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ABSTRACT

How much information about training samples can be gleaned from synthetic data generated by
Large Language Models (LLMs)? Overlooking the subtleties of information flow in synthetic data
generation pipelines can lead to a false sense of privacy. In this paper, we design membership
inference attacks (MIAs) that target data used to fine-tune pre-trained LLMs that are then used to
synthesize data, particularly when the adversary does not have access to the fine-tuned model but only
to the synthetic data. We show that such data-based MIAs do significantly better than a random guess,
meaning that synthetic data leaks information about the training data. Further, we find that canaries
crafted to maximize vulnerability to model-based MIAs are sub-optimal for privacy auditing when
only synthetic data is released. Such out-of-distribution canaries have limited influence on the model’s
output when prompted to generate useful, in-distribution synthetic data, which drastically reduces
their vulnerability. To tackle this problem, we leverage the mechanics of auto-regressive models to
design canaries with an in-distribution prefix and a high-perplexity suffix that leave detectable traces
in synthetic data. This enhances the power of data-based MIAs and provides a better assessment of
the privacy risks of releasing synthetic data generated by LLMs.

1 Introduction

Large Language Models (LLMs) can generate synthetic data that mimics human-written content through domain-specific
prompts. Besides their impressive fluency, LLMs are known to memorize parts of their training data (Carlini et al., 2023)
and can regurgitate exact phrases, sentences, or even longer passages when prompted adversarially (Zanella-Béguelin
et al., 2020; Carlini et al., 2021; Nasr et al., 2023). This raises serious privacy concerns about unintended information
leakage through synthetically generated text. In this paper, we address the critical question: to what extent does
synthetic text generated by LLMs leak information about the real data it is derived from?

Prior methods to audit privacy risks insert highly vulnerable, out-of-distribution examples, canaries (Carlini et al.,
2019), into the training data and test whether they can be identified using membership inference attacks (MIAs) (Shokri
et al., 2017). Various MIAs have been proposed, typically assuming an attacker with access to the trained model or its
output logits (Carlini et al., 2019; Shi et al., 2024). In the context of LLMs, MIAs often rely on analyzing the model’s
behavior when prompted with inputs related to the canaries (Carlini et al., 2021; Chang et al., 2024; Shi et al., 2024).
However, similar investigations are lacking in scenarios where LLMs are used to generate synthetic data and only this
synthetic data is available to an attacker.

Contributions. In this work, we study–for the first time–the factors that influence information leakage from a data
corpus through synthetic data generated using LLMs. First, we introduce data-based attacks that only have access to
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synthetic data, not the model used to generate it, and therefore cannot probe it with adversarial prompts nor compute
losses or other statistics used in model-based attacks (Ye et al., 2022; Carlini et al., 2022a). We propose approximating
membership likelihood using either a model trained on the synthetic data or the target example similarity to its closest
synthetic data examples. We design our attacks adapting pairwise likelihood ratio tests as in RMIA (Zarifzadeh et al.,
2024) and evaluate our attacks on labeled datasets: SST-2 (Socher et al., 2013) and AG News (Zhang et al., 2015). Our
results show that MIAs leveraging only synthetic data achieve AUC scores of 0.71 for SST-2 and 0.66 for AG News,
largely outperforming a random guess baseline. This suggests that synthetic text can leak significant information about
the real data used to generate it.

Second, we use the attacks we introduce to quantify the gap in performance between data- and model-based attacks. We
do so in an auditing scenario, designing adversarial canaries and controlling leakage by varying the number of times a
canary occurs in the training dataset. Experimentally, we find a sizable gap when comparing attacks adapted to the
idiosyncrasies of each setting: a canary would need to occur 8× more often to be as vulnerable against a data-based
attack as it is against a model-based attack (see Figs. 1a and 1d).

Third, we discover that canaries designed for model-based attacks fall short when auditing privacy risks of synthetic
text. Indeed, privacy auditing of LLMs through model-based MIAs relies on rare, out-of-distribution sequences of high
perplexity (Carlini et al., 2019; Stock et al., 2022; Wei et al., 2024; Meeus et al., 2024c). We confirm that model-based
MIAs improve as canary perplexity increases. In sharp contrast, we find that high perplexity sequences, although
distinctly memorized by the target model, are less likely to be echoed through synthetic data generated by the target
model. Therefore, as a canary perplexity increases, the canary influence on synthetic data decreases, making its
membership less detectable from synthetic data (see Figure 2). We show that low-perplexity, and even in-distribution
canaries, while suboptimal for model-based attacks, are more adequate canaries in data-based attacks.

Lastly, we propose an alternative canary design tailored for data-based attacks based on the following intuition: (i) in-
-distribution canaries aligned with the domain-specific prompt can influence the generated output; and (ii) memorization
is more likely when canaries contain sub-sequences with high perplexity. We construct canaries starting with an
in-distribution prefix of length F , transitioning into an out-of-distribution suffix, increasing the likelihood that the
model memorizes them and that they influence synthetic data. We show that, for fixed overall canary perplexity, the
performance of attacks for canaries with in-distribution prefix and out-of-distribution suffix (0 < F < max) improves
upon both entirely in-distribution canaries (F = max) and out-of-distribution canaries (F = 0), for both datasets (see
Fig. 1 and Table 2).

Taken together, the proposed MIAs and canary design can be used to audit privacy risks of synthetic text. Auditing
establishes a lower bound on the risk, useful to take informed decisions about releasing synthetic data in sensitive
applications and also complements upper bounds on privacy risks from methods that synthesize text with provable
guarantees.

2 Background and problem statement

Synthetic text generation. We consider a private dataset D = {xi = (si, ℓi)}Ni=1 of labelled text records where si
represents a sequence of tokens (e.g. a product review) and ℓi is a class label (e.g. the review sentiment). A synthetic
data generation mechanism is a probabilistic procedure mapping D to a synthetic dataset D̃ = {x̃i = (s̃i, ℓ̃i)}Ñi=1 with
a desired label set {ℓi}Ñi=1. Unless stated otherwise, we consider N = Ñ . The synthetic dataset D̃ should preserve the
utility of the private dataset D, i.e., it should preserve as many statistics of D that are useful for downstream analyses as
possible. In addition, a synthetic data generation mechanism should preserve the privacy of records in D, i.e. it should
not leak sensitive information from the private records into the synthetic records. The utility of a synthetic dataset can
be measured by the gap between the utility achieved by D̃ and D in downstream applications. The fact that synthetic
data is not directly traceable to original data records does not mean that it is free from privacy risks. On the contrary, the
design of a synthetic data generation mechanism determines how much information from D leaks into D̃ and should be
carefully considered. Indeed, several approaches have been proposed to generate synthetic data with formal privacy

2



The Canary’s Echo: Auditing Privacy Risks of LLM-Generated Synthetic Text

guarantees (Kim et al., 2021; Tang et al., 2024; Wu et al., 2024; Xie et al., 2024). We focus on privacy risks of text
generated by a pre-trained LLM fine-tuned on a private dataset D (Yue et al., 2023; Mattern et al., 2022; Kurakin et al.,
2023). Specifically, we fine-tune an LLM θ0 on records (si, ℓi) ∈ D to minimize the loss in completing si conditioned
on a prompt template p(ℓi), obtaining θ. We then query θ using the same prompt template to build a synthetic dataset
D̃ matching a given label distribution.

Membership inference attacks. MIAs (Shokri et al., 2017) provide a meaningful measure to quantify privacy risks of
machine learning models, due to its simplicity but also due to the fact that protection against MIAs implies protection
against more devastating attacks such as attribute inference and data reconstruction (Salem et al., 2023). In a MIA on
a target model θ, an adversary aims to infer whether a target record is present in the training dataset of θ. Different
variants constrain the adversary’s access to the model. In our setting, we consider model-based adversaries that observe
the output logits on inputs of their choosing of a model θ fine-tuned on a private dataset D. We naturally extend the
concept of MIAs to synthetic data generation mechanisms by considering data-based adversaries that only observe a
synthetic dataset D̃ generated from D.

Privacy auditing using canaries. A common method used to audit the privacy risks of ML models is to evaluate the
MIA vulnerability of canaries, i.e., artificial worst-case records inserted in otherwise natural datasets (Carlini et al.,
2019). This method can also be employed to derive statistical lower bounds on the differential privacy (DP) guarantees
of the training pipeline (Jagielski et al., 2020; Zanella-Béguelin et al., 2023). Records crafted to be out-of-distribution
w.r.t. the underlying data distribution of D give a good approximation to the worst-case (Carlini et al., 2019; Meeus
et al., 2024c). Canaries can take a range of forms, such as text containing sensitive information (Carlini et al., 2019)
and random (Wei et al., 2024) or synthetically generated sequences (Meeus et al., 2024c). Prior work identified that
longer sequences, repeated more often (Carlini et al., 2023), and with higher perplexity (Meeus et al., 2024c) are
better memorized during training and hence are more vulnerable to model-based MIAs. We study multiple types of
canaries and compare their vulnerability against model- and synthetic data-based MIAs. We consider a set of canaries
{x̂i = (ŝi, ℓ̂i)}N̂i=1, each crafted adversarially and inserted with probability 1/2 into the private dataset D. The resulting
dataset is then fed to a synthetic data generation mechanism. We finally consider each canary x̂i as the target record of
a MIA to estimate the privacy risk of the generation mechanism (or the underlying fine-tuned model).

Threat model. We consider an adversary A who aims to infer whether a canary x̂ was included in the private dataset D
used to synthesize a dataset D̃. We distinguish between two threat models: (i) an adversary Aθ with query-access to
output logits of a target model θ fine-tuned on D; and (ii) an adversary AD̃ with only access to the synthetic dataset D̃.
To the best of our knowledge, for text data this latter threat model has not been studied extensively in the literature.
In contrast, the privacy risks of releasing synthetic tabular data are much better understood (Stadler et al., 2022; Yale
et al., 2019; Hyeong et al., 2022; Zhang et al., 2022). Algorithm 1 shows the generic membership inference experiment
encompassing both model- and data-based attacks, selected by the synthetic flag. The adversary is represented by a
stateful procedure A, used to craft a canary and compute its membership score. Compared to a standard membership
experiment, we consider a fixed private dataset D rather than sampling it, and let the adversary choose the target x̂.
This is close to the threat model of unbounded DP, where the implicit adversary selects two datasets, one obtained from
the other by adding one more record, except that in our case the adversary observes but cannot choose the records in
D. The membership score β returned by the adversary can be turned into a binary membership label by choosing an
appropriate threshold. We further clarify assumptions made for the adversary in both threat models in Appendix E.

Problem statement. We study methods to audit privacy risks associated with releasing synthetic text. Our main goal is
to develop an effective data-based adversary AD̃ in the threat model of Algorithm 1. For this, we explore the design
space of canaries to approximate the worst-case, and adapt state-of-the-art methods used to compute membership scores
in model-based attacks to the data-based scenario.
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Algorithm 1 Membership inference against an LLM-based synthetic text generator

1: Input: Fine-tuning algorithm T , pre-trained model θ0, private dataset D = {xi = (si, ℓi)}Ni=1, labels {ℓ̃i}Ñi=1,
prompt template p(·), canary repetitions nrep, sampling method sample, adversary A

2: Output: Membership score β

3: x̂← A(T , θ0, D, {ℓ̃i}Ñi=1,p(·)) {Adversarially craft a canary (see Sec. 3.2)}
4: b ∼ {0, 1} {Flip a fair coin}
5: if b = 1 then
6: θ ← T (θ0, D ∪ {x̂}nrep) {Fine-tune θ0 with canary repeated nrep times}
7: else
8: θ ← T (θ0, D) {Fine-tune θ0 without canary}
9: end if

10: for i = 1 . . . Ñ do
11: s̃i ∼ sample(θ(p(ℓ̃i))) {Sample synthetic records using prompt template}
12: end for

13: D̃ ←
{
(s̃i, ℓ̃i)

}Ñ

i=1
14: if synthetic then
15: β ← A(D̃, x̂) {Compute membership score β of x̂, see Sec. 3.1.2 and algorithms in Appendix A}
16: else
17: β ← A(θ, x̂) {Compute membership score β of x̂, see Sec. 3.1.1}
18: end if
19: return β

3 Methodology

3.1 Computing the membership score

In Algorithm 1, the adversary computes a membership score β indicating their confidence that θ was trained on x̂ (i.e.
that b = 1). We specify first how to compute a membership signal α for model- and data-based adversaries, and then
how we compute β from α adapting the RMIA methodology of Zarifzadeh et al. (2024).

3.1.1 Model-based attacks

The larger the target model θ’s probability for canary x̂ = (ŝ, ℓ̂), Pθ(ŝ | p(ℓ̂)), as compared to its probability on
reference models, the more likely that the model has seen this record during training. We compute the probability for
canary x̂ as the product of token-level probabilities for ŝ conditioned on the prompt p(ℓ̂). Given a target canary text
ŝ = t1, . . . , tn, we compute Pθ(ŝ | p(ℓ̂)) as Pθ(x̂) =

∏n
j=1 Pθ(tj | p(ℓ̂), t1, . . . , tj−1). We consider this probability as

the membership inference signal against a model, i.e. α = Pθ(ŝ | p(ℓ̂)).

3.1.2 Data-based attacks

When the attacker only has access to the synthetic data D̃, we need to extract a signal purely from D̃ that correlates
with membership. We next describe two methods to compute a membership signal α based on D̃. For more details,
refer to their pseudo-code in Appendix A.

n-gram model. The attacker first fits an n-gram model using D̃ as training corpus. An n-gram model computes
the probability of the next token wj in a sequence based solely on the previous n − 1 tokens (Jurafsky & Martin,
2024). The conditional probability of a token wj given the previous n − 1 tokens is estimated from the counts
of n-grams in the training corpus. Formally, Pn-gram(wj | wj−(n−1), . . . , wj−1) =

C(wj−(n−1),...,wj)+1

C(wj−(n−1),...,wj−1)+V , where
C(s) is the number of times the sequence s appears in the training corpus and V is the vocabulary size. We use
Laplace smoothing to deal with n-grams that do not appear in the training corpus, incrementing the count of every
n-gram by 1. The probability that the model assigns to a sequence of tokens s = (w1, . . . , wk) can be computed
as Pn-gram(s) =

∏k
j=2 Pn-gram(wj | wj−(n−1), . . . , wj−1). With the n-gram model fitted on the synthetic dataset,
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the attacker computes the n-gram model probability of the target canary x̂ = (ŝ, ℓ̂) as its membership signal, i.e.
α = Pn-gram(ŝ). Intuitively, if the canary x̂ was present in the training data, the generated synthetic data D̃ will better
reflect the patterns of ŝ, resulting in the n-gram model assigning a higher probability to ŝ than if it was not present.

Similarity metric. The attacker computes the similarity between the target canary text ŝ and all synthetic sequences s̃i
in D̃ using similarity metric SIM, i.e. σi = SIM(ŝ, s̃i) for i = 1, . . . , Ñ . Next, the attacker identifies the k synthetic
sequences with the largest similarity to ŝ. With σi(j) the j-th largest similarity, the membership inference signal is
computed as the mean of the k most similar examples, i.e. α = 1

k

∑k
j=1 σi(j). Intuitively, if ŝ was part of the training

data, the synthetic data D̃ will likely contain sequences s̃i more similar to ŝ than if ŝ was not part of the training data,
resulting in a larger mean similarity. Various similarity metrics can be used. We consider Jaccard similarity (SIMJac),
often used to measure string similarity, and cosine similarity between the embeddings of the two sequences, computed
using a pre-trained embedding model (SIMemb).

3.1.3 Computing RMIA scores

Reference models, also called shadow models, are surrogate models designed to approximate the behavior of a target
model. MIAs based on reference models perform better but are more costly to run than MIAs that do not use them, with
the additional practical challenge that they require access to data distributed similarly to the training data of the target
model (Shokri et al., 2017; Ye et al., 2022). Obtaining multiple reference models in our scenario requires fine-tuning a
large number of parameters in an LLM and quickly becomes computationally prohibitive. We use the state-of-the-art
RMIA method (Zarifzadeh et al., 2024) to maximize attack performance with a limited number of reference models M .
Specifically, for the target model θ, we calculate the membership score of a canary x̂ using reference models {θ′i}Mi=1 as
follows (details on applying RMIA to our setup are in Appendix B): βθ(x̂) =

αθ(x̂)
1
M

∑M
i=1 αθ′

i
(x̂)

.

3.2 Canary generation

Prior work has shown that canaries with high perplexity are more likely to be memorized by language models (Meeus
et al., 2024c). High perplexity sequences are less predictable and require the model to encode more specific, non-
generalizable details about them. However, high perplexity canaries are not necessarily more susceptible to leakage via
synthetic data generation, as they are outliers in the text distribution when conditioned on a given in-distribution prompt.
This misalignment with the model’s natural generative behavior means that even when memorized, these canaries
are unlikely to be reproduced during regular model inference, making them ineffective for detecting memorization of
training examples in generated synthetic data.

To address this issue, we take advantage of the greedy nature of popular autoregressive decoding strategies (e.g. beam
search, top-k and top-p sampling). We can encourage such decoding strategies to generate text closer to canaries by
crafting canaries with a low perplexity prefix. To ensure memorization, we follow established practices and choose
a high perplexity suffix. Specifically, we design canaries x̂ = (ŝ, ℓ̂), where ŝ has an in-distribution prefix and an
out-of-distribution suffix. In practice, we split the original dataset D into a training dataset and a canary source dataset.
For each record x = (s, ℓ) in the canary source dataset, we design a new canary x̂ = (ŝ, ℓ̂). We truncate s to get an
in-distribution prefix of length F and generate a suffix using the pre-trained language model θ0, adjusting the sampling
temperature to achieve a desired target perplexity Ptarget. We use rejection sampling to ensure that the perplexity of the
generated canaries falls within the range [0.9 Ptarget, 1.1 Ptarget]. We ensure the length is consistent across canaries, as
this impacts memorization (Carlini et al., 2023; Kandpal et al., 2022). By adjusting the length of the in-distribution
prefix, we can guide the generation of either entirely in-distribution or out-of-distribution canaries.

We insert each canary nrep times in the training dataset of target and reference models. When a canary is selected as a
member, the canary is repeated nrep times in the training dataset, while canaries selected as non-members are excluded
from the training dataset. As in prior work (Carlini et al., 2023; Kandpal et al., 2022; Meeus et al., 2024c), we opt for
nrep > 1 to increase memorization, thus facilitating privacy auditing and the observation of the effect of different factors
on the performance of MIAs during ablation studies.
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4 Experimental setup

Datasets. We consider two datasets that have been widely used to study text classification: (i) the Stanford Sentiment
Treebank (SST-2) (Socher et al., 2013), which consists of excerpts from written movie reviews with a binary sentiment
label; and (ii) the AG News dataset (Zhang et al., 2015), which consists of news articles labelled by category (World,
Sport, Business, Sci/Tech). In all experiments, we remove examples with less than 5 words, bringing the total number
of examples to 43 296 for SST-2 and 120 000 for AG News.

Synthetic data generation. We fine-tune the pre-trained Mistral-7B model (Jiang et al., 2023) using low-rank adaptation
(LoRa) (Hu et al., 2022). We use a custom prompt template p(·) for each dataset (see Appendix C). More details on the
implementation and parameters are provided in Appendix D. We sample synthetic data from the fine-tuned model θ
conditioned on prompts p(ℓ̃i), following the same distribution of labels in the synthetic dataset D̃ as in the original
dataset D, i.e. ℓi = ℓ̃i for i = 1, ..., Ñ . To generate synthetic sequences, we sequentially sample completions using a
softmax temperature of 1.0 and top-p (aka nucleus) sampling with p = 0.95, i.e. we sample from a vocabulary restricted
to the smallest possible set of tokens whose total probability exceeds 0.95. We further ensure that the synthetic data
bears high utility, and is thus realistic. For this, we consider the downstream classification tasks for which the original
datasets have been designed. We fine-tune RoBERTa-base (Liu et al., 2019) on D and D̃ and compare the performance
of the resulting classifiers on held-out evaluation datasets. Details are provided in Appendix F, for synthetic data
generated with and without canaries.

Canary injection. We generate canaries x̂ = (ŝ, ℓ̂) as described in Sec. 3.2. Unless stated otherwise, we consider
50-word canaries. Synthetic canaries are generated using Mistral-7B (Jiang et al., 2023) as θ0. We consider two ways
of constructing a canary label: (i) randomly sampling label ℓ̂ from the distribution of labels in D, ensuring that the class
distribution among canaries matches that of D (Natural); and (ii) extending the set of labels with a new artificial label
(ℓ̂ ="canary") only used for canaries (Artificial).

Membership inference. We compute the membership scores βθ(x̂) as described in Sec. 3.1. For one target model
θ, we consider 1000 canaries x̂, of which on average half are included in the training dataset nrep times (members),
while the remaining half are excluded (non-members). We then use the computed RMIA scores and the ground truth for
membership to construct ROC curves, from which we compute AUC and true positive rate (TPR) at low false positive
rate (FPR) as measures of MIA performance. Across experiments, we use M = 4 reference models θ′, each trained on
a dataset Dθ′ consisting of the dataset D used to train the target model θ with canaries inserted. Note that although
practical attacks rarely have this amount of information, this is allowed by the threat model of Algorithm 1 and valid as
a worst-case auditing methodology. We ensure that each canary is a member in half (i.e. 2) of the reference models and
a non-member in the other half. For the attacks based on synthetic data, we use n = 2 for computing scores using an
n-gram model and k = 25 for computing scores based on similarity. We use Sentence-BERT (Reimers & Gurevych,
2019) (paraphrase-MiniLM-L6-v2 from sentence-transformers) as the embedding model.

5 Results

5.1 Baseline evaluation with standard canaries

We begin by assessing the vulnerability of synthetic text using standard canaries. Specifically, we utilize both in-
distribution canaries and synthetically generated canaries with a target perplexity Ptarget = 250, no in-distribution prefix
(F = 0), nrep = 12 and natural or artificial labels, as described in Section 4. Table 1 summarizes the ROC AUC for
model- and data-based attacks.

First, we find that MIAs relying solely on the generated synthetic data achieve a AUC score significantly higher than a
random guess (i.e. AUC = 0.5), reaching up to 0.71 for SST-2 and 0.66 for AG News. This shows that synthetic text
can leak information about the real data used to generate it.
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Canary injection ROC AUC

Model Aθ Synthetic AD̃ Synthetic AD̃ Synthetic AD̃

Dataset Source Label (2-gram) (SIMJac) (SIMemb)

SST-2
In-distribution1 0.911 0.741 0.602 0.586

Synthetic Natural 0.999 0.620 0.547 0.530
Artificial 0.999 0.682 0.552 0.539

AG News
In-distribution 0.993 0.676 0.590 0.565

Synthetic Natural 0.996 0.654 0.552 0.506
Artificial 0.999 0.672 0.560 0.525

1 Constrained by in-distribution data, canaries consist of exactly 30 words (50 elsewhere).

Table 1: ROC AUC across datasets, threat models (model-based Aθ and data-based AD̃) and MIA methodologies for
standard, high perplexity canaries (target perplexity Ptarget = 250, no in-distribution prefix (F = 0) and nrep = 12).

Next, we observe that the data-based attack using an n-gram model trained on synthetic data to compute membership
scores outperforms the two attacks leveraging similarity metrics: Jaccard distance between a canary and synthetic
strings (SIMJac) or cosine distance between their embeddings (SIMemb). This suggests that information critical to infer
membership lies in subtle changes in the co-occurrence of n-grams in synthetic data rather than in the generation of
many sequences with lexical or semantic similarity.

We also compare attack performance across different canary types under data-based attacks AD̃. The ROC AUC
remains consistently higher than a random guess across all canaries. For SST-2 and AG News, the highest AUC score
of 0.74 and 0.68 is achieved when using in-distribution canaries.

As another baseline, we test RMIA on the target model trained on D, assuming the attacker has access to the model
logits (Aθ). This attack achieves near-perfect performance across all setups, highlighting an inherent gap between the
performance of model- and data-based MIAs. This suggests that, while a fine-tuned model memorizes standard canaries
well, the information necessary to infer their membership is only partially transmitted to the synthetic text.

To investigate the gap between the two attacks in more detail, we vary the number of canary repetitions nrep to amplify
the power of the data-based attack until its performance matches that of a model-based attack. Fig. 1a illustrates these
results as a set of ROC curves. We quantify this discrepancy by noting that the MIA performance for AD̃ at nrep = 16

is comparable to Aθ at nrep = 2 and for low FPR at nrep = 1. We find similar results in Fig. 1d for AG News. The
MIA performance for AD̃ at nrep = 16 falls between the performance of Aθ at nrep = 1 and nrep = 2. Under these
experimental conditions, canaries would need to be repeated 8 to 16× to reach the same vulnerability in data-based
attacks compared to model-based attacks.

We provide additional results for the standard canaries as appendices: TPR at low FPR scores in Appendix G, ablations
for data-based MIA hyperparameters in Appendix H, and a discussion on the disparate vulnerability of high perplexity
canaries in model- and data-based attacks in Appendix I.

5.2 Specialized canaries for enhanced privacy auditing

To effectively audit privacy risks in a worst-case scenario, we explore designing specialized canaries that are both
memorized by the model and influential in the synthetic data.

First, we generate specialized canaries by controlling their target perplexity Ptarget. We evaluate MIAs for both threat
models across a range of perplexities for canaries with natural labels, using nrep = 4 for the model-based MIA Aθ

and nrep = 16 for the data-based MIA AD̃. We explore a wide range of perplexities, finding 1 × 105 to align with
random token sequences. Figure 2 shows the ROC AUC score versus canary perplexity. For the model-based attack
Aθ, the AUC monotonically increases with canary perplexity, reaffirming that outlier records with higher perplexity
are more vulnerable to MIAs (Feldman & Zhang, 2020; Carlini et al., 2022a; Meeus et al., 2024c). Conversely, for
the data-based attack AD̃, the AUC initially increases with perplexity but starts to decline beyond a certain threshold,
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Figure 1: ROC curves of MIAs on synthetic data AD̃ compared to model-based MIAs Aθ on SST-2 (1a–1c) and AG
News (1d–1f). We ablate over the number of canary insertions nrep in 1a, 1d, the target perplexity Ptarget of the inserted
canaries in 1b, 1e and the length F of the in-distribution prefix in the canary in 1c, 1f. Log-log plots in Appendix J.
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Figure 2: ROC AUC for synthetic canaries with varying perplexity (natural label). The model-based MIA Aθ improves
as canary perplexity increases, while the data-based MIA performance AD̃ (2-gram) decreases. nθ

rep = 4, nD̃
rep = 16.

eventually approaching a random guess (AUC of 0.5). To further illustrate this, we present the complete ROC curve in
Figures 1b and 1e for SST-2 and AG News, respectively. We vary the canary perplexity Ptarget while keeping other
parameters constant. As Ptarget increases, the model-based attack improves across the entire FPR range, while the
data-based attack weakens, approaching AUC of 0.5 at high perplexities. This suggests that identifying susceptible
canaries is straightforward for model-based privacy audits, but assessing the privacy risk of synthetic data requires a
careful balance between canary memorization and its influence on synthetic data.
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TPR@

Dataset F ROC AUC FPR=0.01 FPR=0.1

SST-2

0 0.673 0.081 0.304
10 0.715 0.057 0.312
20 0.725 0.069 0.318
30 0.760 0.069 0.410

max 0.741 0.101 0.408

AG News

0 0.692 0.089 0.309
10 0.646 0.053 0.276
20 0.716 0.069 0.321
30 0.710 0.055 0.333

max 0.676 0.039 0.314

Table 2: MIA performance (ROC AUC and TPR at low FPR) for data-based MIA AD̃ (2-gram) for canaries with
varying length of in-distribution prefix F (results from Figs. 1c,1f). Ptarget = 31 and nD̃

rep = 16.

We now examine whether canaries can be crafted to enhance both memorization and influence on the synthetic data,
making them suitable to audit the privacy risks of releasing synthetic data. In Sec. 3.2, we introduced a method that
exploits the greedy nature of LLM decoding to design more vulnerable canaries. We craft a canary with a low-perplexity,
in-distribution prefix to optimize its impact on the synthetic dataset, followed by a high-perplexity suffix to enhance
memorization. We generate this suffix sampling from the pre-trained LLM θ0 with high temperature. Figures 1c and 1f
illustrate the ROC curves for SST-2 and AG News, respectively, and Table 2 summarizes the corresponding ROC AUC
and TPR at low FPR. We set the overall canary perplexity Ptarget = 31 and vary the prefix length F from F = 0 (fully
synthetic canaries) to F = max (in-distribution canaries). We observe that combining an in-distribution prefix (F > 0)
with a high-perplexity suffix (F < max) enhances attack effectiveness. For both datasets, the optimal AUC, and often
also the optimal TPR at low FPR, for the MIA is reached for a prefix length 0 < F < max (see Table 2). This suggests
that although the model’s memorization of the canary stays consistent (as the overall perplexity remains unchanged),
the canary’s impact on the synthetic data becomes more prominent with longer in-distribution prefixes. We hypothesize
that familiar low-perplexity prefixes serve as starting points for text generation, enhancing the likelihood that traces of
the canary appear in the synthetic data.

5.3 Identifying the memorized sub-sequences

We analyze what information from a canary leaks into the synthetic data that enables a data-based attack to infer its
membership. For each canary x̂ = (ŝ, ℓ̂), we examine the synthetic data generated by a model trained on a dataset
including (member) and excluding x̂ (non-member). We leverage the M = 4 reference models θ′ used to develop
the attack for 1000 specialized canaries from Fig. 1c. For each model θ′, we count the number of n-grams in s̃ that
occur at least once in D̃′ (Cunique). We also compute the median Cmed and average Cavg counts of n-grams from ŝ in D̃′.
Table 3 summarizes how these measures vary with n. As n increases, the number of n-grams from the canary appearing
in the synthetic data drops sharply, reaching Cmed = 0 for n = 4 for models including and excluding a canary. This
suggests that any verbatim reproduction of canary text in the generated synthetic data is of limited length. Further, we
observe only slight differences in counts between members and non-members, indicating that the signal for inferring
membership is likely in subtle shifts in the probability distribution of token co-occurrences within the synthetic data, as
captured by the 2-gram model. We further analyze canaries with the highest and lowest RMIA scores in Appendix K.

6 Related work

MIAs against ML models. Since the seminal work of Shokri et al. (2017), MIAs have been used to study memorization
and privacy risks. Model-based MIAs have been studied under varying threat models, including adversaries with access
to model weights (Sablayrolles et al., 2019; Nasr et al., 2019; Leino & Fredrikson, 2020; Cretu et al., 2024), output
probabilities (Shokri et al., 2017; Carlini et al., 2022a) or just labels (Choquette-Choo et al., 2021). Most powerful
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Cunique Cmed Cavg

n Member Non-member Member Non-member Member Non-member

1 45.97± 2.8 45.1± 3.0 819.6± 702.6 821.5± 727.9 7389.2± 1648.4 7384.2± 1650.0
2 29.6± 5.6 28.0± 5.5 4.5± 6.5 3.5± 5.5 198.0± 109.3 195.9± 107.5
4 4.9± 3.7 4.1± 3.2 0.0± 0.0 0.0± 0.0 1.3± 2.6 1.2± 2.5
8 0.1± 1.0 0.1± 0.6 0.0± 0.0 0.0± 0.0 0.0± 0.1 0.0± 0.0

Table 3: Count statistics of n-grams in a canary ŝ that also appear in the synthetic data D̃′ generated using 4 reference
models including and excluding ŝ. Number of n-grams in s̃ that also appear in D̃′ (Cunique), median (Cmed) and average
(Cavg) counts of n-grams from ŝ in D̃′. We report mean and std. deviation of these measures over all canaries (F = 30,
Ptarget = 31, nrep = 16) for SST-2. Each canary ŝ contains exactly 50 words and D̃′ contains 685.1k ± 45.4k words.

MIAs leverage a large number of reference models (Ye et al., 2022; Carlini et al., 2022a; Sablayrolles et al., 2019;
Watson et al., 2021), while RMIA (Zarifzadeh et al., 2024) achieves high performance using only a few.

MIAs against language models. Song & Shmatikov (2019) study MIAs to audit the use of an individual’s data during
training. Carlini et al. (2021) investigate training data reconstruction attacks against LLMs, sampling synthetic text and
running model-based attacks to identify likely members. Kandpal et al. (2022) and Carlini et al. (2023) both find that
repetitions in the training data make records more vulnerable. Shi et al. (2024) and Meeus et al. (2024b) use attacks to
identify pre-training data. Various membership scores have been proposed, e.g. model loss (Yeom et al., 2018), lowest
predicted token probabilities (Shi et al., 2024), changes in the model’s probability for neighboring samples (Mattern
et al., 2023), or perturbations to weights (Li et al., 2023).

Data-based MIAs in other scenarios. Hayes et al. (2019) train a Generative Adversarial Network (GAN) on synthetic
images generated by a target GAN and use the resulting discriminator to infer membership. Hilprecht et al. (2019)
explore MIAs using synthetic images closest to a target record. Chen et al. (2020) study attack calibration techniques
against GANs for images and location data. Privacy risks of synthetic tabular data have been widely studied, using
MIAs based on similarity metrics and shadow models (Yale et al., 2019; Hyeong et al., 2022; Zhang et al., 2022).
Stadler et al. (2022) compute high-level statistics, Houssiau et al. (2022) compute similarities between the target record
and synthetic data, and Meeus et al. (2024a) propose a trainable feature extractor. Unlike these, we evaluate MIAs
on text generated using fine-tuned LLMs. This introduces unique challenges and opportunities, both in computing
membership scores and identifying worst-case canaries, making our approach distinct from prior work.

Vulnerable records in MIAs. Prior work found that some records (outliers) have a disparate effect on a trained
model (Feldman & Zhang, 2020), making them more vulnerable to MIAs (Carlini et al., 2022a;b). Hence, specifically
crafted canaries have been proposed to study memorization and for privacy auditing of language models, ranging from a
sequence of random digits (Carlini et al., 2019; Stock et al., 2022) or tokens (Wei et al., 2024) to synthetically generated
sequences (Meeus et al., 2024c). Also for synthetic tabular data, outliers have been found to have increased privacy
leakage (Stadler et al., 2022; Meeus et al., 2024a).
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A Pseudo-code for MIAs based on synthetic data

We here provide the pseudo-code for computing membership signals for both MIA methodologies based on synthetic
data (Sec. 3.1.2), see Algorithm 2 for the n-gram method and Algorithm 3 for the method using similarity metrics.

Algorithm 2 Compute membership signal using n-gram model

1: Parameter: n-gram model order n
2: Input: Synthetic dataset D̃ = {x̃i = (s̃i, ℓ̃i)}Ñi=1, Target canary x̂ = (ŝ, ℓ̂)
3: Output: Membership signal α
4: C(w⃗)← 0 for all (n−1)- and n-grams w⃗
5: for i = 1 to Ñ do
6: w1, . . . , wk(i) ← s̃i
7: for each n-gram (wj−(n−1), . . . , wj) in s̃i do
8: C(wj−(n−1), . . . , wj) += 1
9: C(wj−(n−1), . . . , wj−1) += 1

10: end for
11: end for
12: V ← |{w | ∃i.w ∈ s̃i}|
13: The n-gram model is factored into conditional probabilities: {Final n-gram model}

Pn-gram(wj | wj−(n−1), . . . , wj−1) =
C(wj−(n−1), . . . , wj) + 1

C(wj−(n−1), . . . , wj−1) + V

14: w1, . . . , wk ← ŝ {Compute probability of canary text ŝ}
15: α←

∏k
j=2 Pn-gram(wj | wj−(n−1), . . . , wj−1)

16: return α

Algorithm 3 Compute membership signal using similarity metric

1: Parameter: Similarity metric SIM(·, ·), cutoff parameter k
2: Input: Synthetic dataset D̃ = {x̃i = (s̃i, ℓ̃i)}Ñi=1, Target canary x̂ = (ŝ, ℓ̂)
3: Output: Membership signal α
4: for i = 1 to Ñ do
5: σi ← SIM(ŝ, s̃i) {Compute similarity of each synthetic example}
6: end for
7: Sort similarities σi for i = 1, . . . , Ñ in descending order
8: Let σi(1), . . . , σi(k) be the top-k similarities
9: α← 1

k

∑k
j=1 σi(j) {Compute mean similarity of the top-k examples}

10: return α

B Computation of RMIA scores

We here provide more details on how we adapt RMIA, as originally proposed by Zarifzadeh et al. (2024), to our setup
(see Sec. 3.1.3). In RMIA, the pairwise likelihood ratio is defined as:

LRθ(x, z) =

(
P (x | θ)
P (x)

)(
P (z | θ)
P (z)

)−1

. (1)

where θ represents the target model, x the target record, and z the reference population. In this work, we only consider
one target model θ and many target records x. As we are only interested in the relative value of the likelihood ratio
across target records, we can eliminate the dependency on the reference population z,
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LRθ(x, z) = LRθ(x) =
P (x | θ)
P (x)

. (2)

As suggested by Zarifzadeh et al. (2024), we compute P (x) as the empirical mean of P (x | θ′) across reference models
{θ′i}Mi=1,

P (x) =
1

M

M∑
i=1

P (x | θ′i) . (3)

To compute RMIA scores, we replace the probabilities in (2) by membership signals on target and reference models:

βθ(x) =
αθ(x)

1
M

∑M
i=1 αθ′

i
(x)

. (4)

Note that when we compute αθ(x) as a product of conditional probabilities (e.g. when using the target model probability
in the model-based attack or the n-gram probability in the data-based attack), we truly use a probability for αθ(x).
However, in the case of the data-based attack using similarity metrics, we use the mean similarity to the k closest
synthetic sequences—which does not correspond to a true probability. In this case, we normalize similarities to fall in
the range [0, 1] and use αθ(x) as an empirical proxy for the probability P (x | θ).

In practice, P (x | θ) can be an extremely small value, particularly when calculated as a product of token-level
conditional probabilities, which can lead to underflow errors. To mitigate this, we perform arithmetic operations
on log-probabilities whenever possible. However, in the context of equation (4), where the denominator involves
averaging probabilities, we employ quad precision floating-point arithmetic. This method is sufficiently precise to
handle probabilities for sequences of up to 50 words, which is the maximum we consider in our experiments.

C Prompts used to generate synthetic data

Table 4 summarizes the prompt templates p(ℓ) used to generate synthetic data for both datasets (see Sec. 4).

Dataset Template p(ℓ) Labels ℓ

SST-2 "This is a sentence with a ℓ sentiment: " {positive, negative}
AG News "This is a news article about ℓ: " {World, Sport, Business, Sci/Tech}

Table 4: Prompt templates used to fine-tune models and generate synthetic data.

D Implementation details

To generate synthetic data throughout the experiments in this paper, we fine-tune the pre-trained model Mistral-7B (Jiang
et al., 2023) using LoRA with r = 4, including all target modules (updating 10.7M parameters in total).

We optimized training hyperparameters for LoRA fine-tuning Mistral-7B on SST-2 by running a grid search over
learning rate ([1 × 10−6, 4 × 10−6, 2 × 10−5, 6 × 10−5, 3 × 10−4, 1 × 10−3]) and batch size ([64, 128, 256]). We
fine-tuned the models for 3 epochs and observed the validation loss plateaued after the first epoch. Based on these
results, we selected a learning rate of 2 × 10−5, effective batch size of 128, sequence length 128, LoRA r = 4 and
fine-tuned the models for 1 epoch. Figure 3 shows the validation cross-entropy loss for SST-2 over the grid we searched
on and the train and validation loss curves for 3 epochs with the selected hyperparameters.
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(a) Grid search (b) Loss curve
Figure 3: (a) Validation cross-entropy loss of LoRA fine-tuning Mistral-7B on SST-2 varying the learning rate and
effective batch size. (b) Training and validation loss for best hyperparameters over 3 epochs.

All our experiments have been conducted on a cluster of nodes with 8 V100 NVIDIA GPUs with a floating point precision
of 16 (fp16). We built our experiments on two open-source packages: (i) privacy-estimates which provides a
distributed implementation of the RMIA attack and (ii) dp-transformers which provides the implementation of
the synthetic data generator.

E Detailed assumptions made for the adversary

We clarify the capabilities of adversaries in model- and data-based attacks according to the threat model specified in
Section 2. We note:

1. A model-based attack is strictly more powerful than a data-based attack. This is because with access to the fine-tuned
model θ and the prompt template p(·), a model-based attack can synthesize D̃ for any set of synthetic labels and
perfectly simulate the membership inference experiment for a data-based attack.

2. In both threat models, the adversary can train reference models {θ′i}Mi=1. This assumes access to the private dataset D,
and the training procedure of target model θ, including hyperparameters. This is made clear in line 3 in Algorithm 1.

3. In our experiments, we consider model-based attacks that use the prompt template p(·) to compute the model loss for
target records, as specified in Sec. 3.1.1. Our data-based attacks use the prompt template p(·) to generate synthetic
data D̃ from reference models.

4. Only the model-based attack has query-access to the target model θ. The attacks used in our experiments use θ to
compute token-level predicted logits for input sequences and do not use white-box features, although this is not
excluded by the threat model.

5. Only the data-based attack generates synthetic data from reference models, so only this threat model leverages the
sampling procedure sample(·).

Table 5 summarizes the adversary capabilities used in the attacks in our experiments.

F Synthetic data utility

To ensure we audit the privacy of synthetic text data in a realistic setup, the synthetic data needs to bear high utility. We
measure the synthetic data utility by comparing the downstream classification performance of RoBERTa-base (Liu et al.,
2019) when fine-tuned exclusively on real or synthetic data. We fine-tune models for binary (SST-2) and multi-class
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Assumptions Model-based MIA Data-based MIA

Knowledge of the private dataset D used to fine-tune the
target model θ (apart from knowledge of canaries).

✓ ✓

Knowledge of the training procedure of target model θ. ✓ ✓

Knowledge of the prompt template p(ℓi) used to generate
the synthetic data.

✓ ✓

Query-access to target model θ, returning predicted logits. ✓ –

Access to synthetic data D̃ generated by target model θ. – ✓

Knowledge of the decoding strategy employed to sample
synthetic data D̃ (e.g., temperature, top-k).

– ✓

Table 5: Adversary capabilities effectively used by attacks in our experiments.

classification (AG News) for 1 epoch on the same number of real or synthetic data records using a batch size of 16 and
learning rate η = 1× 10−5. We report the macro-averaged AUC score and accuracy on a held-out test dataset of real
records.

Table 6 summarizes the results for synthetic data generated based on original data which does not contain any canaries.
While we do see a slight drop in downstream performance when considering synthetic data instead of the original data,
AUC and accuracy remain high for both tasks.

Fine-tuning data Classification
Dataset AUC Accuracy

SST-2 Real 0.984 92.3%
Synthetic 0.968 91.5%

AG News Real 0.992 94.4%
Synthetic 0.978 90.0%

Table 6: Utility of synthetic data generated from real data without canaries. We compare the performance of text
classifiers trained on real or synthetic data—both evaluated on real, held-out test data.

We further measure the synthetic data utility when the original data contains standard canaries (see Sec. 5.1). Specifically,
we consider synthetic data generated from a target model trained on data containing 500 canaries repeated nrep = 12

times, so 6000 data records. When inserting canaries with an artificial label, we remove all synthetic data associated
with labels not present originally when fine-tuning the RoBERTa-base model.

Canary injection Classification
Dataset Source Label AUC Accuracy

SST-2
In-distribution 0.972 91.6%

Synthetic Natural 0.959 89.3%
Artificial 0.962 89.9%

AG News
In-distribution 0.978 89.8%

Synthetic Natural 0.977 88.6%
Artificial 0.980 90.1%

Table 7: Utility of synthetic data generated from real data with canaries (nrep = 12). We compare the performance of
text classifiers trained on real or synthetic data—both evaluated on real, held-out test data.

Table 7 summarizes the results. Across all canary injection methods, we find limited impact of canaries on the
downstream utility of synthetic data. While the difference is minor, the natural canary labels lead to the largest utility
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degradation. This makes sense, as the high perplexity synthetic sequences likely distort the distribution of synthetic text
associated with a certain real label. In contrast, in-distribution canaries can be seen as up-sampling certain real data
points during fine-tuning, while canaries with artificial labels merely reduce the capacity of the model to learn from real
data and do not interfere with this process as much as canaries with natural labels do.

G Additional results for MIAs using standard canaries

In line with the literature on MIAs against machine learning models (Carlini et al., 2022a), we also evaluate MIAs by
their true positive rate (FPR) at low false positive rates (FPR). Tables 8 and 9 summarize the MIA TPR at FPR=0.01
and FPR=0.1, respectively. We also provide the ROC curves for the data-based MIAs for both datasets, considering
canaries with natural labels in Figure 4.

Canary injection TPR@FPR=0.01

Model Aθ Synthetic AD̃ Synthetic AD̃ Synthetic AD̃

Dataset Source Label (2-gram) (SIMJac) (SIMemb)

SST-2
In-distribution 0.148 0.104 0.029 0.020

Synthetic Natural 0.972 0.042 0.018 0.024
Artificial 0.968 0.057 0.000 0.030

AG News
In-distribution 0.941 0.050 0.032 0.016

Synthetic Natural 0.955 0.049 0.006 0.016
Artificial 0.990 0.053 0.041 0.022

Table 8: True positive rate (TPR) at a false positive rate (FPR) of 0.01 for experiments using standard canaries
(Sec. 5.1) across training datasets, threat models (model-based adversary Aθ and data-based adversary AD̃) and MIA
methodologies. Canaries are synthetically generated with target perplexity Ptarget = 250, with no in-distribution prefix
(F = 0) and inserted nrep = 12 times.

Canary injection TPR@FPR=0.1

Model Aθ Synthetic AD̃ Synthetic AD̃ Synthetic AD̃

Dataset Source Label (2-gram) (SIMJac) (SIMemb)

SST-2
In-distribution 0.795 0.406 0.207 0.203

Synthetic Natural 0.996 0.191 0.114 0.128
Artificial 1.000 0.277 0.142 0.142

AG News
In-distribution 0.982 0.314 0.158 0.168

Synthetic Natural 0.990 0.271 0.114 0.114
Artificial 0.996 0.323 0.152 0.164

Table 9: True positive rate (TPR) at a false positive rate (FPR) of 0.1 for experiments using standard canaries
(Sec. 5.1) across training datasets, threat models (model-based adversary Aθ and data-based adversary AD̃) and MIA
methodologies. Canaries are synthetically generated with target perplexity Ptarget = 250, with no in-distribution prefix
(F = 0) and inserted nrep = 12 times.

H Ablations for MIAs on synthetic data

Synthetic multiple Thus far, we have exclusively considered that the number of generated synthetic records equals
the number of records in the real data, i.e., N = Ñ . We now consider the case when more synthetic data is made
available to a data-based adversary (Ã). Specifically, we denote the synthetic multiple m = Ñ/N and evaluate how
different MIAs perform for varying values of m. Figure 5 shows how the ROC AUC score varies as m increases. As
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Figure 4: MIA ROC curves across data-based MIA methodologies for the SST-2 (left) and AG News (right) datasets.
Canaries are synthetically generated with target perplexity of Ptarget = 250 with a natural label, with no in-distribution
prefix (F = 0) and inserted nrep = 12 times.

expected, the ROC AUC score for the attack that uses membership signals computed using a 2-gram model trained on
synthetic data increases when more synthetic data is available. In contrast, attacks based on similarity metrics do not
seem to benefit significantly from this additional synthetic data.

20 21 22 23

Synthetic multiple m

0.5

0.6

0.7

0.8

0.9

1.0

M
IA

 A
UC

Model
Synthetic (2-gram)
Synthetic (SIMjac - k = 25)
Synthetic (SIMemb - k = 25)
Random guess baseline

20 21 22 23

Synthetic multiple m

0.5

0.6

0.7

0.8

0.9

1.0

M
IA

 A
UC

Model
Synthetic (2-gram)
Synthetic (SIMjac - k = 25)
Synthetic (SIMemb - k = 25)
Random guess baseline

Figure 5: ROC AUC score for increasing value of the synthetic multiple m across data-based attack methods for SST-2
(left) and AG News (right). Canaries are synthetically generated with target perplexity of Ptarget = 250, with a natural
label, with no in-distribution prefix (F = 0), and inserted nrep = 12 times.

Hyperparameters in data-based attacks The data-based attacks that we presented in Sec. 3.1 rely on certain
hyperparameters. The attack that uses n-gram models to compute membership signals is parameterized by the order
n. Using a too small value for n might not suffice to capture the information leaked from canaries into the synthetic
data used to train the n-gram model. When using a too large order n, on the other hand, we would expect less overlap
between n-grams present in the synthetic data and the canaries, lowering the membership signal.

Further, the similarity-based methods rely on the computation of the mean similarity of the closest k synthetic records
to the a canary. When k is very small, e.g. k = 1, the method takes into account a single synthetic record, potentially
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missing on leakage of membership information from other close synthetic data records. When k becomes too large,
larger regions of the synthetic data are taken into account, which might dilute the membership signal among the noise.

Table 10 reports the ROC AUC scores of data-based attacks for different values of the hyperparameters n and k when
using standard canaries (Sec. 5.1). We find that for both datasets, training a 2-gram model on the synthetic data to
compute the membership signal yields the best performance. For the data-based MIAs relying on the similarity between
the canary and the synthetic records, both when considering Jaccard distance and cosine distance in the embedding
space, we find that considering the k = 25 closest synthetic records yields the best performance.

n-gram SIMJac SIMemb

Dataset n AUC k AUC k AUC

SST-2

1 0.415 1 0.520 1 0.516
2 0.616 5 0.535 5 0.516
3 0.581 10 0.538 10 0.519
4 0.530 25 0.547 25 0.530

AG News

1 0.603 1 0.522 1 0.503
2 0.644 5 0.525 5 0.498
3 0.567 10 0.537 10 0.503
4 0.527 25 0.552 25 0.506

Table 10: Ablation over hyperparameters of data-based MIAs. We report ROC AUC scores across different values of
the hyperparameters n and k (see Sec. 3.1). Canaries are synthetically generated with target perplexity Ptarget = 250,
with a natural label, with no in-distribution prefix (F = 0), and inserted nrep = 12 times.

I Disparate vulnerability of standard canaries

We analyze the disparate vulnerability of standard canaries between the model-based attack and the data-based attack
that uses a 2-gram model (as discussed in Sec 5.1). Figure 6 plots the RMIA scores for both attacks on the same set of
canaries, which have either been included in the training dataset of the target model (member) or not (non-member).
Note that the RMIA scores are used to distinguish members from non-members, and that a larger value corresponds to
the adversary being more confident in identifying a record as a member, i.e., to the record being more vulnerable.

First, we note that the scores across both threat models exhibit a statistically significant, positive correlation. We find
a Pearson correlation coefficient between the RMIA scores (log) for both methods of 0.20 (p-value of 2.4× 10−10)
and 0.23 (p-value of 1.9× 10−13) for SST-2 and AG News, respectively. This means that a record vulnerable to the
model-based attack tends to be also vulnerable to the data-based attack, even though the attacks differ substantially.

Second, and more interestingly, some canaries have disparate vulnerability across MIA methods. Indeed, Figure 6
shows how certain data records which are not particularly vulnerable to the model-based attack are significantly more
vulnerable to the data-based attack, and vice versa.

J Low FPR ROC results

Figure 7 shows log-log plots of the ROC curves in Figure 1 to better examine behavior of attacks at low FPR.

K Interpretability

To further understand the membership signal for data-based attacks, we examine some examples in-depth.

Specifically, we consider the MIA for specialized canaries with F = 30, Ptarget = 31 and nrep = 16 for SST-2 from
Figure 11c. Recall that for this attack, we consider 1000 canaries, 500 of which are injected into the training dataset of
one target model θ. We also train 4 references models {θ′i}4i=1 where each of the 1000 canaries has been included in
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Figure 6: RMIA scores (log) for model- and data-based MIAs on the same set of canaries. Results for both datasets
SST-2 and AG News. Canaries are synthetically generated with target perplexity of Ptarget = 250 with a natural label,
and inserted nrep = 12 times.

exactly half. We focus on the best performing MIA based on synthetic data, i.e. the attack leveraging the probability of
the target sequence computed using a 2-gram model trained on the synthetic data.

To understand what signal the MIA picks up to infer membership, we focus on the canary most confidently, and
correctly, identified as member and the one most confidently, and correctly, identified as non-member. For this, we take
the canaries for which the RMIA score computed using the target model and the reference models is the highest and the
lowest, respectively.

Next, for each model (4 reference models, and 1 target model), we report for this canary x̂i:

1. Whether the canary has been included in, x̂i ∈ D (IN), or excluded from, x̂i /∈ D (OUT), the training dataset of the
model in question, and thus to generate the synthetic data D̃ = {x̃i = (s̃i, ℓ̃i)}Ñi=1.

2. The canary with the words that appear as a 2-gram in the synthetic data D̃ emphasized in bold face. Note that if, for
instance, this is a sequence of 3 words, e.g., "the woodman seems", this means that all 3 words appear in 2-grams in
the synthetic data, e.g., "the woodman" and "woodman seems".

3. The maximum overlapping sub-string between the canary and any synthetically generated record s̃i. We define a
sub-string as a sequence of characters, including white space, and also report its length as number of characters
Loverlap.

4. The mean, negative cross-entropy loss of the canary computed using the 2-gram model trained on the synthetic data.
Formally, for canary ŝi = (w1, w2, . . . , wk): − 1

k

∑k
j=2 log (P2-gram(wj , wj−1)).

Tables 11 and 12 report this for the canary with the largest and lowest RMIA score, respectively.

First, we analyze the membership prediction made for the canary with the largest RMIA score (Table 11). Examining
the reference models (θ′i), we find little variation in the metrics we consider, regardless of whether the canary was
included in the training dataset (IN) or not (OUT). Specifically, the number of overlapping 2-grams, the length of the
longest overlapping sub-string, and the 2-gram loss remain largely unchanged across IN and OUT reference models.

In contrast, the target model θ exhibits a strong signal, especially when compared to the reference models. Notably, the
uncommon sequence "Embed from Getty Images Embed from Getty Images" appears in the synthetic data generated by
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Figure 7: Log-log ROC curves of MIAs on synthetic data AD̃ compared to model-based MIAs Aθ on SST-2 (7a–7c)
and AG News (7d–7f). We ablate over the number of canary insertions nrep in 7a, 7d, the target perplexity Ptarget of the
inserted canaries in 7b, 7e and the length F of the in-distribution prefix in the canary in 7c, 7f.

the trained target model θ but is absent from the synthetic data of all θ′i. The signal is further reflected by a significantly
lower 2-gram loss compared to the reference models, explaining the high RMIA score for this canary.

Overall, even for the most vulnerable canary, not all of its 2-grams appear in the synthetic data, and the longest
overlapping sub-string accounts for only 52 out of 296 characters. This suggests that membership inference does
not rely on verbatim regurgitation of long sub-sequences. Instead, it detects subtler patterns, such as the presence of
specific 2-grams or shorter sub-strings. Such signal is effectively captured by the 2-gram loss and becomes especially
meaningful when contrasted against values reached for the reference models using RMIA.

Second, we analyze the membership prediction for the canary with the lowest RMIA score (Table 12). In this case, the
canary was not included in the target model’s training dataset (OUT) and was correctly classified as non-member.

We observe minimal differences in the number of overlapping 2-grams and the length of the longest overlapping
sub-string across IN and OUT reference models, as well as the target model. Instead, the most informative signal
emerges from the 2-gram loss: it is lower for IN models than for OUT models, with the target model exhibiting
the highest loss, resulting in the low RMIA score. These results again suggest that the information useful to infer
membership based on synthetic data does not rely on the regurgitation of long sub-sequences, and instead arises from
slight shifts in the probability distribution of co-occurrences of words in the synthetic data, as captured by the 2-gram
loss.
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IN or Canary Max overlapping 2-gram
Model OUT (words present as part of 2-grams in D̃′ in bold) sub-string loss

θ′1 (ref) IN "the woodman seems to have directly influenced this girl-
meets-girl love story , but even more reassuring is how its
makers actually seem to understand what made allen
’s romantic comedies work in the first place. Embed
from Getty Images Embed from Getty Images Earlier this
week, the case against the"

« to understand what
made » ;

Loverlap = 25

8.21

θ′2 (ref) IN "the woodman seems to have directly influenced this girl-
meets-girl love story , but even more reassuring is how
its makers actually seem to understand what made allen
’s romantic comedies work in the first place. Embed
from Getty Images Embed from Getty Images Earlier this
week, the case against the"

«ally seem to
understand » ;
Loverlap = 24

8.19

θ′3 (ref) OUT "the woodman seems to have directly influenced this girl-
meets-girl love story , but even more reassuring is how
its makers actually seem to understand what made allen
’s romantic comedies work in the first place. Embed
from Getty Images Embed from Getty Images Earlier this
week, the case against the"

« seem to understand
what ma» ;
Loverlap = 27

8.18

θ′4 (ref) OUT "the woodman seems to have directly influenced this girl-
meets-girl love story , but even more reassuring is how
its makers actually seem to understand what made allen
’s romantic comedies work in the first place. Embed
from Getty Images Embed from Getty Images Earlier this
week, the case against the"

«s work in the first
place» ; Loverlap = 25

8.18

θ (target) IN "the woodman seems to have directly influenced this girl-
meets-girl love story , but even more reassuring is how its
makers actually seem to understand what made allen
’s romantic comedies work in the first place. Embed
from Getty Images Embed from Getty Images Earlier
this week, the case against the"

«e. Embed from
Getty Images Embed
from Getty Images E»

; Loverlap = 52

7.59

Table 11: Interpretability of the best MIA (2-gram) based on synthetic data for specialized canaries with F = 30,
Ptarget = 31 and nrep = 16 for SST-2 from Figure 1c. Results across 4 reference models and the target model for the
canary with the largest RMIA score (most confidently and correctly identified as member by the MIA). Words in
bold appear in 2-grams in D̃′. The largest generated sub-sequence of the canary in D̃′ corresponds to the maximum
overlapping sub-string, not the longest sequence of words in bold.
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IN or Canary Max overlapping 2-gram
Model OUT (words present as part of 2-grams in D̃′ in bold) sub-string loss

θ′1 (ref) IN "give a spark to “ chasing amy ” and “ changing lanes
” falls flat as thinking man cia agent jack ryan in this
summer ’s new action film , “ the sum of all fears , ”
in theaters friday . if director philip noyce and writer
aaron singer"

« “ the sum of all
fears , ” » ;
Loverlap = 30

7.80

θ′2 (ref) IN "give a spark to “ chasing amy ” and “ changing lanes
” falls flat as thinking man cia agent jack ryan in this
summer ’s new action film , “ the sum of all fears , ”
in theaters friday . if director philip noyce and writer
aaron singer"

«, “ the sum of all
fears ’, » ;

Loverlap = 26

7.73

θ′3 (ref) OUT "give a spark to “ chasing amy ” and “ changing lanes
” falls flat as thinking man cia agent jack ryan in this
summer ’s new action film , “ the sum of all fears , ”
in theaters friday . if director philip noyce and writer
aaron singer"

« , “ the sum of
all fears » ;
Loverlap = 27

8.27

θ′4 (ref) OUT "give a spark to “ chasing amy ” and “ changing lanes
” falls flat as thinking man cia agent jack ryan in this
summer ’s new action film , “ the sum of all fears , ”
in theaters friday . if director philip noyce and writer
aaron singer"

« “ chasing amy ”
and “ changing

lanes » ;
Loverlap = 41

7.99

θ (target) OUT "give a spark to “ chasing amy ” and “ changing lanes
” falls flat as thinking man cia agent jack ryan in this
summer ’s new action film , “ the sum of all fears , ”
in theaters friday . if director philip noyce and writer
aaron singer"

« “ the sum of all
fears , ” » ;
Loverlap = 30

8.30

Table 12: Interpretability of the best MIA (2-gram) based on synthetic data for specialized canaries with F = 30,
Ptarget = 31 and nrep = 16 for SST-2 from Figure 1c. Results across 4 reference models and the target model for the
canary with the smallest RMIA score (most confidently and correctly identified as non-member by the MIA). Words in
bold appear in 2-grams in D̃′. The largest generated sub-sequence of the canary in D̃′ corresponds to the maximum
overlapping sub-string, not the longest sequence of words in bold..
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