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Abstract—The future of work is rapidly changing, with remote
and hybrid settings blurring the boundaries between professional
and personal life. To understand how work rhythms vary across
different work settings, we conducted a month-long study of
65 software developers, collecting anonymized computer activity
data as well as daily ratings for perceived stress, productivity,
and work setting. In addition to confirming the double-peak
pattern of activity at 10:00 am and 2:00 pm observed in prior
research, we observed a significant third peak around 9:00 pm.
This third peak was associated with higher perceived productivity
during remote days but increased stress during onsite and hybrid
days, highlighting a nuanced interplay between work demands
and work settings. Additionally, we found strong correlations
between computer activity, productivity, and stress, including
an inverted U-shaped relationship where productivity peaked at
around six hours of computer activity before declining on more
active days. These findings provide new insights into evolving
work rhythms and highlight the impact of different work settings
on productivity and stress.

Index Terms—Work-life balance, Productivity, Stress, Work
Rhythms

I. INTRODUCTION

ORK rhythms, also referred to as the patterns and
temporal cycles by which work activities are structured
and carried out [1]], have evolved significantly throughout
history, reflecting changes in society and technology. In the
past, work rhythms were often tied to the agricultural or
industrial cycle, with set hours and breaks [2]. With the rise
of the information age, however, work hours have become
more flexible and variable, allowing for greater latitude in how
workers organize their work [3]]. More recently, the COVID-
19 pandemic led to changes in work rhythms as numerous
workers moved to remote work and adopted flexible work
settings [4]. This transition has benefits in reducing commute
and reclaiming more time for family responsibilities [S[]—[7]].
However, this blurring of boundaries can inadvertently lead
workers to intensify work, lose their personal time, and, ulti-
mately, find themselves without enough time to recuperate [|6]—
[9]. As work rhythms continue to evolve and change, it is
imperative to better understand their potential impact on the
well-being and productivity of workers.
With these changing work dynamics, the tools and platforms
used to complete tasks have also evolved. Modern work,
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particularly in the tech sector, relies heavily on computer
usage. With software developers as a prime example, computer
activity patterns can provide a lens into their daily rhythms,
challenges, and behaviors. These digital footprints encode
various signals — from levels of engagement [10], optimal
productivity times [11]], to moments of fatigue or burnout [[12],
[13]]. Thus, monitoring and analyzing computer activity not
only paints a picture of a day in the life of a developer
but could be instrumental in optimizing work environments,
work hours, and overall well-being in the age of flexible work
rhythms. Through the lens of digital activity, this research
contributes to a better understanding of work rhythms in
software developers, and how they relate to important organi-
zational variables such as work setting, stress, and productivity.
In particular, this paper seeks to answer the following two
research questions:

RQ1. How do work rhythms of computer activity
vary across different work settings?

RQ2. How do different work rhythms relate to
perceptions of productivity and stress levels?

To address these questions, we conducted an observational
study in which we gathered anonymized computer activity data
from 65 software developers over one month as they engaged
in their regular work activities. Furthermore, we collected self-
reports of stress and productivity, as well as their primary
work setting for the day. While conventional methods for
analyzing work rhythms focus on fluctuations in computer
activity throughout the day, we introduce a third dimension
that groups days with similar total daily activity volume. This
enables us to capture not only the most common pattern of
daily activity but also other less frequently observed rhythms
that may vary based on the overall volume of work, which are
then combined to represent what we call the “shape of work”
(see Figure [I). Following this approach, our study uncovers
significant differences across the different work settings, such
as a strong positive correlation between late work and daily
activity, as well as work setting. Additionally, we observed that
the number of daily minutes of computer activity was posi-
tively correlated with stress and productivity, with a decrease
in productivity on the most active days.

This work is organized as follows. In the next section,
we review previous research on work rhythms and relevant
studies focused on understanding the productivity and stress
of software developers. We then describe our methodology in-
cluding the data collection as well as the data analysis. We then
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questions. We then discuss the findings and their potential
implications in the context of individual and organizational
well-being. Finally, we provide some conclusions and outline
directions for future work.

II. RELATED WORK
A. Work Rhythms

Researchers have extensively studied work rhythms to better
understand potential patterns in computer usage, collaboration,
attention, and overall work engagement. While much of the
focus has been on analyzing direct computer activity [1]],
[14], researchers have also explored other alternative signals,
such as facial expressions [15] and physical activity [16], to
gain a deeper understanding of user behavior and experience.
In a seminal study, Begole et al. [1]] visualized patterns of
computer activity data from 18 information workers to help
increase awareness, coordination, and communication among
distributed groups. By displaying separate visualizations for
each computer user, the authors demonstrated significant vari-
ance between individuals and within individuals throughout
the day, as well as differences across work settings (office
and home). Although no average was computed for all users,
most of the visualizations showed that the majority of activity
falls under two primary times of the day (9:00 am -12:00 pm
and 1:00 pm-6:00 pm) which align well with traditional work
hours. For one of the participants, researchers also showed a
smaller third area of activity late at night (9:00 pm-10:00 pm).

Building upon this foundational work, subsequent studies
explored specific aspects of digital work dynamics. For exam-
ple, Mark et al. [|[14] logged the digital activity of 32 informa-
tion workers over five days and combined it with experience
sampling to better understand attention rhythms, showing that
they fluctuated with context and time. By aggregating data
from all participants, the researchers observed two distinctive
peaks of computer activity: one at around 10:00 am and a
second one at around 2:00 pm. As the software was installed
on the participant’s office computers, however, rhythms outside
the office such as those during the night were not captured.
In a separate study, McDuff et al. [[15]] monitored the webcam
activity and facial activity of 117 information workers to better
understand the patterns of emotion regulation. By averaging
the total number of faces detected in front of the computer for
every hour of the day, the researchers also revealed a consistent
double peak pattern of activity. As in the previous study, the
facial data logger was installed on the office machine, missing
information beyond traditional work hours. More recently,
Cao et al. [17]] gathered telemetry data from a large sample
of onsite and remote workers at Microsoft to help better
understand multitasking behaviors during virtual meetings in
times of COVID. As part of the analysis, the researchers
aggregated daily email, file, and meeting activity for several
months and further validated the double peak pattern as those
found in pre-COVID studies. In contrast to the previous study,
this work monitored telemetry around the clock and showed
a continued but decreasing trend of computer activity at the
end of the day. However, as these graphs aggregated patterns
from a very large number of people into a single curve, some
potentially emerging patterns may have been missed.

To extend previous work, this study similarly monitors
workers around the clock beyond traditional work hours and
focuses on hybrid work settings in which we visualize and
analyze rhythms across fully onsite, fully remote, and hybrid
days. In addition to including traditional 2D curve visualiza-
tions for comparison, we extend them on a third dimension
that allows us to further break down the days according to the
total computer activity.

B. Stress & Productivity

Understanding and measuring productivity and stress is an
important area of research due to their key roles in employee
well-being, work satisfaction, and more. Due to their sub-
jective nature, self-reports remain the gold standard for their
measurements [12], [18], but researchers are exploring more
objective and passive methods, such as tracking computer
activity and using wearable devices.

Over the years, software developer productivity and its per-
ceived metrics have gained significant attention. For example,
Storey et al. [[19] proposed a bidirectional relationship between
software developer job satisfaction and perceived productivity,
highlighting various social and technical factors influencing
this relationship. In a separate study, Meyer et al. [20] in-
vestigated developers’ perceptions of productivity, revealing
that developers feel most productive when completing siz-
able tasks without major interruptions. However, observational
data showed a paradox where developers frequently switched
tasks while still feeling productive, indicating that there may
often be a mismatch between perceptions of behavior and
actual observed behaviors. Workplace stress has also gained
increased interest in recent years. While many definitions exist,
stress can be broadly defined as the change in psychological
and physical experiences occurring when external situations
challenge or threaten someone [21[], [22]. Importantly, high
levels of stress may not always be associated with negative ex-
periences [23]. In a relevant study, Kuutila et al. [24]] addressed
the issue of time pressure in software development, a factor
that impacts both the development process and developers’
stress levels.

When examining the relationship between stress and pro-
ductivity, researchers have often considered the Yerkes-
Dodson law [25] which suggests that there is an “inverted U”
relationship between the two. However, this theory has faced
controversy and produced conflicting findings [26], possibly
due to a lack of standardized methodology for measuring them.
In a relevant study, Bui et al. [27] conducted a study showing
that higher stress levels were significantly correlated with
decreased productivity, particularly affecting work satisfaction,
which was also consistent with the findings of Muse et al. [28]].
Similarly, Nan and Harter [29] investigated the impact of
budget and schedule pressure on software development and
found a significant U-shaped relationship. Their study indi-
cated that both excessive and insufficient budget pressure led
to a slowdown in the development cycle, increasing both time
and effort. This parallels the concept of stress and inverse
productivity in the Yerkes-Dodson law, suggesting that optimal
pressure levels are necessary for peak performance.



This study combines objective data from computer activity
and self-reported productivity and stress measurements to have
a more comprehensive understanding of developer productiv-
ity, stress, and overall well-being in evolving hybrid work
settings. Analysis of different patterns reveals an inverted U-
shaped relationship between productivity and stress, indicating
that excessive or insufficient stress may be negatively associ-
ated with productivity.

III. METHODS

To answer the research questions, we conducted a four-
week observational study in which we monitored the computer
activity of several software developers and analyzed them in
relation to their daily self-reports. This study received prior
approval from our institutional review board and is described
in the following sections.

A. Computer Activity

During the study, computer activity was captured by a
custom-made data logger that recorded whether there was any
interaction with a particular program (either through keyboard
or mouse) as well as the name of the executable of the
progranﬂ If the user had any interaction with a particular
application, the whole minute was considered active. These
measurements were aggregated at an hourly level. For any
given hour, we obtained the number of minutes for which the
participant interacted with different applications, ranging from
0 (i.e., no interaction) to 60 minutes (i.e., constant interaction).
To facilitate the analysis, we computed overall computer
activity (i.e., interaction with any application) as well as
computer activity associated with different types of activities
that are relevant in the context of software development. In
particular, we follow the same categorization proposed by
Meyer et al. [20] (see Table |I) which automatically decom-
poses computer activity based on the titles of the application
windows into development-related activity, such as coding and
version control (VC), and other frequently observed activities,
such as email and meetings. However, it is important to note
that the absence of activity does not mean that the employee
was not working, since they could have been performing a
task outside the computer (e.g., reading an article, meeting
with someone in person) or performing a task that was not
tracked. More details about the collection of data can be found
at Spencer et al. [30].

B. Daily Self-reports

At the end of each workday, participants were asked to re-
flect on different aspects of their day. In particular, participants
self-reported their perceived productivity by answering the 7-
point Likert question that we adapted from [14]: “Overall, how
productive do you feel you were today?” with the following
possible answers: I - extremely low, 2 - very low, 3 - somewhat
low, 4 - moderately, 5 - somewhat high, 6 - very high,
and 7 - extremely high. To help operationalize productivity,

I'The data logger did not collect any content or filenames in the applications
to help protect the privacy of participants.

TABLE I
CATEGORIZATION OF APPLICATIONS BASED ON [20]]
Category Activity
Development
Code Reading/editing/navigating code
Debug Debugging
Review Performing code reviews
TestApp Testing application outside IDE
Version Control | Reading/accepting/submitting changes
Other Other related to development
Email Reading/writing emails
Meetings Meetings and calls
Planning Editing work items/tasks/todos;
creating/changing calendar entries
ReadWriteDoc Reading/editing documents and other artifacts
such as pictures
Browsing Internet browsing
Other Anything else, such as breaks or changing
music

participants were instructed to think of productivity as a
multidimensional concept that includes but is not limited to
being able to accomplish everything that was planned, feeling
efficient when performing the work, feeling satisfied with what
was accomplished, being able to manage their time effectively,
and being able to perform high-quality work. Similarly, par-
ticipants self-reported their stress levels by answering the 5-
point Likert question, similar to ones used in previous studies
of worker behaviors [12], [31]], [32]: “Considering today’s
work, how would you rate your level of stress?” with the
following possible answers: I - not at all, 2 - slightly stressed,
3 - moderately stressed, 4 - very stressed, and 5 - extremely
stressed. For this question, participants were reminded that
stress can be understood as the change in psychological
and physical experiences that occurs when external situations
challenge or threaten the individual (e.g., giving a presentation,
having overly packed days, being unable to separate work and
life demands). In addition, participants were reminded that
having high stress at work may not be a negative experience.
Finally, participants were also asked to answer “Where did
you spend your working hours today?” with the following
possible answers: remote (e.g., home), hybrid (sometime in
the office and sometime at home), and onsite (e.g., office).
It is important to note that the term “office” was broadly
defined as somewhere on the corporate facilities which may
include, but is not limited to, the office spaces and meeting
rooms. The productivity and stress self-reported questions
were kept the same as in prior work [12], [33] to help facilitate
potential comparisons. Participants received daily reminders
to complete a Qualtrics survey containing three questions, as
well as the date for which they were reporting. The timing of
the reminders was personalized for each participant based on
the end-of-day schedules they provided during the onboarding
process. However, the email encouraged participants to com-
plete the survey whenever they considered their workday to
be over. If participants forgot to complete the survey, they
would receive a friendly reminder the following morning.
To allow for flexibility, participants were able to select the
date when answering the survey, which facilitated providing



missing responses as well as updating previous responses if
their initial answers did not accurately reflect their activity
(e.g., changing work setting after submitting their responses).

C. Data Overview

A total of 65 US-based software developers were recruited
from a large technology corporation who received a $100
gift card after successful completion of the study. This group
consisted of 25 women, 39 men, and 1 person who identified
as non-binary/gender diverse during the summer of 2022. The
majority of participants (48) were in the 18-35 age range,
while 17 were between 36 and 55 years old. The developer
group employed diverse software development methodologies,
with Agile/Scrum being the predominant approach, though its
implementation varied across teams. They were involved in
creating applications and services for a range of platforms,
catering to a broad spectrum of both internal and external
customers. The corporation has a flexible work policy that
provides employees with flexibility when defining their work
hours and setting. In our studied population, the median
starting and ending times were 9:00 am and 5:00 pm, respec-
tively. The average self-report response rate in our sample
was 13.77 responses each (SD = 3.88), with a decreasing
trend in response rates observed over the course of the
study. This corresponds to an overall compliance rate of
75% (SD = 17.94%), where full participation was defined as
completing 20 responses throughout the study’s duration. Ad-
ditionally, approximately 36% of the responses were submitted
one day after their intended dates, and participants did not
update responses they had already submitted. This suggests
that participants preferred submitting delayed responses over
revising prior submissions multiple times. The data collected
spanned 891 days of activity: 506 days were reported as
remote (56.8%), 293 days as onsite (32.9%), and 92 days
as hybrid (10.3%). However, 12 developers always reported
being remote (18.46%), 6 of them always reported being
onsite (9.23%), and the remaining 47 reported a combination
of settings (72.3%). The average daily stress level was 2.72
with a standard deviation of 1.46, a minimum value of 1, and a
maximum value of 5. Similarly, the average daily productivity
level was 4.33 with a standard deviation of 2.01, a minimum
value of 1, and a maximum value of 7.

D. Data Analysis

Computer activity across different days can vary signifi-
cantly due to the unique personal and professional demands
that may emerge [1]]. Due to this variability, prior work has
often aggregated activity across many days to help identify
emerging rhythms [1]l, [14]], [15], [34]]. This approach takes
advantage of the central limit theorem to help achieve more
stable and reliable estimates of the population mean.

Aggregating computer activity across a group of days leads
to a single curve that represents the average activity level for
the sample data (e.g., different groups in Figure [2). However,
this approach tends to collapse the days with different patterns.
If we want to more precisely capture the multiple ways in
which people may engage with work, we need to find a way

Algorithm 1 Generation of the shape of work curves

Require: Days with computer activity data D, where each
day d € D has activity data A4(t) for t = 1 to 24 hours;
Window size w = 150 minutes; Offset o = 20 minutes

Ensure: Curves associated with shape of work C'

1: for each day d € D do
2:  Compute total daily activity Ty = Zfil Aq(t)

3: end for

4: Initialize list of curves C' < ()

5: Trnin < min{Ty : d € D}

6: Tmax + max{Ty:d € D}

7: for s = Tinin to Tinax — w step o do

8:  Define window W <« [s, s + w]

9. Dy« {deD:TyeW}

10:  if Dy # (0 then

11: fort =1 to %4 do

12: A(t) + Dwl > ey Aalt)
13: end for

14: Append curve A to C

15 end if

16: end for

17: return C

to create and visualize multiple curves together. In our study,
we observed that days with similar overall computer activity
during the day tended to show similar hourly patterns, so
we grouped days based on the total computer activity during
the day. In particular, we first computed the total number
of minutes of computer activity for each day (see center
of Figure [I)), and then iteratively computed and stacked the
daily curves associated with different daily activity levels. To
extract each curve, we aggregated days with daily activity
levels that fall within the range of a sliding window of 150
minutes. This window is then iteratively slid with an offset
of 20 minutes to extract curves associated with different daily
activity levels. For instance, the dashed rectangle in Figure [I]
shows the window that includes all days with daily activity
levels between 400 and 550 minutes which are then averaged
to generate a single curve. Note that this new curve has a
different daily activity, which corresponds to 445 minutes in
the example shown in the figure. By iteratively repeating the
process through all possible windows, we are then able to
generate the shape of work (see bottom-right graph). The
window parameters were empirically selected to obtain a shape
that minimized the appearance of high-frequency changes,
such as those associated with potential outliers while capturing
the dynamic range of different rhythms. Similarly, stress
and productivity levels were extracted from each window
by averaging the ratings associated with the corresponding
days. After the windowing process, the average stress level
per window was 2.74 with a standard deviation of 0.11,
a minimum value of 2.56, and a maximum value of 2.93.
Similarly, the average productivity level per window was 4.46
with a standard deviation of 0.26, a minimum value of 3.92,
and a maximum value of 4.74. Algorithm [I| presents the
pseudocode used to create the shape of work figures. To
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Fig. 1. Computation of the shape of work: 1) hourly computer activity is extracted for each day, 2) days with a similar number of minutes of computer
activity are aggregated to create a curve, 3) each aggregation leads to a curve generating the shape of work.

facilitate the replicability of our methods, we provide scripts
for computing curves and visualizing the shape of work in a
GitHub repositoryﬂ

To draw conclusions around the distribution of days across
different settings, we created separate shape of work visualiza-
tions for all days (n: 891), remote (n: 506), onsite (n: 293), and
hybrid (n: 92) settings, and color-coded them with the number
of samples within each window. To study stress and produc-
tivity, we created the shape of work for all days (n: 891), and
used different color mappings to represent the average self-
reported ratings for stress and productivity. By considering
this larger set of days, we were able to capture a broader
range of ratings and better understand their relationship. For
comparison purposes with prior work, we also included the
traditional 2D curves in Figure [2] for the different groups of
days as well as their £ standard error.

To identify whether there are some significant differences
in terms of computer activity over the day across different
work settings (e.g., remote vs. hybrid vs. onsite), we per-
formed a repeated measures ANOVA test and considered
p <= 0.05 to be statistically significant. To compare spe-
cific metrics (e.g., overall computer activity) across multiple
groups of days, we used the non-parametric Kruskal-Wallis
test and similarly considered the p <= 0.05 threshold to
be statistically significant. To identify how different types of
computer activity may contribute to stress and productivity,
we used a linear mixed-effects model in which the dependent
variable was either self-perceived stress or productivity, and
the independent variables were the amount of daily activity ob-
served for each of the application categories shown in Table[l]
To account for the varying frequencies of different activities
(e.g., coding occurring more frequently than code reviews) and
to facilitate a more meaningful comparison of their relative

Zhttps://github.com/microsoft/shape_of_work

importance, each independent variable was standardized with
z-score normalization. In addition, we introduced person and
work setting as random variables to help account for their

potential mediating role (see [Equation IJ).

Y ~ Dev._Code + Dev._Debug + Dev._Review + Dev._TestApp
+Dev._VC + Dev._Other + Email + Meetings + Planning
+ReadWriteDoc + Browsing + Other

+1|Participant + 1|Work_=Setting

Y € {stress, productivity}
()

IV. RESULTS

This section describes the study findings in relation to our
two research questions. To answer RQ1, we first characterize
rhythms of computer activity (Section[[V-A) and then evaluate
how they change across work settings (Section [V-B). To
answer RQ2, we first characterize the rhythms of perceived
stress and productivity based on computer activity (Section

and and then examine how they relate to each
other (Section [IV-E)).

A. What are the rhythms of computer activity?

Figure [2] shows the average pattern of computer activity on
all days (red) as traditionally shown in previous work. As can
be seen, we observe a very similar pattern to the one reported
in recent studies with two distinctive peaks at 10:00 am
and 2:00 pm and a decreasing trend of activity over the day.
To help capture a wider range of patterns, Figure [] (top-left)
shows the shape of work as proposed by this research. To
help illustrate the number of days that fall under each window,
each slice of the surface has been color-coded to indicate the
number of aggregated days per window. In particular, dark
blue and light yellow indicate the maximum (n: 418) and
minimum (n: 105) number of days, respectively.
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Fig. 2. Average computer activity pattern across different groups of days:
all days (red), onsite (green), hybrid (yellow) and remote (blue). Grey areas
indicate & standard error. Later in we expand this figure depiction
of work with a 3D plot that we refer to as the “shape of work”.

TABLE 11
FACTORS CONTRIBUTING TO ACTIVITY AFTER 8:00 PM.
(:p < 0.1,*:p < 0.05, **:p < 0.01, ***:p < 0.001)

Standardized Estimate | t-value | p-value
(Intercept) 2.051 2.251 0.025 *
Development Code 16.930 36.633 | <0.001 ***
Development Debug 11.012 25210 | <0.001 ***
Development Review 0.407 0.892 0.373
Development TestApp 0.500 1.188 0.235
Development VC 0.549 1.307 0.192
Development Other 2.742 6.037 <0.001 ***
Email 12.566 22.178 | <0.001 ***
Meetings 12.259 23.870 | <0.001 ***
Planning 0.029 0.071 0.944
ReadWriteDoc 11.782 21.158 | <0.001 ***
Browsing 27.276 57.990 | <0.001 ***
Other 3.399 7.625 <0.001 ***

As can be seen, the curve with the largest number of
samples (darker bluer color) has an average computer activity
of around 289 minutes per day which captured around 47% of
the days in our data (n: 418). Due to its large representation,
this curve is the most closely aligned with the one shown in
Figure 2| (red line). When examining the other colors, however,
we observe that a significant number of days also show some
work after 8:00 pm (48.60% of the days) which contributes to
the emergence of a third peak of activity (around 9:00 pm).
Furthermore, this third peak seems more pronounced on days
with higher levels of computer activity during the day (>356
min/day) which cannot be captured with a 2D representation.
In particular, work after 8:00 pm is significantly correlated
with computer activity before 8:00 pm (rs(14) = 0.988,
p < 0.001).

To better understand the types of activities that may be
performed after 8:00 pm, we performed a linear mixed-effects
model like in which we used the amount of activity
after 8:00 pm as a dependent variable. Table [l shows the
standardized estimates, ¢-values, and p-values for each of the
estimates. As can be seen, a wide variety of activities seem to
contribute to late work which includes Browsing, Dev. Code,
Email, Meetings, ReadWriteDoc, Dev. Debug and Other.

B. How do the rhythms change across work settings?

Figure [2] shows the traditional average computer activity
pattern when considering onsite (green), hybrid (yellow), and
remote (blue). As can be seen, remote and onsite days show
more similar shapes with relatively well-defined working hours
between 8:00 am and 6:00 pm during which most of the
activity falls. On the other hand, hybrid days tend to have
more of a “rollercoaster” rhythm with ups and downs during
the day and significantly more pronounced activity during the
night (F(2,888) = 4.805, p = 0.008).

To better represent a wide range of patterns, Figure [3| shows
the shape of work for each of the work settings. This visualiza-
tion allows one to more easily inspect the percentage of days
for different patterns according to the total computer activity.
In particular, computer activity after 8:00 pm was significantly
more likely to occur on hybrid and remote days (64.13% and
51.38%, respectively) vs. onsite days (39%). On average, the
amount of activity after 8:00 pm was 43 min for hybrid, 25 min
for onsite, and 18 min for remote days. In addition, we observe
that hybrid days had an average activity level of 288 min/day,
followed by onsite days with 274 minutes per day, and remote
days 252 with minutes per day.

C. What are the rhythms of perceived stress?

Figure [ (center) shows the shape of work with updated
color mapping to indicate the average self-reported stress
level at the end of each day. As can be seen, we observe
a strong correlation between stress and computer activity, in
which lower stress days (light yellow) tend to have lower
computer activity and higher stress days (dark red) tend to
have higher computer activity (r5(14) = 0.988, p < 0.001).
To better understand the contributors of stress, we performed
a linear mixed-effects model in which we used the stress
level as a dependent variable. As shown in Table we
observed that the significant variables in descending order of
their standardized estimates were: Dev. Code, Meetings, Read-
WriteDoc, and Dev. Debug. When comparing the stress levels
across different work settings, we did not find any statistical
significance (x?(2) = 1.113, p = 0.573). However, longer (with
work after 8:00 pm) versus shorter days were significantly
more stressful for onsite (x%(1) = 22.114, p < 0.001) and
close to significant for hybrid days (x?(1) = 3.340, p = 0.068).

D. What are the rhythms of perceived productivity?

Figure [] (right) shows the shape of work with updated
color mapping to indicate the average productivity level at
the end of each day. As in the case of self-reported stress,
we observe a strong correlation between productivity and
computer activity, in which lower productivity (light yellow)
tends to have lower levels of computer activity and higher
productivity (dark green) tends to be associated with higher
levels of computer activity (rs(14) = 0.703, p = 0.003).
However, we observe a small decline in terms of productivity
for the larger amounts of computer activity (light green slices)
indicating that too much activity may start impacting produc-
tivity. To further understand the contributors of productivity,
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TABLE III
FACTORS CONTRIBUTING TO END-OF-DAY SELF-REPORTED STRESS.
(":p < 0.1, *:p < 0.05, **Y:p < 0.01, ***:p < 0.001)

TABLE IV
FACTORS CONTRIBUTING TO SELF-REPORTED PRODUCTIVITY.
(:p < 0.1, *:p < 0.05, **:p < 0.01, ***:p < 0.001)

Standardized Estimate | ¢-value | p-value Standardized Estimate | ¢-value | p-value
(Intercept) 2.082 19.652 | <0.001 *** (Intercept) 3.902 32.110 | <0.001 ***
Development Code 0.107 2.675 0.008 ** Development Code 0.232 4.552 <0.001 ***
Development Debug 0.070 2.139 0.033 * Development Debug 0.004 0.099 0.921
Development Review 0.021 0.635 0.525 Development Review 0.045 1.043 0.297
Development TestApp -0.015 -0.474 | 0.635 Development TestApp -0.037 -0.902 | 0.368
Development VC 0.022 0.543 0.587 Development VC -0.054 -1.059 | 0.290
Development Other 0.048 1.446 0.148 Development Other -0.037 -0.836 | 0.403
Email -0.001 -0.032 | 0.975 Email 0.046 0.849 | 0.396
Meetings 0.090 2.328 | 0.020 * Meetings 0.089 1.788 | 0.074 -
Planning -0.040 -1.259 | 0.208 Planning 0.002 0.057 | 0.955
ReadWriteDoc 0.088 2313 | 0.021 * ReadWriteDoc 0.033 0.681 0.496
Browsing -0.001 -0.035 | 0.972 Browsing 0.090 1.843 0.066 -
Other -0.003 -0.069 | 0.945 Other 0.002 0.039 | 0.969

we similarly performed a linear mixed-effects model with
productivity level as the dependent variable. As shown in
Table[[V] we observed that Dev. Code was the most significant
contributing factor, followed by near significant estimates in
Browsing and Meetings. When comparing the productivity
levels across different work settings, we did not find any
statistical significance (x%(2) = 3.456, p = 0.178). However,
longer (with work after 8:00 pm) vs. shorter days were rated as
significantly more productive for remote days (x?(1) = 5.178,
p = 0.023).

E. How do computer activity, stress, and productivity relate
to each other?

To analyze the potential relationship between stress and
productivity in our study, Figure [3] jointly shows the average
self-reported stress and productivity ratings for each of the
slices considered when creating the shape of work. The figure
also shows a cubic interpolation of the different points, the
95% prediction interval, and the associated average hours of
activity per day. The coefficient of determination (R?) was
0.95, suggesting that 95% of the variance can be accounted
for by the model. Our data indicates that there is an inverted
U-shape relationship between these two variables, indicating
that an average computer activity of around 6 hours per day
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seems to yield optimal productivity.

V. DISCUSSION

Our study investigates the association between the shape
of work in terms of computer activity and its association
with work setting, stress, and productivity. In contrast to prior
work [1], [14]], [15], [17], our data reveals three distinctive
peaks of activity at 10:00 am, 2:00 pm, and 9:00 pm. These
peaks are separated by a decrease in computer activity which
aligns with the potential occurrence of non-work activities
such as having meals, commuting to work, or school-run
schedules. However, these fluctuations could also be influ-
enced by limitations in our data capture approach as dis-
cussed in the following section. By extending traditional work
rhythms visualizations along a third dimension focused on the
total volume of activity during the day, we also observed that
late work (after 8:00 pm) was more likely to appear whenever
there was a larger amount of activity during the day (before
8:00 pm). This finding supports that, on average, engaging in
late work may serve as a buffer to be able to meet the increased
demands of certain days as it could be generally expected.

Through the analysis of end-of-day self-reported data, we
observed that stress levels were positively correlated with the
total number of minutes of computer activity during the day
and that perceptions of stress were associated with larger
amounts of time spent on Dev. Code, Meetings, ReadWriteDoc,
and Dev. Debug. These findings are consistent with a recent
study by Morshed et al. [12] showing that work demands tend
to be highly correlated with stress and computer activity. It is
important to note, however, that different tasks may contribute
to stress in different ways. For instance, high stress levels tend
to occur whenever there is a high level of demands [|35]] which
may be reflected in large amounts of coding activity for soft-
ware developers. In this case, the stress associated with coding

would be related to the high cognitive demands involved and
the associated increase in time spent on this activity. However,
more infrequent tasks such as writing documents or having
meetings can be perceived as inefficient or distracting [36]]
contributing to the overall stress level of developers. Similarly,
our study also showed that productivity was also positively
correlated with the number of daily minutes of computer
activity. This positive correlation may be associated with
spending more time at work and being able to achieve more,
leading to higher perceived productivity. However, this effect
only holds up to a certain point, after which additional time
did not seem to contribute to productivity gains and could even
have negative effects. Among the different activities, we found
productivity to be associated with a larger amount of time
spent on Dev. Code which is to be expected as it is required
to achieve the main goals of software development [[18], [37].
Furthermore, the ability to complete tasks has been shown [20]
to be one key contributor to the perception of productivity in
software developers.

Our study contributes to the understanding of the evolving
nature of modern work, suggesting a nuanced interplay be-
tween work demands, work setting, and personal preferences.
Specifically, our study indicates that the engagement and
experience of late work may be moderated by the work setting
during the day. On the one hand, our findings indicate that on
remote workdays, longer days—those involving work during
the so-called “third peak”—were more frequently associated
with feelings of being productive compared to shorter remote
days. While our study did not collect data to identify the
contributing factors, this difference could indicate that late
work helped individuals complete more tasks rather than
merely helping them catch up due to other commitments
(e.g., office commute, school-run schedules). On the other
hand, our findings indicate that on onsite and hybrid work-
days, longer days involving late work were more frequently
associated with feelings of being stressed compared to shorter
onsite/hybrid days. Similarly, this could be an indication that
late work was more of a necessity to catch up with work rather
than just completing more tasks. Our data also indicates that
individuals engage in a wide variety of tasks during late work,
indicating that late work may be used for different purposes
probably depending on the unique professional needs of each
individual [18]. For instance, participants working with teams
located in different time zones may need to engage in meetings
during the night [1]]. In addition, some people may just prefer
to engage in late work as there tend to be fewer interruptions.
Overall, these findings further highlight the importance of
providing agency to software developers [36], and how flexible
job arrangements could help support the productivity and
well-being of workers, especially when considering highly
demanding days that may necessitate late work.

Stress and productivity are fundamental topics of research
on organizational behavior which are challenging to study
partly due to their subjective nature [28]. By combining
computer activity levels with self-reports, we observed an
“inverted U” relationship between stress and productivity,
which highlights a delicate balance between the two that
seems consistent with the Yerkes-Dodson law. Despite the



controversy of the law [26]], this balance has been previously
reported in a prior survey study focused on understanding
the good days of software developers [36] and, to the best
of our knowledge, this is the first time it has been observed
in a real-life observational study of computer activity with
software developers. In particular, we observe the existence
of an optimal level of computer activity (around 6 hours) that
maximizes productivity while maintaining moderate levels of
stress in software developers. To perform this analysis, we
considered all the data collected in the study irrespective of
work setting, facilitating a broader range of productivity and
stress ratings. However, even with a larger sample size, the
range of average stress and productivity ratings (as shown in
Figure [5) is still limited, especially when considering high-
stress levels. This limitation is due to the sampled population,
which on average exhibited moderate stress levels, consistent
with prior studies on information workers [[13], [31]], as well as
the windowing process which effectively reduced the range of
observed values. While the high coefficient of determination
suggests a continuously decreasing trend in productivity with
higher stress levels, future studies may consider more stressed
populations to effectively cover a wider range of ratings,
such as those experiencing burnout, which has been linked
to significant workloads and other stressors [38|]. Furthermore,
collecting a larger number of days across different settings will
help capture a broader range of productivity and stress ratings,
facilitating more granular analysis and insights across work
settings. In addition, our study analyzed computer activity
at a higher level without incorporating intrinsic aspects of
work tasks such as task difficulty or the worker’s previous
experience. However, prior work has shown that different
factors may contribute to the specific shape of the curve.
For instance, it has been hypothesized that lower-difficulty
tasks may shift the curve to the right, indicating that higher
stress levels may be more beneficial [26]. In the context of
software developers, future work may also consider studying
how well-known productivity factors such as the worker’s
previous experience on different tasks, work setup (e.g., laptop
vs. desktop), the amount of interruptions [18]], [|33[], or the use
of Al chatbots [[39]] could influence this relationship.

VI. THREATS TO VALIDITY

This section highlights some of the limitations associated
with the study, specifically regarding its construct, internal,
and external validity.

A. Construct Validity

This study collected digital activity across different applica-
tions to understand the work rhythms of software developers.
While this approach facilitates collecting objective data while
minimizing the burden to participants [18], it is important to
reiterate that computer activity does not capture all aspects of
work. In a pre-COVID study by Meyer et al. [[18]], for instance,
it was estimated that developers tend to spend about half of
their work time away from computers. Furthermore, days with
moderate computer activity could have been associated with

higher productivity due to increased time spent on creative
brainstorming or other non-digital tasks that are less visible
in telemetry data. It is also important to note that meetings
during onsite days may be underrepresented in our data,
as there may be ad hoc meetings not captured by digital
platforms like MS Teams or Zoom. This could have reduced
the representation of computer interactions during onsite work.
In addition, our custom data logger did not collect interactions
over the phone which may be more common in certain settings
such as during the commute or late at night. To provide a more
comprehensive analysis of work behavior, future efforts may
consider measuring computer activity across multiple devices
as well as incorporating experience sampling to help capture
non-digital interactions (e.g., [12]], [[18])).

B. Internal Validity

This study combined computer activity with daily self-
reports to capture subjective variables such as stress and
productivity. Although self-reports are considered to be the
gold standard for these metrics due to their large individual
differences, it is important to note that self-reports are prone
to well-studied recall biases (e.g., false memories, forgetting
things, recency effect) [40]. Moreover, the awareness of being
observed could lead to observation biases like the Hawthorne
effect [41]], influencing the way participants provide self-
reports (e.g., overreporting productivity, underreporting stress).
In addition, individual differences in personality traits and
roles might also influence self-reports, as prior studies have
shown that factors such as neuroticism and conscientiousness
can shape how individuals perceive and report stress and
productivity, respectively [42]. Future work could explore how
the personality traits of developers, such as those captured
by the Big Five personality model, and their specific roles
(e.g., team lead, junior developer) impact correlations between
stress, productivity, and computer activity, thus providing a
more nuanced analysis. In our study, we opted to request
self-reports at the end of the day and potential corrections
in subsequent days to help minimize the potential burden
on participants. However, future studies may consider other
methods such as experience sampling during the day to
more accurately capture the fluctuating nature of productivity
and stress (e.g., [12], [[14]). In addition, the incorporation
of wearable sensors that track relevant physiological signals
such as electrodermal activity and heart rate variability could
help provide complementary objective insights (e.g., [12],
[33]). Similarly, this study used self-reports to capture work
settings but more objective approaches could have been used
(e.g., tracking location through the smartphone GPS) to min-
imize errors and obtain a more granular representation of
location during the day.

C. External Validity

The current study analyzed data from a sample of 65
software developers over one month. Focusing on software
developers enabled a more specific examination of productivity
and stress, but it is important to note that studying different
professions might yield different results. For instance, the



optimal level of computer activity and contributing factors
of stress and productivity may vary across information work-
ers depending on the nature of their work. In addition, we
recruited participants from the same company and during a
specific time of the year which could have also influenced the
patterns and findings. For instance, the number of developers
on-call at a particular company can vary throughout the year,
potentially leading to different activity patterns. In addition,
self-reported stress levels might oscillate over the year, es-
pecially increasing during times of higher demand, such as
before a product launch. Our particular study took place over
the summertime which is usually associated with slightly
higher than average activity than the rest of the year. Moreover,
our study was conducted within a U.S.-based company, and
cultural differences may impact work rhythms and behaviors.
For example, prior research has shown that developers in
Chinese IT companies tend to work longer hours compared
to those in the United States, often due to different workplace
cultures and expectations [43[]. This suggests that our findings
may not generalize to software developers in other cultural
contexts, especially those with different norms regarding work
hours and practices. Finally, all of our participants were under
the age of 55, showing a potential bias towards a younger
generation that encompasses individuals at various life stages,
with diverse marital statuses and numbers of dependents. All
these factors can potentially influence workers’ capacity to
work after 8 pm. In addition, circadian rhythms change as
people age, leading to earlier wake times and potentially
different work rhythms [44]). Future studies may consider more
longitudinal experiments across a wide variety of companies,
job roles, cultures, and age groups to help better understand
the potential generalization of the findings.
VII. CONCLUSIONS

This study offers valuable insights into the work rhythms
of software developers and how these are evolving in the
context of hybrid work. In addition to the traditional double-
peak pattern, we identified a third peak of activity around
9:00 pm, which we then examined in relation to work setting,
stress, and productivity. The triple-peak day underscores the
complexities of hybrid work settings, where both work setting
and daily activity can influence the perception of stress and
productivity. Furthermore, we observed significant correlations
between computer activity, stress, and productivity ratings,
providing deeper insights into how these factors interact within
the context of software development. We look forward to
future studies that similarly broaden our understanding of work
rhythms and their effects, contributing to the development of
strategies and tools for a healthier and more productive future
of work.
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