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Abstract—Large language models (LLMs) have made significant ad-
vancements in natural language processing and are concurrently ex-
tending the language ability to other modalities, such as speech and
vision. Nevertheless, most of the previous work focuses on prompting
LLMs with perception abilities like auditory comprehension, and the
effective approach for augmenting LLMs with speech synthesis capabil-
ities remains ambiguous. In this paper, we conduct a comprehensive
empirical exploration of boosting LLMs with the ability to generate
speech, by combining pre-trained LLM LLaMA/OPT and text-to-speech
synthesis model VALL-E. We compare three integration methods between
LLMs and speech synthesis models, including directly fine-tuned LLMs,
superposed layers of LLMs and VALL-E, and coupled LLMs and VALL-
E using LLMs as a powerful text encoder. Experimental results show
that, using LoRA method to fine-tune LLMs directly to boost the speech
synthesis capability does not work well, and superposed LLMs and
VALL-E can improve the quality of generated speech both in speaker
similarity and word error rate (WER). Among these three methods,
coupled methods leveraging LLMs as the text encoder can achieve the
best performance, making it outperform original speech synthesis models
with a consistently better speaker similarity and a significant (10.9%)
WER reduction.

Index Terms—Speech Synthesis, Large Language Model, VALL-E,
LLaMA

I. INTRODUCTION

The emergence of large language models (LLMs), such as Chat-
GPT [1] and LLaMA [2], has revolutionized most traditional natural
language processing (NLP) tasks, like text summarization and dia-
logue system [3]—[5]. The powerful language generation capabilities
of LLMs have prompted exploration into their applications in other
modalities, e.g., speech and vision [6]-[15]. For example, GPT-4V [6]
enables users to instruct GPT-4 to analyze image inputs they provided.
Video-LLaMA [8] empowers LLM with the ability to comprehend
both visual and auditory content present in videos. These multi-
modal LLMs provide the potential to enhance the impact of text-only
systems by integrating new interfaces and functionalities, allowing
them to handle new tasks and deliver fresh experiences to users.

Regarding the application of LLMs to speech, the majority of
earlier research primarily concentrates on aligning speech representa-
tion with the LLM input space [9], [16]-[18]. For instance, Speech-
LLaMA [16] proposes an effective method to accomplish speech-
to-text tasks by leveraging Connectionist Temporal Classification
(CTC) [19] model and audio encoder to map the compressed acoustic
features to the continuous semantic space of the LLM. Compared to
understanding speech, enabling LLMs to generate speech is consid-
erably more challenging, given that speech is a continuous signal
significantly deviating from the output space of LLMs. To enable
speech generation ability, existing works such as SpeechGPT [20]
and AudioPalLM [21] employ the approach of directly fine-tuning a
pre-trained LLM, which requires substantial computational resources
and time. How to effectively enhance LLMs with the capabilities for
speech synthesis remains a relatively unexplored area.
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To better understand this task, we are going to answer two
questions: 1) Can the codec codes be treated by LLMs simply as
a kind of language similar to other natural languages? 2) What
kind of information can LLMSs provide to improve the quality of
synthesized speech? To answer these two questions, we propose and
compare several integration approaches to enable the LLMs with
speech synthesis capability. In this study, we focus on zero-shot text-
to-speech (TTS) tasks following the state-of-the-art model VALL-
E [22], which mainly uses an auto-regressive (AR) Transformer [23]
decoder model to predict the discrete token of speech depending on
the corresponding textual tokens. To enhance the speech generation
of LLMs, we first discretize the continuous speech into multi-layer
discrete codec codes via audio compression model Encodec [24], and
expand the vocabulary of LLMs with the vocabulary of codec codes,
e.g., 1024 tokens. We design three combination strategies to achieve
the first-layer codec code prediction with LLM, like the AR model
in VALL-E, as follows:

o Directly Fine-tuned LLMs. We directly fine-tune large lan-
guage models via paired text and codec codes from speech
recognition dataset, with full parameters or partial parameters
(LoRA [25]), as shown in Figure 1.

o Superposed LLMs and VALL-E. Figure 2 illustrates this
strategy that we superimpose the two models into one model. In
this method, we use the large language model to encode both
textual tokens and acoustic tokens, and then we feed them into
the codec language model VALL-E.

o Coupled LLMs and VALL-E. As shown in Figure 3, we use
an additional text-based large language model to encode the
text sequence and then input them into the VALL-E AR model.
The coupled method differs from the aforementioned superposed
approach as it does not utilize LLMs to model codec codes.

After that, we use the non-autoregressive (NAR) model of VALL-E
to generate codec codes of the rest quantizers, and utilize the Encodec
decoder to recover the waveform of the speech. Models are trained
on 44.5K hours Multilingual Librispeech English data and 960 hours
LibriSpeech data and evaluated on LibriSpeech dev-clean, dev-other,
test-clean, and test-other datasets. Experimental results demonstrate
that coupled LLMs and VALL-E can achieve the best performance
among baseline and our methods. Additionally, we perform thorough
analyses of various facets of our approach, examining the impact
of model size, continuous pre-training, and the pre-trained VALL-E.
Based on the results, we can draw conclusions as follows:

« Codec codes can not be simply treated as another language since
the results of directly fine-tuned LLM are not promising. The
reason could be that, the sequence length of codec codes is
much longer than the length of corresponding text, and also the
information provided by codec codes is much more fine-grained
and more diverse than that of text.

o While LLMs with LoRA may not excel at generating codec
codes, they can serve as a unified encoder for processing both
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Fig. 1. Method A: Directly fine-tuned LLMs where LLMs are trained for
predicting codec codes with an expanded vocabulary.
text and codec codes. The outputs generated by LLMs can
provide valuable representation for a codec language model
(e.g., VALL-E) to produce more accurate codec codes.

e LLM can be used as a powerful text encoder alone that can
model pertinent and extensive content information, which is
instrumental for VALL-E to generate speech of superior quality
and enhanced robustness. The structure using LLM as a text
encoder, coupled with a dedicated decoder module such as
VALL-E, achieves the best performance.

II. METHODOLOGY

In this section, we first introduce model components in the pro-
posed framework in subsection II-A, including large language model,
speech compression model, and codec language model, then present
three integration strategies for LLMs and VALL-E in subsection II-B.

A. Model Components

There are three core components in our framework including a
large language model (i.e., OPT [26] or LLaMA [2]), a speech
compression model (i.e., Encodec [24]), and a codec language model
(i.e., VALL-E [22]). The large language model is employed to model
textual tokens, with the option to include acoustic tokens as well.
Meanwhile, the speech compression model is tasked with transform-
ing continuous speech into discrete codec codes and subsequently
reconstructing speech from these codes. Additionally, the codec
language model is used to generate codec codes conditioning on the
representation of textual tokens.

a) Large Language Model: We conduct experiments with vari-
ous large language models including OPT [26] models with different
sizes including 125M, 350M, and 1.3B, and the LLaMA-7B [2]
model. These models will be adapted using either full fine-tuning
or parameter-efficient fine-tuning methods such as LoRA [25].

b) Speech Compression Model: To enable the LLM with speech
generation ability, we utilize an external speech compression model
EnCodec [24] to convert continuous speech into discrete codec codes.
EnCodec model is a convolution-based encoder-decoder network with
residual vector quantization (RVQ) method. It first tokenizes speech
data into L-layer acoustic tokens, and then recovers the speech
waveform from all acoustic tokens using EnCodec decoder. In this
paper, we adapt EnCodec with 6 kbps bandwidth and L=8 tokens.

¢) Codec Language Model: The neural codec language model
VALL-E [22] treats text-to-speech synthesis as a language model
task and employs acoustic tokens as an intermediate representation
of original speech. VALL-E contains two key modules, the auto-
regressive (AR) codec language model and the non-autoregressive
(NAR) codec language model. The former predicts the acoustic
tokens of the first codec code for each frame in an auto-regressive
manner, and the latter is used to generate the other 7-layer codes
according to the sequence of the first-layer codes in parallel with the
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Fig. 3. Method C: Coupled LLMs and VALL-E, where the better text

representation provided by LLM is regarded as the textual input of VALL-E.

layer-level iterative generation method. In this work, we follow the
VALL-E AR model, to augment LLMs with speech synthesis ability.
B. Integration Strategies

We propose three methods to boost large language models with
speech synthesis capability. Figure 1, 2, and 3 illustrate the different
methods, including directly fine-tuned LLMs (Method A), superposed
LLMs and VALL-E (Method B), and coupled LLMs and VALL-
E (Method C). Initially, we propose to directly fine-tune LLMs
in Method A to determine if acoustic tokens can be integrated
into LLMs by treating them as a novel language. Furthermore,
through Method B, we assess the capability of LLMs to encode
both acoustic and textual tokens into a unified continuous embedding
space, enhancing the performance of VALL-E in text-to-speech tasks.
Finally, in Method C, we explore the potential of leveraging only the
text encoding proficiency of LLMs to improve TTS outcomes without
regarding acoustic tokens as a new language.

a) Method A: Directly Fine-tuned LLMs: In order to verify
whether acoustic tokens can be incorporated into LLMs by simply
regarding it as a new language, enabling the joint training of both
acoustic and textual tokens, the most straightforward approach in-
volves fine-tuning language models directly with TTS training data
by either full fine-tuning or parameter-efficient fine-tuning, as shown
in Figure 1. Through training on TTS data, we also augment large
language models with speech synthesis ability at the same time. In
practice, we found that using parameter-efficient fine-tuning methods
such as LoRA in this way is less effective and results in relatively
poor performance. We speculate that this is because large language
models do not have the ability to generate codec codes inherently
and it is more difficult for LLMs to generate speech than understand
speech signals. Therefore, we directly fully fine-tune LLMs as one
kind of approach that endows LLMs with speech synthesis ability.



TABLE I
MAIN EVALUATION RESULTS ON LIBRISPEECH DEV-CLEAN DATASET. FT*
MEANS FULL FINE-TUNING, AND OTHER MODELS ADOPT LORA
TECHNIQUES. VALL-E IS THE TEXT-TO-SPEECH BASELINE, METHOD
A/B/C ARE INTRODUCED IN SECTION II-B, AND INFERENCE STRATEGIES
I/TI/IIT ARE LISTED IN SECTION III-D.

Strategy 1 Strategy 11 Strategy 11T
WER| SSt SNt WER|] SSt SNt WER| SSt SNt

Methods LLMs

VALL-E 439 052 326 427 058 328 131 056 327

TT T T T T T OPIB0M T T T10.287 7049 T 3207 T974 T 7053 T 321 7397 T 050 T320
A OPT-350M FT 421 053 328 408 060 329 128 058 328
LLaMA-7B 9.61 049 320 919 054 321 363 051 321

TT g T OPTSOMT T A2 T 7053 T 3287 T304 T 06l 329 T TI25 T 057 T320 7
LLaMA-7B 405 053 329 382 061 330 123 058 3.29

TT ¢ T T OPIBNMT T 73997 7058 73307 3727 061 3207 126 T 059 T330
LLaMA-7B 391 054 329 366 061 330 122 059 329

b) Method B: Superposed LLMs and VALL-E: Inspired by the
observation of Method A introduced above, we aim to further explore
the suitability of LLMs for encoding both acoustic tokens and textual
tokens into continuous embedding space so that this representation
can be used by VALL-E to perform TTS tasks better. As shown in
Figure 2, in this approach, we superpose the pre-trained LLMs and
VALL-E models to promote the speech generation ability of LLMs.
Both textual tokens and acoustic tokens are encoded by LLM, and
are sent to the codec language model to predict the first-layer codec
code. Besides, a linear projection layer is added between LLM and
codec language model to bridge the dimension gap between them.

¢) Method C: Coupled LLMs and VALL-E: Given the distinct
roles and strengths of LLMs and VALL-E, it would be interesting
to investigate the effect of only utilizing the text encoding ability
of LLMs, instead of treating acoustic tokens as a new language
in previous methods, to promote TTS performance of VALL-E.
Therefore, another natural idea is to take full use of the advantages of
LLMs and VALL-E, and cascade the pre-trained LLMs and VALL-E
into an end-to-end model. LLMs excel at encoding and generating
text, while VALL-E specializes in producing speech tokens based on
textual tokens. Hence, in this text-to-speech framework, we first use
LLMs to encode text and get better text representation, then feed it
to VALL-E as text input, as shown in Figure 3. In this method, we
also incorporate a linear projection layer between the LLM and the
codec language model to reconcile the disparity in dimensions.

III. EXPERIMENTS
A. Experiment Setup

a) Dataset: Pre-trained models are fine-tuned on two ASR
datasets, which can also be used to train TTS tasks as VALL-
E (X) [22], [27], [28]. Specifically, we use LibriSpeech (LS,
960 hours) [29] and the English part of Multilingual LibriSpeech
(MLS) [30].The Multilingual LibriSpeech is a SOK-hour ASR corpus
including 8 languages derived from read audiobooks of LibriVox,
where English accounts for about 44.5K hours predominately. We
evaluate our proposed methods on the LibriSpeech dev-clean, dev-
other, test-clean, and test-other datasets. We use the samples that
range in duration from 4 to 20 seconds from these datasets.Following
[22], we use the first 3 seconds of the ground-truth speech as prompts
for each sample synthesis. Each experiment is conducted thrice, with
the average score being reported.

b) Data Preprocessing: To unify the training of speech and text
modalities, we transform both into discrete tokens. In our approach,
ASR data transcriptions are tokenized into subwords (semantic to-
kens) with the tokenizer from large language models. Meanwhile,
speech data are quantized into acoustic tokens using the EnCodec,
which operates at a 6 kbps bandwidth and a downsampling ratio of
320, producing 8 acoustic tokens per frame and 75 frames per second
of audio. We concatenate the semantic tokens and corresponding
acoustic tokens to form a cohesive training sample.

TABLE 1T
SUBJECTIVE EVALUATION RESULTS ON LIBRISPEECH DEV-CLEAN
DATASET.

Methods LLMs MOS SMOS CMOS
_Ground Truth - 4343043 4161023 0.00_
__VALLE - 409:i0a9 _3.99i0026 _ 049

c OPT-350M  4.1540.17 4.02+40.21 -0.37
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Fig. 4. WER results of using different model sizes in Method A under three
inference strategies introduced in Section III-D.

B. Training Details

For Method A, we employ both LoRA and full fine-tuning tech-
niques to train OPT models. However, due to computational resource
limitations, we exclusively utilize LoRA for training the LLaMA-
7B model. Additionally, we augment the LLMs’ vocabulary with
acoustic tokens, specifically incorporating 1024 Encodec tokens in
our configuration. In Method B, we introduce LoRA parameters to
LLM and codec language model respectively. The LLM is initialized
with either a pre-trained OPT-350M or LLaMA-7B, while the codec
language model is initialized with a pre-trained VALL-E. We also
expand the vocabulary of LLM with acoustic tokens like Method
A. Besides, the input acoustic and textual embeddings from VALL-
E are omitted, as the LLM now provides the representations for
both acoustic and textual tokens. Similarly, in Method C we also
add LoRA parameters to pre-trained LLM and pre-trained VALL-E
respectively, and discard the textual token embedding of VALL-E.
We fix the LoRA parameter to R = 64 for adjusting self-attention
parameters. Consequently, using Method A for LoRA training yields
approximately 14M trainable parameters for OPT-350M and 71M for
LLaMA-7B. In contrast, Method B incorporates codec code embed-
ding, LoRA, and linear projection, resulting in around 21M trainable
parameters for OPT-350M and 82M for LLaMA-7B. Meanwhile,
Method C reduces the count of trainable parameters to 20M for OPT-
350M and 78M for LLaMA-7B, as it does not utilize codec code
embedding for the LLMs. Our models are trained using the Adam
optimizer with 1 = 0.9 and B2 = 0.98 [31]. All models are trained
on TTS tasks for 400K steps on 32 V100 GPUs with a batch size of
100 seconds per GPU. The maximum learning rate is 5 x 10™* with
a warm-up step of 40K. We follow the configuration of VALL-E to
train our non-autoregressive language model as introduced in Section
1I-A. We implement all those models by using the fairseq toolkit [32].

C. Evaluation Metrics

We use the automatic evaluation metrics, including the word error
rate (WER), speaker similarity (SS), and speech naturalness (SN) to
evaluate the generated speech for simplicity and convenience. The
WER score is obtained by an open-source Conformer Transducer
model,ranging from 0 to 100. Given generated and prompt speech
utterances, the SS is measured by an automatic speaker verification
(ASV) WavLM [33] model,ranging from -1 to 1. SN score of
generated speech is measured by the open-source NISQA [34].

D. Inference Strategies

After training, we use sampling methods for our models to generate
the acoustic tokens of the first layer codec codes. Specifically, we use
top-p [35] sampling with p = 1.0 and temperature is 1.0. We adopt



TABLE III
EFFECT OF CONTINUAL PRE-TRAINING ON DEV-CLEAN SET WITH
METHOD A AND OPT-350M. MLS+LS MEANS THAT THE FINE-TUNING
DATA ARE MULTILINGUAL LIBRISPEECH AND LIBRISPEECH, AND LS
MEANS LIBRISPEECH ONLY.

Strategy II Strategy 11T

" Strategy 1
Data Method ER|

SSt SNt WERL SST SNt WERL SSt SNt
Train From Scratch 433 0.52 326 410 059 328 130 056 327
MLS+LS Full Fine-tune 421 053 328 408 060 329 128 058 328
Pre-train+Fine-tune 419 0.53 328 403 060 329 126 058 3.8

T 7 7 7 7 7 Train From Scratch ~ 3717 051~ 3267 501 058 328 197 T 055 3287
LS Full Fine-tune 565 050 326 500 057 327 199 053 328
Pre-train+Fine-tune 547 051 326 499 058 329 191 055 330

three different strategies to choose sampled sequences following
previous work [36].

o Strategy I performs one synthesis inference for one text, and
then the sampled acoustic sequence is chosen as the final result.

o Strategy II conducts five inferences for a single text, selecting
the utterance that yields the highest speaker similarity score.

o Strategy III also performs five inferences for a given text and
selects the utterance that exhibits the lowest word error rate.

E. Main Results

We synthesize the English speech of corresponding text prompted
by a 3s English speech utterance on selected samples of dev-clean,
dev-other, test-clean, and test-other datasets, where Table I shows the
results of dev-clean and others are shown in supplementary material.
As summarized in Table I, we replicate the VALL-E baseline using
parameters identical to those of [22], while the proposed three
methods are validated using both LLaMA-7B and OPT-350M models.
We apply the three inference strategies outlined in Section III-D,
evaluating their performance using the metrics of word error rate
(WER), sentence similarity (SS), and speaker naturalness (SN), as
introduced in Section III-C.

According to the experimental results, we can draw three conclu-
sions: (1) Directly fine-tuning LLMs by LoRA performs worse than
the VALL-E baseline model. Although full fine-tuning can mitigate
the problem and achieve comparable performance with VALL-E, it
needs massive computational resources for large models. (2) Method
B, when employed with both the OPT-350M or LLaMA-7B models,
surpasses the VALL-E baseline in terms of WER, SS, and SN, which
demonstrates that augmenting LLM with VALL-E can address the
above challenge with LoRA methods, given that LLMs are capable
of encoding both acoustic and textual tokens and VALL-E shares
a portion of the burden for speech synthesis in LLMs. (3) By
fully leveraging the respective strengths of both components, Method
C achieves the best performance among the proposed methods,
which significantly outperforms VALL-E on word error rate, speaker
similarity, and speech naturalness. Compared to the VALL-E, the
word error rate of Method C with LLaMA-7B is relatively decreased
by 10.9%, 14.3%, and 6.9% under inference Strategy I, II, and III
respectively, the speaker similarity is relatively improved by 0.02,
0.03, and 0.03, and the speech naturalness is improved by 0.03, 0.02,
and 0.02 respectively.

F. Subjective Evaluation

We conduct subjective evaluations using three types of mean
opinion scores (MOS) including MOS for assessing speech quality,
Similarity MOS (SMOS) for measuring speaker similarity, and Com-
parative MOS (CMOS) for evaluating the comparative naturalness of
the synthesized speech. As shown in Table 1I, method C’s synthesized
speech with LLaMA achieves the best performance across all metrics

compared to VALL-E.
IV. ANALYSIS

To facilitate a clearer comprehension of our method, we conduct
detailed analyses and ablation studies in this section.

TABLE IV
EFFECT OF PRE-TRAINED VALL-E ON DEV-CLEAN SET WITH METHOD B,
WHERE VALL-E IS EITHER RANDOMLY INITIALIZED OR IS LEVERAGED
AS A PRE-TRAINED MODEL. FT* MEANS FULL FINE-TUNING, AND
MODELS WITH PRE-TRAINED VALL-E ADOPT LORA TECHNIQUES.

Strategy 1
WER| SST SNt

Strategy II
WER, SST SNt

Strategy 111

LLM:
s WER] SS* SNt

VALL-E

Randomly (FT*) 4.31 052 327 4.09 059 328 1.36 0.56 327
Pre-trained 4.12 053 328 3.94 0.61 329 1.25 0.57 329
Randomly (FT*) 427 052 327 4.11 059 328 1.32 0.56 3.28
Pre-trained 4.05 053 329 3.82 0.61  3.30 123 0.58 329

OPT-350M

LLaMA-7B

a) Effect of Model Size: The capacity of a large language model
is significantly influenced by its parameter number. Consequently,
we explore the impact of varying model sizes within the OPT
framework through direct full fine-tuning (referred to as Method A in
Table I), examining models with 125M, 350M, and 1.3B parameters.
Additionally, we establish baselines by training these models from
scratch. The results are depicted in Figure 4. The comparison between
the two curves illustrates the effectiveness of using pre-trained LLMs.
The largest OPT model with 1.3B parameters achieves the best
performance overall compared to 125M and 350M. This finding
suggests that increasing the model size could be a viable strategy
for enhancing speech synthesis capabilities.

b) Effect of Continual Pre-training: Since unlabeled speech data
is more common than paired speech-text data, we also investigate
the way of utilizing massive unlabeled speech data to promote
speech synthesis performance of LLMs. Inspired by the next token
prediction objective of decoder-only LMs, we use EnCodec codes of
the LibriLight [37] dataset to continually pre-train LLMs, so that they
can adapt to speech modality better. Then we use paired speech-text
data to fine-tune continually pre-trained models and compare them
with those that have not been continually pre-trained. Table IIT shows
the comparison results of (1) training from scratch, (2) directly full
fine-tuning, and (3) continually pre-training and then full fine-tuning,
on large (MLS+LS) and small (LS) datasets. The experimental results
on Method A with OPT-350M show that the continual pre-training
method achieves significant WER reduction than methods of full fine-
tuning and training from scratch on the small fine-tuning dataset.

c) Effect of Pre-trained VALL-E: To validate the benefits of em-
ploying the pre-trained codec language model VALL-E, we undertake
an ablation study focusing on the impact of random initialization
versus pre-trained initialization. We fully fine-tune the randomly
initialized VALL-E but use LoRA to fine-tune the VALL-E initialized
with pre-trained weights. Table IV delineates the performance dispar-
ity between models with Method B that begin with random weights
and those initialized with pre-trained VALL-E. The results clearly
indicate that initializing with pre-trained VALL-E results in fewer
trainable parameters and significantly surpasses random initialization
across various inference strategies and evaluation criteria.

V. CONCLUSION

In this study, we explore various strategies for incorporating
speech synthesis capabilities into large language models (LLMs). Our
findings show that simply fine-tuning LLMs with LoRA fails to match
the performance of the baseline, indicating the challenge of enhanc-
ing LLMs with speech synthesis capabilities. Further investigation
demonstrates that LLMs augmented with a pre-trained text-to-speech
synthesis model can surpass the performance of the baseline VALL-E
model. In particular, by leveraging the respective strengths of LLMs
and VALL-E, the coupled LLM and VALL-E method achieves the
highest performance among the methods evaluated. Moreover, we
conduct comprehensive analyses to better understand the proposed
LLMs augmented with speech synthesis ability.
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