WFGs) [29] that illustrate wait dependencies between pro-
cesses and check for cycles to identify potential deadlocks.

2.2 Distributed Deep Learning Training
With the increasing demand for complex large-scale models, espe-
cially large languagemodels (LLMs) such as theGPT [43], Llama [54],
DeepSeek [9], and Qwen [67] series, distributed training has be-
come a crucial solution. This approach involves parallelizing the
entire training process across multiple machines or even clusters
of machines by strategically partitioning both the training data
and the model architecture. Several distributed strategies, including
data parallelism [49], tensor parallelism [50], and pipeline paral-
lelism [16], have been developed to address the challenges posed
by the growing size and complexity of these models.

Developers typically utilize established distributed training frame-
works, such as Hugging Face Transformers [65], Microsoft Deep-
Speed [44], and NVIDIA Megatron-LM [50], while manually imple-
menting parallelism to achieve optimal runtime performance for
their deep learning jobs. Recently, automated parallelization tools
like nnScaler [22] and Alpa [70] have emerged. These tools aim to
automatically generate efficient parallelization plans by exploring
a vast optimization space.

Runtime performance is largely influenced by the underlying col-
lective communication libraries, such as NCCL [34] and Gloo [19].

Below, we provide a brief overview of five key collective commu-
nication primitives, which are also utilized in our evaluation (see
Section 5.3):

(1) AllToAll: Distributes a list of tensors across all processes,
with each process receiving one tensor, and gathers tensors
from all other processes.

(2) AllReduce: Performs a reduction operation on tensors from
all processes and combines the results across all processes.

(3) AllGather: Collects tensors from all processes and consoli-
dates them into an ordered sequence for each process.

(4) Broadcast: Sends a tensor from the source process to all other
processes.

(5) ReduceScatter: Reduces tensors from all processes and dis-
tributes chunks of the reduced result to each process.

2.3 Communication Deadlocks in Deep
Learning Jobs

While the aforementioned frameworks and tools provide significant
advantages, they also introduce considerable communication chal-
lenges. Improper implementation may lead to circular waits, often
due to misuse of synchronous communication operations or unex-
pected communication orders resulting from nondeterminism (e.g.,
asynchrony or buffering). As a result, communication deadlocks can
occur, since GPU kernels—which execute actual communication—
hold GPUs exclusively without allowing preemption.

Building on related empirical studies [12, 38, 68], GitHub issues,
and our own experience, we classify communication deadlocks into
three categories: point-to-point, collective, and hybrid, based on the
communication operations involved. Point-to-point deadlocks arise
from communication in which each message is exchanged between
only two processes. For example, the PyTorch Distributed commu-
nication package [41] provides APIs such as send, recv, isend, and
irecv, which support both synchronous and asynchronous point-
to-point communication. The second category, collective deadlocks,
involves multiple processes participating in a single communication
operation, such as broadcasting a tensor to an entire process group
or reducing a tensor across all GPUs. The hybrid category refers to
deadlocks caused by a combination of point-to-point and collective
communication. For example, this can occur when one process is
waiting to receive a message while others in the same group are
performing a collective operation like AllReduce.

2.4 Deadlock Examples
Figure 1 illustrates a simple distributed training program using

the popular PyTorch distributed communication package [41]. The
NCCL (NVIDIA Collective Communications Library) backend is
selected for communication, with alternatives such as MPI, Gloo, or
Unified Collective Communication (UCC) [66] also available. This
program spawns two processes (also referred to as ranks), with
their communication logic for tensor exchange (e.g., gradients)
encapsulated in the run function. Process 0 sends its tensor to
process 1 using the dist.send function and then waits for a tensor
from process 1 using dist.recv. Concurrently, process 1 follows
the same pattern, sending and receiving tensors to and from process
0. Because these point-to-point functions are synchronous, each
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1 import torch.distributed as dist
2

3 def run(pid, tensor):
4 ...
5 dist.init_process_group(backend = "nccl", rank = pid,

world_size = size)↩→

6 ...
7 if pid == 0:
8 # Send the tensor to process 1
9 dist.send(tensor = tensor, dst = 1)
10 # Receive tensor from process 1
11 dist.recv(tensor = tensor, src = 1)
12 else:
13 # Send the tensor to process 0
14 dist.send(tensor = tensor, dst = 0)
15 # Receive tensor from process 0
16 dist.recv(tensor = tensor, src = 0)

Figure 1: A simple PyTorch distributed training program
that results in a communication deadlock, as both processes
block while waiting for the other to receive its tensor.

process blocks while waiting for the other to receive its tensor,
which leads to a communication deadlock.

As outlined in Section 1, a developer identified and discussed a
deadlock issue onGitHub [56] related to the use of the Hugging Face
Transformers library. The problem stemmed from amisalignment in
communication across multiple processes. Specifically, inconsistent
handling of training metrics caused one process to prematurely exit
the training loop and reach the synchronization barrier (PyTorch’s
dist.barrier function). In contrast, the remaining processes were
still engaged in forward passes during the distributed training. This
desynchronization led to a deadlock, as the process that had reached
the barrier was left waiting indefinitely for the others to catch up.
The issue was ultimately resolved by ensuring proper metrics aggre-
gation and synchronization across all processes, which guaranteed
that they progressed through their operations in a coordinated and
uniform manner.

3 Methodology
3.1 Execution Graph
System analysis and diagnosis have traditionally treated runtime
information, such as function calls and logs, as unstructured text
or simple paths. This approach often obscures the essential causal
relationships between events, making the identification of issues te-
dious and challenging. Our tool dl2, in contrast, models the runtime
trace of a deep learning job as an execution graph (EG) [13], which
captures the complete execution for subsequent deadlock analysis.
Formally, an EG is represented as a directed graph (or digraph):

𝐸𝐺 = ⟨𝑉 = {𝑎𝑐𝑡𝑖 }𝑁𝑖=1, 𝐸 = {(𝑎𝑐𝑡𝑖 , 𝑎𝑐𝑡 𝑗 )}𝑖≠𝑗 , 𝑃 = {𝑝𝑖 }𝐾𝑖=1⟩ .

In this graph, each node 𝑎𝑐𝑡𝑖 represents a communication-related
action, such as sending or receiving messages, performing tensor re-
duction across GPUs, or waiting for the completion of GPU kernels.
Such actions are modeled based on established APIs commonly used
by developers for communication. 𝑃 is a set of active processes that
continuously execute various actions. A directed edge (𝑎𝑐𝑡𝑖 , 𝑎𝑐𝑡 𝑗 )

⟨Identifiers⟩ 𝑖𝑑 ::= 𝑎𝑖𝑑 | 𝑝𝑖𝑑 | 𝑔𝑖𝑑 (action/process/group IDs)
| 𝑠𝑟𝑐, 𝑑𝑠𝑡 ::= 𝑝𝑖𝑑 | 𝑠𝑎 ::= 𝑎𝑖𝑑 (aliases)

⟨Actions⟩ 𝑎𝑐𝑡 ::= 𝑝2𝑝_𝑎𝑐𝑡 | 𝑐𝑜𝑙_𝑎𝑐𝑡 | 𝑠𝑦_𝑎𝑐𝑡

⟨Point-to-Point Actions⟩ 𝑝2𝑝_𝑎𝑐𝑡 ::= 𝑠_𝑝2𝑝_𝑎𝑐𝑡
| 𝑎𝑠_𝑝2𝑝_𝑎𝑐𝑡

⟨Synchronous Point-to-Point Actions⟩ 𝑠_𝑝2𝑝_𝑎𝑐𝑡 ::=
𝑆𝑒𝑛𝑑 ⟨𝑎𝑖𝑑, 𝑝𝑖𝑑, 𝑑𝑠𝑡⟩ | 𝑅𝑒𝑐𝑣 ⟨𝑎𝑖𝑑, 𝑝𝑖𝑑, 𝑠𝑟𝑐, 𝑠𝑎⟩

⟨Asynchronous Point-to-Point Actions⟩ 𝑎𝑠_𝑝2𝑝_𝑎𝑐𝑡 ::=
𝑖𝑆𝑒𝑛𝑑 ⟨𝑎𝑖𝑑, 𝑝𝑖𝑑, 𝑑𝑠𝑡⟩ | 𝑖𝑅𝑒𝑐𝑣 ⟨𝑎𝑖𝑑, 𝑝𝑖𝑑, 𝑠𝑟𝑐, 𝑠𝑎⟩

⟨Collective Actions⟩ 𝑐𝑜𝑙_𝑎𝑐𝑡 ::= 𝑠_𝑐𝑜𝑙_𝑎𝑐𝑡 | 𝑎𝑠_𝑐𝑜𝑙_𝑎𝑐𝑡

⟨Synchronous Collective Actions⟩ 𝑠_𝑐𝑜𝑙_𝑎𝑐𝑡 ::=
| 𝐴𝑙𝑙𝑅𝑒𝑑𝑢𝑐𝑒 ⟨𝑎𝑖𝑑, 𝑝𝑖𝑑, 𝑔𝑖𝑑, 𝑠𝑎[ ]⟩
| 𝐴𝑙𝑙𝐺𝑎𝑡ℎ𝑒𝑟 ⟨𝑎𝑖𝑑, 𝑝𝑖𝑑, 𝑔𝑖𝑑, 𝑠𝑎[ ]⟩
| 𝑆𝑐𝑎𝑡𝑡𝑒𝑟 ⟨𝑎𝑖𝑑, 𝑝𝑖𝑑, 𝑠𝑟𝑐, 𝑔𝑖𝑑, 𝑠𝑎[ ]⟩
| 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 ⟨𝑎𝑖𝑑, 𝑝𝑖𝑑, 𝑠𝑟𝑐, 𝑔𝑖𝑑, 𝑠𝑎[ ]⟩
| · · ·

⟨Asynchronous Collective Actions⟩ 𝑎𝑠_𝑐𝑜𝑙_𝑎𝑐𝑡 ::=
| 𝑖𝐴𝑙𝑙𝑅𝑒𝑑𝑢𝑐𝑒 ⟨𝑎𝑖𝑑, 𝑝𝑖𝑑, 𝑔𝑖𝑑, 𝑠𝑎[ ]⟩
| 𝑖𝐴𝑙𝑙𝐺𝑎𝑡ℎ𝑒𝑟 ⟨𝑎𝑖𝑑, 𝑝𝑖𝑑, 𝑔𝑖𝑑, 𝑠𝑎[ ]⟩
| 𝑖𝑆𝑐𝑎𝑡𝑡𝑒𝑟 ⟨𝑎𝑖𝑑, 𝑝𝑖𝑑, 𝑠𝑟𝑐, 𝑔𝑖𝑑, 𝑠𝑎[ ]⟩
| 𝑖𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 ⟨𝑎𝑖𝑑, 𝑝𝑖𝑑, 𝑠𝑟𝑐, 𝑔𝑖𝑑, 𝑠𝑎[ ]⟩
| · · ·

⟨Synchronization Actions⟩ 𝑠𝑦_𝑎𝑐𝑡 ::=𝑊𝑎𝑖𝑡 ⟨𝑎𝑖𝑑, 𝑝𝑖𝑑, 𝑠𝑎⟩
| 𝐵𝑎𝑟𝑟𝑖𝑒𝑟 ⟨𝑎𝑖𝑑, 𝑝𝑖𝑑, 𝑔𝑖𝑑, 𝑠𝑎[ ]⟩
Figure 2: Syntax of actions. “[ ]” refers to an array.

signifies a causal dependency between two actions, where 𝑎𝑐𝑡 𝑗
can only begin after 𝑎𝑐𝑡𝑖 completes. For example, a Recv action
in process 𝑝 𝑗 depends on a preceding Send action from another
process 𝑝𝑖 , provided 𝑝 𝑗 has indeed received the message from 𝑝𝑖 .
These causal dependencies can form wait dependencies between
processes at runtime. In the above scenario, 𝑝𝑖 must wait for 𝑝 𝑗 to
complete the Recv action before proceeding.

3.2 Action
We present the syntax of actions in Figure 2 [41], derived from the
documentation of training frameworks and collective communi-
cation libraries, as well as our own experience. In our study, an
identifier can represent either a unique action or process or a dis-
tinct group of processes, where 𝑎𝑖𝑑 , 𝑝𝑖𝑑 , and 𝑔𝑖𝑑 correspond to
the IDs of actions, processes, and process groups, respectively. A
process group may consist of all computing processes or a subset
of them. Within a single process, action IDs increment based on
the execution order. For convenience, we define several identifier
aliases: 𝑠𝑟𝑐 and 𝑑𝑠𝑡 represent the IDs of the source and destination
processes, respectively, while 𝑠𝑎 refers to the source action ID.

Actions are classified into three categories: point-to-point, collec-
tive, and synchronization. These correspond to point-to-point com-
munications (Send and Recv), collective operations (e.g., AllReduce,
AllGather, Scatter, and Broadcast), and synchronization primitives
(Wait on an asynchronous action until its completion and Barrier
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to synchronize all processes at this point), respectively. Refer to the
PyTorch documentation [41] for a comprehensive list of collective
actions. Each synchronous point-to-point or collective action has
a corresponding asynchronous version, denoted by a prefix 𝑖 (e.g.,
iSend for Send). Note that in training frameworks like PyTorch,
both versions may share the same API name but are distinguished
by different values of a parameter related to asynchrony. Every
action carries a context encapsulated within angle brackets, which
includes its action ID, process ID, and other relevant information. In
certain collective actions (e.g., AllReduce), 𝑠𝑎[ ] refers to an array
containing the IDs of the actions on which they depend.

3.3 Causal Dependency
We identify three categories of causal dependencies between actions
(i.e., edges in an execution graph). To indicate that action 𝑎𝑐𝑡 𝑗
causally depends on 𝑎𝑐𝑡𝑖 , we use the notation 𝑎𝑐𝑡𝑖 ≺ 𝑎𝑐𝑡 𝑗 instead
of (𝑎𝑐𝑡𝑖 , 𝑎𝑐𝑡 𝑗 ) ∈ 𝐸𝐺 .

The first two categories of dependencies are based on program
logic. The sequential dependency ensures that actions executed later
within a single process depend on those executed earlier, according
to the program’s order:

(𝑎𝑐𝑡𝑖 .𝑝𝑖𝑑 = 𝑎𝑐𝑡 𝑗 .𝑝𝑖𝑑) ∧ (𝑎𝑐𝑡𝑖 .𝑎𝑖𝑑 < 𝑎𝑐𝑡 𝑗 .𝑎𝑖𝑑) |= 𝑎𝑐𝑡𝑖 ≺ 𝑎𝑐𝑡 𝑗 .

In a model, the computation is represented as a graph of operators
(also known as a computation graph), where each operator cor-
responds to a high-level mathematical operation such as matrix
multiplication, 2D convolution, or attention. Since two operators
may have an inherent algorithmic dependence, their respective
actions exhibit algorithmic dependency:

(𝑎𝑐𝑡𝑖 ∈ 𝑂𝑃𝑚) ∧ (𝑎𝑐𝑡 𝑗 ∈ 𝑂𝑃𝑛) ∧ (𝑂𝑃𝑚 ≺ 𝑂𝑃𝑛) |= 𝑎𝑐𝑡𝑖 ≺ 𝑎𝑐𝑡 𝑗 .

The third category, communication dependency, arises from spe-
cific action types. For instance, a Wait action causes the current
process to block until a particular action is completed. Consequently,
a Wait action depends on the completion of the awaited action:

(𝑎𝑐𝑡 𝑗 =𝑊𝑎𝑖𝑡) ∧ (𝑎𝑐𝑡𝑖 .𝑎𝑖𝑑 = 𝑎𝑐𝑡 𝑗 .𝑠𝑎) |= 𝑎𝑐𝑡𝑖 ≺ 𝑎𝑐𝑡 𝑗 .

In the case of point-to-point communications, the dependency is
straightforward—a receiving action depends on its corresponding
sending action:

(𝑎𝑐𝑡𝑖 = (𝑆𝑒𝑛𝑑 ∨ 𝑖𝑆𝑒𝑛𝑑)) ∧ (𝑎𝑐𝑡 𝑗 = (𝑅𝑒𝑐𝑣 ∨ 𝑖𝑅𝑒𝑐𝑣))
∧ (𝑎𝑐𝑡𝑖 .𝑎𝑖𝑑 = 𝑎𝑐𝑡 𝑗 .𝑠𝑎) |= 𝑎𝑐𝑡𝑖 ≺ 𝑎𝑐𝑡 𝑗 .

Collective communications are much more complex because they
involve multiple processes. For example, all processes within the
same group execute AllReduce to obtain the sum of tensors from
each individual process. This type of communication results in a
complete directed subgraph in the execution graph, where each dis-
tinct pair of processes sends and receives tensors from one another.
Consequently, every process is both dependent on and depended
upon by others, which can be expressed as follows:

(𝑎𝑐𝑡𝑖 = 𝐴𝑙𝑙𝑅𝑒𝑑𝑢𝑐𝑒) ∧ (𝑎𝑐𝑡 𝑗 = 𝐴𝑙𝑙𝑅𝑒𝑑𝑢𝑐𝑒)
∧ (𝑎𝑐𝑡𝑖 .𝑝𝑖𝑑 ≠ 𝑎𝑐𝑡 𝑗 .𝑝𝑖𝑑) ∧ (𝑎𝑐𝑡𝑖 .𝑔𝑖𝑑 = 𝑎𝑐𝑡 𝑗 .𝑔𝑖𝑑)
∧ (𝑎𝑐𝑡𝑖 .𝑎𝑖𝑑 = 𝑎𝑐𝑡 𝑗 .𝑠𝑎[𝑎𝑐𝑡𝑖 .𝑝𝑖𝑑]) |= 𝑎𝑐𝑡𝑖 ≺ 𝑎𝑐𝑡 𝑗 .

The last condition emphasizes that the process executing 𝑎𝑐𝑡 𝑗 suc-
cessfully receives the tensor transmitted by 𝑎𝑐𝑡𝑖 .

Causal dependencies play a critical role in ensuring the correct
matching of communications among actions. A matched commu-
nication is defined as a set of actions that jointly complete an an-
ticipated communication. For example, a matched point-to-point
communication consists of a send action and a corresponding de-
pendent receive action, expressed as follows:

(𝑎𝑐𝑡𝑖 = (𝑆𝑒𝑛𝑑 ∨ 𝑖𝑆𝑒𝑛𝑑)) ∧ (𝑎𝑐𝑡 𝑗 = (𝑅𝑒𝑐𝑣 ∨ 𝑖𝑅𝑒𝑐𝑣))
∧ (𝑎𝑐𝑡𝑖 ≺ 𝑎𝑐𝑡 𝑗 ) |= {𝑎𝑐𝑡𝑖 , 𝑎𝑐𝑡 𝑗 } is matched .

Similarly, in the context of AllReduce actions, the requirement
is that each process within the communication group performs
one AllReduce action, and every pair of distinct AllReduce actions
exhibits mutual dependency. Unmatched communications, on the
other hand, indicate that some processes within the group might
become blocked, waiting for others to complete their respective
communication actions. To represent these incomplete interactions,
we can construct a wait-for graph that illustrates dependencies
among the participating processes.

3.4 Deadlock Identification
A wait-for graph (WFG) [29] is formally represented as a directed
graph:

𝑊𝐹𝐺 = ⟨𝑉 = {𝑝𝑖 }𝐾𝑖=1, 𝐸 = {(𝑝𝑖 , 𝑎𝑐𝑡, 𝑝 𝑗 )}𝑖≠𝑗 ⟩ .

To construct an up-to-date WFG, we begin by identifying the un-
matched communications and their associated actions in the execu-
tion graph. As mentioned in Section 3.3, such unmatched commu-
nications are determined based on the previously outlined rules for
causal dependencies. Each node in the WFG represents a process,
while a directed edge (𝑝𝑖 , 𝑎𝑐𝑡, 𝑝 𝑗 ) (denoted as 𝑝𝑖 ≺𝑎𝑐𝑡 𝑝 𝑗 ) indicates
that process 𝑝 𝑗 , executing action 𝑎𝑐𝑡 , is waiting for process 𝑝𝑖 to
perform a corresponding action in order to complete the communi-
cation. For example, in point-to-point communication, 𝑝𝑖 is set to
receive a message from 𝑝 𝑗 . If 𝑝𝑖 has not initiated or completed the
receive operation, then the relation 𝑝𝑖 ≺𝑆𝑒𝑛𝑑 𝑝 𝑗 holds. Conversely,
if 𝑝𝑖 is waiting for 𝑝 𝑗 to send the message, the relation becomes
𝑝 𝑗 ≺𝑅𝑒𝑐𝑣 𝑝𝑖 . As another example related to AllReduce, if the 𝑠𝑎[ ]
array of process 𝑝 𝑗 does not include the corresponding action ID of
process 𝑝𝑖 within the same group, this implies that 𝑝 𝑗 has not yet
received the tensor from 𝑝𝑖 ; therefore, the relation 𝑝𝑖 ≺𝐴𝑙𝑙𝑅𝑒𝑑𝑢𝑐𝑒 𝑝 𝑗
holds. A communication deadlock occurs at runtime if, and only if,
a cycle is detected in the WFG.

3.5 Nondeterminism
Nondeterminism in deep learning jobs primarily stems from two
sources. The first is asynchronous communication. GPU kernels can
execute concurrently across different streams, and if proper inter-
process synchronization mechanisms are not utilized, processes
may receivemessages out of order, resulting in unexpected behavior.
The second source is communication buffering, which consolidates
multiple messages into a single transmission, potentially altering
the order of messages. Without sufficient context to determine the
current communication round, out-of-round communication can
lead to deadlocks or data corruption [45], depending on whether
processes validate incoming messages.
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Figure 3: Architecture of dl2.

Detecting communication deadlocks caused by nondeterminism
is particularly challenging, as these issues tend to manifest only
in rare, corner-case executions. dl2 tackles this problem by identi-
fying opportunities to reorder asynchronous actions or buffered
synchronous actions within the current execution graph, while
avoiding crossing operator boundaries, synchronization primitives,
prior synchronous actions, and buffer limits to ensure consistency.
When an action can be reordered, it may participate in out-of-round
communication inadvertently, signaling the potential for a commu-
nication deadlock.

4 Implementation
We have implemented dl2 on Linux by intercepting invocations to
the PyTorch and NCCL APIs. These APIs are chosen due to their
widespread use among developers for writing distributed train-
ing programs. Since GPU kernels handle actual communication
and computation, we also intercept them to capture a compre-
hensive trace of job executions. Although dl2 was developed on
Linux, porting it to other operating systems, such as Windows and
macOS, should be straightforward, as PyTorch is cross-platform.
However, alternative CPU backends, such as Gloo, may be required.
In the following sections, we provide a detailed explanation of
dl2’s implementation, covering its architecture, execution intercep-
tion, computation stubbing for accelerating trace collection, and
communication replay for diagnosis.

4.1 Architecture
Figure 3 meticulously delineates the architecture of dl2. In a na-
tive environment, the deep learning job initiates four processes
for distributed model training. Each process loads and executes an
interposition frontend of dl2 within its own address space, which
intercepts both communication and computation operations. While
the processes are running, this interposition frontend continuously
transmits per-process information about every action, later used
for deadlock detection. dl2 consists of five additional components:
a computation graph extractor, an execution graph constructor, a
wait-for graph constructor, a deadlock detector, and a communica-
tion replayer.

The computation graph extractor determines the number of op-
erators and their dependencies. The execution graph constructor, a

key component of dl2, extracts actions, resolves inter-process de-
pendencies, and builds a complete execution graph (EG). The wait-
for graph constructor then uses the EG to determine unmatched
communications and create a wait-for graph (WFG) by leveraging
rules for causal dependencies. To store and manipulate the WFG,
dl2 utilizes “NetworkX” [30], a Python package for manipulating
complex graphs and networks. We can efficiently detect cycles and
identify potential communication deadlocks by leveraging the pro-
vided find_cycle function, which performs depth-first traversal.
To assist developers in diagnosing the root causes of deadlocks or
triggering potential deadlocks caused by nondeterminism, the com-
munication replayer generates a simplified version of the training
program, which faithfully executes those communication actions
in the EG while preserving existing dependencies. Consequently,
developers can easily rerun this program to reproduce the exact
communication from the original run.

This design minimizes the impact of dl2 on the target jobs, en-
abling the development of a generic interposition frontend and
a tool that are compatible with operating systems beyond Linux.
Currently, interaction between processes and dl2 occurs via log
files, but this can be upgraded to a remote procedure call (RPC)
mechanism to support real-time deadlock detection.

4.2 Interposition
We implement the interposition frontend of dl2 as a lightweight
layer that exposes actions. This layer is positioned at the API bound-
ary to avoid modifications to either the target deep learning pro-
gram or the underlying operating system. The design choice enables
us to create a generic frontend, as different training frameworks
and collective communication libraries exhibit similar function-
alities and APIs. The interposition frontend operates within the
job’s processes. To minimize complexity, we design it to be stateless,
only recording the relevant information from API invocations while
delegating analysis to the other five components of dl2, thereby
reducing the impact on the target job.

Specifically, dl2 intercepts commonly used communication APIs
from the PyTorch distributed communication package [41] (see
Section 3.2) and NCCL (e.g., ncclSend, ncclRecv, ncclAllReduce,
ncclBroadcast, and ncclAllGather). Since the former is imple-
mented in Python, we utilize the “intercepts” package [51], which
“allows developers to intercept function calls in Python and han-
dle them in any manner they choose.” To handle NCCL APIs, we
use the “LD_PRELOAD” environment variable [20] to override the
corresponding functions with our own implementations with the
same names. When an API is invoked, the interposition frontend
creates a context for the invocation, including a newly generated
action ID, current process ID, target process ID, communication
group ID if applicable, and other relevant information. This con-
text is asynchronously stored in a per-process log file to minimize
interception overhead. Initially, we planned to embed the action
IDs of communication-initiating participants (e.g., Send) within
the network payload (i.e., the tensors) to facilitate tracking causal
dependencies across processes. However, this approach required
modifying tensor types at runtime, leading to unnecessary ten-
sor copies and undesirable job behaviors. Consequently, we now
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replace the action ID with a hash value for each tensor sent or
received, derived from its shape and selected element values.

To obtain a computation graph, we use the built-in hook mecha-
nism of PyTorch via the following four functions of class torch.nn
.Module1, intercepting the model’s forward and backward passes:

(1) register_forward_pre_hook
(2) register_forward_hook
(3) register_full_backward_pre_hook
(4) register_full_backward_hook

Because GPU kernels handle the actual communication and com-
putation, we employ the NVIDIA CUDA Profiling Tools Interface
(CUPTI) [35] to capture GPU execution details, enabling us to corre-
late them with the high-level operators and communication actions.

4.3 Computation Stubbing and Communication
Replay

GPUs are designed with thousands of cores specifically optimized
for parallel processing. In distributed deep learning training, they
play a pivotal role in performing millions to billions of matrix
multiplications and other calculations over massive datasets. Con-
sequently, GPU computations dominate the overall training process
compared to other operations. Our observations indicate that the
values of computed tensors should not affect subsequent commu-
nications. Therefore, if GPU computations can be simulated by
generating mock tensors instead of utilizing actual GPUs, trace
collection time can be significantly reduced. To achieve this, dl2
leverages the stubbing technique, commonly used in software test-
ing. This feature is made available through a configurable option,
which is disabled by default. Developers can enable it once they
ensure that the execution of their deep learning jobs is not affected
by the real results of GPU computations. Given that dl2 captures
the computation graph and has a comprehensive understanding of
operators, it intercepts the cudaLaunchKernel function [33] and
identifies whether the GPU kernel is responsible for computations
tied to a specific operator. When applicable, dl2 bypasses the actual
computation and returns mock tensors directly.

Replay is a powerful technique for debugging applications and
diagnosing root causes. When communication deadlocks are iden-
tified, this technique can provide valuable evidence and assistance
to developers, particularly for potential deadlocks arising from
nondeterminism that have not yet manifested. dl2 implements a
simple yet effective communication replay feature. It produces a
streamlined program where processes faithfully execute the exact
communication actions in the precise order recorded in the log.
Additionally, dl2 inserts necessary synchronization barriers to align
inter-process dependencies with those from the original run.

5 Evaluation
5.1 Experimental Design
We evaluated dl2 on both synthetic test cases and real-world deep
learning tasks using version 2.0.0 of PyTorch [39]. Our evaluation
aims to address the following research questions (RQs):
RQ1: How effective is dl2 in detecting deadlocks in real-world

deep learning jobs?
1https://pytorch.org/docs/stable/generated/torch.nn.Module.html

RQ2: How effective is dl2 in detecting deadlocks in deep learning
jobs that utilize auto-synthesized parallelization execution
plans?

RQ3: How effective is dl2 in detecting deadlocks in deep learning
jobs with nondeterministic communication patterns?

To determine the ground truth about the occurrence of a com-
munication deadlock, we attached our interposition layer and ran
the deep learning program for multiple iterations in a native en-
vironment. Each iteration corresponded to a single model update
step, processing a batch of input data items. To prevent jobs from
hanging indefinitely, we also defined a timeout threshold. After
execution, we leveraged domain expertise to analyze the program
and its execution trace to assess whether the job completed success-
fully or deadlocked due to a circular wait among communication
processes. For successful jobs from RQ3 (which involved nondeter-
ministic communication), we further assessed whether reordering
actions might trigger a potential deadlock. If a communication
deadlock was identified, the job was classified as a true positive;
otherwise, it was considered a true negative. Next, we ran dl2 on
the job’s execution trace, comparing its output with the ground
truth to calculate the numbers of true positives, false positives (i.e.,
incorrectly reported deadlocks), true negatives, and false negatives
(i.e., missed deadlocks). When dl2 identified a deadlock, we replayed
the buggy execution for cross-validation (see Section 4.3).

We used standard metrics of precision and recall to evaluate the
effectiveness of dl2, defined as follows [37]:

Precision =
tp

tp + fp
× 100% , Recall =

tp
tp + fn

× 100% .

Here, tp, fp, tn, and fn represent the numbers of true positives,
false positives, true negatives, and false negatives, respectively.
Consequently, the total numbers of actual positives and actual
negatives correspond to tp + fn and fp + tn. Higher precision and
recall values indicate a more effective tool.

The experimental setup utilized a high-performance workstation
equipped with cutting-edge hardware, enabling efficient execution
of computationally intensive tasks. Specifically, the system was
powered by 56 Intel Xeon E5-2690 v4 CPUs (each operating at a
base frequency of 2.60 GHz and featuring 35 MB of L3 cache) and
512 GB of main memory. It also included 8 NVIDIA Tesla P100
GPUs, which are PCIe-based and equipped with 16 GB of HBM2
memory per GPU. The system ran on Ubuntu Server 16.04.7 LTS.

5.2 RQ1: How effective is dl2 in detecting
deadlocks in real-world deep learning jobs?

In this section, we evaluate dl2 on five real-world deep learning
tasks, each involving the training of a representative model:

(1) MLP (Multilayer Perceptron) [53]: This foundational neural
network model is configured with 16 linear layers, a batch
size of 8, and a hidden size of 1024.

(2) GPT-2 [43]: This transformer-based language model features
6 layers, 12 attention heads, a batch size of 8, a hidden size
of 768, and a sequence length of 512.

(3) mBART (Multilingual Bidirectional and Auto-Regressive
Transformer) [23]: Designed for multilingual natural lan-
guage processing, this sequence-to-sequence model employs

https://pytorch.org/docs/stable/generated/torch.nn.Module.html
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Table 1: Experimental results on real-world deep learning
models.

Metrics
Model

MLP GPT-2 mBART Swin Transformer OpenFold

Total 128 128 128 128 128
True Positive 106 101 96 98 102
True Negative 22 27 32 30 26
False Positive 0 0 0 0 0
False Negative 0 0 0 0 0
Precision 100% 100% 100% 100% 100%
Recall 100% 100% 100% 100% 100%

2 layers, 8 attention heads, a batch size of 8, a hidden size of
128, and a sequence length of 512.

(4) Swin Transformer [24]: Tailored for computer vision tasks,
this hierarchical vision transformer model—specifically the
tiny variant [27]—operates with 4 layers, 8 attention heads,
a batch size of 8, and a hidden size of 1024.

(5) OpenFold [2]: This advanced protein structure prediction
model uses 2 layers, a batch size of 8, and hidden sizes of 128
for both pair representations and multiple sequence align-
ment (MSA).

Both data parallelism [49] and tensor parallelism [50] are applied
to the above models, with maximum parallelism levels set to 4 for
data and 2 for tensor.

To prevent out-of-memory errors on theGPU,we selected smaller
batch sizes and, where necessary, reduced the number of layers. We
began by setting the number of processes within a communication
group to 2, 4, 6, and 8 to explore the effects of varying group sizes.
For each specified group size, we created 32 separate instances of
the training program. Next, we randomly selected a subset from
these instances to undergo communication mutations, ensuring
diverse communication patterns across different trials. This process
yielded a total of 128 jobs per model, enabling a thorough assess-
ment of how different group sizes and communication mutations
affect deadlocks.

Table 1 shows the experimental results. dl2 achieves 100% preci-
sion and recall in all the experiments, which demonstrates its effec-
tiveness for real-world deep learning jobs. dl2 incurs a performance
slowdown ranging from 1.002× to 1.09× compared to end-to-end
execution without interposition. The interposition mechanism in-
troduces an overhead of approximately 0.0036 to 0.0064 seconds per
communication. In the experiments described above, the deadlock
detection time varies from 0.27 seconds for 386 trace events to 11.2
seconds for 8,328 trace events.

5.3 RQ2: How effective is dl2 in detecting
deadlocks in deep learning jobs that utilize
auto-synthesized parallelization execution
plans?

This section evaluates dl2 in two common scenarios that utilize
automated parallelization tools: high-performance communication
and operator scheduling.

In the first scenario, we developed simple training programs
that separately performed hierarchical versions [15] of five com-
mon collective communication operations: AllToAll, AllReduce,

Table 2: Experimental results on collective communication.

Metrics
Collective

AllToAll AllReduce AllGather Broadcast ReduceScatter

Total 64 64 64 64 64
True Positive 49 40 47 55 51
True Negative 15 24 17 9 13
False Positive 0 0 0 0 0
False Negative 0 0 0 0 0
Precision 100% 100% 100% 100% 100%
Recall 100% 100% 100% 100% 100%

AllGather, Broadcast, and ReduceScatter. Each of these operations
was automatically synthesized using a combination of low-level
point-to-point communications (message sending and receiving)
and plain collective primitives, aiming to optimize communication
efficiency. We applied the same process group configuration and
communication mutation strategy as in RQ1, yielding 64 jobs per
collective communication test. The experimental results are shown
in Table 2, where dl2 consistently achieves 100% precision and recall
across all experiments.

In the second scenario, we utilized the Inception-V3 [52] model
and explored different scheduling orders for a set of logically concur-
rent operators.We implemented data parallelism usingHorovod [49]
for the model and applied Megatron-LM’s tensor parallelism [50] to
the Conv2d (2D convolution) operators. The number of processes
in the communication group remained the same as in the previ-
ous evaluation. By randomly reordering the scheduling of the four
branches within an Inception block, we generated 64 different in-
stances. dl2 successfully detects all 59 deadlocks, maintaining 100%
precision and recall.

5.4 RQ3: How effective is dl2 in detecting
deadlocks in deep learning jobs with
nondeterministic communication?

In this section, we designed an experiment to evaluate job execu-
tion under nondeterministic communication patterns, specifically
within the context of data-parallel distributed training. The nonde-
terminism arises from the use of tensor fusion, a key technique that
combines multiple small AllReduce operations into a single asyn-
chronous reduction. This approach consolidates all ready tensors
at a given time, thereby reducing communication events effectively
and improving runtime performance. However, due to variability
in the buffer-filling rate, asynchronous fused reductions can inad-
vertently participate in out-of-round communication, potentially
leading to deadlock conditions.

For this experiment, we employed the tiny variant [27] of the
Swin Transformer [24] model, implementing data parallelism and
tensor fusion based on Horovod [49] and PyTorch’s Distributed
Data Parallel (DDP) [42]. The training was conducted on the Ima-
geNet dataset with a batch size of 32. To facilitate gradient synchro-
nization, we registered hooks within PyTorch’s automatic differen-
tiation package (torch.autograd) [40] during model construction.
These hooks were triggered when a gradient tensor was ready
during backpropagation, allowing DDP to mark the tensor for re-
duction. Once all gradients in a fusion buffer were ready, an asyn-
chronous AllReduce operation was launched to compute the mean
of the gradients across all processes. We further investigated the
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Table 3: Experimental results under nondeterministic com-
munication patterns.

Buffer Num
Buffer Size 1 MB 2 MB 4 MB 8 MB 64 MB

1 Yes (64) Yes (55) Yes (28) Yes (19) No (2)
2 Yes (61) Yes (48) Yes (28) Yes (19) No (2)
4 Yes (63) Yes (50) Yes (28) Yes (18) No (4)
8 Yes (60) Yes (57) Yes (32) Yes (20) No (8)

impact of varying fusion buffer counts (1, 2, 4, and 8) as well as
buffer sizes (1 MB, 2 MB, 4 MB, 8 MB, and 64MB) to simulate diverse
execution scenarios.

Table 3 presents the experimental results. A “Yes” in a cell in-
dicates that dl2 detected a potential deadlock caused by nonde-
terministic communication, whereas a “No” signifies the absence
of deadlocks. The number in parentheses represents the count of
fused AllReduce operations executed by a process during a training
iteration. Our findings show that smaller buffer sizes (ranging from
1 MB to 8 MB) result in a significantly more AllReduce operations,
increasing the likelihood of out-of-round communication and sub-
sequent deadlocks. Notably, dl2 consistently detects all potential
deadlocks across scenarios, reinforcing its robustness in handling
nondeterminism.

6 Discussion
6.1 Threats to Validity
We identify three primary threats to the validity of our work.

First, we formulated the rules for causal dependencies from the
documentation of the PyTorch distributed communication pack-
age [41] and NCCL, as well as our domain expertise. These rules
are crucial for constructing both the execution and wait-for graphs.
We also examined the source code to validate and refine the rules
to ensure accuracy. However, due to the significant manual effort
involved in rule formulation, inaccuracies are possible. To address
this threat, we aimed for group consensus in decision-making and
continuously refined our approach by cross-referencing the docu-
mentation and source code. In our experiments, we evaluated the
performance of dl2 by measuring its precision and recall, achieving
100% in both metrics, which confirms the validity of our causal
dependency rules.

Second, dl2 addresses nondeterminism arising from the use of
asynchronous communication APIs and detects potential deadlocks
before they occur. However, high-level nondeterminism from code
logic in deep learning programs, such as variations in execution
paths or communication patterns, remains challenging. For instance,
developers may interact with the environment (e.g., generating
random numbers) or monitor the values of computed tensors to
influence training decisions. At present, dl2 cannot handle this type
of nondeterminism. To mitigate this threat, dl2 can assist developers
in implementing stubs that simulate all possible outcomes, thus
enabling the exploration of different execution paths. Additionally,
developers can utilize model checkers and testing tools to guide
their programs through diverse execution scenarios.

Finally, our approach assumes that deep learning programs use
only the well-defined communication APIs provided by PyTorch
and NCCL. However, developers or automated parallelization tools

may introduce custom communication operations that are unknown
to dl2. To mitigate this threat, dl2 could collaborate with developers
and tool maintainers to understand the semantics of these custom
operations, formulate dependency rules for them, and implement
interception stubs accordingly.

6.2 Practicality
The practicality of dl2 lies in its self-contained, automated design,
enabling the detection of communication deadlocks with minimal
user intervention. By invoking its initialization API within a deep
learning program and running the job for a few iterations, dl2 sim-
plifies deployment while ensuring robust runtime trace collection.
Subsequently, it automatically analyzes the trace to identify po-
tential deadlocks and generates a streamlined program in which
processes reproduce the exact communication actions in the precise
order, facilitating root cause analysis. Furthermore, the tool can
seamlessly integrate into existing workflows of automated paral-
lelization tools and deep learning platforms by pre-running jobs
with dl2 to detect deadlocks early. This practicality positions dl2 as a
versatile and effective solution for diverse computational scenarios.

6.3 Generality of Our Approach
Currently, dl2 is designed to work with PyTorch and NCCL. How-
ever, we believe that its approach to detecting communication dead-
locks is general and applicable to other deep learning frameworks
like TensorFlow [1] and alternative collective communication li-
braries such as Gloo, Unified Collective Communication (UCC) [66],
and Microsoft Collective Communication Library (MSCCL) [28].
This claim is supported by the structural similarities shared by
PyTorch/NCCL and other frameworks and libraries. For exam-
ple, TensorFlow offers distributed training support through its
tf.distribute module, as well as various communication APIs
(e.g., tf.broadcast_to, tf.distribute.NcclAllReduce, and tf
.distribute.ReplicaContext.all_gather) that parallel those
available in the PyTorch distributed communication package. Simi-
larly, MSCCL provides a set of point-to-point and collective com-
munication APIs with naming conventions and function signatures
consistent with those of NCCL.

In addition, many widely used distributed training frameworks,
such as Hugging Face Transformers [65], Microsoft DeepSpeed [44],
and NVIDIAMegatron-LM [50], are all built on top of PyTorch. This
compatibility allows dl2 to be directly applied in these environments.
Although this paper primarily discusses its use in training jobs, dl2
is equally applicable to model inference, since inference uses the
same communication APIs and does not involve the complexity of
backpropagation.

6.4 Extensibility of dl2

At present, dl2 supports 30 communication APIs in total (23 from
PyTorch and 7 from NCCL), covering the most commonly used
cases. As noted earlier, adapting dl2 to other frameworks (such as
TensorFlow) or collective communication libraries requires mini-
mal effort. Existing causal dependency rules can be largely reused
with minor adjustments. Portability is a key design goal, and the in-
terposition frontend, along with other core components of dl2, has
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been implemented in a generic manner to minimize the overhead
involved in adapting it to different operating systems.

Furthermore, dl2 is designed to be extensible, allowing for the
integration of new communication APIs. To add support for a new
API, developers need to comprehend its semantics, define depen-
dency rules for constructing execution and wait-for graphs, and
implement an interception stub that captures relevant runtime in-
formation.

7 Related Work
Deadlock detection and prediction have long been active areas
of research, with many studies exploring different types of dead-
locks [3, 4, 7, 10, 11, 14, 17, 21, 46–48, 55, 69]. Existing approaches
are traditionally classified into two main categories: static and dy-
namic analysis.

Static analysis-based techniques [3, 4, 10, 11, 14, 17, 21, 48, 69]
aim to identify potential deadlocks by analyzing the source code of
applications without executing them. These methods commonly
use formal approaches, such as dataflow analysis, type systems,
and model checking, to investigate synchronization patterns, lock
acquisition orders, and dependencies between threads. This infor-
mation is then used to construct dependency graphs (e.g., resource
allocation or wait-for graphs), where cycles represent potential
deadlocks. For instance, DLOS [3] statically detects deadlocks in
large, complex OS kernels like Linux, using a summary-based lock-
usage analysis and a reachability-based comparison to detect cyclic
dependencies, coupled with a two-dimensional filtering process to
minimize false positives. Similarly, Zhang et al. [69] developed a
framework for deadlock detection in Rust, focusing on condition
variable-lock relationships, employing pointer analysis for aliasing
and lock graph analysis to detect dependency cycles in a field- and
context-sensitive manner.

In contrast, dynamic analysis operates at runtime, monitoring
application execution to detect potential deadlocks [7, 46, 47, 55].
Unlike static methods, dynamic analysis observes actual thread
interactions, lock acquisitions, and resource usage, making it more
accurate but at the cost of significant runtime overhead. Tunç et
al. [55] tackled the challenge of deadlock prediction, demonstrating
the intractability of achieving both soundness and completeness.
They proposed two algorithms, SPDOffline and SPDOnline, that
predict deadlocks efficiently in overall linear time under both offline
and online scenarios. Designing thread-safe libraries is challenging
due to concurrency-related defects, and traditional testing methods
are often inadequate. In the realm of Java libraries, OMEN+ [46]
detects deadlocks by automatically analyzing potential concurrency
issues through synthesized tests, using test synthesis and execution
trace analysis to identify deadlocks in multithreaded environments.

Recent research has also addressed deadlocks specific to MPI
programs, often caused by circular communication dependencies.
Huang et al. [17] presented a predictive analysis method for de-
tecting deadlocks in single-path MPI programs, using a three-stage
process to identify, test, and encode deadlock candidates as SMT
problems. This method focuses on specific deadlock points, making
it more efficient than general approaches. PCMPI [14] introduced an
efficient approach for deadlock detection in MPI programs by apply-
ing path compression and focus matching techniques. It simplifies

the analysis by merging consecutive identical send operations and
pairing receive operations with potential send matches, effectively
identifying deadlocks, particularly with wildcard receives. How-
ever, this approach is limited to point-to-point communication plus
the barrier operation and does not model more complex collective
operations such as Broadcast and Reduce.

The work mentioned above typically focuses on multi-threaded
programs in traditional languages like C, C++, C#, Java, and Rust,
which differ significantly from deep learning programs in terms
of programming models and abstractions. In deep learning, high-
level computations are expressed as graphs in Python, while the
underlying computation and communication are executed by low-
level libraries for performance, hidden from developers. Moreover,
most prior research primarily addresses resource deadlocks related
to lock acquisition, making it inapplicable to deep learning jobs.
dl2 is designed to address this gap, offering a dynamic analysis tool
tailored for detecting communication deadlocks in deep learning
jobs. It models a broader set of communication APIs and constructs
wait-for graphs from runtime traces to identify deadlock cycles.

Communication deadlocks pose a major obstacle in modern deep
learning workflows, prompting the development of various tech-
niques to prevent them [5, 8, 38, 49, 68]. For example, the OneFlow
framework [68] organizes collective communications statically to
ensure that all GPUs execute them in a consistent order at run-
time. Horovod [49] introduced a plugin for data parallelism, su-
pervising AllReduce operations through a centralized coordinator.
Pathways [5] uses gang-scheduling and global command dispatch
via a centralized controller to prevent deadlocks. OCCL [38], a
deadlock-free library for GPU collective communication, leverages
dynamic decentralized preemption and gang-scheduling, allowing
collectives to be invoked in any order, simplifying execution flow
and enhancing performance. Microsoft’s Collective Communica-
tion Language (MSCCLang) [8] offers a domain-specific language
and runtime that enables optimized communication with inher-
ent guarantees against deadlocks and data races. However, these
methods often require global coordination, imposing constraints
on execution flexibility and limiting further optimization oppor-
tunities. In contrast, dl2 introduces no constraints on execution,
allowing for deadlock detection at runtime and assisting developers
with root cause analysis. It can also work with existing frameworks
and automated parallelization tools to eliminate deadlock-prone
plans before execution.

8 Conclusion
This paper addresses the critical issue of communication deadlocks
in deep learning jobs. We propose dl2, a dynamic analysis tool that
models a deep learning job’s runtime trace as an execution graph
and detects deadlocks using a wait-for graph. Our tool provides an
efficient means to identify deadlocks and offers valuable diagnostic
capabilities to developers. Through extensive evaluation of both
synthetic and real-world deep learning tasks, we demonstrate that
dl2 accurately identifies all communication deadlocks, making it
a valuable addition to the development of deep learning and large
language models.



dl2 : Detecting Communication Deadlocks in Deep Learning Jobs FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Ma-
chine Learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 265–283.

[2] Gustaf Ahdritz, Nazim Bouatta, Christina Floristean, Sachin Kadyan, Qinghui
Xia, William Gerecke, Timothy J O’Donnell, Daniel Berenberg, Ian Fisk, Niccolò
Zanichelli, Bo Zhang, Arkadiusz Nowaczynski, Bei Wang, Marta M Stepniewska-
Dziubinska, Shang Zhang, Adegoke Ojewole, Murat Efe Guney, Stella Biderman,
Andrew M Watkins, Stephen Ra, Pablo Ribalta Lorenzo, Lucas Nivon, Brian
Weitzner, Yih-En Andrew Ban, Shiyang Chen, Minjia Zhang, Conglong Li, Shuai-
wen Leon Song, Yuxiong He, Peter K Sorger, Emad Mostaque, Zhao Zhang,
Richard Bonneau, and Mohammed AlQuraishi. 2024. OpenFold: Retraining Al-
phaFold2 yields new insights into its learning mechanisms and capacity for
generalization. Nature Methods (2024), 1–11.

[3] Jia-Ju Bai, Tuo Li, and Shi-Min Hu. 2022. DLOS: Effective Static Detection of
Deadlocks in OS Kernels. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22). USENIX Association, Carlsbad, CA, 367–382. https://www.usenix.org/
conference/atc22/presentation/bai

[4] James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich. 2022.
A compositional deadlock detector for Android Java. In Proceedings of the 36th
IEEE/ACM International Conference on Automated Software Engineering (Mel-
bourne, Australia) (ASE ’21). IEEE Press, 955–966. doi:10.1109/ASE51524.2021.
9678572

[5] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, Parker Schuh, Kensen Shi, Sashank Tsvyashchenko, Joshua
Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prab-
hakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury,
Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Gar-
cia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito,
David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepa-
ssi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-
Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2024. PaLM:
scaling language modeling with pathways. J. Mach. Learn. Res. 24, 1, Article 240
(mar 2024), 113 pages.

[6] E. G. Coffman, M. Elphick, and A. Shoshani. 1971. System Deadlocks. ACM
Comput. Surv. 3, 2 (June 1971), 67–78. doi:10.1145/356586.356588

[7] Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko Yoshida. 2018.
Dynamic Deadlock Verification for General Barrier Synchronisation. ACM Trans.
Program. Lang. Syst. 41, 1, Article 1 (dec 2018), 38 pages. doi:10.1145/3229060

[8] Meghan Cowan, Saeed Maleki, Madanlal Musuvathi, Olli Saarikivi, and Yifan
Xiong. 2023. MSCCLang: Microsoft Collective Communication Language. In
Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2 (Vancouver, BC,
Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 502–514. doi:10.1145/3575693.3575724

[9] DeepSeek-AI. 2024. DeepSeek-V3 Technical Report. arXiv:2412.19437 [cs.CL]
https://arxiv.org/abs/2412.19437

[10] Jyotirmoy Deshmukh, E. Allen Emerson, and Sriram Sankaranarayanan. 2009.
Symbolic Deadlock Analysis in Concurrent Libraries and Their Clients. In 2009
IEEE/ACM International Conference on Automated Software Engineering. 480–491.
doi:10.1109/ASE.2009.14

[11] Dawson Engler and Ken Ashcraft. 2003. RacerX: effective, static detection of race
conditions and deadlocks. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles (Bolton Landing, NY, USA) (SOSP ’03). Association for
Computing Machinery, New York, NY, USA, 237–252. doi:10.1145/945445.945468

[12] Yanjie Gao, Xiaoxiang Shi, Haoxiang Lin, Hongyu Zhang, Hao Wu, Rui Li, and
Mao Yang. 2023. An Empirical Study on Quality Issues of Deep Learning Platform.
In 2023 IEEE/ACM 45th International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). 455–466. doi:10.1109/ICSE-SEIP58684.2023.
00052

[13] Zhenyu Guo, Dong Zhou, Haoxiang Lin, Mao Yang, Fan Long, Chaoqiang Deng,
Changshu Liu, and Lidong Zhou. 2011. G2: A Graph Processing System for Diag-
nosing Distributed Systems. In 2011 USENIX Annual Technical Conference (USENIX
ATC 11). USENIX Association, Portland, OR. https://www.usenix.org/conference/
usenixatc11/g2-graph-processing-system-diagnosing-distributed-systems

[14] Jiale Hao, Meng Wang, and Hong Zhang. 2024. Efficient Deadlock Detection in
MPI Programs with Path Compression and Focus Matching. In Proceedings of
the 15th Asia-Pacific Symposium on Internetware (Macau, China) (Internetware

’24). Association for Computing Machinery, New York, NY, USA, 467–476. doi:10.
1145/3671016.3674822

[15] Mert Hidayetoglu, Simon Garcia de Gonzalo, Elliott Slaughter, Pinku Surana,
Wen mei Hwu, William Gropp, and Alex Aiken. 2024. HiCCL: A Hierarchical
Collective Communication Library. arXiv:2408.05962 [cs.DC] https://arxiv.org/
abs/2408.05962

[16] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, and zhifeng
Chen. 2019. GPipe: Efficient Training of Giant Neural Networks using Pipeline
Parallelism. In Advances in Neural Information Processing Systems, Vol. 32. Curran
Associates, Inc., 10. https://proceedings.neurips.cc/paper_files/paper/2019/file/
093f65e080a295f8076b1c5722a46aa2-Paper.pdf

[17] Yu Huang, Benjamin Ogles, and Eric Mercer. 2021. A predictive analysis for
detecting deadlock in MPI programs. In Proceedings of the 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering (Virtual Event, Australia)
(ASE ’20). Association for Computing Machinery, New York, NY, USA, 18–28.
doi:10.1145/3324884.3416588

[18] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2019. Automated
Machine Learning - Methods, Systems, Challenges. Springer.

[19] Meta Incubator. 2024. Gloo: collective communications library with various
primitives for multi-machine training. https://github.com/facebookincubator/
gloo.

[20] Michael Kerrisk. 2024. ld.so(8) – Linux manual page. https://www.man7.org/
linux/man-pages/man8/ld.so.8.html.

[21] Daniel Kroening, Daniel Poetzl, Peter Schrammel, and BjörnWachter. 2016. Sound
static deadlock analysis for C/Pthreads. In Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering (Singapore, Singapore)
(ASE ’16). Association for Computing Machinery, New York, NY, USA, 379–390.
doi:10.1145/2970276.2970309

[22] Zhiqi Lin, Youshan Miao, Quanlu Zhang, Fan Yang, Yi Zhu, Cheng Li, Saeed
Maleki, Xu Cao, Ning Shang, Yilei Yang, Weijiang Xu, Mao Yang, Lintao Zhang,
and Lidong Zhou. 2024. nnScaler: Constraint-Guided Parallelization Plan Gen-
eration for Deep Learning Training. In 18th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24). USENIX Association, Santa Clara,
CA, 347–363. https://www.usenix.org/conference/osdi24/presentation/lin-zhiqi

[23] Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvinine-
jad, Mike Lewis, and Luke Zettlemoyer. 2020. Multilingual Denoising Pre-training
for Neural Machine Translation. CoRR abs/2001.08210 (2020). arXiv:2001.08210
https://arxiv.org/abs/2001.08210

[24] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin Transformer: Hierarchical Vision Transformer
using Shifted Windows. In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV). 9992–10002. doi:10.1109/ICCV48922.2021.00986

[25] LlamaTeam. 2024. The Llama 3 Herd of Models. arXiv:2407.21783 [cs.AI] https:
//arxiv.org/abs/2407.21783

[26] Message Passing Interface Forum. 2023.MPI: AMessage-Passing Interface Standard
Version 4.1. https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf

[27] Microsoft. 2022. Swin Tiny Patch4 Window7 224 Model. https://huggingface.co/
microsoft/swin-tiny-patch4-window7-224.

[28] Microsoft. 2024. Microsoft Collective Communication Library (MSCCL). https:
//github.com/microsoft/msccl.

[29] Don P. Mitchell and Michael J. Merritt. 1984. A distributed algorithm for deadlock
detection and resolution. In Proceedings of the Third Annual ACM Symposium
on Principles of Distributed Computing (Vancouver, British Columbia, Canada)
(PODC ’84). Association for Computing Machinery, New York, NY, USA, 282–284.
doi:10.1145/800222.806755

[30] NetworkX. 2024. NetworkX is a Python package for the creation, manipulation,
and study of the structure, dynamics, and functions of complex networks. https:
//networkx.org.

[31] NNI. 2018. NNI (Neural Network Intelligence): a lightweight but powerful toolkit
to help users automate Feature Engineering, Neural Architecture Search, Hyper-
parameter Tuning and Model Compression. https://github.com/microsoft/nni.

[32] NVIDIA. 2024. Collective Operations. https://docs.nvidia.com/deeplearning/
nccl/user-guide/docs/usage/collectives.html.

[33] NVIDIA. 2024. CUDA Runtime API. https://docs.nvidia.com/cuda/cuda-runtime-
api/group__CUDART__EXECUTION.html.

[34] NVIDIA. 2024. NVIDIA Collective Communications Library (NCCL). https:
//developer.nvidia.com/nccl.

[35] NVIDIA. 2024. NVIDIA CUDA Profiling Tools Interface. https://developer.nvidia.
com/cupti.

[36] NVIDIA. 2024. NVIDIA CUDA Toolkit. https://developer.nvidia.com/cuda-
toolkit.

[37] David L. Olson and Dursun Delen. 2008. Advanced Data Mining Techniques (1st
ed.). Springer Publishing Company, Incorporated.

[38] Lichen Pan, Juncheng Liu, Jinhui Yuan, Rongkai Zhang, Pengze Li, and Zhen
Xiao. 2023. OCCL: a Deadlock-free Library for GPU Collective Communication.
arXiv:2303.06324 [cs.DC] https://arxiv.org/abs/2303.06324

https://www.usenix.org/conference/atc22/presentation/bai
https://www.usenix.org/conference/atc22/presentation/bai
https://doi.org/10.1109/ASE51524.2021.9678572
https://doi.org/10.1109/ASE51524.2021.9678572
https://doi.org/10.1145/356586.356588
https://doi.org/10.1145/3229060
https://doi.org/10.1145/3575693.3575724
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://doi.org/10.1109/ASE.2009.14
https://doi.org/10.1145/945445.945468
https://doi.org/10.1109/ICSE-SEIP58684.2023.00052
https://doi.org/10.1109/ICSE-SEIP58684.2023.00052
https://www.usenix.org/conference/usenixatc11/g2-graph-processing-system-diagnosing-distributed-systems
https://www.usenix.org/conference/usenixatc11/g2-graph-processing-system-diagnosing-distributed-systems
https://doi.org/10.1145/3671016.3674822
https://doi.org/10.1145/3671016.3674822
https://arxiv.org/abs/2408.05962
https://arxiv.org/abs/2408.05962
https://arxiv.org/abs/2408.05962
https://proceedings.neurips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://doi.org/10.1145/3324884.3416588
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo
https://www.man7.org/linux/man-pages/man8/ld.so.8.html
https://www.man7.org/linux/man-pages/man8/ld.so.8.html
https://doi.org/10.1145/2970276.2970309
https://www.usenix.org/conference/osdi24/presentation/lin-zhiqi
https://arxiv.org/abs/2001.08210
https://arxiv.org/abs/2001.08210
https://doi.org/10.1109/ICCV48922.2021.00986
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://huggingface.co/microsoft/swin-tiny-patch4-window7-224
https://huggingface.co/microsoft/swin-tiny-patch4-window7-224
https://github.com/microsoft/msccl
https://github.com/microsoft/msccl
https://doi.org/10.1145/800222.806755
https://networkx.org
https://networkx.org
https://github.com/microsoft/nni
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXECUTION.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXECUTION.html
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://developer.nvidia.com/cupti
https://developer.nvidia.com/cupti
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://arxiv.org/abs/2303.06324
https://arxiv.org/abs/2303.06324


FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Yanjie Gao, Jiyu Luo, Haoxiang Lin, Hongyu Zhang, Ming Wu, and Mao Yang

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, Vol. 32. Cur-
ran Associates, Inc., 8024–8035. https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[40] PyTorch. 2024. Automatic differentiation package - torch.autograd. https://
pytorch.org/docs/stable/autograd.html.

[41] PyTorch. 2024. Distributed communication package - torch.distributed. https:
//pytorch.org/docs/stable/distributed.html.

[42] PyTorch. 2024. Distributed Data Parallel. https://pytorch.org/docs/stable/notes/
ddp.html.

[43] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[44] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
Speed: System Optimizations Enable Training Deep Learning Models with Over
100 Billion Parameters. In Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining (Virtual Event, CA, USA) (KDD
’20). Association for Computing Machinery, New York, NY, USA, 3505–3506.
doi:10.1145/3394486.3406703

[45] Joshua Romero, Junqi Yin, Nouamane Laanait, Bing Xie, M. Todd Young, Sean
Treichler, Vitalii Starchenko, Albina Borisevich, Alex Sergeev, and Michael Math-
eson. 2022. Accelerating Collective Communication in Data Parallel Training
across Deep Learning Frameworks. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). USENIX Association, Renton, WA,
1027–1040. https://www.usenix.org/conference/nsdi22/presentation/romero

[46] Malavika Samak and Murali Ramanathan. 2014. Omen+: a precise dynamic
deadlock detector for multithreaded Java libraries. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Hong Kong, China) (FSE 2014). Association for Computing Machinery, New York,
NY, USA, 735–738. doi:10.1145/2635868.2661670

[47] Malavika Samak and Murali Krishna Ramanathan. 2014. Trace Driven Dynamic
Deadlock Detection and Reproduction. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Orlando, Florida,
USA) (PPoPP ’14). Association for Computing Machinery, New York, NY, USA,
29–42. doi:10.1145/2555243.2555262

[48] Anirudh Santhiar and Aditya Kanade. 2017. Static deadlock detection for asyn-
chronous C# programs. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Barcelona, Spain) (PLDI
2017). Association for Computing Machinery, New York, NY, USA, 292–305.
doi:10.1145/3062341.3062361

[49] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. CoRR abs/1802.05799 (2018). arXiv:1802.05799
http://arxiv.org/abs/1802.05799

[50] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-LM: Training Multi-Billion Parame-
ter Language Models Using Model Parallelism. CoRR abs/1909.08053 (2019).
arXiv:1909.08053 http://arxiv.org/abs/1909.08053

[51] David Shriver. 2024. Intercepts allows you to intercept function calls in Python
and handle them in any manner you choose. https://github.com/dlshriver/
intercepts.

[52] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. 2015. Going deeper with convolutions. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1–9.
doi:10.1109/CVPR.2015.7298594

[53] Hind Taud and Jean-Franccois Mas. 2018. Multilayer perceptron (MLP). Geomatic
approaches for modeling land change scenarios (2018), 451–455.

[54] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,

Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs.CL] https://arxiv.org/abs/2302.13971

[55] Hünkar Can Tunç, Umang Mathur, Andreas Pavlogiannis, and Mahesh
Viswanathan. 2023. Sound Dynamic Deadlock Prediction in Linear Time. Proc.
ACM Program. Lang. 7, PLDI, Article 177 (jun 2023), 26 pages. doi:10.1145/3591291

[56] GitHub User. 2022. Training hangs in the end while calling dist.barrier(). https:
//github.com/huggingface/transformers/issues/17478.

[57] GitHub User. 2023. Add validation for send/recv sizes. https://github.com/
pytorch/pytorch/issues/113376.

[58] GitHub User. 2023. all_to_all_single stuck when using output_split_sizes = [1, 3]
and input_split_sizes = [1, 3]. https://github.com/pytorch/pytorch/issues/117486.

[59] GitHub User. 2023. [Bug] dist.broadcast with multi GPU only works on
torch.float32, but errors on int64, int32 and hangs on float16. https://github.
com/pytorch/pytorch/issues/118696.

[60] GitHub User. 2023. Distributed hangs when doing hierarchical communication.
https://github.com/pytorch/pytorch/issues/130102.

[61] GitHub User. 2023. FSDP hangs when combining MoE architecture. https:
//github.com/pytorch/pytorch/issues/126616.

[62] GitHub User. 2023. Interleaved isend and irecv causes hang. https://github.com/
pytorch/pytorch/issues/109401.

[63] GitHub User. 2023. P2P operations hang when mixing the usage of default and
non-default communication groups. https://github.com/pytorch/pytorch/issues/
116590.

[64] GitHub User. 2024. For AllReduce communications with a shape mismatch, some
cases will hang while others will not. https://github.com/NVIDIA/nccl/issues/
1417.

[65] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, Qun Liu and David Schlangen (Eds.).
Association for Computational Linguistics, Online, 38–45. doi:10.18653/v1/2020.
emnlp-demos.6

[66] Unified Communication X. 2024. Unified Collective Communication (UCC).
https://github.com/openucx/ucc.

[67] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang
Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue,
Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. 2025. Qwen2.5 Technical
Report. arXiv:2412.15115 [cs.CL] https://arxiv.org/abs/2412.15115

[68] Jinhui Yuan, Xinqi Li, Cheng Cheng, Juncheng Liu, Ran Guo, Shenghang Cai,
Chi Yao, Fei Yang, Xiaodong Yi, Chuan Wu, Haoran Zhang, and Jie Zhao. 2021.
OneFlow: Redesign the Distributed Deep Learning Framework from Scratch.
CoRR abs/2110.15032 (2021). arXiv:2110.15032 https://arxiv.org/abs/2110.15032

[69] Yu Zhang, Kaiwen Zhang, and Guanjun Liu. 2024. Static Deadlock Detection for
Rust Programs. arXiv:2401.01114 [cs.PL] https://arxiv.org/abs/2401.01114

[70] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. 2022. Alpa: Automating Inter- and Intra-Operator Par-
allelism for Distributed Deep Learning. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association, Carlsbad,
CA, 559–578. https://www.usenix.org/conference/osdi22/presentation/zheng-
lianmin

https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://pytorch.org/docs/stable/autograd.html
https://pytorch.org/docs/stable/autograd.html
https://pytorch.org/docs/stable/distributed.html
https://pytorch.org/docs/stable/distributed.html
https://pytorch.org/docs/stable/notes/ddp.html
https://pytorch.org/docs/stable/notes/ddp.html
https://doi.org/10.1145/3394486.3406703
https://www.usenix.org/conference/nsdi22/presentation/romero
https://doi.org/10.1145/2635868.2661670
https://doi.org/10.1145/2555243.2555262
https://doi.org/10.1145/3062341.3062361
https://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1802.05799
https://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
https://github.com/dlshriver/intercepts
https://github.com/dlshriver/intercepts
https://doi.org/10.1109/CVPR.2015.7298594
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1145/3591291
https://github.com/huggingface/transformers/issues/17478
https://github.com/huggingface/transformers/issues/17478
https://github.com/pytorch/pytorch/issues/113376
https://github.com/pytorch/pytorch/issues/113376
https://github.com/pytorch/pytorch/issues/117486
https://github.com/pytorch/pytorch/issues/118696
https://github.com/pytorch/pytorch/issues/118696
https://github.com/pytorch/pytorch/issues/130102
https://github.com/pytorch/pytorch/issues/126616
https://github.com/pytorch/pytorch/issues/126616
https://github.com/pytorch/pytorch/issues/109401
https://github.com/pytorch/pytorch/issues/109401
https://github.com/pytorch/pytorch/issues/116590
https://github.com/pytorch/pytorch/issues/116590
https://github.com/NVIDIA/nccl/issues/1417
https://github.com/NVIDIA/nccl/issues/1417
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://github.com/openucx/ucc
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2110.15032
https://arxiv.org/abs/2110.15032
https://arxiv.org/abs/2401.01114
https://arxiv.org/abs/2401.01114
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin

	Abstract
	1 Introduction
	2 Background
	2.1 Deadlocks
	2.2 Distributed Deep Learning Training
	2.3 Communication Deadlocks in Deep Learning Jobs
	2.4 Deadlock Examples

	3 Methodology
	3.1 Execution Graph
	3.2 Action
	3.3 Causal Dependency
	3.4 Deadlock Identification
	3.5 Nondeterminism

	4 Implementation
	4.1 Architecture
	4.2 Interposition
	4.3 Computation Stubbing and Communication Replay

	5 Evaluation
	5.1 Experimental Design
	5.2 RQ1: How effective is dl2 in detecting deadlocks in real-world deep learning jobs?
	5.3 RQ2: How effective is dl2 in detecting deadlocks in deep learning jobs that utilize auto-synthesized parallelization execution plans?
	5.4 RQ3: How effective is dl2 in detecting deadlocks in deep learning jobs with nondeterministic communication?

	6 Discussion
	6.1 Threats to Validity
	6.2 Practicality
	6.3 Generality of Our Approach
	6.4 Extensibility of dl2

	7 Related Work
	8 Conclusion
	References

