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Abstract—As cloud service systems grow in scale and complex-
ity, incidents that indicate unplanned interruptions and outages
become unavoidable. Rapid and accurate triage of these incidents
to the appropriate responsible teams is crucial to maintain ser-
vice reliability and prevent significant financial losses. However,
existing incident triage methods relying on manual operations
and predefined rules often struggle with efficiency and accuracy
due to the heterogeneity of incident data and the dynamic nature
of domain knowledge across multiple teams.

To solve these issues, we propose Triangle, an end-to-end
incident triage system based on a Multi-Agent framework.
Triangle leverages a semantic distillation mechanism to tackle the
issue of semantic heterogeneity in incident data, enhancing the
accuracy of incident triage. Additionally, we introduce multi-role
agents and a negotiation mechanism to emulate human engineers’
workflows, effectively handling decentralized and dynamic do-
main knowledge from multiple teams. Furthermore, our system
incorporates an automated troubleshooting information collection
and mitigation mechanism, reducing the reliance on human labor
and enabling fully automated end-to-end incident triage. Exten-
sive experiments conducted on a real-world cloud production
environment demonstrate that TRIANGLE significantly improved
incident triage accuracy (up to 97%) and reduced Time to Engage
(TTE) by as much as 91%, demonstrating substantial operational
impact across diverse cloud services.

I. INTRODUCTION

As cloud service systems continue to expand and become
increasingly complex, system incidents are inevitable [1–6].
These incidents often signify unplanned interruptions and even
system outages. Therefore, when an incident occurs, prompt
handling by the responsible team is crucial to prevent further
failures and avoid significant financial losses [4]. However,
in today’s large-scale cloud service systems, a single system
may involve numerous teams with different functions. Thus,
incidents should be assigned to the correct responsible team,
a process known as Incident Triage [3, 7]. If an incident
is misassigned, it usually cannot be properly resolved and
needs to be reassigned based on feedback from that team
until the correct team is identified. Poor incident triage can
significantly extend the Time To Engage (TTE), increasing
system risk exposure. Therefore, rapid and accurate incident
triage is critical for shortening recovery time and ensuring
service quality.

Traditional incident triage processes typically rely on man-
ual operations combined with predefined rules, where engi-
neers use various tools to further investigate incident-related
issues. This process often involves ad hoc meetings across
multiple relevant teams, consuming substantial human re-
sources and time, making rapid fault resolution difficult.

To automate the incident triage process, it can be directly
compared to the bug triage problem. Academia has recently
conducted extensive research on bug triage [8–13]. A typical
approach involves a unified model pre-trained on historical
datasets to assign bugs to various teams through a one-time
classification. However, this method has limitations and cannot
meet the performance requirements for incident triage. The
core reason is that, unlike bug reports which often contain de-
tailed reproduction steps and context provided by developers,
the original information for operational incidents is typically
automatically generated alerts lacking deep semantic context
(e.g., “CPU utilization high on server X”), or user-submitted
phenomenological descriptions (e.g., “Cannot log in”). Such
information often lacks direct pointers to the root cause or the
responsible team. The scarcity and ambiguity of information
make it difficult for traditional methods reliant on keyword
matching or shallow feature learning to achieve the accuracy
required for practical applications.

As shown in Fig. 1, this process involves three teams
and multiple engineers, and can be both time-consuming and
complex. Without a thorough investigation by Teams A and
B, directly identifying Team C as the correct responsible party
is not feasible. To develop an incident triage system that
meets real-world requirements for efficiency and accuracy, we
conducted an in-depth investigation into the incident man-
agement practices of a leading global technology company’s
cloud services. Based on our practical experience, we have
identified three key challenges in achieving efficient and
accurate incident triage:

• Incident Semantic Heterogeneity: Incident data exhibits
significant variation in how semantically similar issues are
described. Key phrases crucial for triage are scattered and
lack standardized templates, hindering traditional methods.
LLMs’ contextual understanding can better capture these
underlying associations despite diverse phrasings.

• Decentralized and Dynamic Domain Knowledge: Effec-
tive incident triage often requires integrating knowledge
from multiple, independently evolving teams. A team’s
responsibilities and associated domain knowledge change
over time, necessitating a flexible approach like a multi-
agent framework where agents with specific team knowledge
can collaborate.

• High Human Labor: Relying heavily on manual injection
of domain knowledge for incident triage incurs substantial
human effort and cost, impeding end-to-end automation and
increasing the time to engage.



Fig. 1: Comparison of manual incident triage and TRIANGLE.
In the manual process, a sign-in issue on Mac devices is
escalated across Teams A, B, and C before resolution. Each
team applies their domain knowledge and tools in sequence.
In contrast, TRIANGLE streamlines this multi-team workflow
by using agents to simulate human collaboration, reducing
handoffs and accelerating resolution.

To address these issues, we design the TRIANGLE system,
an end-to-end incident triage system based on a Multi-Agent
framework. We opt for a “multi-agent” approach, rather than
a monolithic agent, to better simulate the real-world collabo-
rative problem-solving patterns of multiple teams. This allows
different agents to specialize in domain knowledge and tools
specific to certain areas, and then negotiate to reach a consen-
sus, thereby enhancing the robustness and interpretability of
the triage process.

We develop a semantic distillation mechanism, which lever-
ages LLMs to extract core, actionable semantic information
relevant to triage decisions from raw, potentially noisy, and re-
dundant incident data. This mechanism then effectively aligns
this distilled information with the domain knowledge of rele-
vant teams, thereby addressing incident semantic heterogeneity
and improving the accuracy of incident triage. Additionally, we
emulate the workflow of human engineers in solving incident
triage problems by innovatively designing multi-role agents
and proposing an effective negotiation mechanism. This allows
for the distributed and dynamic handling of multi-team domain
knowledge, effectively mitigating the impact of decentralized
and dynamic domain knowledge on triage performance. By
utilizing the robust semantic understanding of LLMs, we de-
sign an automated Team Information Enrichment mechanism
throughout the entire incident triage process, enabling end-to-
end triage even in scenarios requiring reassignment, without
additional human labor costs.

We conduct extensive experiments with TRIANGLE using
incident triage data collected from a real-world production
environment serving tens of millions of users. TRIANGLE has
significantly improved incident triage accuracy (up to 97%)

while reducing Time to Engage (TTE) by up to 91%, demon-
strating substantial operational impact across diverse cloud
services. In our offline experiments, TRIANGLE outperforms
the state-of-the-art method (DeepCT [3]) by 26%–42% relative
improvement in hop accuracy across all hops, achieving up to
91.7% accuracy at hop 5 without relying on manually enriched
discussions. To show the general capabilities of TRIANGLE,
we also conducted experiments on publicly available datasets.
The results show that TRIANGLE generalizes beyond incident
triage, achieving 63.2% accuracy on the MSR 2013 Bug
Dataset—outperforming all baselines by an average of 51.0%,
with gains ranging from 15.3% to 134.9%. Our model has
been successfully deployed in a system with tens of millions
of users at a leading global technology company.

Our contributions are summarized as follows:
• To the best of our knowledge, TRIANGLE is the first end-to-

end incident triage system leveraging a Multi-Agent frame-
work to automate triage in large-scale cloud environments,
enhancing both efficiency and accuracy.

• We design a multi-role agent framework with an effective
negotiation mechanism that mimics human engineer work-
flows in incident triage, dynamically managing multi-team
domain knowledge to overcome challenges of decentraliza-
tion and dynamism.

• We develop an automated Team Information Enrichment
mechanism, integrated throughout the triage process, en-
abling TRIANGLE to achieve end-to-end triage, including
reassignments, without additional human labor.

• TRIANGLE is deployed on real-world systems serving tens
of millions of users, where it has received consistently
positive feedback from on-call engineers. This real-world
adoption underscores the system’s practical effectiveness
and has yielded valuable insights that inform and motivate
further research in the domain of automated incident triage.

II. BACKGROUND

A. Incident Data

MitigatedStatus:
[Region] System Issuer returns NullReferenceException Severity:  Level 2

Duration: 1h27mService: Azure CommunicationID#461153xxx

Summary & Disscussion
Date Start: 2023-12-21 14:32:33 GMT+8
What we know: Database connections, API Gateway
authentication, and any operations involving storage blob
access in  Area A and Area B are experiencing failures. The
incident affected multiple tenants, availability zones,
network components, and service endpoints.d

Impact Assessment
Metric: 42d6616d-c9c5-370a-a8ba-17ead74f3114

Troubleshooting Guide

ARM applied mitigation to Area A and other regions at
about 8:45 PST. Area B continued to have issues, so
RP redirected traffic from Area B to Area A. This
mitigated the issue for events.

Incident is mitigated by the monitor [PROD] RP
Cluster Reliability Monitor. Service B Health
Page B Health Checks Dashboard: Reliability
Dashboard DGrep

Acknowledged, proceeding with the detailed analysis of
the failures. Initiating diagnostics on Service A retrieval
issues and ARM call failures in Area A and Area B.

Dashboard Link

Team Assignment: Team XXX

Fig. 2: Example of incident data post-triage, including meta-
data (title, duration, status, severity), a content body (summary
and two related discussions), and additional fields such as
impact assessment, consulted troubleshooting guide, and final
team assignment.



Incident data serves as a critical indicator of service quality
in large-scale cloud service systems. An incident is often trig-
gered by anomalies, faults, or unplanned interruptions within a
system, which could lead to significant service degradation or
outages. The rapid identification and resolution of incidents
are essential to maintaining high service quality and mini-
mizing financial losses. However, modern cloud environments
are highly complex, often involving numerous interconnected
components and teams with distinct functions. This complexity
amplifies the challenges associated with understanding and
processing incident data effectively.

Incident data typically comprises system-generated logs,
telemetry, alerts, and user reports, which can vary widely
in their format, granularity, and relevance. Incident data are
typically semi-structured, with natural-language descriptions
being most critical, as shown in Fig. 2. The same incident
pattern might correspond to different teams depending on
subtle contextual factors, while different patterns might lead to
the same team. This variability complicates the classification
and assignment of incidents to the correct teams, impacting
the effectiveness of incident triage systems.

B. Incident Triage

Incident triage is the process of quickly and accurately
assigning incidents to the appropriate teams to ensure timely
mitigation. In large-scale cloud service environments, a poorly
managed triage can significantly increase Time to Engage
(TTE), which is detrimental to both service quality and
customer trust. Traditional approaches to incident triage rely
heavily on predefined rules, human expertise, and manual
operations. Engineers often need to investigate incident details
using various tools, collaborate across multiple departments,
and adjust triage decisions based on evolving insights and
feedback. Even for human engineers, incident triage remains
a very challenging task. The triage process involves extensive
discussions across multiple teams, which results in a very
long TTE in real-world industrial settings, sometimes even
stretching to several weeks. We present the results of a real-
world empirical study in Fig. 3. This study covers over 3,000
teams and hundreds of services over a 12-month period. We
analyze two key metrics: the median time units spent on
incident triage and the median number of discussions triggered
per incident. The findings highlight a clear and pressing need
for an automated end-to-end incident triage system in real-
world industrial settings.

Incident triage shares similarities with bug triage, both being
multi-class, single-label classification problems where differ-
ent teams represent different classes. However, unlike bug
triage, incident data is often generated automatically by system
components or manually by users, lacking the richness needed
for one-time classification models to perform effectively. This
lack of context-rich information necessitates more sophis-
ticated methods that can dynamically incorporate evolving
domain knowledge and adapt to changing system states. For
current incident triage systems, the initial assignment is often
based on static rules or simple heuristics. In practice, incidents

Fig. 3: Median triage time units (green) and median human
discussion turns (red) per incident, segmented by number
of transfer hops, aggregated across over 3,000 teams and
hundreds of services over 12 months.

frequently need multiple reassignments before they reach the
right team, increasing Transfer Hop Counts, TTE, and TTM.
This reliance on manual routing and human experience further
exacerbates inefficiencies and inconsistencies, underscoring
the need for more automated and intelligent triage systems.

C. Multi-Agent

Large Language Models (LLMs) exhibit impressive plan-
ning and reasoning, enabling their use as autonomous
agents [14–16]. However, single LLM agents face limitations
with highly complex problems, indicating that even advanced
individual models may not be universally optimal [14]. This
has spurred the development of LLM-based multi-agent sys-
tems, which coordinate multiple LLMs, often specialized by
distinct profiles, capabilities, and roles for specific tasks or
problem facets [14, 17, 18]. These systems leverage col-
lective intelligence and specialized skills to enhance com-
plex problem-solving and create more adaptable simulations,
such as multiple agents assuming roles in software develop-
ment [19, 20], by mirroring human teamwork in collaborative
decision-making.

While scaling multi-agent systems presents challenges like
increased computational demands, advancements such as dy-
namic agent generation [21] and sophisticated orchestration
methodologies are vital for improving resource utilization and
coordination. The inherent modularity facilitates flexible inte-
gration of new capabilities, enabling agents to learn and evolve
through mechanisms like memory and self-evolution [14, 22].
Notable frameworks like MetaGPT (structuring collaboration
for software development [19]), CAMEL (focusing on au-
tonomous cooperation via inception prompting [23]), and
AutoGen (a versatile framework for customizable multi-agent
applications [24]) demonstrate significant potential. Appli-
cations span automating complex coding [19, 20], creating
interactive simulacra [25], and improving LLM factuality and
reasoning through multi-agent discussions [26], showcasing
their ability to yield more robust and effective outcomes.



Fig. 4: TRIANGLE framework. The Analyzer Agent ensures
semantic clarity of incoming incidents. The Decider Agent
proposes candidate teams based on historical data and func-
tional expertise, initiating a discussion group with relevant
Team Manager Agents. These agents access external tools
to contribute insights. Through discussion and voting, the
incident is assigned; if unresolved, the process iterates with
a refined candidate pool.

III. APPROACH

A. Overview

The core of TRIANGLE is a multi-agent system designed to
automate and optimize the incident triage process. This system
emulates human expert collaboration through distinct agent
roles, each contributing specialized functions from incident
understanding to final team assignment. The overall workflow,
illustrated in Fig. 4, involves three main phases: incident
ingestion and semantic distillation (Section III-B), team can-
didate generation and initial selection (Section III-C), and a
collaborative triage and negotiation loop (Section III-D). Three
primary agent types orchestrate this workflow: the Analyzer
Agent, the Decider Agent, and the Team Manager Agent.

This multi-agent architecture is designed based on two
key principles. First, it mirrors the collaborative workflow
of human engineering teams, where specialists with dif-
ferent expertise work together through analysis, discussion,
and consensus-building. Second, the differentiated agent roles
maintain knowledge at multiple granularities. The Analyzer
Agent holds fine-grained technical knowledge, the Decider
Agent maintains strategic selection criteria, and Team Manager
Agents possess team-specific operational knowledge. This
knowledge stratification enables the negotiation phase to lever-
age domain expertise from technical, strategic, and operational
perspectives simultaneously, leading to more comprehensive
and robust triage decisions that emulate the collaborative
reasoning process of effective human expert teams.

B. Phase 1: Incident Ingestion and Semantic Distillation

Upon entering the incident tracking system, a new inci-
dent first undergoes semantic distillation, a critical process

orchestrated by the Analyzer Agent. The primary objective of
this phase is to extract and refine the semantic information
most pertinent to accurate triage, thereby mitigating issues
that arise from inconsistent or noisy incident descriptions. The
Analyzer Agent is tasked with preprocessing new incidents
and then activating the semantic distillation mechanism. This
mechanism transforms raw incident data into a structured
and semantically aligned format, optimized for subsequent
interpretation and action by other agents.

The semantic distillation mechanism itself is designed to
identify key phrases essential for triage and to ensure con-
ceptual consistency between the incident’s description and the
organization’s team functional documents, which constitute a
key knowledge environment. This is achieved through two co-
ordinated steps: semantic alignment and key phrase extraction.

Initially, semantic alignment is performed to harmonize the
incident’s terminology with that used within the team func-
tional documents. This multi-step alignment begins with Initial
Keyword Identification, where the incident text is analyzed
using TF-IDF to pinpoint statistically significant terms (e.g.,
“latency”, “API error”). Following this, during Terminol-
ogy Matching, these identified terms are meticulously cross-
referenced with a domain-specific glossary derived from the
team functional documents. This step helps find preliminary
matches and standardize terminological variations. The align-
ment process culminates in LLM-based Semantic Refinement.
Here, an LLM-powered component of the Analyzer Agent
actively engages with the team functional documents as an
interactive knowledge source. Guided by the original incident
text and the previously identified keywords, this component
queries and navigates the document corpus to dynamically re-
trieve relevant contextual information and terminological stan-
dards. It then leverages this retrieved knowledge to rephrase
the incident description, ensuring it aligns with the established
vocabulary and conceptual framework of the teams while pre-
serving the original meaning, ultimately producing an incident
description that is semantically harmonized with internal team
knowledge.

Subsequent to successful alignment, the Analyzer Agent
proceeds with key phrase extraction to distill core triage
information. In this step, words within the aligned incident
data are assigned weights based on their TF-IDF scores relative
to the entire collection of team functional documents. These
weights, along with the semantically aligned incident text, are
then presented to another LLM-driven component tasked with
expert-level summarization. This component, acting as a triage
expert, analyzes the provided information—drawing upon its
understanding of relevant contexts (potentially informed by the
same team functional documents it can conceptually access)
to extract three pivotal types of key phrases: those related to
the failure location, phrases describing the symptoms of the
failure, and phrases indicating the capabilities likely required
to resolve the incident. These extracted key phrases are then
appended to the original incident data, serving as a refined and
focused input for the Triage Decider Agent in the next phase.



Algorithm 1 Triage Decider for Incident Team Assignment

Require: Incident I , Historical IncidentsH, Team Documents
D

Ensure: Candidate Teams T ∗

1: // Step 1: Compute similarity with historical incidents
2: V← TFIDF(H) ▷ Vectorize H using TF-IDF
3: S(I,H)← cosine(TFIDF(I),V) ▷ Compute similarity
4: T1 ← {teams of top-K(S(I,H))} ▷ Select top K team

candidates
5: // Step 2: Candidate teams refinement using LLM
6: D′ ← LLMcompress(D) ▷ Compress team documents,

high compress rate
7: T2 ← {top-N(LLMmatch(I,D′))} ▷ Retrieve top N

team candidates
8: // Step 3: Final ranking of candidates
9: D′′ ← LLMcompress(D) ▷ Compress team documents,

low compress rate
10: T ∗ ← LLMrank(I, T1 + T2,D′′, key phrases) ▷ Rank

candidates
11: return T ∗

C. Phase 2: Candidate Generation and Initial Selection

With the semantically distilled incident information, the
Triage Decider Agent identifies an initial set of suitable team
candidates. The Triage Decider Agent is central to selecting
appropriate teams. For initial assignment, it employs a two-
pronged approach to generate candidates, as detailed in Algo-
rithm 1.

Historical Incident Matching. The current incident is vec-
torized using TF-IDF and compared against a vectorized
history of past incidents (H) using cosine similarity. The teams
that handled the top-K most similar historical incidents are
selected as T1.

Team Document Matching. To assess relevance against team
capabilities, an LLM-powered component within the Triage
Decider Agent first interacts with the team functional doc-
uments (D). It strategically processes and compresses these
documents (e.g., through summarization) into more concise
representations (D′) suitable for efficient matching while aim-
ing to preserve core functional information. Subsequently, this
or another LLM-component actively consults these condensed
representations (D′), evaluating the current incident against
each team’s summarized profile to identify and retrieve the
top-N most relevant teams as T2.

The two sets of candidates, T1 and T2, are combined. To
refine this combined list, the Triage Decider may activate a
further LLM-driven analysis. This component then undertakes
a more in-depth interaction with less compressed versions of
the team documents (D′′) corresponding to the combined can-
didates, and cross-references the incident specifics, including
the key phrases extracted in Phase 1, against each team’s
detailed capabilities to establish a final ranking and select the
top M teams for the discussion group. M can be configured
by engineers according to the actual service requirements.

Team Manager

Incident Monitor Database
API 

Monitor Database

Query Generation

Related Monitor Log

Incident
Events in Monitor Log

Related Infomation

Troubleshooting Suggestion

Enriched Disscussion

Fig. 5: Team Information Enrichment Mechanism, allowing
Team Manager Agents to access and summarize external data
sources, such as monitoring logs, to support triage decisions.

D. Phase 3: Collaborative Triage and Negotiation Loop

The top M candidate teams selected by the Triage Decider
form a discussion group to collaboratively determine the
most appropriate team. This phase involves Team Manager
Agents and employs a voting-based negotiation mechanism.
Each team within the organization has a corresponding Team
Manager Agent. Its primary role is to assess if an incident falls
within its team’s responsibility, leveraging its specific domain
knowledge and tools. When a team’s responsibilities change,
only its functional documentation needs updating, which the
agent dynamically uses.

1) Team Information Enrichment Mechanism: A key capa-
bility of the Team Manager Agent is to augment the incident
data with relevant contextual information. This mechanism,
illustrated in Fig. 5, automates the retrieval and summarization
of such information:
• Information Retrieval: The Team Manager Agent extracts

entities like time ranges and component names from the
incident. It uses these to automatically generate and execute
queries against its team-specific monitoring databases (e.g.,
for logs). It can infer missing query parameters based on the
incident description and database interface documentation.

• LLM-based Summarization: The retrieved logs, often volu-
minous and noisy, are not directly used. Instead, an LLM-
powered analytical component within the Team Manager
Agent is activated to interact with this retrieved data. This
component intelligently sifts through the logs, treating them
as a dynamic information environment, and correlates log
events with the incident description it has access to. Drawing
on its reasoning capabilities, it then synthesizes these find-
ings into “enriched discussion” points, covering: a. Potential
events in the logs related to the incident. b. Correlation
between log information and the incident description. c.
Troubleshooting suggestions derived from the logs.

This enriched information, tagged with the providing team, is
added to the incident.

2) Voting-based Negotiation: Once all Team Manager
Agents in the discussion group have had a chance to provide
enriched information, the aggregated details are shared among
them. Each Team Manager Agent then votes for the team it
deems most suitable to handle the incident from the current
discussion group. If a single team receives a majority of votes
(e.g., more than half), the incident is assigned to that team,
and the triage process concludes.



3) Reassignment Process: If the voting does not result in
a consensus, the negotiation is considered to have failed for
that round. The incident, now augmented with the collective
enriched discussion from all participating teams, is sent back
to the Triage Decider Agent. For reassignment, the Triage
Decider:
• Removes the teams that were part of the failed negotiation

from the immediate candidate pool for the next round to
avoid immediate loops (or specifically the team that might
have been voted for but didn’t reach consensus if applicable,
or applies other heuristics).

• Leverages the newly acquired discussion information.
• Activates an LLM-component to select a new set of can-

didate teams. This component primarily engages with the
team functional documents as its knowledge environment,
performing a nuanced matching of the enriched incident
(now containing insights from the previous negotiation
round) against the documented capabilities of various teams.
Historical TF-IDF based selection (Step 1 in Algorithm 1)
is typically not reused in reassignment rounds to focus on
the fresh insights.

This negotiation loop can repeat. To prevent infinite cycles, a
maximum number of reassignment loops is set (e.g., 5 loops
in our settings). If no consensus is reached after the maximum
loops, TRIANGLE assigns the incident based on the last voting
result, which could involve human engineers at this stage.

This multi-agent approach allows TRIANGLE to dynami-
cally adapt its triage strategy based on evolving information
and collaborative insights, mirroring complex decision-making
processes performed by human expert teams.

IV. EVALUATION

In this study, to fully evaluate the performance of TRIAN-
GLE in incident triage within a real-world production environ-
ment, we aim to address the following research questions:
• RQ1: Business Impact - How effective is TRIANGLE in

terms of time savings during incident triage in real-world
industry scenarios?

• RQ2: Overall Performance - What is the accuracy of
TRIANGLE in the continuous incident triage process within
large-scale cloud service systems?

• RQ3: Ablation Study - What is the contribution of each
key component to the overall performance of TRIANGLE?

• RQ4: General Capabilities - How does the general capabil-
ity of TRIANGLE perform? Can it achieve good performance
in tasks similar to incident triage (e.g. bug traige)?

A. Dataset

To evaluate the performance of TRIANGLE in real-world
scenarios, we collected 15 months of real incident data from
large-scale cloud service systems serving tens of millions of
users at a leading global technology company. These cloud
services involve hundreds of engineering teams. To ensure a
quantitative and objective experiment, we concentrated solely
on incidents that had been resolved, as their confirmed as-
signments facilitate an accurate assessment of the incident

triage process. Specifically, we split the data into a 12-month
period for historical incident data and a subsequent 3-month
period for evaluating the performance of TRIANGLE. For our
experimental analysis, we concentrated solely on incidents that
had been resolved, as their confirmed assignments facilitate an
accurate assessment of the incident triage process. Specifically,
we split the data into a 12-month period for building the
knowledge base and a subsequent 3-month period for testing
the performance of TRIANGLE.

B. Experiment Setup

1) Metrics: Accuracy and Time to Engage are the two most
crucial evaluation metrics in incident triage. Below, we will
provide a detailed introduction to these two metrics.

Accuracy. Accuracy is a widely used metric in classification
tasks and is a core indicator for evaluating the end-to-end
performance of incident triage. However, in incident triage,
due to the involvement of reassignment, we further refine
the concept of accuracy. We introduce Hop Accuracy. Its
calculation is the same as traditional accuracy, but with a
restriction on the number of hops for reassignment. Hop
N Accuracy (N ≥ 1) represents the accuracy when the
number of assignments does not exceed N by the time the
model completes the final assignment. This places a higher
requirement on the model’s capabilities.

Time to Engage (TTE). TTE refers to the time elapsed from
when an incident is reported to when it is assigned to the
correct team. TTE is a key factor in measuring the efficiency
of incident triage. In practical scenarios, the model’s runtime
accounts for a minimal portion of the entire triage process.
This is because, during triage, engineers from different teams
may conduct further analysis of the incident, and there may
also be meetings between teams. The time spent by human
engineers in these activities constitutes the majority of the
triage process.

2) Baselines: To evaluate the performance of TRIANGLE,
we introduce several baseline methods.
• ContentBased [7]: Uses locality-sensitive hashing to find

suitable teams, helping mitigate cold start issues by iden-
tifying patterns in new or sparse data.

• InvertedIndex [27]: Builds a inverted index table re-ranked
by IDF scores to rank teams.

• LGBM [28]: Employs a one-vs-all LightGBM model to
handle sparse and unstructured data.

• MART [29]: Utilizes a multiple additive regression tree
(MART) model, trained with a one-vs-all FastTree [30]
classifier to assign incidents.

• DeepCT [3]: The state-of-the-art incident triage method
based on deep learning.
The first four methods are traditional machine and statis-

tical learning methods, that are widely used in the industry.
DeepCT [3] is a state-of-the-art incident triage method based
on deep learning. DeepCT utilizes Convolutional Neural Net-
works (CNNs) to encode domain-specific discussions. It then
leverages Gated Recurrent Units (GRUs) to capture temporal



TABLE I: Average triage accuracy per services after deploying
TRIANGLE in large-scale service systems, along with the
percentage reduction in Time to Engage (TTE), comparing the
three months before and after deployment to ensure significant
observability and unbiased evaluation.

Team A B C D E F

Triage Accuracy (%) 92 82 96 64 96 97
TTE Reduction (%) 18 91 48 72 61 67

relations and applies attention mechanisms to reduce the
impact of noise. This method relies heavily on the availability
of extensive discussions from engineers.

C. RQ1: Business Impact

Adoption. TRIANGLE has been running in production and is
actively used to triage cloud incidents at a leading global tech-
nology company that serves tens of millions of users world-
wide. Two organizations within the company have adopted
TRIANGLE as their primary approach to incident triage: one
is a cloud platform provider operating multiple services, and
the other manages a large-scale, customer-facing service. Both
organizations integrate their incident management systems
with TRIANGLE to supply relevant data. Despite differences
in system architecture and domain knowledge, TRIANGLE has
demonstrated strong robustness and scalability across these
varied environments. Feedback from service teams highlights
the impact of the system:

“TRIANGLE’s automated routing capabilities help
reduce engineering toil and enhance customer ex-
perience by accelerating mitigation through more
efficient incident handling.”

Scale. While the exact number of incidents processed by
TRIANGLE is sensitive and cannot be disclosed, it operates
under high-scale production conditions. Specifically, it utilizes
approximately 600 million logs per day and analyzes over
2,000 distinct fault types. In total, more than 20 TB of data
is processed daily. This scale of operation underscores the
robustness and efficiency of TRIANGLE in handling diverse,
large-volume telemetry in real-world cloud environments.

TTE saving. Time to Engage (TTE) is a key business metric
for evaluating the efficiency of incident triage models. To
assess the real-world performance of TRIANGLE, we select
the six most recently updated services (designated A through
F) and compare data from the three months before and
after its deployment. The evaluation focuses on two primary
metrics: average triage accuracy after deployment and the
percentage reduction in TTE. Triage accuracy is measured by
comparing the team initially assigned by TRIANGLE with the
final resolving team. TTE reduction is calculated by comparing
the average TTE in the three months following TRIANGLE’s
deployment with the average from the three months prior.

The empirical results, summarized in Table I, demonstrate
the significant positive impact of TRIANGLE on incident

management workflows. Across the six production teams,
TRIANGLE generally shows high triage accuracy. Notably,
Teams C, E, and F achieve outstanding accuracy rates of 96%,
96%, and 97%, respectively. Team A also performs well, with
a triage accuracy of 92%. While Team B’s accuracy is slightly
lower at 82%, it still reflects a competent level of automated
triage. Team D shows a more modest accuracy of 64%. A
manual inspection reveals that the relatively modest accuracy
for Team D (64%) was primarily due to the templated nature
of its incident descriptions, which are typically generated
by monitoring tools. These descriptions often lack sufficient
contextual information, such as detailed incident logs, making
it challenging for TRIANGLE to perform accurate triage.

In terms of operational efficiency, measured by TTE reduc-
tion, TRIANGLE delivers substantial improvements across all
teams. Team B experiences the most dramatic impact, with a
91% reduction in TTE. This suggests that even with slightly
lower triage accuracy, automation by TRIANGLE significantly
streamlines the initial engagement process. Team D also sees
a strong reduction of 72%, followed by Team F (67%), Team
E (61%), and Team C (48%). Even Team A, which records the
smallest improvement, still benefits from an 18% reduction.

These results highlight a key strength of TRIANGLE: its
ability to not only accurately route incidents but also to
drastically shorten the critical initial period before an incident
receives attention.

D. RQ2: Overall Performance

To verify the effectiveness of TRIANGLE in a real-world
scenario, we compare the end-to-end incident triage perfor-
mance of TRIANGLE with other baseline methods. Based on
the maximum hop count of manual triage in historical incident
data, we evaluated the accuracy for hop counts ranging from 1
to 5. It is worth noting that triage models based on traditional
machine learning methods in DeepTriage [7] (ContentBased,
InvertedIndex, LGBM and MART) are unable to perform
continuous triage. In contrast, we use the same discussion text
as DeepCT to achieve continuous triage results. As a result,
their hop accuracy does not vary across different hops. Addi-
tionally, because DeepCT requires manually provided enriched
discussions, we sequentially provided DeepTriage with the
manually added enriched discussions from the incident data
in chronological order. In contrast, our method did not use
manually provided enriched discussions, but instead utilized
the Team Manager for automatic generation. The experimental
results are shown in Table II.

According to the experimental results shown in Table II, our
proposed model, TRIANGLE, shows outstanding performance
compared to traditional machine learning methods and the
state-of-the-art method, DeepCT in end-to-end incident triage.
Besides, TRIANGLE shows a significant improvement in accu-
racy as the hop count increases. This highlights its capability
to handle complex scenarios involving multiple reassignment
hops effectively.

For hop counts up to 1, TRIANGLE achieves an accuracy of
54.7%, surpassing all other methods, including DeepCT, which



TABLE II: End-to-end performance comparison of TRIANGLE
and baseline methods in a maximum of 5 transfer hops.

Method Hop Accuracy [%]
Hop 1 Hop 2 Hop 3 Hop 4 Hop 5

ContentBased 9.43 17.3 21.9 25.4 29.6
InvertedIndex 14.4 24.8 34.4 42.8 49.4

LGBM 3.12 3.65 4.66 5.11 5.96
MART 4.23 6.17 7.28 10.22 13.56

DeepCT 43.4 54.6 60.4 64.4 67.6
TRIANGLE 54.7 70.4 80.5 86.0 91.7

stands at 43.4%. As the hop count increases to 5, TRIANGLE
maintains its superior performance, reaching an accuracy of
91.7%, a substantial improvement over DeepCT’s 67.6%.
This demonstrates TRIANGLE’s robustness and effectiveness
in continuous triage without the need for manually enriched
discussions. The automatic generation of enriched discussions
by the Team Manager in TRIANGLE plays a crucial role
in achieving this enhanced performance, making it a highly
effective solution for real-world incident triage scenarios.

Further in-depth analysis reveals that as the Hop Count
increases, the performance improvement of DeepCT is less
than that of TRIANGLE. We believe this is due to the forgetting
phenomenon caused by the GRU model in DeepCT when
the sequence length increases. In contrast, TRIANGLE benefits
from the powerful memory and comprehension capabilities of
the Transformer model in LLM for long sequences. Therefore,
its performance is not affected by the increased sequence
length when the Hop Count increases.

To assess the robustness and generalization of TRIANGLE,
we randomly selected nine different services from the system
and evaluated the performance of various incident triage
models across these services. The results are illustrated in
Fig. 6.

The experimental findings reveal that TRIANGLE consis-
tently achieves superior Hop Accuracy across the majority of
services, with notable improvements over baseline methods
observed at the 2nd or 3rd hop. This enhancement is attributed
to TRIANGLE’s multi-agent negotiation mechanism, which
effectively aggregates information from multiple teams. This
process introduces substantial external information to incidents
that initially lack sufficient details, thereby significantly im-
proving triage performance.

Our experiments demonstrate that TRIANGLE excels in end-
to-end incident triage performance in real-world scenarios.

E. RQ3: Ablation Study

To evaluate the contribution of each key components in
our approach, we conducted an ablation study following the
experimental setup of Section IV-D. We removed the semantic
distillation (w/o ST), Multi-Agent negoTiation mechanism
(w/o MAT), and Team Information Enrichment mechanism
(w/o TIE) respectively. Since multi-agent negotiation is the
core operation of incident triage, to ensure the normal opera-
tion of TRIANGLE after removing the multi-agent negotiation
mechanism, we allowed the Triage Decider to directly assign

TABLE III: Ablation study results of different components of
TRIANGLE on Hop Accuracy.

Method Hop Accuracy [%]
Hop 1 Hop 2 Hop 3 Hop 4 Hop 5

w/o ST 49.1 62.2 76.8 81.1 86.1
w/o MAT 42.8 54.6 63.4 67.5 70.4
w/o TIE 49.6 60.1 61.7 63.8 65.8

TRIANGLE 54.7 70.4 80.5 86.0 91.7

based on the ranking of team candidates. Table III shows our
experimental results.

From the experimental results presented in Table III, it is
evident that each of the key components in our proposed
approach contributes significantly to the overall performance.
The results show that removing any of the components leads to
a decrease in Hop Accuracy across all Hop count (Hop 1 to
Hop 5). Specifically, without the Semantic Distillation (w/o
ST), the performance drops notably, achieving only 49.1%
Hop 1 accuracy, which is a 5.6% decrease compared to the
full model. This drop in performance indicates that semantic
distillation is crucial for accurate hop prediction, allowing the
system to make more informed decisions based on enriched
semantic information.

The most substantial performance degradation is observed
when the multi-agent negotiation mechanism is removed(w/o
MAT). The accuracy drops to 42.8% for Hop 1, which is
almost a 12% reduction compared to the full model. The
Hop 5 accuracy also sees a significant decline to 70.4%.
This demonstrates that the negotiation mechanism is vital for
optimizing the triage decision-making process through collab-
orative decision-making among agents, rather than relying on
a naive ranking approach.

The absence of the Team Information Enrichment mecha-
nism (w/o TIE) also results in a significant reduction in per-
formance. The model’s Hop 2 and Hop 5 accuracies decrease
by 10.3% and 25.9%, respectively, compared to TRIANGLE.
These results confirm that enriched discussion is a key factor
for effective incident triage, as it provides crucial context that
enhances the decision-making capability of the multi-agent
system.

Notably, Team Information Enrichment has the greatest im-
pact on the performance of TRIANGLE. This is because the key
reason for the inaccuracy in incident triage is the insufficient
amount of information in raw incidents. The role of Team
Information Enrichment is to automatically obtain external
relevant information through agents, so the introduction of
external information has a decisive effect on the performance
of incident triage.

In contrast, our proposed method, TRIANGLE, consistently
outperforms all ablated versions across all metrics, achieving
the highest Hop Accuracy at every threshold. This indicates
that the combined use of semantic distillation, multi-agent
negotiation, and team information enrichment provides a syn-
ergistic effect that leads to superior triage performance.
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Fig. 6: Effectiveness comparison among TRIANGLE, ContentBased, InvertedIndex, LGBM, MART and DeepCT, for each
studied cloud services (the x-axis represents the number of triage hops and the y-axis presents the accuracy of incident triage).

TABLE IV: Bug triage accuracy of TRIANGLE and baseline
methods on the MSR 2013 Bug Dataset.

Model Content
Based

Inverted
Index LGBM MART DeepCT TRIANGLE

Acc (%) 38.1 26.9 54.8 53.8 52.1 63.2

F. RQ4: General Capabilities

Although TRIANGLE has been optimized specifically for
incident triage tasks, we conducted comprehensive experi-
ments to evaluate its generalizability using the MSR 2013 Bug
Dataset [31]. This dataset provides an ideal testing ground due
to its extensive collection of bug reports with detailed tech-
nical descriptions, comprehensive metadata, and assignment
histories similar to incident management workflows.

We selected this dataset for three primary reasons: First, its
public availability supports reproducibility. Second, it struc-
turally resembles incident triage data, as both tasks require
examining descriptive text, contextual metadata, and historical
assignment records. Third, the MSR 2013 Bug Dataset is
widely recognized within the bug triage research commu-
nity [3].

Since the dataset lacks the “team function document” neces-
sary for TRIANGLE, we adopted a semi-manual approach: for
each of 20 randomly selected developers, we summarized key
assignment phrases based on existing metadata and historical
bug resolution records. This approach balanced manual effort
with adequate coverage for evaluation across 200 assembled
bug cases.

As shown in Table IV, TRIANGLE achieved 63.2% accuracy
compared to DeepCT’s 52.1% under identical experimental
conditions. While both methods showed decreased perfor-
mance compared to incident triage—likely because bug reports
contain less rich textual information and require more domain-

specific software knowledge—TRIANGLE maintained signifi-
cant superiority. We attribute this performance to our method’s
ability to incorporate historical assignment information and
domain-specific knowledge from key phrase summarization,
validating TRIANGLE’s generalizability to similar technical
classification tasks.

V. DISCUSSION

A. Lessons learned

To enhance the accuracy of incident triage, we have iden-
tified several key lessons after deploying TRIANGLE to pro-
duction systems.

First, the completeness and accuracy of historical data
are critical. TRIANGLE relies heavily on historical incident
triage records as well as each team’s functional documentation
to perform automated triage. A common failure mode we
observed stemmed from missing or insufficient historical sig-
nals—such as lacking indicative keywords—that are essential
for associating incidents with the correct team. In other cases,
the team documentation itself was vague or ambiguous, mak-
ing it difficult for the system to derive meaningful mappings.

Second, the presence of reasoning-based textual content
in historical incident records significantly improves triage
performance. For instance, in RQ3, we found that teams with
higher triage accuracy often had incident logs that included
explicit reasoning (e.g., “after seeing this log, we determined
it falls outside our team’s scope”). Such information allows
the model to better understand the decision-making process
and improves its ability to generalize to new incidents.

To address these challenges, we experimented with several
strategies to support underperforming teams. These included
standardizing documentation formats and terminology to im-
prove textual consistency, and allowing teams to integrate
custom systems to provide richer contextual information.



These efforts collectively helped TRIANGLE gain widespread
recognition from product teams during its deployment in real-
world scenarios.

B. Threat to Validity
Internal validity threats mainly stem from the implementation
of our method TRIANGLE and the comparison methods. To
mitigate this threat, two authors thoroughly review the code.
Specifically, we implement these methods based on a mature
industry framework.
External validity threats primarily concern the subjects used.
In our study, we employed data from several large-scale cloud
service systems. Although these data are derived from real
industry applications, the subjects may not fully represent
service systems in other companies. In future work, we will
apply TRIANGLE to a broader range of service systems.
Construct validity threats primarily lie in the choice of
parameters and metrics used. To mitigate the threat from
parameters, we employ grid search to optimize the parameters
in both TRIANGLE and the comparison methods. To address
the threat from metrics, we utilize the most commonly used
accuracy and time cost metrics in our study. In future work,
we plan to incorporate additional metrics, such as false pos-
itive rate and recall, to more comprehensively evaluate the
effectiveness and efficiency of TRIANGLE.

VI. RELATED WORK

Incident triage. Recent advancements in incident triage have
utilized deep learning to enhance accuracy and efficiency
[32]. DeepTriage [7] uses various machine learning models
to automate triage, improving accuracy by learning from his-
torical data. The most similar work is DeepCT [3], which per-
forms continuous incident triage using Convolutional Neural
Networks (CNNs) to encode domain-specific text and Gated
Recurrent Units (GRUs) to extract temporal relationships,
complemented by attention mechanisms to reduce noise. Its
effectiveness depends on extensive human discussions, which
cannot be fully automated. In contrast, our multi-agent based
solution can collect troubleshooting information and manage
negotiation processes like a human.
Bug triage. Research on bug triage for traditional software is
extensive , focusing mainly on two approaches: learning-based
and information-retrieval-based methods. Learning-based ap-
proaches treat bug triage as a supervised classification prob-
lem, using techniques such as ensemble learning [8], and
deep learning with Convolutional Neural Networks (CNNs)
[9, 10] to classify bugs. Information-retrieval methods focus on
leveraging expertise and historical data, with approaches like
Latent Dirichlet Allocation (LDA) [11] to match developers to
bugs, topic-modeling [12] to map bug report terms to topics,
and historical bug-fix analysis [13] to link developers, code
components, and bugs. However, incident triage presents a
more complex challenge in industry practice because of the
intricate nature of cloud systems.
LLM for cloud systems. In recent years, the integration
of Large Language Models (LLMs) into cloud systems has

gained significant traction, reflecting a broader trend toward
enhancing automation and efficiency in cloud operations. Re-
search and practical implementations have demonstrated how
LLMs can be leveraged for various tasks, including incident
detection [6, 33], assessment [34, 35], and diagnosis [1, 2, 36–
39]. For example, RCAgent [40] enhances LLM-generated
root cause reports with a Self-Consistency mechanism and
domain-specific knowledge integration. ReAct [41] applies
LLMs to root cause analysis in cloud management, showing
high performance and accuracy with real-world data. DB-
GPT [42] merges LLMs with traditional databases to im-
prove natural language query responses, featuring a retrieval-
augmented generation system and adaptive learning. To the
best of our knowledge, no existing multi-agent solutions have
been proposed specifically for incident triage. TRIANGLE is
the first end-to-end multi-agent based incident triage approach.
Nonetheless, it is quite natural to leverage LLMs to emulate
human capabilities in performing triage tasks.

VII. CONCLUSION

Effective and accurate incident triage is crucial for main-
taining service quality and reducing time to engagement and
mitigation in large-scale cloud service systems. In this paper,
we present TRIANGLE, an end-to-end incident triage system
designed using a Multi-Agent framework. We introduce a
novel semantic distillation mechanism that leverages the pow-
erful semantic understanding capabilities of LLMs to tackle
the issue of incident semantic heterogeneity, significantly
enhancing triage accuracy. Additionally, we develop a multi-
role agent framework equipped with an effective negotiation
mechanism, allowing the system to dynamically manage multi-
team domain knowledge and simulate the workflow of hu-
man engineers. Moreover, TRIANGLE includes an automated
team information enrichment mechanism, enabling end-to-end
triage without incurring additional human labor costs, even
in scenarios requiring incident reassignment. Extensive exper-
iments on real-world incident triage data from a production
system serving tens of millions of users demonstrate the strong
performance and practical utility of TRIANGLE. The system
has improved triage accuracy up to 97% while reducing Time
to Engage (TTE) by up to 91%. The deployment of TRIANGLE
in a production system serving tens of millions of users in a
leading global technology company has shown its effectiveness
and reliability in real world environments. We believe that
our approach can provide valuable insights and serve as a
foundation for future research and development in automated
incident triage systems for large-scale cloud services.
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Y. Dekel, X. Dupré, V. Eksarevskiy, S. Filipi, T. Fin-
ley, A. Goswami, M. Hoover, S. Inglis, M. Interlandi,
N. Kazmi, G. Krivosheev, P. Luferenko, I. Matantsev,
S. Matusevych, S. Moradi, G. Nazirov, J. Ormont,
G. Oshri, A. Pagnoni, J. Parmar, P. Roy, M. Z. Sid-
diqui, M. Weimer, S. Zahirazami, and Y. Zhu, “Machine
learning at microsoft with ML.NET,” in Proceedings
of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2019,
Anchorage, AK, USA, August 4-8, 2019. ACM, 2019,
pp. 2448–2458.

[31] A. Lamkanfi, J. Perez, and S. Demeyer, “The eclipse
and mozilla defect tracking dataset: a genuine dataset for
mining bug information,” in MSR ’13: Proceedings of the
10th Working Conference on Mining Software Reposito-
ries, May 18-–19, 2013. San Francisco, California, USA,
2013.

[32] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao,
Z. Xu, Y. Dang, and D. Zhang, “An empirical investiga-
tion of incident triage for online service systems,” in 2019

IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-
SEIP). IEEE, 2019, pp. 111–120.

[33] J. Liu, C. Zhang, J. Qian, M. Ma, S. Qin, C. Bansal,
Q. Lin, S. Rajmohan, and D. Zhang, “Large language
models can deliver accurate and interpretable time series
anomaly detection,” arXiv preprint arXiv:2405.15370,
2024.

[34] P. Jin, S. Zhang, M. Ma, H. Li, Y. Kang, L. Li, Y. Liu,
B. Qiao, C. Zhang, P. Zhao, S. He, F. Sarro, Y. Dang,
S. Rajmohan, Q. Lin, and D. Zhang, “Assess and summa-
rize: Improve outage understanding with large language
models,” in Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2023,
San Francisco, CA, USA, December 3-9, 2023. ACM,
2023, pp. 1657–1668.

[35] X. Zhou, B. Xu, K. Kim, D. Han, H. H. Nguyen,
T. Le-Cong, J. He, B. Le, and D. Lo, “Leveraging
large language model for automatic patch correctness as-
sessment,” IEEE Transactions on Software Engineering,
2024.

[36] Y. Jiang, C. Zhang, S. He, Z. Yang, M. Ma, S. Qin,
Y. Kang, Y. Dang, S. Rajmohan, Q. Lin, and D. Zhang,
“Xpert: Empowering incident management with query
recommendations via large language models,” in Pro-
ceedings of the 46th IEEE/ACM International Conference
on Software Engineering, ICSE 2024, Lisbon, Portugal,
April 14-20, 2024. ACM, 2024, pp. 92:1–92:13.

[37] J. Huang, J. Liu, Z. Chen, Z. Jiang, Y. Li, J. Gu,
C. Feng, Z. Yang, Y. Yang, and M. R. Lyu, “Faultprofit:
Hierarchical fault profiling of incident tickets in large-
scale cloud systems,” in Proceedings of the 46th Inter-
national Conference on Software Engineering: Software
Engineering in Practice, 2024, pp. 392–404.

[38] W. Zhang, H. Guo, J. Yang, Z. Tian, Y. Zhang, C. Yan,
Z. Li, T. Li, X. Shi, L. Zheng et al., “mabc: multi-
agent blockchain-inspired collaboration for root cause
analysis in micro-services architecture,” arXiv preprint
arXiv:2404.12135, 2024.

[39] C. Pei, Z. Wang, F. Liu, Z. Li, Y. Liu, X. He, R. Kang,
T. Zhang, J. Chen, J. Li et al., “Flow-of-action: Sop
enhanced llm-based multi-agent system for root cause
analysis,” in Companion Proceedings of the ACM on Web
Conference 2025, 2025, pp. 422–431.

[40] Z. Wang, Z. Liu, Y. Zhang, A. Zhong, L. Fan, L. Wu,
and Q. Wen, “Rcagent: Cloud root cause analysis by
autonomous agents with tool-augmented large language
models,” arXiv preprint arXiv:2310.16340, 2023.

[41] D. Roy, X. Zhang, R. Bhave, C. Bansal, P. Las-Casas,
R. Fonseca, and S. Rajmohan, “Exploring llm-based
agents for root cause analysis,” in Companion Proceed-
ings of the 32nd ACM International Conference on the
Foundations of Software Engineering, 2024, pp. 208–
219.

[42] S. Xue, C. Jiang, W. Shi, F. Cheng, K. Chen, H. Yang,



Z. Zhang, J. He, H. Zhang, G. Wei et al., “Db-gpt:
Empowering database interactions with private large lan-

guage models,” arXiv preprint arXiv:2312.17449, 2023.


	Introduction
	Background
	Incident Data
	Incident Triage
	Multi-Agent

	Approach
	Overview
	Phase 1: Incident Ingestion and Semantic Distillation
	Phase 2: Candidate Generation and Initial Selection
	Phase 3: Collaborative Triage and Negotiation Loop
	Team Information Enrichment Mechanism
	Voting-based Negotiation
	Reassignment Process


	Evaluation
	Dataset
	Experiment Setup
	Metrics
	Baselines

	RQ1: Business Impact
	RQ2: Overall Performance
	RQ3: Ablation Study
	RQ4: General Capabilities

	Discussion
	Lessons learned
	Threat to Validity

	Related Work
	Conclusion

