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Abstract—Robotic manipulation in cluttered environments
presents significant challenges, particularly when the clutter
includes thin, deformable objects like cables, which complicate
perception and decision-making processes. In the context of
datacenters, the automation of networking tasks often involves
the manipulation of optical transceivers within densely packed
cable configurations. Such environments are characterized by
an abundance of delicate, overlapping, and intersecting ca-
bles, leading to frequent occlusions. This paper introduces an
innovative system designed for the manipulation of optical
transceivers in environments cluttered by cables. Our integrated
approach combines advanced 3D scene understanding with a
heuristic-based pushing policy to effectively manipulate optical
transceivers amidst clutter. The system’s perception component
utilizes image segmentation and 3D reconstruction to accurately
model the transceivers and surrounding cables. Meanwhile, the
planning aspect employs a search algorithm with task-specific
heuristics, to navigate the gripper, displace obstructing cables,
and safely achieve a precise pre-grasp position in front of the
target transceiver. We have conducted extensive evaluations of
our methodology in both simulated and real-world settings,
demonstrating its high success rates, robustness, and proficiency
in addressing the unique challenges posed by cable-occluded
environments within datacenters.

I. INTRODUCTION

Optical fibers have become the backbone of cloud network-
ing in modern datacenters, supporting thousands of intercon-
nected devices and vast amounts of data traffic. The scale
of networking in these facilities necessitates efficient man-
agement and maintenance to ensure optimal performance.
Consequently, there is a growing need for the automation
of networking operations, including the manipulation of
optical transceivers and fibers. However, this automation is
significantly hindered by densely packed cable arrangements.

Datacenters typically consist of numerous optical switches
installed on racks, each hosting up to 96 transceivers, with
many switches stacked within a single rack. This setup results
in hundreds of optical cables within a rack, leading to sig-
nificant cable overlap and intersection. These environments
are characterized by numerous deformable and fragile optical
cables routed through racks and connected to switches. The
dense and complex arrangement of these cables complicates
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Fig. 1: Grasping and manipulating an optical transceiver in a
cable-occluded environment. The gripper pushes downwards
neighboring cables to reach the target pre-grasping pose and
finally perform the task.

the identification and isolation of individual transceivers and
makes it difficult to manipulate them without disturbing
adjacent cables. The susceptibility of these cables to damage
presents substantial challenges for robotic systems tasked
with accurate and safe manipulation, further complicating the
automation of networking operations.

Recent research has mainly focused on object manipulation
in clutter involving rigid objects [1]–[7]. In contrast, the
unique complexities introduced by the deformable nature
of optical cables have been less frequently addressed [8].
Handling deformable objects, such as cables, ropes, and
fabrics, presents significant challenges due to their complex
dynamics which makes it difficult to predict the object’s be-
havior [9]–[11]. This unpredictability can lead to inaccurate
manipulation and potential damage to the cables.

This paper addresses the challenge of dexterous manipu-
lation in environments where occlusion arises from numer-
ous deformable linear objects in close proximity. In such
environments, there is not enough free space between the
objects for the robotic gripper to be placed safely without
disturbing surrounding objects. The unpredictable dynamics
of deformable objects further complicates the task, as they
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make it difficult to predict behavior and isolate individual
objects without disturbing adjacent ones. A typical example
is the datacenter networking infrastructure, where optical
fiber cables are routed in a semi-structured manner, and
optical transceivers are placed in close proximity to each
other (Fig. 1). This setting is the primary focus of this paper.

Specifically, we are interested in grasping and reseating of
optical transceivers (Fig. 1) placed in ports of a switch device.
The reseating process involves grasping the transceiver by its
pull tab, disconnecting the transceiver from its port (without
complete removal) and subsequently reconnecting it. To
accomplish the task the robot should be able to identify the
pull tabs and cables in the environment, plan a manipulation
strategy, and navigate with minimal contact with the sur-
rounding cables. The system should ensure safe manipulation
of the optics. The density of the clutter is influenced by the
degree of cable overlap and intersection, which intensifies
with the number of cables and their spacing (Fig. 2). Cables
are often bundled with ties, adding rigidity and increasingly
occluding the ports towards the edges of the switch. This
paper concentrates on environments with moderate clutter,
featuring a single row of cables. Despite the proximity
of multiple cables, some free space remains for the robot
to access the target transceiver. However, the cables can
be tangled and intertwined, complicating the isolation and
manipulation of a single cable without affecting others. The
robot must navigate around the cables with minimal contact.

To address these challenges, we propose a novel approach
that combines advanced perception techniques and heuristic-
based planning. Our perception module segments RGB im-
ages and reconstructs the scene in 3D to accurately model
the transceivers and cables in the environment. The planning
module then employs heuristic methods to find a path using
A* search and navigate through the cables, pushing them
aside if necessary to create sufficient space to safely grasp the
transceiver. We demonstrate the effectiveness of our approach
through extensive simulations and real-world experiments on
a robotic platform, showcasing its robustness. While our so-
lution is currently optimized for environments with moderate
cable density, we also explore potential avenues for enhanc-
ing our approach to tackle more complex scenarios in the
future. Overall, this work holds significant implications for
automating networking operations in datacenters, potentially
leading to increased efficiency, availability, and reliability.
Beyond datacenter networking, we believe our approach has
broader applications, such as in agricultural operations (e.g.,
fruit harvesting), where deformable linear objects (e.g. tree
branches) contribute to environmental clutter.

II. RELATED WORK

a) Cable Segmentation: Learning-based methods, par-
ticularly vision foundation models, are extensively utilized
for cable segmentation. [12] employs a two-stage decoder
that labels and subsequently removes wires from an image,
utilizing a coarse-to-fine approach. [13] utilizes the Segment
Anything Model (SAM) with text prompts to segment ropes
from images. For data collection, [14] captures a cable
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Fig. 2: The complexity of clutter depends on the degree of
overlap and intersection among cables.

dataset in front of a green screen, facilitating easy back-
ground replacement. [15] proposes generating training data
by overlaying synthetic foreground cables on real background
images. [16] uses cable coating with UV-fluorescent material
to capture cable masks under UV lighting. To the best of our
knowledge, there is no publicly available dataset for cable
segmentation that matches the complexity of a datacenter.
Several works focus on instance segmentation to distinguish
individual cables in 2D mask images. [17], [18] traces wire
trajectories by grouping mask segments into super pixels.
[19] segments masks into isolated parts and then connects
these segments to form longer wires. [20] proposes a method
to track wires by minimizing bending energy. However, all
these methods necessitate a clear separation of cables in the
mask images, which is often unfeasible with real-world data.

b) 3D Reconstruction: Due to the 3D nature of cables,
the separation of each cable could be more efficient in 3D.
However, because of the thin structure and lack of feature
points, cables pose significant challenges for general-purpose
multi-view stereo-based 3D reconstruction [21], [22], which
often fails to produce satisfactory results. Neural Radiance
Fields (NeRFs) is capable of reconstructing complex geome-
tries with high quality, but struggles with thin wires due to the
limited resolution of the grid [23]. More recently, Gaussian
splatting has gained traction in 3D reconstruction [24]. Its
continuous representation of 3D Gaussians makes it well-
suited for representing thin wires. There have also been ef-
forts to reconstruct wires from calibrated RGB images [25]–
[27]. However, these approaches typically assume that wires
are sparse in space and often fail when isolated wires cannot
be clearly separated in 2D images. Additionally, there are
methods for recovering curves from point clouds [28], [29],
but these approaches assume the availability of a relatively
complete point cloud of the cables.

c) Deformable Object Manipulation: For non-model-
based deformable object manipulation, [30] selects the clos-
eted human demonstration in shape, while [10] directly learns
a policy from demonstration data. In contrast, model-based
approaches can utilize self-supervised learning to predict the
behavior of deformable objects, with techniques that rely on
image data [31], [32] and state-space information [33]. [11]
introduces gradient-based action estimation to increase the
complexity of tasks that can be addressed. Further, planning
and control can be decoupled to accommodate different
representations of deformable objects [34] or to improve error
compensation in cluttered environments [35]–[37]. Sim2real



methods have also been explored [38]. Specifically focusing
on cable routing, hierarchical imitation learning has been
applied by [39]. [40] achieves this by using tactile feedback,
which is also leveraged for cable tracking [41]. Tracking
has also been further studied in scenarios with partial oc-
clusions [42]. Notably, these approaches typically consider
simpler scenarios with minimal clutter, unlike the complex
environments that our work addresses.

III. PROPOSED METHODOLOGY

Our methodology comprises of two main components:
perception and planning. The perception module handles the
3D reconstruction of the working environment, representing
pull tabs using five key points and cables with point clouds.
This reconstructed environment is then used by the planning
module in order to generate and execute a path.

Our algorithms are implemented on a robot equipped with
two RGB cameras mounted on a two-axis motion stage, as
depicted in Fig. 1. The intrinsic and extrinsic parameters of
the cameras are calibrated using a chessboard [43], and the
cameras are subsequently aligned to the working space using
Aruco markers attached to the machine at predetermined
positions. This setup ensures knowledge of the machine’s
pose relative to the robot’s. Additionally, we assume prior
knowledge of the 3D models of the switches, which includes
the port locations with respect to the switch.

A. Perception

To ensure dexterity and safe manipulation, it is crucial
to perform accurate 3D reconstruction of the working en-
vironment, including the pull tabs of the optical transceivers
(the target of the robot’s movements) and the cables (the
obstacles the robot needs to avoid). Pull tabs are used to
insert and remove optical transceivers from the switch ports,
vary in shape, size, and color, and may deform with use. We
represent the overall shape of each pull tab using five key
points, which delineate the region for the robot’s gripper to
hold, as shown in Fig. 3b. The cables are elongated with no
fixed shape, and we use point clouds to represent them.

Since datacenters usually have strict access limitations,
real data is difficult to collect. To overcome this challenge,
we developed an algorithm that integrates stereo vision
with segmentation. For pull tabs, key points detection is
performed on segmentation images using the Segmentation
Anything Model (SAM) [44]. For cables, we perform 3D
reconstruction using Gaussian Splatting [24] and point cloud
refinement with a fine-tuned SAM model tailored for cables.
The difference between synthetic and real segmentation im-
ages is minimal, allowing us to train the neural network using
synthetic segmented images, which also yields good results
on real segmented images.

1) Pull Tabs: We reconstruct the geometric features of the
pull tab through multi-view methods (Fig. 3). Specifically, we
reconstruct each pull tab separately. The robot moves to the
front of each target pull tab and captures a pair of images with
the two RGB cameras, as illustrated in Fig. 3a. This multi-
view setup ensures comprehensive coverage of each pull tab,
enabling accurate 3D reconstruction.

Fig. 3: Pull tab detection and reconstruction pipeline: (a)
Image pairs acquired to reconstruct each pull tab. (b) Pro-
jection of reconstructed 3D key points on the image. (c) 3D
simplified geometry of pull tabs. (d)-(i) Detailed steps for
pull tab segmentation, key point detection and refinement.

After capturing the images, the five key points of each pull
tab are detected from each image pair. The 3D coordinates
of the key points are then calculated using triangulation [45]
from each image pair. The projected key points of all pull
tabs are shown in Fig. 3b, and the pull tabs can be visualized
using simplified proxy geometry, as depicted in Fig. 3c.

To detect the key points of the pull tab from the image,
SAM is employed to segment the target pull tab. The approx-
imate position and orientation of the pull tab in the image
are known due to prior calibration. As shown in Fig. 3d, the
initial segmentation is achieved by providing range borders
and background points as prompt to SAM. A neural network
then detects five shape key points k1 - k5 (Fig. 3f) on the
segmented image of the pull tab (Fig. 3e).

As the shape of pull tabs varies, the background points of
the SAM prompt may be placed on the pull tab (Fig. 3d),
resulting in inaccurate segmentation and key points detec-
tion.To solve this problem, we perform refinement based
on the initially detected key points to improve the result.
The background point is adjusted to the center of the four
key points k1 - k4, while two foreground points (center of
k3&k5 and k4&k5) are added to SAM prompt (Fig. 3g). This
refinement ensures a clear segmentation (Fig. 3h) and more
accurate key points detection (Fig. 3i).

One significant advantage of key point detection on the
segmented image is that it does not require a large amount
of difficult-to-obtain real data. Instead, 3D modeling software
is utilized to generate extensive synthetic data for training.
A 3D model of the pull tab was designed in Blender, with
adjustable parameters to mimic various real-world conditions,
such as bending and twisting. We generated 10,000 pull tab
data samples with random parameters and trained the neural
network for key points prediction using MobileNetV3 [46].
During training, we applied random cropping, noise addition,
occlusion, and other enhancements to the segmented images



to improve the neural network’s robustness.
2) Cables: Cable reconstruction is a challenging task

due to the thin structure, lack of distinctive feature points,
and similar coloration among different cables. Additionally,
cables are flexible and deform with robot movements, further
complicating the reconstruction process. To address these
challenges, we designed a two-level process: global cable
reconstruction using Gaussian Splatting and multi-view local
fast estimation based on segmented images.

For global cable reconstruction, the robot first scans the
entire working area to capture several RGB images (e.g.,
over 50 positions). Utilizing the 2D Gaussian Splatting al-
gorithm [47], we reconstruct a comprehensive point cloud
of the entire scene. Concurrently, we segment the RGB
images to get cables masks with cable SAM, and project
the point cloud onto each mask to filter out non-cable points.
Finally, we perform cable tracing to isolate each cable on
the point cloud. Using Principal Component Analysis (PCA),
we calculate the singular values of the point cloud in a local
region (radius < 15mm). Points where the largest singular
value (λ1) is significantly larger than the second largest (λ2)
(λ1/λ2 > 2.5) are identified as thin tube. Then we use splines
to fit and connect the tube segments, forming a coherent
cable. Other points are treated as general obstacles, which are
mainly cable intersection regions that are difficult to separate.

For local fast estimation, we gather several RGB images
(e.g., 6 images captured at 3 positions with the two cameras)
centered at the region of interest and segment these images
to produce cable masks. Starting from a central cable mask,
we perform ray casting [48] on each cable pixel with a step
size of 1mm. Each sampling point is projected onto all the
other cable masks to check whether it is projected into the
cable regions. The same cable tracing method is performed
on the resulting point cloud to separate each cable.

While the global reconstruction provides superior quality,
it requires a few minutes to reconstruct the whole cable
point cloud, making it less suitable for scenarios that demand
immediate feedback. In contrast, the local reconstruction, al-
though lower in quality, completes in seconds, making it ideal
for real-time adjustments and quick situational assessments.
This dual approach ensures both high-quality mapping and
efficient real-time operations, leveraging the strengths of each
method to achieve a balanced and adaptive perception system.

We employ a fine-tuned SAM to obtain accurate cable
segmentation. Given the thin nature of cables and their
extensive coverage in images, using the original SAM with
point or box prompts cannot guarantee that the segmented
objects are cables. We fine-tuned SAM using synthetic cable
images generated in MuJoCo [49], to enhance performance.
We combined those with background images of server racks
for training. This fine-tuned SAM demonstrated excellent
cable segmentation results on real images.

B. Planning

The planning module assumes a rectangular-shaped gripper
approximated by its bounding box, with its tip’s position
denoted pt. The objective is to find the shortest path from

the gripper’s initial position p0 ∈ R3 to the pre-grasping
goal position pp ∈ R3, while navigating through deformable
cables. The pre-grasping goal position pp is placed below
the tip of the pull tab, which is known from the pull tab key
point k5 given by the perception system, as shown in Fig. 5.
After the gripper reaches the pre-grasping goal position, then
it is guided to the final grasping position pf placed below
the transceiver, given the key points k1,k2, to finally grasp
the transceiver and reseat it.

Traditionally, motion planning assumes that every object
in the scene is an obstacle to be avoided [50]. In contrast,
in our task, the most ideal strategy is to clear obstacles to
the pre-grasping goal position pp by contacting and pushing
some cables away. We use A* search with heuristics that
incorporates intuitions about the problem and guides the
search towards finding paths that safely push the cables away
for the gripper to reach the pp.

We model the cables with point clouds provided by the
perception module, as described earlier. The planning module
classifies the point clouds of the cables into two categories:
target cable and obstacle cables. We call target cable the
cable that it is attached to the transceiver that we want to
manipulate and obstacle cables the rest of the cables. The
target cable is identified by fitting a spline to each point
cloud. The spline closest to k5 corresponds to the target cable.
We then create two point clouds based on the point clouds
provided by perception, one that includes points only from
the target cable and one that includes points from every other
cable. From the point clouds we disregard any points outside
a neighborhood around the target to reduce the search space.
This neighborhood is predefined as a box of dimensions
8× 4× 4 cm, which means that the planner operates locally
around the target, which is adequate as experiments showed
in Section IV.

We consider the task successful if both of the following
conditions are met:

• The gripper is positioned within a predefined distance
ϵ = 1mm from the pp, i.e. ∥pt − pp∥ < ϵ.

• After the gripper reaches pp, only the target cable is
above the gripper’s bounding box.

The second condition ensures that during grasping, the target
cable will be the only cable within the grasp. In any other
case, closing the gripper will result to grasping an obstacle
cable and potentially damage it during the manipulation of
the target transceiver. Notice that the second condition can
be evaluated after executing the plan in either a simulated or
real environment.

A* search creates a grid of 3D points, starting from
the initial position p0 and ending at the pre-grasping goal
position pp, by visiting neighbors of the current position. A
position will not be considered as a possible neighbor, if it:

• will move the gripper forward and will cause the gripper
to collide with a cable (either the target or an obstacle).
In practice, this is evaluated by checking whether a point
has penetrated the front face of the gripper’s bounding
box (see Fig. 5a) during the transition from its previous



Fig. 4: Pipeline of global cable reconstruction.

Fig. 5: Illustration of different components used in the plan-
ning module. (a) With red color the point cloud of the target
cable and with blue color the point cloud of the obstacle
cables. With green the final path produced by the planner.
(b) Side view showing the area front and above the gripper.

position. This is necessary for the search to find a clear
path towards pp.

• will move the gripper forward when there are obstacles
diagonally in front and above of the gripper. This is
evaluated by checking if there are obstacle points located
in the area depicted in Fig. 5b. Moving forward in this
case will result to placing the gripper in a position under
an obstacle, and hence no progress will be made toward
satisfying the second success condition.

• will move the gripper upwards and will result to a colli-
sion of the gripper to an obstacle cable. In practice, this
is evaluated by checking if an obstacle point penetrated
the ”up face” of the gripper’s bounding box (Fig. 5a)
following the transition from its prior position. This
constraint prevents pushing obstacles upward, which
would keep them above the gripper, hindering progress
toward the second success condition.

These heuristics essentially render a cable as an obstacle or
not depending on the direction we approach it. Therefore,
we guide the search to push the cables in certain directions
that will accomplish our task. Then we use the A* algorithm
to find the shortest path to pp given the above constraints.
Subsequently, we interpolate the path of points from A* to
a smooth trajectory that can be executed by the robot using
a spline, as shown with green color in Fig. 5a. Finally, the
gripper moves linearly to the final grasping position pf .

IV. EXPERIMENTAL EVALUATION

To evaluate our proposed method, we conducted a series of
experiments both in simulation and in real-world conditions.
The goals of the evaluation experiments are 1) to evaluate the

Fig. 6: A side by side comparison of a photograph of the
scene (top row) and the global reconstruction result of pull
tabs and cables (bottom row).

Fig. 7: Local reconstruction results of cables.

accuracy of the perception system, 2) to evaluate the accuracy
of the planning system in simulation and 3) to evaluate the
robustness of the integrated system in a real-world scenario.

A. Perception evaluation

To assess the robustness of our reconstruction method,
we conducted experiments across a diverse set of scenarios.
Fig. 6 illustrates the global reconstruction results for the
entire machine. The shapes and distribution of the position
of pull tabs and cables closely correspond to the actual data.
Each cable is segmented and represented in a distinct color,
while white regions denote densely packed areas considered
as general obstacles. Fig. 7 presents the results of local
reconstruction, focusing solely on cables of a local region.

Given the thin nature and shape variability of pull tabs and
cables, obtaining their exact ground truth shapes is challeng-
ing. To visually evaluate the accuracy of our reconstruction,
we projected the 3D key points of pull tabs and the 3D point
clouds of cables onto the image of different views, examining
the accuracy of aligning with real images and consistency
across these projections, as depicted in Fig. 8. The pull tab
key points and cable point clouds align well with the images
from all viewing angles, thereby confirming the accuracy of
our reconstruction. For additional results, please refer to our
supplemental video.



Fig. 8: Validation of reconstruction accuracy by projecting the
3D key points of pull tabs and 3D cable point clouds onto real
images from multiple views. The alignment of the projections
with the real images in all views indicates a highly accurate
reconstruction.

Fig. 9: Samples of simulated moderately dense datacen-
ter scenes that we used to evaluate planning. The target
transceiver is shown with a red-colored pull tab.

B. Planning evaluation in simulation

We first evaluate the method in 1000 random scenes
simulated using MuJoCo [49], as shown in Fig. 9. For
this purpose, we generate random simulated scenes that are
mimicking the conditions of a moderately dense environment
as depicted in Fig. 2b, with enough variability in the cable
configuration to test the robustness of the pushing policy.
First we assume we have a switch device of 36 empty ports.
We randomly choose one of the 18 ports in the top row as
our target port and insert a transceiver into it. Subsequently,
we populate 8 ports adjacent to the target, ensuring that half
of the row (9 ports) is always occupied. Each transceiver
is connected to a cable, which is modeled and simulated
as a cubic spline. The cable is divided into segments, each
represented by capsules measuring 1 cm in length and 1
mm in radius, connected by spherical joints. In reality the
cables are bundled together with ties. In simulation, we model
these connection points as cylinders of radius 1.5cm and
centers placed in the left and right edge of the switch. These
cylinder centers are offset along the height dimension by a
random value between -1 and 1 cm. For each cable, we select
a point within the nearest cylinder to serve as the cable’s
endpoint. This approach simulates the bundling of cables, and
by randomizing these endpoints, we introduce variability in
cable arrangement and potential overlaps, as shown in Fig. 9.

We extract the point clouds of the cables by using as
points the positions of the spherical joints the capsules are
connected and feed them to the planning module. After we
produce a plan and execute it in MuJoCo. A successful
sample is determined by satisfying the conditions outlined
in Section III-B. The overall success rate for this evaluation
is 92.6%. Demonstrations of the executed plans are available
in the accompanying video.

C. Real-world integrated system evaluation

Finally, we conducted experiments in a real-world setup, as
shown in Fig. 1, to evaluate the robustness of our integrated
system. We built a system consisting of a Cartesian gantry

motion stage and a 5-bar linkage fine positioning stage,
equipped with 2 RGB cameras positioned at a 30-degree
angle. The robot is tasked with reseating a transceiver inserted
in a randomly selected port. We conducted 30 trials, each time
changing the cable configuration of the environment. The
robot captures pairs of RGB images with its two cameras,
then moves to different positions to collect images for the
perception module. The planner produces a path for the
gripper’s tip, which is executed by the robot using its inverse
kinematics. The robot pushes the cables aside to create a
free space for the gripper to reach the transceiver. After
reaching its goal position, the robot grasps the transceiver of
the target port and performs the reseating. The policy attains
a success rate of 83.3%. The majority of failures occurred
at the switch’s edge ports, where cable density is higher due
to the cable bundling to a shared endpoint. In general, the
robot accurately grasped the transceivers and reinserted them
without inflicting any harm to adjacent cables. Successful
trials, as well as some instances of failure, are showcased in
the accompanying video.

V. CONCLUSION AND FUTURE WORK

This paper addressed the challenges of dexterous ma-
nipulation in cluttered datacenter networking environments,
focusing on moderately dense settings where deformable
linear objects obstruct access to objects of interest. We
introduced a novel method that integrates advanced percep-
tion with heuristic-based planning to effectively manipulate
optical transceivers in such scenarios. This methodology was
successfully implemented and validated on a real robotic plat-
form, showcasing its robustness and efficacy in overcoming
cable occlusion challenges. The findings of this study hold
significant promise for automating networking operations
in datacenters, potentially enhancing efficiency, availability,
and reliability. Moreover, we believe that our approach has
broader applications in fields such as agriculture, where envi-
ronmental clutter from deformable linear objects is common.

Despite the promising results, our method has certain
limitations. Color variations can affect the success of our
reconstruction algorithm, particularly when segmenting black
pull tabs and cables in dark environments; this could be mit-
igated with active lighting. Additionally, our upright camera
setup limits reconstruction to upright pull tabs, making it
difficult to handle transceivers positioned bottom-up or side-
up. This issue could be resolved by placing the robot on a
rotational stage for more versatile camera angles. Finally, to
reduce the failure rates of the robot grasping, redesign of the
gripper is necessary.

Our approach is currently optimized for environments with
moderate cable density, featuring a single row of cables.
However, the complexity of the task increases with denser
environments, multiple rows of cables, and greater cable
overlap and intersections. Future work will focus on ex-
tending our approach to such scenarios, exploring alternative
methods for parting cables to create space for the robot to
access target transceivers. We plan to construct a benchmark
dataset with a high-precision 3D scanner to quantitatively



measure the reconstruction accuracy. We also plan to in-
vestigate dynamic environments where cables move as the
robot interacts with them, necessitating real-time perception
and planning updates. Additionally, we aim to study the
impact of different camera positions on the efficiency of our
approach and explore using a single camera to gather stereo
information by moving the robot, reducing its form factor.
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