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Abstract—Obtaining word timestamp information from end-
to-end (E2E) ASR models remains challenging due to the lack
of explicit time alignment during training. This issue is further
complicated in multilingual models. Existing methods, either rely
on lexicons or introduce additional tokens, leading to scalability
issues and increased computational costs. In this work, we
propose a new approach to estimate word boundaries without
relying on lexicons. Our method leverages word embeddings
from sub-word token units and a pretrained ASR model, re-
quiring only word alignment information during training. Our
proposed method can scale-up to any number of languages
without incurring any additional cost. We validate our approach
using a multilingual ASR model trained on five languages and
demonstrate its effectiveness against a strong baseline.

Index Terms—Multilingual ASR, word timing, duration mod-
elling, forced alignment

I. INTRODUCTION

Downstream Automatic speech recognition (ASR) tasks,
such as speaker diarization [1] and voice editing, frequently
depend on precise word timestamp information. However,
this information is challenging to obtain from end-to-end
(E2E) ASR models [2], [3], including Connectionist Temporal
Classification (CTC) models [4]–[6], attention-based encoder-
decoder (AED) models [7]–[9], and transducer models like
recurrent neural network transducers (RNN-T) [10]–[12] and
transformer-transducers (T-T) [13], [14]. These models typi-
cally lack explicit time alignment information during training,
which impedes their ability to reliably predict the start and end
times of the recognized words. This challenge is exacerbated
in multilingual models that are designed to transcribe multiple
languages using a single model.

To address this issue, various methods have been proposed
in the literature [15]–[20]. For example, Zhao et al. [20]
suggested estimating the probability of context-independent
(CI) phones per acoustic frame. This approach utilized a
simple linear layer to project an ASR encoder embedding
onto the CI phone space. During evaluation, the phonetic
expansion of the word sequence was generated, and a Viterbi
algorithm was used to align the estimated CI phones with the
phone sequence derived from the lexicon. This straightforward
method proved surprisingly effective, providing reliable word
boundary estimates at a low computational cost. However, its
dependence on the lexicon made it challenging to scale to mul-
tilingual models. Additionally, this method in the multilingual
setup requires language identification information for each

word to select the appropriate lexicon, which is not always
reliable.

Alternative approaches to word time estimation that do not
rely on a lexicon have also been explored. Sainath et al. [19]
applied constraints during training to enhance word timing
accuracy. They introduced an extra token, “word boundary”
to mark the word start time and used the last word piece to
indicate the word end time. While this method gave reliable
word timing accuracy, it increased training costs and might
cause significant ASR accuracy degradation due to the added
“word boundary” token. The SubWord Alignment Network
(SWAN) proposed by Kang et al. [21] is an interesting
approach aimed to estimate word timing without phonetic
information. However, it requires alignment at the subword-
unit or token level, which is harder to obtain when scaling
the model across multiple languages. The model also relies
on a voice activity detector (VAD) to manage silence frames,
which can further increase computational costs. Jiang et al.
[22] proposed directly predicting the duration of each word
using an aligner module. A novel cost function was proposed
where the model directly predicts the normalized duration of
the word instead of predicting the presence of a word or
sub-unit. The aligner model was however trained only on a
monolingual ASR model.

In this work, we draw inspiration from the speaker diariza-
tion community to propose a method for obtaining word timing
without relying on lexicons. The target speaker voice activity
detector (TS-VAD) [23], [24] uses speaker embeddings and
Mel filterbanks as inputs to determine speaker activity. In
our method, we instead learn word embeddings using sub-
word token units and a pretrained ASR model as part of
our proposed ‘Target word activity detector’ (TWAD) model.
Using these embeddings we estimate ‘word activities’, or the
acoustic frames at which the word is active, and derive word
boundaries in an audio segment.

Our approach can scale to any number of languages without
the need for any type of lexicons. The TWAD model only
requires word alignment information during training, which
is easier to obtain compared to the phonetic or sub-word
level alignment needed in previous methods. To validate our
approach, we tested it using a multilingual ASR model trained
on five languages: English (EN), French (FR), Spanish (ES),
Italian (IT), and German (DE). We also compare the word
time estimation metrics against a strong baseline.



II. TWAD MODEL ARCHITECTURE

The Target Word Activity Detector (TWAD) model is de-
signed to identify word activity within a given speech signal.
The model architecture is in Fig. 1. The input to the model is
the encoder embedding, which can be derived from any layer
of the encoder. Let x be the output of the encoder embedding
for the speech signal: X = {x1, . . . ,xn, . . . ,xN} ∈ RN×F ,
where N represents the total number of frames and F denotes
the dimension of the encoder embedding.

The Automatic Speech Recognition (ASR) transcription,
denoted as t, contains W words: t = {w1, . . . , wi, . . . , wW }.
Each word wi in the sentence t can be decomposed into a set
of tokens using a tokenizer. If wi is the vector representing
the tokens of the word wi, then wi = {si1 , . . . , siS}, where
S is the maximum number of tokens. Consequently, the
entire sentence t can be represented by a set of tokens:
t = {{s11 , . . . , s1S}, . . . , {sW1

, . . . , sWS
}}.

The decoder embedding is used to generate a sentence
representative matrix T ∈ RW×S×D, where D is the token
embedding dimension. The TWAD model takes X and T as in-
put features and estimates a word activity matrix Â ∈ RN×W .

The first module of the TWAD model is the word embed-
ding estimator, which employs a bidirectional Long Short-
Term Memory (BiLSTM) network. This module estimates an
embedding for every word in the sentence using the token
embeddings from the matrix T. The final output from the
bidirectional LSTM is concatenated and passed through a
linear layer, resulting in an embedding for each word in
the sentence, effectively collapsing the token dimension in
the process. Importantly, the model does not require explicit
token alignment information during training, as the objective
is to derive word embeddings based on the tokens. Moreover,
acquiring precise token level alignment data is inherently
challenging.

The word embeddings are concatenated with each frame of
the encoder embedding X to create a combined 3-dimensional
representation that includes both word and acoustic embed-
dings. This process involves replicating each xn by a factor
of W , resulting in a matrix of shape RW×N×F . The word
embedding is then concatenated to form a joint representation
matrix with the shape RW×N×(F+D1). Finally, this matrix is
projected onto a smaller dimensional space D2 using a linear
layer. To capture the temporal correlation between features, a
BiLSTM is applied along the time axis of the 3-dimensional
matrix, followed by another BiLSTM along the word axis to
model correlations between words. A linear layer is applied to
reduce the final embedding to a single dimension. A softmax
activation function applied along the word dimension, yields
the probability of each word, p(wi|xn).

Cross-entopy is used as a loss function to train the TWAD
model, which is defined as:

L(A, Â) =

N∑
n=1

W∑
i=1

In(wi) log(p(wi|xn)

where A is a matrix of size RN×W containing the ground truth
word activity information, and In(wi) is an indicator variable
that signals the presence of the word wi in the n-th frame.

The TWAD model can be trained to estimate any number
of word activities in an audio segment, but for efficient batch
creation, the maximum value of W is set to 100. The first
word in A is always set to silence. The rest of the words in
A are arranged in the same sequence as they appear in the
sentence. An example of the estimated matrix Â is shown in
Fig. 2.

The estimated word timing matrix Â, can be noisy. To
obtain the word boundaries from Â, a discrete time warping
(DTW) algorithm is used. An optional silence is inserted
between all words before DTW. This allows for pauses or
silence in-between words or towards the beginning or end of
the utterance. To obtain the word boundary using DTW, A
cost matrix is first computed using Â, and DTW is used to
trace back from the end of the matrix to the beginning to
find the optimal alignment path. This path will provide time
boundaries for the word sequence.

III. EXPERIMENTAL SETTINGS

A. ASR Model

The ASR model is an audio encoder (AED) [9], [25] con-
sisting of nemo-convolution layers followed by 24 conformer
[26] layers. The nemo-convolution layers [27], [28] takes in
80-dimension Mel-filterbanks computed using a shift of 10ms
and window of 25ms as input and sub-sample the time frame
by a factor of 8 in order to reduce the computation cost.
This implies that the word change detection can happen at a
granularity of only 80 ms. Each conformer layer has a multi-
head attention with 16 heads, and a depth-wise convolution
with kernel size of 3. The multi-head attention and the depth-
wise convolution are sandwiched between two 1536-dim feed-
forward layers. The decoder consists of 3 transformer layers
and the feed-forward layer dimension is 4096. The embedding
dimension is 1024. The AED is trained to optimize the
combined cross-entropy loss and the CTC loss (weighted by
0.2).

We train the AED ASR model on 5 different languages for
modeling English, Italian, French, German and Spanish. The
training data detail is described in [29]. The transcripts pre-
serve capitalization, punctuation without text normalization.
We pool the transcripts of training data and train a byte pair
encoding (BPE) tokenizer with a vocabulary size of 15911. In
order to reduce the language confusion and improve training
stability, the model is trained to predict the language IDs in
the output transcript as a prefix token. We add the language
IDs as special tokens in the vocabulary list such as < en >,
< it >, < fr >, < de >, < es >.

B. Baseline word time estimation model

The baseline model, described in [20], calculates the prob-
ability of context-independent phones at each frame. This
probability is estimated by a straightforward linear layer that
uses the 9th layer embedding of the frozen ASR encoder as
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Fig. 1. TWAD model architecture. Only parameters inside the TWAD model are updated. W is the number of words in a sentence. S is the max number of
tokens across all the words in a sentence.

Fig. 2. Output of the TWAD model for the sentence: ‘Je vais te poser une
question, je veux que tu me dises la vérité, tu es d’accord?’ which after text
normalization becomes ‘je vais te poser une question je veux que tu me dises
la vérité tu es d’accord’

input. Layer 9 was determined to produce the most effective
results compared to other layers tested.

The training of the baseline CI phone prediction model
utilized a dataset comprising five languages: English (EN),
French (FR), Spanish (ES), Italian (IT), and German (DE).
The number of training hours per language was as follows:
75K for EN, 25K for FR, 28K for ES, 41K for IT, and 12K for
DE. Across these languages, there are a total of 420 context-
independent (CI) phones, with 129 for EN, 99 for FR, 30 for
ES, 110 for IT, and 52 for DE. The training data underwent text
normalization, followed by the application of a force alignment
model to determine phonetic and word boundaries.

During the evaluation of the context-independent phone
word estimation model, referred to as the baseline in this
work, the estimated language identification (LID) of the word
was used to select the phonetic expansion based on the
corresponding language lexicon. The discrete time warping
(DTW) algorithm was employed to align the expected phone
sequence with the estimated phone sequence. Optional silence
was inserted between words.

C. TWAD model

The BiLSTM used to obtain the word embedding consists
of 512 hidden units. The final output from each BiLSTM

layer is concatenated and projected to a 512-dimensional space
through a linear layer. For modeling temporal correlations,
two BiLSTM layers, each with 512 hidden units, are applied
along the time axis. Additionally, a single BiLSTM layer with
64 hidden units is used to capture word correlations within
a sentence. The final linear layer projects the 64-dimensional
embedding to a 1-dimensional scalar value. A dropout rate of
0.2 is consistently applied across all BiLSTM layers. The first
word is always set to silence. The same dataset used for the
baseline CI phone based model was used to train the TWAD
model.

D. Evaluation

The ASR model generates output in a display-format text
designed for readability, often including punctuation and num-
bers as they appear in spoken language. For example, the
text ‘two hundred dollars’ would appear in display format as
‘$200’. However, for both the baseline and TWAD model, we
preprocess this output. We transform the ASR-generated text
by normalizing it, which involves removing or replacing non-
textual elements such as punctuation and numbers with their
textual equivalents. This ensures that the hypothesis text aligns
with the text-normalized data used during training, making it
suitable for evaluation and comparison.

An alternative approach particularly for the TWAD model,
is to train using the display format text. The additional
punctuation information contained in text can only improve
the word timing model. This approach will be investigated in
our future work. Note that neither the baseline model nor the
TWAD model updates the parameters of the ASR model; thus,
neither has an impact on the performance of the ASR system.

Internal Microsoft datasets were used to evaluate both the
word time estimation models. The reference word boundary is
obtained by force alignment using a traditional hybrid model.
There are 5 different datasets, one each for the languages
mentioned above. The dataset contains utterances across chal-
lenging acoustic conditions and speaking styles. Only the
words which were correctly identified by the ASR model was
used to compute the word timing metrics for both the models.
A summary of number of hours, utterances, word counts and



TABLE I
SUMMARY OF DATASETS USED TO EVALUATE WORD TIMING MODEL

ACROSS LANGUAGES

Languages #Hours #Utterances #Words WER%

EN 5.4 113 23548 11.9
FR 5.2 6378 45753 9.8
ES 4.2 8852 23236 3.1
IT 6.4 6378 29827 5.6
DE 10.1 4492 53064 6.9

TABLE II
START AND END TIME WORD DELTA STATISTICS IN MILLISECONDS.

Model Delta Metric EN FR ES IT DE Ave.

Baseline

Start

Average 40.6 56.5 43.5 52.7 45.4 47.7
p50 30 40 40 30 40 36
p90 70 90 70 80 80 78
p95 100 140 90 150 120 120

End

Average 52.0 52.4 44.2 55.6 40.4 48.9
p50 30 50 40 30 30 36
p90 100 100 70 90 70 86
p95 180 120 90 180 90 132

TWAD

Start

Average 61.6 51.8 35.7 42.9 34.9 45.3
p50 40 50 30 30 30 36
p90 90 100 60 70 60 76
p95 110 120 70 90 80 94

End

Average 90.6 65.5 44.0 58.8 34.5 58.7
p50 30 50 30 30 30 34
p90 110 120 70 100 60 92
p95 290 170 120 220 80 176

word error rate (WER) are shown for each language in Table
I.

E. Metric

When estimating word boundaries, it’s crucial to consider
both the start and end times of the words. For these times-
tamps, we calculate the absolute differences between the
estimated and ground truth word times and then determine
the average, p50, p90, and p95 values across all the words of
the evaluation set.

IV. RESULTS AND DISCUSSION

Comparison with respect to baseline:

The results obtained using both the baseline and TWAD
model for all 5 languages are as shown in Table II. The average
start and end time deltas for baseline model is around 50 ms
and the p95 values are in the acceptable range for downsteam
tasks such as speaker diarization. This can be considered as a
strong baseline. The start deltas of the TWAD model is better
than the baseline model as evidenced by the average, p50 and
p90 values across all languages. Similar trend can be observed
for end delta values in most cases.

It is important to note that apart from the word boundary
metrics, the TWAD model outperforms the baseline model in
several key aspects. Unlike the baseline model, the TWAD
model does not require any lexical information, allowing it to

scale to any number of languages without increasing computa-
tional complexity. In contrast, the baseline model depends on
additional lexicon information to align the lexicon-generated
phone sequence with the predicted phone sequence to obtain
the word boundary. As the number of languages increases, the
number of output CI phone dimensions also increases, leading
to confusion between phones and a subsequent deterioration in
word boundary estimation metrics. In spite of these constrains,
the fact that the metrics of TWAD model are comparable to
baseline model clearly shows the superiority of the proposed
method.

Mismatched conditions:

As mentioned in Section III-C, the ASR model was trained
to output display text and the TWAD model was trained on
tokens obtained from normalized text data. If we evaluate the
TWAD model using the tokens generated from display text,
we see a degradation in the word timing performance. For
example, the average start and end delta pair for DE and
IT was (49.2, 51.5) and (58.2, 74.3) ms respectively using
the token obtained from display format text compared to
(34.9, 34.5) and (42.9, 58.8) ms obtained after normalizing
the ASR hypothesis.

Impact of different layer encoder embeddings as acoustic
input:

The start and end delta average for EN using the
TWAD model was (110.2, 121.0) ms, (195.7, 175.5) ms, and
(248.2, 264.9) ms for layers 22, 20, and 9, respectively. This
performance is significantly worse than the (61.6, 90.6) ms
achieved with the last layer (layer 23), as shown in Table II.
This observation can be explained by the increasing correlation
between the encoder and decoder embeddings as we move up
the layers.

In contrast, the CI phone baseline model yielded the best
results when using the 9th layer of the encoder as acoustic
input, with progressively worse results observed as we moved
up or down the layers. This phenomenon is likely due to the
loss of phoneme information in the higher layers, where the
embedding is closer to the token embedding and not enough
phonetic information in the lower layers.

V. CONCLUSION

We introduced a method to determine word boundaries
without relying on subunit or phonetic level alignments. This
approach has demonstrated scalability for multilingual models.
Experiments conducted on English, French, Spanish, Italian,
and German languages indicate that the word time estimation
errors are comparable to those of models that utilize additional
lexicon information, which our proposed model does not use.
To enhance the model’s performance, we plan to incorporate
punctuation and related subword token units during training.
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