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Abstract
The layer-4 load balancer (LB) is one of the key building blocks of online services. In this paper,

we empower such LBs to adapt to different and dynamic performance of backend instances (DIPs).
Our system, KnapsackLB, is generic (can work with variety of LBs), does not require agents on
DIPs, LBs or clients, and scales to large numbers of DIPs. KnapsackLB uses judicious active probes
to learn a mapping from LB weights to the response latency of each DIP, and then applies Integer
Linear Programming (ILP) to calculate LB weights that optimize latency, using an iterative method
to scale the computation to large numbers of DIPs. Using testbed experiments and simulations,
we show that KnapsackLB load balances traffic according to DIP performance and cuts average
latency by up to 45% compared to existing designs.
1 Introduction
A high performance layer-4 load balancer (L4 LB) is one of the key building blocks of online

services. Individual services scale by running on multiple backend servers or VMs with unique IP
addresses (referred as DIPs). The service exposes a small number of virtual IP addresses, termed VIPs,
to receive traffic from outside the service. The LB receives traffic coming on the VIPs and distributes
it across DIPs. Recently, there has been significant interest in improving the scale, availability and
cost of the LBs[17, 19, 23, 27, 28, 44, 47, 48, 59, 64].
Ideally, an L4 LB should split the traffic to provide best performance (e.g., latency) across the

DIPs. To do so, many of the LBs assume that capacity of the DIPs is same or at least known. When
the capacity is same, LBs can simply split traffic equally getting uniform performance on all DIPs.
Else, it resorts to algorithms such as weighted round-robin or least-connection to load balance the
traffic[9, 19, 23, 48] where the weights are set by the operators based on the capacities of DIPs.
However, there is a growing trend of DIPs exhibiting capacities that change dynamically, especially
in virtualized clusters. Prior work has shown that the capacity of VMs with the same type (e.g.,
D3.medium in Azure) may vary up to 40% due to noisy neighbors: VMs on the same host compete
for shared resources such as caches and memory buses, resulting in variation. Recent proposals and
new offerings from cloud providers introduce dynamic changes to the number of vCPUs assigned
to VMs (detailed in §2). Together, these factors make capacities variable across DIPs and over time.
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In such a setup where the capacities of the DIPs change dynamically, we find that existing LBs
fall short in achieving a goal of providing best performance. We consider well-known LBs and
algorithms: (a) HAProxy LB – one of the widely used open source LB with all available algorithms,
(b) Microsoft Azure LB. We find that the existing algorithms fall short in splitting traffic conforming
to the capacities, resulting in poorer performance on some of the DIPs (§2.1). Interestingly, the
least connections algorithm, which is specifically built to adapt to variable DIP performance, also
fell short. As a result, the requests going to the over-utilized DIPs suffered poor performance (2×
higher latency than other DIPs). Lastly, many existing LBs often remove DIPs suffering from poor
performance, instead of adapting to their performance.
In this paper, we revisit the first order question on how L4 LBs split traffic. We argue that L4

LB problem should be modeled as a Knapsack problem[42] to pack the load to optimize service
performance while conforming to static/dynamic capacities of the DIPs. The key challenge is
determining how much load is safe to direct to or away from a DIP without adversely impacting
service performance.

This paper presents KnapsackLB, a “meta” LB design that enables other L4 LBs to provide best
performance. KnapsackLB does not intend to add to the impressive list of existing LB designs.
Instead, KnapsackLB enables setting the DIP weights for any LB that can implement weighted load
balancing. A significant number of LB systems provide an interface to specify the weights, including
AVI[16], Nginx[12], Duet[28], andHAProxy[9]. KnapsackLB frees admins from configuringweights
according to DIP performance that is either static or dynamic. In doing so, it leverages the availability
and scalability of existing LB designs while endowing them to provide best performance.
At a high level, KnapsackLB decouples weight computation from LBs and does it at a central

controller. This enables KnapsackLB to make optimal decisions with a global view across DIPs.
We use request-response (service) latency as a proxy for the performance1. KnapsackLB uses
active probing judiciously to learn a per-DIP weight-latency curve: a mapping from a weight to the
DIP’s average response latency, should that weight be applied to that DIP. This mapping is used
to drive an Integer Linear Program (ILP) that computes LB weights to pack load into DIPs, while
minimizing the average response latency across DIPs. The KnapsackLB controller uses the LB’s
existing interface to configure DIP weights. In doing so, KnapsackLB does not require any changes
to DIPs, clients, or the LBs.

KnapsackLB addresses three key technical challenges to achieve its goals. First, issuing probes
naively for the set of all possible weights would require an impractically high number of latency
measurements across hundreds of DIPs. KnapsackLB implements just a few measurements (§4.2,
§4.3), each adapting from the results of the past measurements, and runs curve-fitting to learn a
weight-latency curve that works well across a wide range of weights.

Second, running an ILP that handles hundreds of DIPs with fine-grained DIP weight settings
is computationally expensive. KnapsackLB uses a multi-step ILP to substantially speed up the
calculation of DIP weights. Specifically, in each step, KnapsackLB runs an ILP that progressively
zooms into finer-grained weight settings per DIP, instead of calculating weights in one shot (§4.4).

Third, a weight-latency mapping learned at some fixed load arriving at an LB could become stale.
Specifically, the load placed on a DIP, and hence its response latency, depends on both the LB’s
aggregate incoming load and the DIP’s weight. KnapsackLB avoids learning a new weight-latency
curve for each aggregate load. Instead, KnapsackLB adapts quickly to variations in traffic rate by
rescaling and shifting its learned weight-latency curve (§4.5).

We evaluate a 41-VM prototype implementation of KnapsackLB (§5) on Azure and also at larger
scale using simulations. Our results (§6) show: (a) KnapsackLB can adjust the weights as per the

1We focus on services where latency matters (e.g., web services).
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performance of the DIPs. (b) In doing so, it cuts the latency up to 45%. (c) KnapsackLB adapts to
changes in the cluster in terms of capacity, traffic, and failures. (d) KnapsackLB solves ILPs quickly
using optimizations. (e) KnapsackLB can work with a variety of existing LBs. (f) KnapsackLB
incurs only a small overhead in terms of CPU cores and dollar costs.

This work does not raise any ethical issues.
2 Background

LB 
instances
(MUXes)

DIPs
Clients

Clients
requests

Responses using direct-server-return

Fig. 1. LBs run on multiple instances called MUXes.

An online service deploys multiple servers
(called DIPs) to scale and to provide high avail-
ability. The DIPs run behind a load balancer
(LB) that exposes one or more virtual IPs (VIPs)
to receive traffic from outside the service. In
this paper we focus on layer-4 LB that splits
the traffic across DIPs using TCP/IP fields. VIPs
offer multiple benefits for scalability, security

and high availability[48].
As shown in Fig.1, LB designs run on multiple instances (called MUXes). MUXes intercept the

VIP traffic and split them across DIPs[23, 48].
DIP selection: MUXes need to process packets with high throughput and low latency. Thus,

they pick DIPs for new connections using fast algorithms such as (weighted) round robin, hash
over TCP/IP fields, power of two or (weighted) least connection[10]. However, a long standing
assumption for these algorithms to work well is that the DIPs have the same or known capacities
(capacity = max. throughput of a DIP) so that MUXes can set weights to get uniform load balancing,
not overload DIPs and achieve good performance across DIPs. However, as detailed next, there is a
growing trend towards DIPs of the same service to have different/dynamic capacities. LB algorithms
fall short in automatically optimizing performance in such cases.
2.1 Limitation-1: LBs Cannot Adapt to Dynamic Capacities
In this section, we describe: (a) why DIPs can have capacities changing dynamically, (b) how

existing LBs fall short in providing best performance when capacities of DIPs change dynamically.
2.1.1 DIPs Can Have Capacities Changing Dynamically
Recent works have shown that the VMs in cloud have dramatically different capacities even when
they fall in the same VM type (e.g., D3.medium in Azure) (more details in §7). The change in
capacities mainly stems from noisy neighbors, i.e., the contention from the VMs on the same host.
Even if the vCPUs are isolated, other resources including CPU caches[60], mainmemory[52, 53], and
the memory bus are shared. VMs on the same host contend for such shared resources dynamically,
translating to dynamic DIP capacities. Additionally, our private conversation with a major cloud
provider also indicated dynamic over-subscription, i.e., the number of vCPUs sharing the same
physical cores changes dynamically depending on customer demand, causing changes in capacities.
Importantly, the changes in capacity are variable and may occur at any time. As we show in the
next section, such change in capacities impacts the performance, and existing LBs do not react well
to the dynamic capacities.

2.1.2 LBs Dont Adapt to Dynamic Changes in DIP Capacities
We consider two L4 LBs: (a) HAProxy[9], a widely used open-sourced LB, and (b) Microsoft Azure.
HAProxy. Fig.2 shows our experimental setup. We have HAProxy running on a 8-core VM. We

have three DIPs – DIP-HC (x2) and DIP-LC (HC/LC = High/Low Capacity) on 2-core VMs each. All
three DIPs run web servers that compute a cache intensive task for every HTTP request. DIP-HC
VMs have the same capacity; we change the capacity of DIP-LC by running varying number of
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Fig. 2. Setup for evaluating RR
and LCA policies in HAProxy LB.
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Fig. 3. Performance of RR with
changes in capacity.
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Fig. 4. Performance of LCA with
changes in capacity.

copies of an antagonist process that thrashes caches (and partially consumes CPU). All VMs run in
Azure on DS series CPU running Ubuntu 20.04.

We evaluate all algorithms in HAProxy and present results for 2 popular algorithms – (a) round-
robin (RR), (b) least-connection (LCA). RR simply rotates new connections across 3 DIPs. LCA uses
the number of active connections as a proxy for load and selects the DIP with the least number of
connections when the new connection appears.
Metric of interest: For both policies, the metric of interest is request-response latency (for

client requests) for all DIPs. We take the average for 10K requests.
Fig.3 shows the CPU utilization and request-response latency for RR. The X-axis shows the ratio

of capacity of DIP-LC to DIP-HC, denoted as "Capacity ratio." When capacity ratio is 100% (all
DIPs with the same capacity), the CPU utilization on all DIPs is close to 80%. Next, to emulate
the dynamic/different capacity, we deploy the antagonist process. Note that, the impact of noisy
neighbors could be variable and unpredictable. We want to evaluate if RR (and LCA later) can adapt
to new capacities automatically without manual intervention from the service owners. However,
HAProxy continues to split the traffic in the same way as before (equal split). As a result, for lower
capacity ratio, as DIP-LC has lower capacity, it hits close to 100% utilization before DIP-HC VMs.

The CPU imbalance also translates in difference in request-response latencies (Fig.3(b)). Because
of dynamic reduction in capacities and HAProxy continuing to send traffic at same rate, DIP-LC
sees higher CPU utilization and higher latencies for the same incoming traffic rate. The imbalance
in latencies across DIPs only gets worse as capacity ratio decreases.
Now we turn to LCA and evaluate whether it can balance load to provide lower latencies. We

keep the same setup. Fig.4(a) and Fig.4(b) show the CPU utilization and end-to-end latency as we
decrease the capacity ratio. Surprisingly, despite LCA being a policy that considers performance,
our observations are similar to RR. As shown in Fig.4(a), as we decrease the capacity ratio, there
is imbalance in the CPU utilization on DIP-LC compared to DIP-HC VMs. While the imbalance
is slightly smaller than RR, it is still prevalent. LCA also results in CPU fully utilized on DIP-LC
whereas DIP-HC VMs are under-utilized resulting in higher latencies on DIP-LC.

At first glance, it may seem that LCA will adapt to different performance by assigning more new
connections to the DIP with the fewest connections at that time. A faster DIP will mostly result
in fewer connections than the slower counterparts. However, in doing so, it effectively splits the
number of concurrent connections equally among DIPs. DIPs that finish connections faster will get
more connections. However, some DIPs (with lower capacity) can get overwhelmed with many
concurrent connections. In such cases, LCA never reduces the concurrent connections on such DIPs.
In the previous example with capacity ratio of 60%, DIP-LC got roughly 27% of all connections; all
such connections going to DIP-LC overwhelmed DIP-LC and caused higher latency.

The other algorithms also exhibited CPU and latency imbalance (not shown due to limited space).
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Limitations using Azure public L4 LB:We repeated the above experiment using Azure L4 LB.
We used above 3 DIPs with Azure LB. Azure LB only provides hash onver IP 5-tuple-based load
balancing[1]. Table 1 shows the latency and CPU utilization on DIP-HC and DIP-LC. Here DIP-LC
has 60% capacity compared to DIP-HC. Unsurprisingly, as IP 5-tuple-based load balancing is not
built for best performance, we see imbalance in terms of the CPU utilization and latency – latency
of DIP-LC to be 43% higher than DIP-HC.

Table 1. Load imbalance using Azure L4 LB.

DIPs CPU utilization Latency
DIP-LC 84% 7.18 msec
DIP-HC 51% 5.00 msec

These results show that HAProxy and Azure
LB fail to provide good performance (lower la-
tencies) by automatically adapting traffic based
on performance.
Agent-based LB: HAProxy and Azure LB

are agent-less, i.e., they do not have any agents on the clients and DIPs. There have been agent-based
works (e.g.,[19]). We contrast against them in §6.5.
2.2 Limitation-2: LBs Cannot Adapt to Differences in Performance
2.2.1 DIPs Can Have Different Performance
Our private conversation with a major online service owner (using more than 100K VMs) indicated
that they do not always use pay-as-you-go model where they dynamically scale up/down VMs
based on the demand. The key reason is that public cloud providers do not always have capacity
needed, especially during peak hours. As a result, the service owners don’t release their VMs.
Instead, they reassign the VMs to different parts of their service. Such a reassignment results in
DIPs of different types (e.g., DS[6] and F[7] type in Azure) for the same VIP, resulting in DIPs
with different performance in the same DIP-pool of a service. We observed F-type VMs to provide
15-20% lower latency for simple request-response traffic compared to DS-type VMs in Azure.

2.2.2 LBs Dont Adapt to Differences in Performance
In this experiment, we show that LBs dont react to static differences in performance. We have
two DIPs behind LB – one each from DS- and F- series in Azure with same number of cores. Both
the DIPs run web server. Again, our metric of interest is request-response latency – whether LBs
provide the best overall latencies. However, both HAProxy (using RR) and Azure LB split the traffic
equally among such VMs that did not yield optimal latency. Ideally, LBs should have sent more
traffic to F-type VMs to lower overall latency. Next, HAProxy (using LCA) sent 2% more requests
to F-type VMs not leveraging the full potential of F-type VMs. We can further lower the latency by
carefully sending more traffic to F-series VM.
2.3 Changing Weights to Adapt to Capacity

HAProxy and Azure LBs did not automatically adjust the traffic split to provide best performance.
However, manual intervention by changing the weights to split the traffic is also not trivial. If some
DIPs are suffering from poor performance (hotspots), if too little traffic is taken away, that may not
clear the hotspots. On the other extreme, if too much traffic is taken away, it risks hotspots moving
somewhere else.
3 KnapsackLB
3.1 Goals

We present KnapsackLB, a “meta” LB designed to meet the following goals:
Performance-optimized LB: Our vision is that KnapsackLB should enable other L4 LBs to split

traffic to provide the best performance. Admins can plugin any DIP, and leave it to KnapsackLB to
provide best performance without taking any hints about capacities or performance. KnapsackLB
should adjust load even when the performance changes dynamically. In essence, KnapsackLB must
free-up admins from the labor of setting up performance-optimized LBs.
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Generality: KnapsackLB intends to work with existing LB designs without any changes to
MUXes, DIPs or clients.
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Fig. 5. Impact of increasing weights (traffic) on latency
(y2 axis) and CPU utilization (y1 axis). TCP and ICMP
pings are unaffected by changing weights (traffic).

Zero-touch and agent-less design: Knap-
sackLB should not run any agents on DIPs,
clients or MUXes. Consequently, KnapsackLB
should work without access to DIP SKU, CPU
utilization, or any performance counters on
DIPs. This goal helps customers maintain pri-
vacy about their resource usage, and helps
KnapsackLB reduce deployment overheads.
Everything online: KnapsackLB should

not require any offline profiling data. Using
just the IP addresses of the DIPs, KnapsackLB
should perform all its functions online.
3.2 KnapsackLB Overview
KnapsackLB casts the LB problem as a Knapsack problem to pack the load to optimize the

service latency (§3.4). We focus on DIPs running services where latency matters (e.g., web services).
KnapsackLB has three key aspects: (a) gauging DIP performance vs. weights, through an active

probing approach (§4.2, §4.3) that works without DIP, MUX, or client modification or without
agents on them, (b) weight computation at a centralized controller using multi-step ILP (§4.4) with
the goal of packing load into DIPs to minimize average response latency, and (c) programming the
DIP weights at LB controller.

LB-controller
(e.g., HAProxy, 

Ananta)

LB dataplane
(MUXes)

Clients

KnapsackLB 
controller

DIP-xKLM DIP-1 DIP-1 DIP-yKLM DIP-1 DIP-zKLM

Latency store

VIP1: {w1,.. wx}
VIP2: {w1,.. wy}
…

VIP1: {l1,.. lx}
VIP2: {l1,.. ly}
…

VIP1: {l1,.. lx}

KLM = Knapsack Latency Measurement
l = application latency (not ICMP/TCP ping)
w = LB weight  

VNET-1 (VIP1) VNET-2 (VIP2) VNET-n (VIPn)

. . .. . 

VIPn: {l1,.. lz}

Opaque to 
KnapsackLB

. 

Fig. 6. KnapsackLB architecture. Blue boxes denote
KnapsackLB components. Solid and dotted lines de-
note data traffic and control signals respectively.

Using weights to control traffic: We ob-
serve that many existing LB designs provide
an interface to specify the weights for splitting
the traffic [9, 12, 16, 28] (note that these LBs do
not automatically calculate weights as shown
in §2). KnapsackLB uses this interface to pro-
gram the weights. This way, KnapsackLB can
support a variety of other LBs. Wherever such
an interface is not provided, we use DNS based
LB (§6.6). Importantly, the MUXes themselves
remain unmodified and their throughput and
latency are unaffected by KnapsackLB.
Application latency as a proxy for per-

formance: KnapsackLB optimizes for the application-level latency using requests that are served
by the service running on the DIPs. We use such a latency as a proxy for service performance. As
shown in Fig.5, ICMP and TCP pings (using SYN/SYN-ACK) do not reflect the load on the DIP as
they are handled by the OS. In contrast, application (app) requests are handled by the service on
the DIPs and reflect the performance of the service including queues formed at applications.

An alternative approach is to monitor CPU usage on DIPs and steer traffic away from hot DIPs.
However, it will fall short as: (a) it either requires agents on the DIPs or access to client subscription
– both raising privacy concerns and are non-goals for KnapsackLB. (b) application latency is not
a function of just CPU utilization. Application latency also depends on many factors across the
stack such as CPU cache at hardware[39], throttling at hypervisor and application factors (such
as queues). It is not trivial to capture multitude resource counters and translate to application
performance[39]. Instead, measuring application latency directly captures the service performance,
and eliminates the need to capture and translate multitude signals from hardware to software.
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3.3 Architecture
As shown in Fig.6, KnapsackLB has three loosely coupled components: (a) KLM (KnapsackLB

Latency Measurement), (b) latency store, and (c) KnapsackLB controller.
KLM resides in each customer-level virtual network (VNET). For simplicity, we assume there

is one externally-visible VIP per VNET. KLM periodically measures the latency for requests from
each DIP. KLM directly measures the latency at the service-level (e.g., HTTP requests) using service
URLs provided by the administrators. KLM also sends requests directly to the DIPs (using IPs of
DIPs; bypassing MUXes) to eliminate the interference of the MUXes on DIP latency. The latency
store persists the measurements from the KLM. Implementing measurements that directly measure
application-layer latencies and storing them separately obviates the need for any instrumentation
on DIPs, MUXes or clients, and enables KnapsackLB to avoid changes to the MUXes, DIPs and
clients, broadening KnapsackLB’s utility to a variety of LBs and settings.
The KnapsackLB controller consumes DIP latencies from the latency store. It computes the

weights using Integer Linear Program (§3.4) and sends them to the LB controller (e.g., Ananta,
HAProxy), which in turn programs the MUXes with the new weights. The MUXes only need to
store the weights and may implement the weights using WRR (weighted round robin). Many LBs
including Ananta, Duet, HAProxy, Nginx, Maglev and Beamer support this, although the latency to
change the weights at MUXes does differ across LBs. Existing LB controllers (Fig.6) are not on the
critical path of the traffic[23, 48]. Likewise, none of the KnapsackLB components are on the critical
path. KnapsackLB does not cause any performance degradation when MUXes handle packets.
Discussion on heterogeneous requests and URL at KLM: DIPs can handle different types

(heterogeneous) of requests differently (e.g., through cache or disk or other microservices). Similarly,
a DIP could run different operations. E.g., running long "SCAN" or short "GET" requests in the
context of key-value stores. Irrespective of the operation, if a DIP is overloaded, it will build the
queues for all requests and it will be reflected on the requests sent by the KLMs using the URLs set
by admins. It may happen components other than DIPs (e.g., backend database) become bottleneck
that inflates latency. Even then, KnapsackLB will set the weights to optimize for latency.
3.4 Framing Load Balancing as a Knapsack Problem to Optimize Service Latency

ILP Variable: 𝑋𝑑,𝑤
Objective:Minimize

∑︁
𝑑∈𝐷

∑︁
𝑤∈𝑊𝑑

𝑋𝑑,𝑤 · 𝑙𝑑,𝑤

Constraints:
Only one weight for each DIP: ∀𝑑 ∈ 𝐷,

∑︁
𝑤∈𝑊𝑑

𝑋𝑑,𝑤 = 1 (a)

Total weight is 1:
∑︁
𝑑∈𝐷

∑︁
𝑤∈𝑊𝑑

𝑋𝑑,𝑤 ·𝑤 = 1 (b)

Allowed imbalance: 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 ≤ 𝜃 (c)
∀𝑑 ∈ 𝐷,𝑦𝑚𝑎𝑥 ≥

∑︁
𝑤∈𝑊𝑑

𝑋𝑑,𝑤 ·𝑤,𝑦𝑚𝑖𝑛 ≤
∑︁

𝑤∈𝑊𝑑

𝑋𝑑,𝑤 ·𝑤 (d)

Fig. 7. ILP formulation.

Notation Explanation
Input

𝐷 Set of DIPs
𝑤 Weight between [0,1]
𝑊𝑑 Set of weights for d-th DIP
𝑙𝑑,𝑤 Latency on d-th DIP for

w-th weight
𝑦𝑚𝑎𝑥 , Max. and min. weights
𝑦𝑚𝑖𝑛 across DIPs

(output) (binary) Set if w-th weight
𝑋𝑑,𝑤 is assigned to d-th DIP
Table 2. Notations used in the ILP.

Rather than a “typical” LB approach of spreading load evenly, we frame LB as a Knapsack
problem[42] to pack the load as per DIP capacities to minimize overall service latency (measured
by KLMs above). To do so, we present an Integer Linear Program (ILP) that calculates weights to
assign to DIPs to optimize for service response latency. The ILP is shown in Fig.7. The notations
are listed in Table 2. There is a distinct ILP that assigns weights for each VIP.

Rather than letting DIP weights vary arbitrarily in the interval [0, 1], KnapsackLB uses a fixed
set of possible weights that may be assigned to any DIP. The ILP variable 𝑋𝑑,𝑤 (boolean) indicates
if the𝑤-th weight is assigned to the 𝑑-th DIP. The objective is to minimize the total mean latency
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(Fig.7)2. Using a discrete set of weights (e.g.,𝑊𝑑 = {0.1, 0.2, ...0.9, 1.0}) allows us to provide 𝑙𝑑,𝑤 , the
response latency at the 𝑑-th DIP if it is assigned the𝑤-th weight, as a numerical parameter to the
ILP. The values for 𝑙𝑑,𝑤 are computed before running the ILP (§4.2).

There are four constraints: (a) We assign only one weight to each DIP, (b) the sum of total weight
assigned across all DIPs is 1. (c) the imbalance is restricted to 𝜃 (we do not aim to load balance
equally), (d) we specify 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 as the maximum and minimum weights across all DIPs.

Knapsack problems in general are NP-complete[32]. We choose ILP approach as off-the-shelf ILP
solvers optimize for a given objective, and have long been used for resource allocation problems[29,
38]. However, in this paper, we show the challenges in using such ILPs for LB (§3.5) and our design
choices to overcome those challenges (§4.1).
3.5 Technical Challenges

There are two key challenges in implementing load balancing using the above ILP formulation.
The first challenge is collecting the 𝑙𝑑,𝑤 , i.e., the latency for𝑑-th DIP for𝑤-th weight. As we do not

know the latencies (performance) beforehand, a strawman approach could be to measure latency
uniformly for𝑤 in [0,1]. However, such an approach would require latency measurements at large
numbers of weights. Imagine two DIPs with capacity 1× and 19× with roughly equal latency when
not loaded. The optimal weights for such a case are 0.05 and 0.95. Simply measuring latencies at 11
points in range [0,1] (0,0.1,0.2, ..., 1) will not yield an optimal split. Worse, with these𝑊𝑑 , the ILP
can only calculate weights where at least one DIP is overloaded. Thus, we need latency measured
at weights with finer resolution. However, increasing the resolution also increases the number
of latency measurements required per DIP. Further, since DIPs can have different performance,
we might not be able to reuse the measurements from one DIP to another. For 100s of DIPs and
measurements at 100s of weights/DIP can make this approach prohibitively expensive.
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Fig. 8. ILP performance for varying #DIPs and #weights
per DIP. DO and TO indicate DIP Overload and Time-
out (ILP could not finish in 20 mins).

The second challenge is the computational
feasibility of the ILP even when all the measure-
ments 𝑙𝑑,𝑤 are available. We run an experiment
when all DIPs have the same performance. Fig.8
shows the time to compute the weight assign-
ment for varying number of DIPs and weights
per DIP (𝑊𝑑 ). Theweights are chosen uniformly
between [0,1]. Even for a single VIP of 500 DIPs,
the ILP results in DIP overload (DO) (load for
at least one DIP is above its capacity) or time-

out (TO) (ILP takes 20+ mins). Timeouts are especially worrisome as they affect the system’s
responsiveness to failures and traffic dynamics (§4.5).
4 Detailed Design of KnapsackLB
4.1 Key Algorithms

KnapsackLB includes five algorithmic components to address the challenges in §3.5.
C1. Curve fitting to reduce the number of latency measurements:We observed that we

can make-do with a small number of latency measurements and use polynomial regression to build
the curve and estimate latency at other weights (§4.2).
C2. Adaptive weight setting based on prior latency measurements: Complimentary to

C1, our second algorithm adaptively determines the next weight to use to conduct a latency
measurement, given existing weight-to-latency measurements. The algorithm is loosely inspired
by TCP congestion control. Together, C1 and C2 obviate the need for hundreds of measurements
per DIP (§4.3). As shown in §6, KnapsackLB works with fewer than 10 measurements per DIP.
2The objective can be easily changed to other objectives such as minimize max. latency or minimize sum of max. latency.
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C3. Multi-step ILP computation:We need to decide on the set of weights to feed to the ILP
(𝑊𝑑 ). Rather than feeding a large set of possible weights in one shot to the ILP, we feed the weights
in multiple steps, with increasing resolution on the weights, while holding the size of𝑊𝑑 constant
(§4.4), which substantially reduces running time without affecting accuracy.

C4. Quick reaction to dynamics: Online services exhibit many dynamics including traffic
changes, failures, and capacity changes. We design mechanisms to quickly react to dynamics (§4.5).

C5. Scheduling measurements: Even when the weights desired for latency measurements are
available (C2), we cannot assign those weights to DIPs in a single shot. We show how to schedule
latency measurements (§4.6).
4.2 Curve Fitting

We get the values of 𝑙𝑑,𝑤 with latency measurements at a small number of weights, and implement
curve fitting (x-axis = weight, y-axis = latency) using polynomial regression. This way we can
estimate the latency for other values of weights where we did not make latency measurements
directly. Fig.5 earlier shows the increase in CPU utilization and latency as we vary the weights
(traffic). It can be seen that the latency increase is minimal at low weights as there is available
capacity to handle the requests. We see higher increase in latency as weights increase. For extreme
weights, we also observe packet drops (not shown) as there is no capacity left. This latency-weight
relationship helps us do curve fitting using polynomial regression of degree two (§6).
4.3 Adaptive Weight Setting for Latency Measurement

Algorithm 1 Algorithm to calculate weights for
latency measurement

INPUT: 𝑙0, 𝑙𝑤,𝑤𝑛𝑜𝑤,𝑤𝑝𝑟𝑒𝑣,𝑤
𝑝𝑟𝑒𝑣
𝑚𝑎𝑥

OUTPUT:𝑤𝑛𝑒𝑥𝑡 ,𝑤𝑚𝑎𝑥 , 𝑖𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝐷𝑜𝑛𝑒

1: if 𝑤𝑛𝑜𝑤 −𝑤𝑝𝑟𝑒𝑣 ≤ 𝐷 then
2: 𝑖𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝐷𝑜𝑛𝑒 ← 1; return
3: end if
4: if !(packet drop) then
5: 𝑤𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑤𝑝𝑟𝑒𝑣

𝑚𝑎𝑥 ,𝑤𝑛𝑜𝑤)
6: 𝑤𝑛𝑒𝑥𝑡 ← 𝑤𝑛𝑜𝑤 +𝑤𝑛𝑜𝑤 · 𝛼 · 𝑙0𝑙𝑤 ⊲ Run
7: else
8: 𝑤𝑛𝑒𝑥𝑡 ←

𝑤𝑛𝑜𝑤+𝑤𝑝𝑟𝑒𝑣

2 ⊲ Backtrack
9: end if

The goals of the measurement phase are
twofold: (a) identify a small number of weights
to perform latency measurements, so that the
measurements finish quickly and yet provide
good curve-fitting, (b) get a rough estimate for
the capacity of the DIP in terms of the max.
weight (to calculate𝑊𝑑 ). Recall that we do not
know the capacities of the DIPs beforehand.
Our algorithm for weight selection is in-

spired by TCP congestion control and has two
phases: (a) run, or (b) backtrack, depending on
the measured latency increase and packet drop.
Algorithm 1 shows the algorithm to calculate
weight for each DIP in each iteration in the
measurement phase.
The input to the algorithm includes 𝑤𝑛𝑜𝑤

and𝑤𝑝𝑟𝑒𝑣 , the weights for current and previous iterations.𝑤𝑚𝑎𝑥 indicates the maximum weight
observed so far without packet drop.𝑤𝑝𝑟𝑒𝑣

𝑚𝑎𝑥 is max. weight till last iteration. The input includes 𝑙0
and 𝑙𝑤 , the latencies when the weights are 0 and current weight respectively. We measure 𝑙0 when
the DIP is newly added by setting its weight to 0. The output includes: (a)𝑤𝑛𝑒𝑥𝑡 the weight whose
latency should be measured in the next measurement, (b) 𝑖𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝐷𝑜𝑛𝑒 , a boolean indicating
if the computation to get the weight-latency curve for this DIP is over, and it is ready for the ILP to
assign the weights for this DIP, (c)𝑤𝑚𝑎𝑥 .
As noted on line 1-2, if the difference between 𝑤𝑛𝑜𝑤 and 𝑤𝑝𝑟𝑒𝑣 is small (D = 5% of 𝑤𝑛𝑜𝑤), we

set the 𝑖𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝐷𝑜𝑛𝑒 flag. Next, when there is no packet drop, it indicates that there is still
some capacity remaining and we can increase the weight. We update the𝑤𝑚𝑎𝑥 (line 5) and increase
the weight proportional to latency (line 6). When 𝑙𝑤 is comparable to 𝑙0, it indicates there is more
capacity left, and we can have bigger increase in𝑤𝑛𝑒𝑥𝑡 . When 𝑙𝑤 is considerably higher than 𝑙0, it
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indicates we are reaching capacity, and we slow down the increase in𝑤𝑛𝑒𝑥𝑡 . 𝛼 indicates the pace of
increase (set to 1 in KnapsackLB). When there is a packet drop (we have reached capacity), we
reduce the 𝑤𝑛𝑒𝑥𝑡 to the average of 𝑤𝑛𝑜𝑤 and 𝑤𝑝𝑟𝑒𝑣 (line 8) and continue the search. To improve
exploration time and reduce packet loss, we assume “packet drop” is 𝑡𝑟𝑢𝑒 on lines 4 and 7 when 𝑙𝑤
is 5× 𝑙0 based on the observation that latencies are 5× 𝑙0 or higher when loaded. Lastly, we build the
curve quickly so that the traffic change during curve building (few minutes) is usually small[50].
4.4 Multi-Step ILP Computation

In steady state, once the weight-latency curve is available, we need to decide weights in𝑊𝑑 . Once
we decide weights, polynomial regression quickly returns corresponding 𝑙𝑑,𝑤 for the ILP. As shown
in Fig.8, the ILP running time increases rapidly with the number of weights. Instead of running the
ILP in one step, we run it in two steps, while providing a small number of weights in each step. E.g.,
instead of running ILP with 100 weights for every DIP, in the first step, we only provide 10 values
uniformly in [0,𝑤𝑚𝑎𝑥 ] (note, not [0, 1]). This provides a coarse estimate for the weights without
packet drop. In the second step, we calculate the weights more precisely. If𝑤𝑑 is the weight chosen
by ILP for the 𝑑-th DIP in first step, we provide 10 values uniformly between𝑤𝑑 − 𝛿 to𝑤𝑑 + 𝛿 (𝛿 =
10% of 𝑤𝑚𝑎𝑥 ). We do multi-step iteration only when the #DIPs ≥100. Otherwise, we do the first
step only. We program the LB dataplane only after the completion of both steps.
4.5 Handling Service Dynamics

We present mechanisms to address the drift in weight-latency curves over time.
Addressing change in traffic:When total traffic increases, the traffic volume going to the DIPs

will increase for the same weights resulting in higher latency for the same weights. We detect the
traffic change when we see latency increase for most/all DIPs even when the weights are unchanged.
We then “shift” the weight-latency curve “to the left” as follows: let’s say the latency was 5 msec
at weight 0.5 (𝑤1). With increased traffic, latency has increased to 7 msec for the same weight.
To calculate the new weight, we multiply the existing weights by 𝛿 . Let’s say the weight (𝑤2) for
latency of 7 msec was 0.625. We calculate 𝛿 =

𝑤1
𝑤2
. We multiply all the weights with 𝛿 . Similarly,

when the traffic has reduced, we increase the weights using above mechanism. We then run ILP.
Addressing changes in capacity: The capacity of the DIPs can change dynamically (e.g., due

to a change in co-located VMs). We detect capacity change for a DIP if observed latency differs
from the estimated latency by more than a threshold (set to +/- 20% of 𝑙𝑑,𝑤 ) – e.g., if the latency has
changed from 5 msec to 7 msec. We use above design to calculate new weights and run ILP.
Addressing DIP failures: KnapsackLB detects application failures on DIPs when we fail to

get successful responses for KLM probes. However, we will continue to send user traffic to failed
DIP till the DIP is taken offline. For fast response to failures, we send 3 lightweight HTTP requests
every 100 msec. Once the failed DIP is detected, we simply rerun ILP without that DIP and program
new weights. In contrast, Azure takes around 10 seconds to take the failed DIP out of the DIP-pool.
Refresh map: We periodically refresh the weight-latency curve. At any point, we limit the

fraction of DIPs under refresh to 5% of the total capacity. Note that DIPs may run at lower utilization
during refresh as we may try smaller weights than what the DIPs can handle. To ensure enough
capacity at all times, we choose max. 5% capacity for refresh at a time. To refresh, we simply
measure the latency for the weights as calculated in §4.3. We recalculate the weights for a VIP
using the new weight-latency curve as the curve is updated for any of its DIPs.
4.6 Scheduling Measurements
In KnapsackLB, the weights for the DIPs with 𝑖𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝐷𝑜𝑛𝑒 unset are calculated using

algorithm from §4.3. However, we may not be able to measure latency for the calculated weights
right away, as the sum of all DIP weights for a VIP needs to be 1. E.g.,𝑤𝑛𝑒𝑥𝑡 for 2 DIPs can be 0.7
each in one iteration. In such scenarios, we need to schedule the DIP weight in multiple rounds.
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We classify DIPs with new weights to be scheduled into 3 priority classes: (a) weights for over-
utilized DIPs (DIPs with high latency), (b) weights for remaining DIPs, (c) weights during refresh.
Within a class, we use FIFO. To schedule the DIPs that have new weights assigned, we use a simple
greedy algorithm where we arrange all DIPs according to their priority. We hop over the list of
DIPs until either: (1) the weight of DIPs scheduled is 1, or (2) we exhaust all DIPs.

Lastly, we need to wait until the new weights take effect in the dataplane as detailed in §A.
5 Implementation

KLM: We have a VM image running for KLM, which can be deployed in each VNET. The VNET
admin sets the list of DIPs and application URL in a config file on KLM. KLM measures latency
for every DIP in that VNET every 1 second using the application URL (from admins), and reports
average latency over 20 requests (independent of DIP size). We do not consider higher percentiles
(such as P90 or P95) because we observed high and variable latency at high percentiles even when
the load is not high. Also, we found that average latency correlates better with load (Fig.5).
Latency store: KLMs write the latency to latency store. We use Redis[14] for latency store for

its in-memory caching and fault tolerance. The key is VIP and value is list of <DIP,latency,time>
tuples. The latency store runs in the same datacenter as KnapsackLB controller.
KnapsackLB controller: KnapsackLB controller is the heart of KnapsackLB. It consists of

modules to (a) calculate weights for latencymeasurements, (b) scheduling the latencymeasurements,
and (c) running ILP to calculate optimal weights. All the modules (for a VIP) run on the same VM.
§6.8 provides the overheads for running the controller for multiple VIPs.
The ILP uses the open source ILP solver COIN-OR[5], written in C++ with PuLP bindings[13].

Together, KnapsackLB uses 4K+ LOC using high-level languages.
6 Evaluation

Table 3. VM details used in evaluation.
DIPs DIP-1 to DIP-17 to DIP-25 to DIP-29,

DIP-16 DIP-24 DIP-28 30
VM type DS1v2 DS2v2 DS3v2 F8sv2
#vCPUs 1 2 4 8
#VMs 16 8 4 2

We evaluate KnapsackLB using testbed
experiments and simulations for large
number of DIPs. Our experiments show
that (a) KnapsackLB builds the weight-
latency curve fast and requires few points
to build the curve; (b) KnapsackLB is able
to compute weights optimally using the
ILP to minimize the overall latency without any hints about the capacity or performance. This is
particularly useful as it allows users to add DIPs of any capacity; (c) KnapsackLB substantially
improves the latency compared to (weighted) LB policies – used in production systems; (d) Knap-
sackLB handles the dynamics such as failures, traffic and capacity changes well; (e) KnapsackLB
can work with other LBs with and without interface to program weights; (f) KnapsackLB incurs
very small overhead in terms of extra resources and costs.

Setup: Our setup consists of 41 VMs running in Azure datacenter. There are 30 DIPs with
different capacities (Table 3), one 8-core VM running HAProxy and 8 VMs as clients. Lastly, we
have one VM each for KnapsackLB controller and KLM. We use Redis cloud offering[2]. The
DIPs run web server doing cache intensive calculation for client requests. The clients: (a) send the
requests to DIPs through LB (Haproxy or Azure), (b) measure the end-to-end latency. All VMs
run Ubuntu 20.04. As shown in Table 3, we use DIPs of 4 different types. We specifically use VMs
across different series (DS and F). The F-series VMs[7] are supposed to be faster than DS-series
VMs[6] by up to 2×. However, our measurements found that F-series VM is 15-20% faster than
corresponding DS-series VM for our workload. This also highlights that it is not trivial to calculate
the weights just by considering number of cores and clock speed. A system like KnapsackLB can
help automatically calculate and adjust weights to optimize performance. We set the traffic to 70%
of total capacity. We set 𝜃 = ∞ in Fig.7 to not put any restriction and optimize for latency.
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Baselines: We compare KnapsackLB against HAProxy using Round-robin (RR), Least-
Connection (LC) explained in §2.1.2. We also consider Power-of-2 (P2)[46] that randomly picks
two DIPs and then selects one DIP with the smaller number of connections among the two DIPs.
P2 is also used by Microsoft’s YARP[11]. We consider both weighted and unweighted versions. We
also consider Azure LB as a baseline.

6.1 Weight Assignment in KnapsackLB

Calculating weights for latency measurements: We start our evaluation by calculating the
weight-latency curve for all the 30 DIPs. We first start by measuring the latency when weight is 0
and equal (0.033 in this experiment). We then adjust the weights using algorithm 1.
Fig.9 shows the different weights calculated for 4 different types of DIPs. We randomly chose

one DIP from each type (Table 3). It took 8-10 iterations to build weight-latency curve for all DIPs.
Here, we only show the weight calculated by the Algorithm 1, and not by the scheduler (§4.6).
Thus, the total weight per iteration is not 1. Next, for each iteration, the weights are scheduled in
multiple rounds. The scheduler took 1.7 rounds for each iteration (on average). Each round was 10
seconds. Therefore, the adaptive weight setting finished in less than 3 mins. The weights calculated
for measurements vary across DIP types. Also, the 𝑤𝑚𝑎𝑥 for the 4 DIPs calculated are 0.02, 0.04,
0.085, 0.165. Note, 𝑤𝑚𝑎𝑥 corresponds to max. weight without packet drop. Thus, the values are
lower than the peak weight calculated.
Weight-latency curve using polynomial regression: After we measure the latencies for

different weights, we use polynomial regression to fit the curve so that we can estimate the latencies
for weights not used in measurements. For polynomial regression, we only use the data for which
there was no packet drop. As a result, there are only 4 points for DIP-1 to DIP-28 and 5 points for
DIP-29,30. Fig.10 shows the weight-latency curve for the 4 DIPs of 4 different types. The points
show the actual measurements, while the lines show the curve calculated by polynomial regression.
It can be seen that the regression fits the curve well even when it has only a small number of points.
As we increase the weights, we expect the latency to go up. However, as can be seen in the Fig.10,
the latency may not increase monotonically using regression. To address this limitation, we change
the regression output to increase monotonically by setting the latency for a given weight as max.
of its latency (by regression) and latency at the previous weight (not shown in figure).
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ILP calculation:
Next, we calculate
the weights using
ILP described in §3.4.
Fig.11 shows the
weights calculated for
the 15 DIPs (we select
50% DIPs from each

type). The weights are in ratio 1:2:3.9:9.7. ILP assigned more weight to the VM with more capacity
(8 core). KnapsackLB optimizes for total latency and it got better performance on such 8-core VMs.
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6.2 Comparing with Other LB Policies
We now show the improvements in KnapsackLB compared to baseline policies including LC,

RR and P2 and Azure (explained in baselines in §6) – both unweighted and weighted versions. The
metrics of interest are end-to-end latency observed by clients and CPU utilization on the DIPs. We
show the average for 100K requests. We use two DIP-pools: (a) same DIP-pool of 30 DIPs as before.
(b) smaller DIP-pool of 3 nodes from §2.1.

30 node DIP-pool with no weights: Fig.12(a) shows the CPU utilization across all DIP types
for RR, P2, LC and KnapsackLB (KLB). Unsurprisingly, as RR is not optimized for performance, it
results in high CPU utilization for DIP-1 to DIP-24. Conversely, DIP-25 to DIP-30 show lower CPU
utilization as they receive less traffic relative to their capacity. P2 and LC improve CPU utilization
compared to RR by sending fewer connections to overloaded DIPs but still result in higher CPU
utilization for DIP-1 to DIP-16.
Fig.12(b) shows the latency across the 4 types of DIPs. In RR, we observe higher latency for

DIP-1 to DIP-24 as such DIPs are overloaded. In contrast, latency from DIP-25 to DIP-30 is low as
such DIPs are underloaded. P2 and LC improve the latency but still result in high latency due to
overloaded DIP-1 to DIP-16. In KnapsackLB, as the DIPs are not overloaded, we observe low (and
uniform) latency across all DIP types. This experiment shows that KnapsackLB cuts the latency by
up to 45% compared to RR, and up to 23% compared to LC.
Improvement over Azure LB: As mentioned previously, Azure L4LB only supports equal LB

through hash over TCP/IP fields. It assumes equal weight for all DIPs, which is problematic as we
have DIPs with different capacities (number of cores). As a result, due to equal splitting, requests
going to DIPs with smaller number of cores observe higher latencies. We found that KnapsackLB
improves the latency by up to 41% compared to Azure LB.
30 node DIP-pool with weights: In the previous experiment, we did not use the weights.

However, service operators can set the weights using hardware properties. In this experiment, we
set the weights for RR and LC policies (denoted as WRR and WLC) in proportion to the number of
cores. Recall that KnapsackLB does not require such information apriori. Fig.13 shows the average
latency across all DIP types for WRR, WLC and KnapsackLB (KLB). We found that the throughput
of 4-core DS-type VM did not scale linearly with number of cores (8-core F-type VM also did not
scale linearly but in general had more capacity). As WRR is not performance aware, its traffic
to 4-core DIPs was unabated, causing the DIPs to be overloaded and caused high latency. WLC
reduced the traffic to such DIPs to a small extent. In contrast, KnapsackLB reduced the traffic to
such DIPs lowering latency. Compared to WRR and WLC, KnapsackLB reduced the latency by
42% and 36.2% on such DIPs.

3 node DIP-pool with weights: Next, we measure the latency and CPU utilization based on
the DIP-pool from §2.1 running on 1-core VMs. However, we change the capacity to emulate noisy
neighbors – we use capacities of 1×, 0.8× and 0.6×. In this experiment, we use weighted RR and
LC with weights set to number of cores (1:1:1). Note that, the impact of noisy neighbors could be
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dynamic, variable and unpredictable. As shown in Fig.14, both (weighted) RR and LC fall short in
load balancing the traffic as per capacities, and over-utilize DIP-0.6 (DIP with capacity 0.6×) while
there is capacity available on other DIPs. As a result, we also observed higher latency on DIP-0.6.
In contrast, KnapsackLB (KLB) substantially improves the load balancing. It reduces the CPU

utilization on the DIP-0.6 while making use of the available CPU on DIP-1. As a result, we observed
uniform CPU on all the three nodes. In doing so, KLB improved the latency for all the connections
that RR and LC sent to DIP-0.6. Compared to RR and LC, KLB cut latency by up to 37% and 29%.
6.3 Dissecting the Gains through Latency and ILP
KnapsackLB is based on two key ideas: (a) using application latency for load balancing, (b)

packing the load through ILP. In this section, we show the gains through individual ideas.
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Fig. 15. Dissecting the gains in Knap-
sackLB across application latency and ILP.

To do so, we build a baseline (P2-latency) where we
assign the DIP using power-of-2 combined with applica-
tion latency (unlike power-of-2 in the previous section
that used number of connections). It randomly picks two
DIPs and chooses a DIP with smaller application latency.
Recall that, by default, KnapsackLB probes the latency
every 1 second which is too late for P2-latency baseline.
For this experiment, we reduce the latency probe to 100
msec and send the requests from clients when latency

probes finish. Note that, we only do this to measure the gains from just using application latency.
We use the 30-node DIP pool from previous section, and also run P2 from previous section

that uses number of connections (P2-conn). Fig.15 shows the latency for using P2 with latency
(P2-latency) as well as P2-conn and KnapsackLB. It can be seen that P2-latency performs better
than P2-conn but is considerably worse than KnapsackLB. This experiment shows that: while using
application latency helps, it helps more when combined with ILP based packing in KnapsackLB.
ILP with number of connections and CPU load: we also evaluate an ILP with different

objectives: (a) minimize max. number of connections at DIPs. Such a method is lucrative as it is
agent-less (no agents on DIPs). However, it converged to splitting number of connections equally
among DIPs (similar to LCA) which suffered the same limitations mentioned in §2.1.2, (b) minimize
max. CPU load. This method requires agents on the DIPs to gather CPU utilization. However, as it
does not consider latency, it suffers the same limitations as §2.2. Being agnostic to performance, it
sent fewer connections to 8-core (F-series; faster) VMs. Compared to KnapsackLB, such a design
results in higher latency up to 16%.
6.4 Handling Dynamics
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Fig. 16. Handling dynamics in KnapsackLB.

We now show the
change in weights as
we address dynamics
due to: (a) failures,
(b) change in capac-
ity and (c) change in
traffic. We use the
DIP-pool with 30 DIPs
from Table 3.

Addressing failures: In this experiment, we fail DIP-25,26 while keeping the traffic unchanged.
Fig.16(a) shows the weights before and after the failure. We observed that the weight of the failed
DIPwas not equally split among other DIPs. DIP-1 to DIP-16, and DIP-17 to DIP-24 saw a cumulative
increase of 0.012 and 0.027 respectively in weights. Interestingly, most of the weight of the failed
DIP was assigned to DIP-27 to DIP-30 (cumulative increase of 0.066). This is due to better latencies
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on DIP-29,30 for the same weights. We detect the DIP failure within 100 msec (§4.5). The ILP ran
immediately and took around 120 msec to recompute the weights and then program the weights.
HAproxy changed weights immediately. Recall that the latency-weight curve calculation is not in
the critical path – we only need to rerun the ILP using current latency-weight curve (§4.5).

Addressing change in capacity:We reduce the capacity of DIP-25 to DIP-28 by co-running a
process that consumes 1 core. Total traffic is unchanged. This change in capacity was reflected in
latency differences for the same weights, and we update the weight-latency curve for DIP-25 to
DIP-28 (§4.5). Fig.16(b) shows that KnapsackLB is able to react to the capacity change and adjust
the weights. Again, instead of reducing the weights of DIP-25 to DIP-28 by 25%, KnapsackLB
reduced the weights assigned to these DIPs by 15-17%. The remaining weight was mostly assigned
to DIP-29,30, mainly because such DIPs with higher capacity had more room to absorb traffic
with respect to the increase in latency. The weights were not equally split as as the ILP made
latency-informed decisions. None of the VMs were overloaded.
As we performed latency measurements every 1 second (only failure detection probes run at

100 msec), the above dynamic was detected within 1 second. The ILP took roughly 120 msec to
calculate the new weights.

Addressing change in traffic: KnapsackLB also effectively handle changes in traffic as detailed
in Appendix (§B). This is similar to handling change in capacity.
6.5 Comparing Against Agent-based Method

We compare KnapsackLB against agent-based method such as Cheetah[19], where we have an
agent on each DIP to measure its CPU utilization and adjust the load to get uniform CPU utilization.
Note that, as mentioned in §2 and §3, simply measuring CPU utilization falls short in optimizing
for performance: (a) as performance depends on many factors including hardware contention
(cache, memory bus etc.), throttling at hypervisor and application queues, (b) when instances have
different performance (latency) for the same CPU utilization (e.g., DS and F type VMs), (c) such a
method is agent-based while KnapsackLB is agent-less. We use 4 DIPs of same VM-type but reduce
the capacity of one DIP to 75%. Cheetah computes weights iteratively – each iteration computes
the weights using current CPU load and terminates when CPU load is roughly same. In contrast,
KnapsackLB uses pre-computed weight-latency curve to speedup weight adjustments.. Such an
algorithm took 4× time to get weights for uniform CPU utilization compared to KnapsackLB.
6.6 Load Balancing using Other LBs

Table 4. ILP running time across different #DIPs.
#DIPs 10 50 100 500 1000

time (msec) 20 194 645 5.8K 21.1K

We demonstrate that KnapsackLB can
work with: (a) Nginx[12]: another widely
used L4 LB that provides an interface to
specify the weights. (b) Azure: LB does not
provide an interface to specify weights. We detail it in Appendix (§C).
6.7 Simulation with Large Number of DIPs
Now we turn to ILP running time and accuracy of multi-step ILP. We use simulations for large

number of DIPs. For each DIP, we keep the capacity the same and use the latency-weight curve for
the F-series VM from the previous section, and the traffic set to 80% of the total capacity.

ILP running time:We measure the ILP running time (shown in Table 4) as we vary the number
of DIPs from 10 to 1000. We feed 10 points uniformly between 0 and𝑤𝑚𝑎𝑥 . It can be seen that ILP
runs quite fast: when the number of DIPs is smaller than 100, the ILP completes in 645msec. When
the number of DIPs is 1000, the ILP finishes in 21sec.
Multi-step ILP:We now compare the accuracy and running time by using multi-step ILP as

described in §4.4. There are 100 DIPs. First, we feed 100 weights uniformly between 0 and𝑤𝑚𝑎𝑥 .
Next, we feed in 10 weights in two steps. We choose 10 as a sweet spot between speed and available
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weight options. We found that multi-step ILP reduces the run-time by 28.3× while sacrificing only
0.1% accuracy (Table 5).
6.8 Overheads at Large Number of DIPs

Table 5. Evaluating multi-step ILP. For 10
#points, we run ILP twice.

#points running time accuracy
100 36.8sec 100%
10 0.65sec x2 99.9%

Lastly, we show that the overheads (in terms of cores
and costs) for KLM, latency store, KnapsackLB controller
are very miniscule (Appendix §D).
7 Related Work
Performance variability and prediction: Perfor-

mance variation has been acknowledged for many years.
Google reported up to 20% capacity reduction due to
noisy neighbors[8]. Similarly, [18, 39, 55] report up to 40% change in capacity. [34, 63] report up
to 450% degradation in performance due to noisy neighbors in storage. Other works also shed
light on performance variability ([20, 24, 25, 30, 41, 43, 56, 58]). Recent works have also focused on
predicting the performance due to resource contention (e.g., Ernest[57] for analytic workloads on
cloud, Paris[61] for choosing best VMs in cloud). However, they use offline profiling of workloads.
In contrast, KnapsackLB is completely online and does not require any profiling apriori. [22, 39, 55]
provide performance variation and prediction for NFV, but rely on access to hardware counters
(e.g., cache misses) that unfortunately are not available to tenants (or to KnapsackLB) in the cloud.
That said, even if such counters become available, adjusting weights based on the counters remains
challenging.

LB designs: Recent LB works focus on cost, availability, scalability. Ananta[48] and Maglev[23]
are running in production systems. [28, 44, 64] use hardware to save costs. [19, 47] focus on
improving the resiliency of LB. KnapsackLB is complementary to these designs and adjusts the
weights based on performance. [49, 51, 62] rely on DIP counters or changes to network/MUXes
for LB. [59] also works with queues tied to the applications. However, it requires clients sending
probes, or servers sharing queue lengths. In KnapsackLB, clients are running inside customer VMs
or running on Internet that cannot be changed to send probes. KnapsackLB does not require any
changes to clients, servers or MUXes.

Latency as a congestion signal: Prior works have also used latency as a signal for congestion
control including Timely[45], Swift[33] and BBR[21]. KnapsackLB uses the latency as congestion
signal for load packing.
Capacity based packing: Prior works have looked at capacity based packing but in different

context. E.g., multi-resource cluster scheduling [31], VM/container placement [36, 37, 40], CDN
routing [26], replica assignment [35, 54]. Such works use intrinsic resource usage, feedback from
the servers and/or assistance from clients. E.g., [54] requires servers to send queue sizes and clients
to rank servers. [26] requires changes to MUXes, DIPs to gather and dissipate load details and
rerouting. KnapsackLB neither requires such information nor control on DIPs, MUXes and clients.
8 Conclusion

We present KnapsackLB to empower other layer-4 LBs to balance load according to the perfor-
mance of backend instances (DIPs). KnapsackLB is agent-less, fast and versatile – suitable to use
with a wide variety of LBs. KnapsackLB builds weight-latency curves, formulates an ILP problem
to minimize overall latency, and proposes techniques to expedite the ILP computation. Using a
prototype and large-scale simulations, we show KnapsackLB cuts latency by up to 45%.
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A Calculating Old Flow Completion Time
We should ensure that we correctly measure the latency as a reflection of changing weights.

Once we recalculate the weights for latency measurement, we want to program those weights to
the LB dataplane and measure the latency. However, we may be unable to measure the latency right
away. There are delays due to (a) the LB controller (Fig.6) taking time to program the dataplane,
and (b) only new connections adhering to the new weights once the dataplane is reprogrammed
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(to preserve connection affinity [23, 28, 48]). In particular, the old connections directed to a DIP
due to the old weights continue to influence the DIP’s latency after the weight change, resulting in
a clouded view of the impact of the weight change.
KnapsackLB’s approach is to wait till old connections finish. However, since the KnapsackLB

controller does not modify the MUXes or DIPs, it does not know whether the old connections are
completed. We calculate the time between setting the weight and latency measurement (called
drain time) by using some extreme settings: for a DIP, we first set the weights high enough that the
latency is high (time 𝑇1). Then we set the weight to 0 so that no new connections go to this DIP.
We continuously measure the latency until it reaches 𝑙0 (time𝑇2). We calculate drain time as𝑇2 −𝑇1.
We measure the drain time every 120 mins (configurable).
B Addressing change in traffic in KnapsackLB
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Fig. 17. Weight change due to traffic
change.

In this experiment, we have all the DIPs at their original
capacity, and we increase the traffic by 10%. We detected traffic
increase when all DIPs observe increase in latency for the same
weights. In such cases, we shift the weight-latency curve to left.
As shown in Fig.17, it can be seen that DIP-25 to DIP-30 absorbed
most of the extra traffic. This is again because such DIPs have
more room to absorb traffic than other DIPs for the same latency
increase. KnapsackLB load balanced the traffic as per capacities

without overloading any DIP. The ILP took roughly 120 msec to recompute the weights.
C Load Balancing using Other LBs

Table 6. Fraction of requests received by 3
DIPs using Nginx and Azure traffic manager
(TM).

LB DIP-1 DIP-2 DIP-3
Nginx 20% 30% 50%

Azure TM 18% 34% 48%

We demonstrate that KnapsackLB can work with:
(a) Nginx[12]: a widely used L4 LB that provides an
interface to specify the weights. (b) Azure: LB does not
provide an interface to specify weights. In (b), we use
traffic manager (TM) to do load balancing using DNS[4]
that resolves the IP based on the weights of the DIPs.
In this experiment, we use 3 DIPs behind the above LBs
with weights DIP-1 = 0.2, DIP-2 = 0.3, DIP-3 = 0.5. Table 6 shows the fraction of requests received
by individual DIPs (total requests = 10K). Nginx does LB as per the weights specified and can work
with KnapsackLB similar to HAProxy. For Azure TM, it roughly splits the DNS requests in the
weights specified. However, we note that such a load balancing depends on the DNS cache timeout,
and clients can see delay in adhering to new weights. This experiment shows that KnapsackLB
can work with other LBs, also using DNS when LBs do not provide a native interface to specify
weights.
D Overheads at Large Number of DIPs

Table 7. Workload details showing #VIPs for different
#DIPs/VIP for a 60K DIP datacenter.

#DIPs/VIP 5 10 50 100 500 1000
#VIPs 2000 1000 200 100 20 10

KLM: KLM sends the latency measure-
ment probes (20 HTTP requests) to indi-
vidual DIPs every 1 second independent of
the DIP size. Additionally, it sends 3 HTTP
requests every 100 msec for failure detec-
tion. We found the throughput of KLM is
4500 requests/sec on DS1 v2 VM (1 core) in Azure. As the #DIPs/VIP and #VIPs is not publicly
available, we use the workload detailed in Table 7 consisting of many mice and a few elephant
VIPs, derived from [28]. After considering separate KLM for VIPs ≤225 DIPs, we would need 11K
KLM cores for the 60K DIPs from table 7. Assuming DIPs run on D8a type (8 cores; $280/month),
and KLM runs on DS1 type (1 core; $41/month), the overhead in terms of #cores and cost is just
2.3% and 2.4% respectively. KLM can run on spot VMs reducing costs by 2.6×[3]. Fig.18 shows the
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overhead of KLM probes at different intervals. While configurable, we chose probe interval of 1
second as a sweet-spot between overhead and responsiveness.
Latency store: we use Azure Redis cache in the same DC with Premium option[15] for good

performance. Each Redis get operation takes 0.3-4 msec (using persistent connections). For 100K
DIPs with 10 latency points per DIP, the total data easily fits within 6GB costing just $6/day (with
discount for 3 years subscription), which is a very minuscule overhead.
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Fig. 18. KLM overhead. The KLM overhead
is in terms of number of extra cores normal-
ized to DIP cores. The DIP overhead is CPU
utilization to process the KLM requests that
is very small (less than 0.5%).

KnapsackLB controller: the controller runs: (a) poly-
nomial regression, (b) ILP. For regression, it takes on
average 1 msec/DIP on single core. For doing regression
for 60K DIPs, it would take 60 cores at the controller.
With 8 cores/DIP, the overhead (as number of cores) is
just 0.01%. Next, the total running time to run ILP for the
workload detailed in Table 7 is 851 seconds on a single
8-core VM. The controller scales easily across VIPs as
the VIPs are independent and can run on different VMs
running ILPs. Assuming running ILP per VIP every 5
seconds (for dynamics), we would need 193 such VMs
(accounting for VIPs that take ≥ 5 seconds to finish ILP).

With all DIPs and controller running on 8 core VMs, the overhead (in terms of number of cores and
cost) is just 0.32%. Lastly, KnapsackLB can be extended to support larger number of DIPs. In such
cases, we can run the ILP in 3 steps (instead of 2 as used in §4.4) to keep the ILP latency bounded.
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