
RE#: High Performance Derivative-Based Regex Matching
with Intersection, Complement, and Restricted Lookarounds
IAN ERIK VARATALU, Tallinn University of Technology, Estonia

MARGUS VEANES,Microsoft Research, USA

JUHAN ERNITS, Tallinn University of Technology, Estonia

We present a tool and theory RE# for regular expression matching that is built on symbolic derivatives, does

not use backtracking, and, in addition to the classical operators, also supports complement, intersection and

restricted lookarounds. We develop the theory formally and show that the main matching algorithm has

input-linear complexity both in theory as well as experimentally. We apply thorough evaluation on popular

benchmarks that show that RE# is over 71% faster than the next fastest regex engine in Rust on the baseline, and

outperforms all state-of-the-art engines on extensions of the benchmarks often by several orders of magnitude.

CCSConcepts: •Theory of computation→Regular languages; •Computingmethodologies→Boolean
algebra algorithms.

Additional Key Words and Phrases: regex, derivative, automata, POSIX

ACM Reference Format:
Ian Erik Varatalu, Margus Veanes, and Juhan Ernits. 2025. RE#: High Performance Derivative-Based Regex

Matching with Intersection, Complement, and Restricted Lookarounds. Proc. ACM Program. Lang. 9, POPL,
Article 1 (January 2025), 32 pages. https://doi.org/10.1145/3704837

1 Introduction
In the seminal paper [Thompson 1968] Thompson describes his regular expression search algorithm

for standard regular expressions at the high level as follows,

“In the terms of Brzozowski, this algorithm continually takes the left derivative of the

given regular expression with respect to the text to be searched.”

citing Brzozowski’s work [Brzozowski 1964] from four years earlier. Thompson’s algorithm compiles

regular expressions into a very efficient form of automata and has stood the test of time: its variants
today constitute the core of many state-of-the-art industrial nonbacktracking regular expression

engines such as RE2 [Cox 2010; Google 2024] and the regex engine of Rust [Rust 2024]. Earlier
automata based classical algorithms for regular expression matching include [McNaughton and

Yamada 1960] and [Glushkov 1961], a variant of the latter is used in Hyperscan [Wang et al. 2019].

Thompson’s algorithm as well as Glushkov’s construction have, by virtue of their efficiency for

the standard or classical subset, to some degree, influenced how regular expression features have

evolved over the past decades. The standard fragment allows only union (|) as a Boolean operator,

and, unfortunately, neither intersection (&) nor complement (~) ever made it into the official notation,

not even as reserved operators. Recently [Mamouras and Chattopadhyay 2024] presented a new

algorithm for matching lookarounds with oracle NFAs and [Barrière and Pit-Claudel 2024] presented

Authors’ Contact Information: Ian Erik Varatalu, Tallinn University of Technology, Tallinn, Estonia, ian.varatalu@taltech.ee;

Margus Veanes, Microsoft Research, Redmond, USA, margus@microsoft.com; Juhan Ernits, Tallinn University of Technology,

Tallinn, Estonia, juhan.ernits@taltech.ee.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/1-ART1

https://doi.org/10.1145/3704837

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0003-1267-2712
HTTPS://ORCID.ORG/0009-0008-8427-7977
HTTPS://ORCID.ORG/0000-0002-4591-0425
https://doi.org/10.1145/3704837
https://orcid.org/0000-0003-1267-2712
https://orcid.org/0009-0008-8427-7977
https://orcid.org/0000-0002-4591-0425
https://doi.org/10.1145/3704837
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

1:2 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

a new algorithm with an implementation for matching JavaScript regular expressions with full

support for lookarounds without backtracking in linear time. Prior to these new algorithms, the

standard fragment (with anchors), has been considered more-or-less as the only feasible and safe

fragment of regular expressions for which matching can be performed reliably without backtracking
in input-linear time.

The broad goal of this paper is to break this decades long belief that nonbacktracking
algorithms for matching are only viable for regular expressions without & and ~.

Backtracking based matching [Spencer 1994], although much more general, is considered to be

unsafe in security critical applications because backtracking may cause nonlinear search complexity

that can expose catastrophic denial of service vulnerabilities [Davis 2019; Davis et al. 2018; OWASP

2024]. To increase expressivity of the standard fragment, extensions such as unbounded positive and
negative lookaheads have been added that, with the exception of [Barrière and Pit-Claudel 2024]

and the related contribution to Javascript V8, are only supported by some backtracking based regex

backends. Let RE≤ denote standard regexes with unrestricted lookarounds. Below we highlight

some key similarities and differences between RE# and RE≤ . A typical example of a regex involving

lookaheads is a password filter in RE≤

(?=.*[a-z])(?=.*[A-Z])(?=.*\d)(?=.*[!-/])\S*

that checks the presence of at least one lowercase letter, one uppercase letter, one digit, and one

special character in a string of non-white-space characters. If only the standard fragment is allowed

then the size of an equivalent regex grows factorially as the number of such individual constraints

is increased, and becomes not only unreadable and very difficult to formulate, but also infeasible.

Using &, the above regular expression takes the following equivalent form in RE#, say 𝑃 :

(.*[a-z].*)&(.*[A-Z].*)&(.*\d.*)&(.*[!-/].*)&\S*

Lookarounds provide additional expressivity that in some instances overlaps with, but is orthogonal

to, & and ~. In RE#, regexes are restricted to a fragment also called RE# that, in a normalized form,

correspond to regexes (?<=𝑅1)𝑅2(?=𝑅3), where 𝑅𝑖 do not contain lookarounds but may contain &
and ~. This fragment enables an efficient derivative based implementation, while supporting all
the regexes in the rebar benchkmark set that contains primarily anchors that could in all cases

automatically be rewritten to an equivalent form in RE#.
For match search a typical further restriction in the case of 𝑃 is that a password has a minimum

and a maximum length, say between 8 and 12 characters. Match search of (hidden) stored passwords

is a typical task of a credential scanner such as [Microsoft 2021a] that guards against security leaks.

In RE# the corresponding regex then becomes 𝑃&.{8,12}. In RE≤ the regex .* in the individual

lookaheads would need to be replaced by .{0,12} to limit the scope of the lookaheads. The main

pattern \S* can be replaced by \S{8,12}. More complicated additional constraints, such as, contains

at least two digits (.*\d.*\d.*), are more tricky to express as lookaheads. Overall, intersection

and complement enable a better separation of concerns. However, lookarounds are often needed to

establish additional context conditions for such search patterns. For example, that the match must

occur in the first line (?<=\𝐴.*)𝑃&.{8,12}, where dot does not match the newline character.

On the other hand, RE≤ includes common regexes such as (?<=𝑅1)𝑅2(?=𝑅3) |(?<=𝑅4)𝑅5(?=𝑅6),
where 𝑅𝑖 are standard regexes without embedded lookarounds. Such regexes are currently not

supported in RE#, although it is algorithmically possible, and part of future work, to extend RE# to
this case. Regexes in RE≤ that involve nested lookarounds are in general out of scope for RE#.
It was four decades after Thompson’s work when [Owens et al. 2009] recognized that a key

aspect of Brzozowski’s work had been forgotten:

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

RE#: High Performance Derivative-Based Regex Matching 1:3

“It easily supports extending the regular-expression operators with boolean operations,

such as intersection and complement. Unfortunately, this technique has been lost in

the sands of time and few computer scientists are aware of it.”

Namely that derivatives provide an elegant algebraic framework to formulate matching in func-

tional programming, not only for standard regular expressions but also supporting intersection and

complement, and can moreover naturally support large alphabets. The first industrial implemen-

tation of derivatives for standard regexes in an imperative language (C#) materialized a decade

later [Saarikivi et al. 2019] and was used for credential scanning [Microsoft 2021a] while preserving

input-linear complexity of match search. This work was recently extended to support anchors and

to maintain PCRE (backtracking) match semantics [Moseley et al. 2023] and is now part of the

official release of .NET through the new NonBacktracking regular expression option, where one

of the key contributions is a new formalization of derivatives that is based on locations in words

rather than individual characters, which made it possible to support anchors using derivatives.

Here we build on the theory [Moseley et al. 2023] and extend it to include regular expressions

that allow all of the Boolean operators, including intersection and complement, as well as any other

Boolean operator that is convenient to use for the matching task at hand, such as e.g. symmetric
difference (XOR). RE# also supports a limited form of lookarounds as a generalization of anchors.

To illustrate a combined use of many of the extended features, consider the regex

(?<=author.*).*︸ ︷︷ ︸
(1)

& ~(.*and.*)︸ ︷︷ ︸
(2)

& \b\w.*\w\b︸ ︷︷ ︸
(3)

@article{ORT09,
author = {Scott Owens and John H. Reppy and Aaron Turon},
title = {Regular-expression Derivatives Re-examined},
journal= {J. Funct. Program.},
year = {2009},

}

Fig. 1. Sample bibtex entry.

that matches all substrings in

all lines (. matches any char-

acter except \n) that are: 1)
preceded by "author" (via the
lookbehind), 2) do not con-

tain "and", and 3) begin and

end with word letters (\w) sur-
rounded by word boundaries
(\b). This regex finds all the

authors in a bibtex text, such

as the one shown in Figure 1, where all the match results are highlighted.

We develop our theory formally and show that our matching algorithm is input-linear on single

match search despite all the extensions. We have implemented the theory in a new tool RE# that is
built on top of the open source codebase of .NET regular expressions [Microsoft 2022] where we

have made use of several recent features available in .NET9, such as e.g. further SIMD vectorization

of string matching functions and implementation of the Teddy [Qiu et al. 2021] algorithm. We show

through comprehensive evaluation, using the BurntSushi/rebar benchmarking tool [Gallant 2024]

evaluating engines with respect to finding all matches, that
✓ Baseline: RE# is not only on par with state-of-the-art matching engines on the benchmarks

but places overall first in the summarized measurement (Section 6.1), over 71% faster than the
next fastest engine Rust as shown in Table 4a (2.54/1.48 ≈ 1.716). We explain the key aspects

of each individual experiment.

✓ Extensions: We provide compelling experimental evidence on a new set of benchmarks

involving many of the extended features that are either very difficult to express or fall outside

the expressivity of existing tools. Here we want to draw attention to Figure 2 where RE#
outperforms all other engines and often by several orders of magnitude.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

1:4 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

re
sh

ar
p

hy
pe

rs
ca

n

do
tn

et
/n

ob
t

pe
rl

ja
va

sc
rip

t/
v8

do
tn

et
/c

om
p

re
gr

es
s

re
2

py
th

on
/r

eg
ex

py
th

on
/r

e

ja
va

/h
ot

sp
ot

go
/r

eg
ex

p

ru
st
/r

eg
ex

100

101

102

103

104

R
e
la

t
iv

e
s
lo

w
d

o
w

n
m

u
lt

ip
li
e
r

(
x
)

dictionary-case-ig

dictionary-unicode

dictionary-unicode-case-ig

context-case-ig

context-unicode-case-ig

(a) Monster benchmarks (Section 6.2.2).

re
sh

ar
p

pc
re
2/

jit

do
tn

et
/n

ob
t

do
tn

et
/c

om
p

py
th

on
/r

eg
ex

ja
va

/h
ot

sp
ot

py
th

on
/r

e

ru
st
/r

eg
ex

pe
rl

100

101

102

103

104

105

R
e
la

t
iv

e
s
lo

w
d

o
w

n
m

u
lt

ip
li
e
r

(
x
)

word-vowels-1

word-vowels-2

word-vowels-4

word-vowels-10

word-vowels-5-to-digits

digits-to-word-vowels-5

many-set-constraints

(b) Sets and Unicode benchmarks (Section 6.2.5).
Fig. 2. Two evaluations from Section 6. RE# is the baseline and 𝑦-axis is relative slowdown in log scale.

To a large extent, most optimizations rely heavily on the algebraic treatment of derivatives where

regex based rewrite rules are available that would otherwise be very difficult to detect solely at the

level of automata. Several of the optimizations that affect the baseline evaluation results in RE#
are applicable also to the NonBacktracking engine of .NET. Some features of RE# were recently
merged into .NET 9, as explained in [Toub 2024]. Further optimizations are possible in cases when

the derivative based rewrite rules have the same semantics independent of whether the regex union

operator is commutative (as in RE#) or not (as in .NET), e.g., for IsMatch.

Contributions. In summary, we consider the following as the main contributions of this paper:

✓ A new symbolic derivative based nonbacktracking matching algorithm for regular expression

matching that supports intersection, complement and restricted lookarounds in regexes, with

correctness theorem, while preserving input linear performance (Section 4).

✓ Explanation of the key techniques used in the implementation of RE# (Section 5).

✓ Extensive evaluation using a popular benchmarking tool that ranks RE# as fastest among all

regex matchers today. All the evaluation results are explained in detail. (Section 6).

We start with some motivating examples for the extended operators that demonstrate how RE#
can be used to match patterns that are currently either very difficult or infeasible to express with

standard regular expressions.

2 Motivating Examples
In this section we explain the intuition behind the intersection (&) and complement (~) operators
in RE# and illustrate their use through some examples. The examples are also available in the

accompanying web application [Varatalu 2024b] and are written essentially in .NET regex syntax,

with the addition of & and ~, as well as the wildcard _ that matches all characters, equivalently
represented by (.|\n), where dot denotes all characters except the newline character (\n).
The full syntax and semantics is explained in detail in Section 4. The overall intuition is, first

of all, that matching of a regex 𝑅 is relative to a substring of the input string. In particular, the

wildcard _*matches all substrings of any input. For example, if the string is " HelloWorld\n" then
the regex (?<=\s)_*(?=\s) matches only "HelloWorld" in it, because it is the only substring

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

RE#: High Performance Derivative-Based Regex Matching 1:5

surrounded by white space characters. The regex e_*(?=\s) matches the substring "elloWorld",
while _*e_*(?=\s) matches the substring " HelloWorld".

For the upcoming examples, consult Table 1 for intuition on how to interpret the constructs.

Example 2.1 (Context-aware matching). Consider the input text in the first column below

— Valid
email@foo.com
email@subdomain.foo.com
email@other.com
— Invalid
email@-foo.com
email@foo@foo.com

— Valid
email@foo.com
email@subdomain.foo.com
email@other.com
— Invalid
email@-foo.com
email@foo@foo.com
— Valid
— Invalid

— Valid
email@foo.com
email@subdomain.foo.com
email@other.com
— Invalid
email@-foo.com
email@foo@foo.com
— Valid
— Invalid

which contains a list of valid email addresses and invalid email addresses. Our goal is not to validate
the email addresses themselves, but to extract all the email addresses from the Valid section.

Finding the email addresses is easy, it is all lines that contain @ which is expressed by the regex

.*@.*, and since name and domain parts must be non-empty, we can refine the regex to .+@.+.
The Valid section requirement is more difficult, as we need a mechanism to distinguish between

the two sections. This is where lookarounds come in handy. We can use a lookbehind to match the

Valid section, and a lookahead to match the Invalid section, this ensures that the matches are

between the two sections, using the regex (?<=Valid_*).+@.+(?=_*Invalid).
However, this regex has a problem. If the input contains multiple Valid sections, the lookbehind

will match the first Valid section and the lookahead will match the last Invalid section, as

highlighted in the middle column above. But we want to match only the entries in Valid sections.

What we need is a way to define a window that starts with the Valid section and ends with

the Invalid section. This is where complement comes in handy. What we really want to match is

expressed with the regex (?<=Valid~(_*Invalid_*)).+@.+ – the lookbehind requires 𝑢·Valid·𝑣
for some 𝑢 and 𝑣 to occur before the match while prohibits Invalid from occurring in 𝑣 .

We do not need the lookahead because the existence of the Valid section is enough to ensure

that the match is in the Valid section. The complement then ensures that the Invalid section has

not started yet, which works even if the Invalid section does not exist, which is exactly what

we want, as highlighted by the matches of this regex in the third column above. An equivalent

regex can be written as (?<=Valid(?:(?<!Invalid)(?:.|\n))*)^.+@.+ which is not supported

in RE# due to nested lookarounds, given (?:) denotes a non-capturing group. ⊠

Table 1. Basic constructs and their meaning in the extended regex syntax in RE#.

Lookarounds Prefixes/Suffixes Other
(?<=𝑅)_* : preceded by 𝑅 𝑅_* : starts with 𝑅 _*𝑅_* : contains 𝑅

(?<!𝑅)_* : not preceded by 𝑅 ~(𝑅_*) : does not start with 𝑅 ~(_*𝑅_*) : does not contain 𝑅
_*(?=𝑅) : followed by 𝑅 _*𝑅 : ends with R 𝑅|𝑆 : either 𝑅 or 𝑆

*(?!𝑅) : not followed by 𝑅 ~(*𝑅) : does not end with 𝑅 𝑅&𝑆 : both 𝑅 and 𝑆

Table 2. Real-world constraints expressed as regexes in RE#.

Real-world constraint Regex equivalent Notes
a line with an email ^.*@.*$ ^ def

= (?<=\A|\n) and $ def

= (?=\z|\n)
in the Valid section (?<=Valid~(_*Invalid_*))_* see Example 2.1

without a subdomain .*@~((_*\._*){2}) domain not containing two dots (\.)
not from @other.com ~(_*@other.com) match not ending with @other.com

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

1:6 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

Table 3. Advanced constructs in the extended regex syntax of RE#.

Regex Notes
Difference 𝐿 &~𝑅 𝐿 but not 𝑅 (same as ~𝑅 &𝐿)
Implies (Negated Difference) 𝐿 ⇒ 𝑅 if 𝐿 then 𝑅 (same as ~𝐿|𝑅)
XOR (Symmetric Difference) 𝐿 ⇎ 𝑅 exactly one of 𝐿, 𝑅 (same as 𝐿&~𝑅|~𝐿&𝑅)
IFF/XNOR (Implies Both Ways) 𝐿 ⇔ 𝑅 both or none of 𝐿, 𝑅 (same as 𝐿&𝑅|~𝐿&~𝑅)
Window (?<=𝐿~(_*𝑅_*))_* in a window starting with 𝐿 but not past 𝑅

Between (?<=𝐿)~(_*𝐿|𝑅_*)(?=𝑅) between 𝐿 and 𝑅 without crossing boundaries

Example 2.2 (Separation of concerns). What if we have more requirements for the email addresses?

What if we want to exclude email addresses that contain a subdomain. What if we want to exclude

emails from the other.com domain? In real-world applications, it is common to have multiple

requirements for a match, and it is important to be able to express these requirements in a concise,

maintainable way. All of these requirements can be expressed as regex constraints, as shown in

Table 2 where ^ and $ are called line anchors. The precise specification of what we want to match

in this example is the following intersection of individual constraints:

(^.*@.*$)︸ ︷︷ ︸
single line

& ((?<=Valid~(_*Invalid_*))_*)︸ ︷︷ ︸
occurs in the Valid section

& (.*@~((_*\._*){2}))︸ ︷︷ ︸
without a subdomain

& (~(_*@other.com))︸ ︷︷ ︸
not from other.com domain

This regex is easy to read and understand in individual components, and can be easily modified to

add or remove requirements. The only match for it in the Example 2.1 text is email@foo.com. ⊠

Example 2.3 (Extended expressivity but not at the cost of performance). In industrial applications,

regexes with unbounded lookarounds such as (?<=Valid.*).+@.+ do not exist for a reason.

Unbounded lookbehinds are not supported by many popular backtracking regex engines, such

as PCRE and even the ones that do support them, such as .NET, cannot match them with good

performance because the engine has to repeatedly backtrack for the context conditions for every

potential match. This reduces the impact of having such features available, as the performance is

too poor to make it feasible for use in practice.

This is where RE# shines. It is able to match extended regexes not only in linear time, but with

performance that is comparable to industrial automata based engines, such as RE2, Hyperscan, and

Rust. This is due to the fact that RE# is internally also automata based and does not backtrack.

The addition of intersection and complement does not increase the complexity of the matching

algorithm relative to the input – the overall complexity of the engine remains input-linear. This
includes not only lookarounds but allows also for more advanced constructs shown in Table 3.

Furthermore, lookbehind assertions for context such as the ones shown in Example 2.1 can be

used to find not just the first match, but all matches in linear time, which is due to the fact that

the engine is able to locate all the matches in a single pass over the input string. Note that certain

combinations of regexes and inputs can still have an all-matches search complexity of 𝑂 (𝑛2) in
regex engines that are otherwise guaranteed to be linear for a single match. Scenarios illustrating

this are shown in Sections 6.1.4 and 6.2.6.

For an example supported by both backtracking engines and RE#, we are using the regex pattern
(?<=Valid[^-]*).+@.+ to illustrate this scenario in Figure 3, where a new section is known to

start with the dash (-) character, which is not used anywhere else in the input.

The input is similar to the one used in Example 2.1, but here the 𝑥 axis shows the number of

lines with email addresses that the Valid and Invalid sections contain, and the 𝑦 axis shows how

many times the engine is slower than RE# that has a constant throughput in all cases. ⊠

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

RE#: High Performance Derivative-Based Regex Matching 1:7

101 102

Lookbehind context length (num of lines)

100

101

102

103

104

R
el

a
ti

ve
sl

ow
d

ow
n

m
u

lt
ip

li
er

(x
)

dotnet/compiled

java/hotspot

javascript/v8

python/regex

regress

resharp

Fig. 3. All matches in linear time in RE#. Both axes are logarithmic. (We have not evaluated the recent linear
implementation in Javascript V8 [Barrière and Pit-Claudel 2024].)

We now proceed to establish the theory for regular expressions extended with lookarounds,

complement and intersection. We first recall some background material.

3 Preliminaries
Here we introduce the notation and main concepts used in the paper. The general meta-notation

and notation for denoting strings and locations follows [Moseley et al. 2023] but differs in some

minor aspects. We write lhs def

= rhs to let lhs be equal by definition to rhs. Let B = {false, true}
denote Boolean values, let ⟨𝑥,𝑦⟩ stand for pairs with ⟨𝑥,𝑦⟩1 def

= 𝑥 and ⟨𝑥,𝑦⟩2 def

= 𝑦.

Let Σ be a domain of characters and let Σ∗
denote the set of all strings over Σ. We write 𝜖 for the

empty string. The length of 𝑠 ∈ Σ∗
is denoted by |𝑠 |. Strings of length one are treated as characters.

Let 𝑖 and 𝑙 be nonnegative integers such that 𝑖 + 𝑙 ≤ |𝑠 |. Then 𝑠𝑖,𝑙 denotes the substring of 𝑠 starting
from index 𝑖 having length 𝑙 , where the first character has index 0. In particular 𝑠𝑖,0 = 𝜖 . For

0 ≤ 𝑖 < |𝑠 | let 𝑠𝑖 def

= 𝑠𝑖,1 and let 𝑠 |𝑠 |
def

= 𝜖 . E.g., "abcdef"1,4 = "bcde" and "abcde"5 = 𝜖 .
We let 𝑠r denote the reverse of 𝑠 , i.e., 𝑠r𝑖 = 𝑠 |𝑠 |−1−𝑖 for 0 ≤ 𝑖 < |𝑠 |.
Let 𝑠 ∈ Σ∗

. A location in 𝑠 is a pair 𝑠 [𝑖] def

= ⟨𝑠, 𝑖⟩, where 0 ≤ 𝑖 ≤ |𝑠 |, where 𝑠 [0] is called initial and
𝑠 [|𝑠 |] final. The set of all locations in 𝑠 is Loc(𝑠) and Loc def

=
⋃

𝑠∈Σ∗ Loc(𝑠). Loc+ stands for all the
nonfinal locations. For 𝑠 [𝑖] ∈ Loc+ let 𝑠 [𝑖] + 1

def

= 𝑠 [𝑖 + 1]. Let also hd (𝑠 [𝑖]) def

= 𝑠𝑖 , i.e., if 𝑥 is nonfinal

then hd (𝑥) is the next(current) character of the location.
The reverse 𝑠 [𝑖]r of a location 𝑠 [𝑖] in 𝑠 is the location 𝑠r [|𝑠 |−𝑖] in 𝑠r. For example, the reverse of

the final location in 𝑠 is the initial location in 𝑠r.

Effective Boolean Algebra. The tuple A = (Σ,Ψ, [[·]] ,⊥,⊤,∨,∧,¬) is called an Effective Boolean
Algebra over Σ or EBA [D’Antoni and Veanes 2021] where Ψ is a set of predicates that is closed under
the Boolean connectives; [[·]] : Ψ → 2

Σ
is a denotation function; ⊥,⊤ ∈ Ψ; [[⊥]] = ∅, [[⊤]] = Σ, and

for all 𝜑,𝜓 ∈ Ψ, [[𝜑∨𝜓]] = [[𝜑]] ∪ [[𝜓]] , [[𝜑∧𝜓]] = [[𝜑]] ∩ [[𝜓]] , and [[¬𝜑]] = Σ\ [[𝜑]] . Two predicates
𝜙 and𝜓 are equivalent when [[𝜙]] = [[𝜓]] , denoted by 𝜙 ≡ 𝜓 . If 𝜑 . ⊥ then 𝜑 is satisfiable.

In examples Σ stands for the standard 16-bit character set of Unicode (also known as the Basic
Multilingual Plane or Plane 0) and use the .NET syntax [Microsoft 2021b] of regular expression

character classes. E.g., \w denotes all the word-letters, [[\W]] = [[¬\w]] , [0-9] denotes all the Latin
numerals, \d denotes all the decimal digits, and [[.]] = [[¬\n]] (i.e., all characters other than the

newline character).
1 ⊤ is _ in RE# and corresponds to [\s\S] and ⊥ corresponds to [0-[0]].

1
Note that in .NET [[[0-9]]] ⊊ [[\d]] while for example in JavaScript [[[0-9]]] = [[\d]] .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

1:8 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

4 Regexes with Lookarounds and Location Derivatives
Here we formally define regexes supported in RE#. Regexes are defined modulo a character theory

A = (Σ,Ψ, [[·]] ,⊥, _,∨,∧,¬) that we illustrate with standard (.NET Regex) character classes in

examples while the actual representation of character classes in Ψ is immaterial and Σ may even

be infinite. A that is used for character classes in .NET is a 𝐾-bit bitvector algebra [Moseley et al.

2023, Section 5.1] using mintermization for compression. In most cases 𝐾 ≤ 64 and Ψ represents

predicates using unsigned 64-bit integers or UInt64where all the Boolean operations are essentially
𝑂 (1) operations: bitwise-AND, bitwise-OR, and bitwise-NOT, with ⊥ = 0.

After the definition of RE# regexes we define their match semantics, that is based on pairs of

locations called spans – the intuition is that a span ⟨𝑠 [𝑖], 𝑠 [𝑗]⟩, where 𝑖 ≤ 𝑗 , provides a match in 𝑠

where the matching substring is 𝑠𝑖, 𝑗−𝑖 . Thereafter we formally define derivatives for RE#, develop
the main matching algorithm for RE# and prove its correctness and input linearity.

RE# grew out of our initial work of the more general theory of ERE≤ [Varatalu et al. 2023] that

was subsequently formalized and proved correct in Lean [Zhuchko et al. 2024] (where RE stands

for ERE≤). A matching algorithm for full ERE≤ turned out be highly nonlinear and had unreliable

performance. It was also very challenging to implement optimizations in ERE≤ while maintaining

its correctness. However, the Lean formalization of ERE≤ is executable and we have used it, both as

an oracle during testing, as well as to prove correctness of certain optimizations that were critical

for RE#, e.g., elimination of negative lookarounds. We start by introducing ERE≤ that subsumes RE#.
ERE≤ also subsumes RE≤ that is the class RE of standard regexes extended with all lookarounds.
Some results make use of the formalized theorems in [Zhuchko et al. 2024] of the theory of ERE≤ .

4.1 Full Class ERE with Lookarounds
The class ERE≤ of regexes is defined as follows. Members of ERE≤ are denoted here by R. Concate-
nation (·) is often implicit by juxtaposition. All operators appear in order of precedence where union
(|) binds weakest and complement (~) binds strongest. Let𝜓 ∈ Ψ and let𝑚 be a positive integer.

R ::= 𝜓 | 𝜀 | R1|R2 | R1&R2 | R1·R2 | R{𝑚} | R* | ~R | (?<=R) | (?<!R) | (?=R) | (?!R)
We also write () for the empty word regex 𝜀 . The regex denoting nothing is just the predicate ⊥. We

let R{0} def

= 𝜀 for convenience. In reality also R{1} def

= R. We write 𝑅+ for 𝑅·𝑅*. The union operator

is also called alternation. Let RE≤ denote ERE≤ without intersection and complement.

The regexes (?=R), (?!R), (?<=R), and (?<!R) are called lookarounds; (?=R) is (positive)
lookahead, (?!R) is negative lookahead, (?<=R) is (positive) lookbehind, and (?<!R) is negative
lookbehind. In the context of ERE≤ let \A def

= (?<!_) and \z def

= (?!_).

4.2 Regexes Supported in RE#

ERE≤

RE#

ERE
RE

RE≤

Fig. 4. Venn diagram
of the regex classes:
RE ⊊ ERE ⊊ RE# ⊊
ERE≤ and also RE ⊊
RE≤ ⊊ ERE≤ .

Here we introduce the abstract syntax of regular expressions 𝑅 that are sup-

ported by RE# that we also denote by RE#. First, regexes without lookarounds
are below denoted by 𝐸 and the corresponding subclass is denoted by ERE.
Regexes 𝑅 then extend 𝐸 with lookarounds and are closed under intersection.

Let RE stand for the standard subset of ERE without ~ and &. Figure 4

illustrates the relationships between the regex classes.

𝐸 ::= \A | \z | 𝜓 | 𝜀 | 𝐸1|𝐸2 | 𝐸1&𝐸2 | 𝐸1·𝐸2 | 𝐸{𝑚} | 𝐸* | ~𝐸

𝑅 ::= 𝐸 | 𝑅1&𝑅2 | (?<=𝐸)·𝑅 | (?<!𝐸)·𝑅 | 𝑅·(?=𝐸) | 𝑅·(?!𝐸)
The regex \A is called the start anchor and \z is called the end anchor. While all

other standard anchors supported in .NET are also supported in the concrete

syntax of RE#, they are defined via lookarounds and (currently) disallowed

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

RE#: High Performance Derivative-Based Regex Matching 1:9

in ERE. For example, the line anchors ^ and $ are defined in Table 2. The presence of \A and \z as

primitive regexes in ERE is used in the proof of Theorem 1.

Let also 𝐸{𝑚,𝑛} def

= 𝐸{𝑚}·(𝐸|𝜀){𝑛−𝑚}, where 0 ≤ 𝑚 ≤ 𝑛, as the bounded loop with lower bound
𝑚 and upper bound 𝑛. In fact, the implementation in RE# uses 𝐸{𝑚,𝑛} as the core construct, where
𝑚 = 0 is an important special case during rewrites, and 𝐸{𝑚} def

= 𝐸{𝑚,𝑚} and 𝐸* def

= 𝐸{0,∞}.

4.3 Match Semantics
The match semantics of regexes in ERE≤ uses spans. A span in a string 𝑠 is formally a pair of

locations 𝜃 = ⟨𝑠 [𝑖], 𝑠 [𝑗]⟩ where 𝑖 ≤ 𝑗 ; the width of 𝜃 is |𝜃 | def

= 𝑗 − 𝑖 . We call 𝜃1 the start location of
𝜃 and 𝜃2 the end location of 𝜃 . If |𝜃 | = 0 then 𝜃1 = 𝜃2 is also called the location of 𝜃 . The set of all
spans in 𝑠 is denoted by Span(𝑠) and Span def

=
⋃

𝑠∈Σ∗ Span(𝑠). For all 𝜃 ∈ Span and 𝑅 ∈ ERE≤ , 𝜃 is
a match of 𝑅 or 𝜃 models 𝑅 is denoted by 𝜃 |= 𝑅:

𝜃 |= 𝜀 def

= |𝜃 | = 0

𝜃 |=𝜓 def

= |𝜃 | = 1 and hd (𝜃1) ∈ [[𝜓]]
𝜃 |=𝐿|𝑅 def

= 𝜃 |=𝐿 or 𝜃 |=𝑅
𝜃 |=𝐿&𝑅 def

= 𝜃 |=𝐿 and 𝜃 |=𝑅
𝜃 |= ~𝑅 def

= 𝜃 ̸ |= 𝑅
𝜃 |=𝑅* def

= ∃𝑚 ≥ 0 : 𝜃 |=𝑅{𝑚}

𝜃 |=𝐿·𝑅 def

= ∃ 𝑥 : ⟨𝜃1, 𝑥⟩ |=𝐿 and ⟨𝑥, 𝜃2⟩ |=𝑅
𝜃 |=𝑅{𝑚} def

= ∃ 𝑥 : ⟨𝜃1, 𝑥⟩ |=𝑅 and ⟨𝑥, 𝜃2⟩ |=𝑅{𝑚−1}
𝜃 |= (?=𝑅) def

= |𝜃 | = 0 and ∃ 𝑥 : ⟨𝜃1, 𝑥⟩ |=𝑅
𝜃 |= (?!𝑅) def

= |𝜃 | = 0 and �𝑥 : ⟨𝜃1, 𝑥⟩ |=𝑅
𝜃 |= (?<=𝑅) def

= |𝜃 | = 0 and ∃ 𝑥 : ⟨𝑥, 𝜃2⟩ |=𝑅
𝜃 |= (?<!𝑅) def

= |𝜃 | = 0 and �𝑥 : ⟨𝑥, 𝜃2⟩ |=𝑅
Intuitively, 𝜃 |= (?=𝑅) means that there exists a match of 𝑅 starting from the location of 𝜃 , and

𝜃 |= (?<=𝑅) means that there exists a match of 𝑅 ending in the location of 𝜃 . For any location 𝑥 , we
write 𝑥 |= 𝑅 for ⟨𝑥, 𝑥⟩ |= 𝑅. For the ERE anchors \A and \z above we have thus that

𝑥 |= \A ⇔ Initial(𝑥) 𝑥 |= \z ⇔ Final(𝑥)
Let 𝐵 be a (positive) lookbehind and let 𝐴 be a (positive) lookahead. Then it follows via the match

semantics of concatenation that

𝜃 |= 𝐵·𝑅 ⇔ 𝜃1 |= 𝐵 and 𝜃 |= 𝑅 𝜃 |= 𝑅·𝐴 ⇔ 𝜃2 |= 𝐴 and 𝜃 |= 𝑅

Example 4.1. Consider the first part (?<=author.*).* of the author search regex from the

introduction. Then 𝜃 |= (?<=author.*).* implies that 𝜃1 |= (?<=author.*) and 𝜃 |= .*. So the

start location 𝜃1 of the match must be after the string "author" and the matched substring itself

must be on a single line (recall that [[.]] = Σ \ {\n}). ⊠

Example 4.2. As a simple but nontrivial example of various negations, we compare the regex

(?<!\w) with the regex (?<=¬\w) (or (?<=\W)). Let 𝑠 = "a@b". Then 𝑠 [0] |= (?<!\w) because no
word-letter precedes the initial location, but 𝑠 [0] ̸|= (?<=¬\w) because no non-word-letter precedes
the initial location. On the other hand both 𝑠 [2] |= (?<!\w) and 𝑠 [2] |= (?<=¬\w). ⊠

For 𝑅 ∈ ERE≤ let M(𝑅) def

= {𝜃 ∈ Span | 𝜃 |= 𝑅} and for 𝑅, 𝑆 ∈ ERE≤ , 𝑅 ≡ 𝑆 def

= M(𝑅) = M(𝑆).
The implementation in RE# uses the following key property for normalisation of regexes in RE#.
It also shows the key role that the start and end anchors play. We call the below normal form

of 𝑅 ∈ RE# the Lookaround Normal Form of 𝑅 and denote it by LNF(𝑅) and the LNF of RE# by
LNF(RE#). Construction of LNF(𝑅) is itself linear in the size of 𝑅.

Theorem 1 (LNF). For all 𝑅 ∈ RE# there exist 𝐴, 𝐵, 𝐸 ∈ ERE such that 𝑅 ≡ (?<=𝐵)·𝐸·(?=𝐴).

Proof. First, by [Zhuchko et al. 2024, Theorem 5], for all 𝑆 ∈ ERE≤ , (?!𝑆) ≡ (?=~(𝑆 ·_*)·\z)
and (?<!𝑆) ≡ (?<=\A·~(_*·𝑆)). If 𝑆 is in ERE then so are ~(𝑆 ·_*)·\z and \A·~(_*·𝑆). We thus
replace all the negative lookarounds by positive ones in 𝑅.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

1:10 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

Any concatenation of two lookaheads (?=𝐴1)·(?=𝐴2) is in ERE≤ equivalent to the single looka-

head (?=(𝐴1·_*)&(𝐴2·_*)) where if 𝐴1, 𝐴2 ∈ ERE then so is (𝐴1·_*)&(𝐴2·_*). Analogously, for the
case of lookbehinds, (?<=𝐵1)·(?<=𝐵2) ≡ (?<=(_*·𝐵1)&(_*·𝐵2)).
Any intersection (?<=𝐵1)·𝐸1·(?=𝐴1)&(?<=𝐵2)·𝐸2·(?=𝐴2) is in ERE≤ equivalent to the intersec-

tion (?<=𝐵1)·(?<=𝐵2)·(𝐸1&𝐸2)·(?=𝐴1)·(?=𝐴2) because, according to the formal semantics,

⟨𝑥,𝑦⟩ |= (?<=𝐵1)·𝐸1·(?=𝐴1)&(?<=𝐵2)·𝐸2·(?=𝐴2)

⇔ ⟨𝑥,𝑦⟩|=(?<=𝐵1)·𝐸1·(?=𝐴1) and ⟨𝑥,𝑦⟩|=(?<=𝐵2)·𝐸2·(?=𝐴2)

⇔ 𝑥 |=(?<=𝐵1) and ⟨𝑥,𝑦⟩|=𝐸1 and 𝑦 |=(?=𝐴1) and 𝑥 |=(?<=𝐵2) and ⟨𝑥,𝑦⟩|=𝐸2 and 𝑦 |=(?=𝐴2)

⇔ 𝑥 |=(?<=𝐵1)·(?<=𝐵2) and ⟨𝑥,𝑦⟩|=𝐸1&𝐸2 and 𝑦 |=(?=𝐴1)·(?=𝐴2)

We thus arrive at the lookaround normal form, by applying these rewrites. □

Example 4.3. Consider the author search regex from the introduction where the word border

\b before \w corresponds to the negative lookbehind (?<!\w) and \b after \w corresponds to the

negative lookahead (?!\w). After normalisation the negative lookarounds have been replaced by

the equivalent positive ones:

(?<=_*author.*&_*\A~(_*\w))︸ ︷︷ ︸
lookbehind

· (.*&~(.*and.*)&\w.*\w)︸ ︷︷ ︸
main pattern

· (?=~(\w_*)\z)︸ ︷︷ ︸
lookahead

This regex is pretty much humanly unreadable and is only intended for internal processing by the

matcher. Among several other simplifications, an immediate simplification that is applied here is

that (?=~(𝜓_*)\z) ≡ (?=¬𝜓|\z) for all𝜓 ∈ Ψ that gets rid of ~ and _*. ⊠

4.4 Reversal
Reversal of 𝑅 ∈ ERE≤ , denoted by 𝑅r, is defined as follows:

𝜓 r def

= 𝜓

𝜀r
def

= 𝜀

𝑅*r def

= 𝑅r*

(𝑅|𝑆)r def

= 𝑅r|𝑆r

(𝑅&𝑆)r def

= 𝑅r&𝑆r

(~𝑅)r def

= ~(𝑅r)

(𝑅·𝑆)r def

= 𝑆r·𝑅r
𝑅{𝑚}r def

= 𝑅r{𝑚}
(?=𝑅)r def

= (?<=𝑅r)

(?<=𝑅)r def

= (?=𝑅r)
(?!𝑅)r def

= (?<!𝑅r)
(?<!𝑅)r def

= (?!𝑅r)

Reversal is used in the definition of the top-level matching algorithm, and is therefore a critical

operation of the overall framework. It follows by induction over regexes that reversal is both

size-preserving and involutive: (𝑅r)r = 𝑅.
The reverse of a span 𝜃 ∈ Span is defined as the span 𝜃 r

def

= ⟨(𝜃2)r, (𝜃1)r⟩, that is also an involutive
and width-preserving operation. It follows also that 𝜃 ∈ Span(𝑠) ⇔ 𝜃 r ∈ Span(𝑠r). We make use

of the following theorem. Note that \Ar = (?<!_)r = (?!_r) = (?!_) = \z.

Theorem 2 (Reversal). Let 𝑅 ∈ RE# and 𝜃 ∈ Span. Then 𝑅r ∈ RE# and 𝜃 |= 𝑅 ⇔ 𝜃 r |= 𝑅r.

Proof. By using Theorem 1 let 𝑅 = (?<=𝐵)𝐸(?=𝐴) where𝐴, 𝐵, 𝐸 ∈ ERE and observe that ERE is

(by definition) closed under reversal. It follows that 𝑅r = (?<=𝐴r)𝐸r(?=𝐵r) is in RE#. The statement

𝜃 |= 𝑅 ⇔ 𝜃 r |= 𝑅r follows from [Zhuchko et al. 2024, Theorem 1] because RE# ⊆ ERE≤ . □

4.5 Nullability
Here we define nullability of regexes 𝑅 ∈ ERE. The definition is more-or-less standard with one

key difference concerning the two anchors. In terms of the span based match semantics, 𝑅 being

always nullable means that 𝑅 is equivalent to 𝑅 |𝜀 and thus 𝑥 |= 𝑅 for all locations 𝑥 , i.e., that 𝑅

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

RE#: High Performance Derivative-Based Regex Matching 1:11

matches the empty word in any context. Let 𝑥 be any location and let𝜓 ∈ Ψ.

Null𝑥 (𝑅|𝑆) def

= Null𝑥 (𝑅) or Null𝑥 (𝑆)
Null𝑥 (𝑅&𝑆) def

= Null𝑥 (𝑅) and Null𝑥 (𝑆)
Null𝑥 (𝑅·𝑆) def

= Null𝑥 (𝑅) and Null𝑥 (𝑆)
Null𝑥 (𝑅{𝑚}) def

= Null𝑥 (𝑅)
Null𝑥 (~𝑅) def

= not Null𝑥 (𝑅)

Null𝑥 (\A) def

= Initial(𝑥)
Null𝑥 (\z) def

= Final(𝑥)
Null𝑥 (𝜀) def

= true
Null𝑥 (𝑅*) def

= true
Null𝑥 (𝜓) def

= false

If a regex 𝑅 in a lookaround (?=𝑅) or (?<=𝑅) is always nullable then the lookaround is simplified to

𝜀 . Such nullability status is maintained with each regex AST node at construction time. For example,

the regex \n\z|\z is only nullable in a final location. The lookahead (?=\n\z|\z) corresponds to

the \Z anchor in .NET and is also supported in the concrete syntax of RE#.

4.6 Lookaround Reductions in ERE with Lookarounds
Negative lookarounds can always be eliminated from regexes in ERE≤ as well as RE#, by us-

ing [Zhuchko et al. 2024, Theorem 5]. For example, the negative lookahead (?!a) is replaced by

the lookahead (?=~(a_*)\z) that is further simplified to the form (?=[^a]|\z). For 𝑅 ∈ ERE≤ let

minlen(𝑅) be the minimum |𝜃 | such that 𝜃 |= 𝑅 and let maxlen(𝑅) be the maximum |𝜃 | such that

𝜃 |= 𝑅 or ∞ if 𝑅 is unbounded. A lookaround (?=𝑅) or (?<=𝑅) is bounded when maxlen(𝑅) ≠ ∞.
2

The core intuition of the difference between ERE≤ and RE# lies in that in RE# lookbehinds are
only allowed to match context before the actual match and lookaheads after it. The reason for this

restriction is that it allows for a well-defined match semantics and matching both the lookbehind

and lookahead in a single pass over the input string. This single pass is crucial for the performance

of the engine, as it does not impose a search-time penalty for using word boundaries or lookarounds,

as is highlighted later in Section 6.1.2.

The two main rules that are used to eliminate some cases of bounded lookarounds in order to

reduce some regexes in ERE≤ (and thus from RE≤) to RE# are presented in Figure 5. In the RE#

la-elim

(?=𝑆)𝑅
𝑆_* &𝑅

(maxlen(𝑆) ≤ minlen(𝑅)) lb-elim

𝑅(?<=𝑆)
𝑅 & _*𝑆

(maxlen(𝑆) ≤ minlen(𝑅))

Fig. 5. Bounded lookaround elimination rules for 𝑆, 𝑅 ∈ ERE≤ .

implementation the calculations of minlen(𝑆) and maxlen(𝑆) are safely approximated. Concerning

the rules in Figure 5, observe that, if maxlen(𝑆) ≤ minlen(𝑅) then
⟨𝑠 [𝑖], 𝑠 [𝑗]⟩ |= (?=𝑆)𝑅 ⇔ ∃𝑘 : ⟨𝑠 [𝑖], 𝑠 [𝑘]⟩ |= 𝑆 and ⟨𝑠 [𝑖], 𝑠 [𝑗]⟩ |= 𝑅

†
⇔ ∃𝑘 ≤ 𝑗 : ⟨𝑠 [𝑖], 𝑠 [𝑘]⟩ |= 𝑆 and ⟨𝑠 [𝑖], 𝑠 [𝑗]⟩ |= 𝑅
⇔ ⟨𝑠 [𝑖], 𝑠 [𝑗]⟩ |= 𝑆_* and ⟨𝑠 [𝑖], 𝑠 [𝑗]⟩ |= 𝑅 ⇔ ⟨𝑠 [𝑖], 𝑠 [𝑗]⟩ |= 𝑆_* &𝑅

where † holds because 𝑘 − 𝑖 ≤ maxlen(𝑆) ≤ minlen(𝑅) ≤ 𝑗 − 𝑖 implies that 𝑘 ≤ 𝑗 . Symmetrically for

lookbehind. Associativity of concatenation is used to enable the rules in Figure 5 more frequently,

namely that ((?=𝑆)𝑅1)𝑅2 ≡ (?=𝑆) (𝑅1𝑅2) and 𝑅1 (𝑅2(?<=𝑆)) ≡ (𝑅1𝑅2)(?<=𝑆). In particular, the

rules apply to typical uses of anchors. For example, if 𝑅 is not nullable then $𝑅 (i.e. (?=\n|\z)𝑅) is
rewritten to (\n|\z)_* &𝑅 since then maxlen(\n|\z) = 1 ≤ minlen(𝑅).
The lookarounds in RE# are not as expressive as the (also input-linear) implementation in

Javascript V8 [Barrière and Pit-Claudel 2024], which supports RE≤ where lookarounds can be in

any position in the regex, including nesting and capturing, but the restriction is not as limiting as it

2
The case M(𝑅) = ∅ is irrelevant in this context.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

1:12 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

may seem at first. For many use cases, in addition to rules in Figure 5, other rewrites can be applied

by using intersection and complement. For example, a pattern from the Suricata IDS [OISF 2024]:

\x2F(?!Subtype)(S|#53)(u|#75)(b|#62)(t|#74)(y|#79)(p|#70)(e|#65)

which uses a negative lookahead (?!Subtype) in the middle, can be rewritten in RE# as:

\x2F(~(Subtype)&(S|#53)(u|#75)(b|#62)(t|#74)(y|#79)(p|#70)(e|#65))

An example of a regex in RE≤ that cannot be expressed in RE# is b(?<=a.*), where the derivative
of the lookbehind (?<=a.*) is not well-defined in RE#, as the lookbehind is unbounded and needs,

e.g., the algorithm in [Barrière and Pit-Claudel 2024] to be evaluated.

Many unsupported patterns are converted via built-in rewrites (Section 5.3), e.g. the unsupported

pattern \bthe\b|\band\b is rewritten as \b(the|and)\b, which is supported in RE#. But the
pattern (\bthe\b|and) is not supported, as RE# is not closed under union, which is due to an

optimization in the implementation that discards the lookbehind upon finding a valid match. In the

full matching algorithm (AllEnds), the lookbehind is discarded after the match beginning is found,

and the lookahead is subsequently used to limit the match length.

In the curated rebar benchmark set, 4 out of the 27 benchmarks included lookarounds in terms

of anchors. All of those cases could automatically be translated into RE#.

4.7 Derivatives in ERE
Here we first define derivatives of regexes in ERE. This definition is also more-or-less standard. Let

𝑥 ∈ Loc+ be a nonfinal location, in which case we know that hd (𝑥) ∈ Σ. For example, if 𝑠 = "ab"
then the nonfinal locations in 𝑠 are 𝑠 [0] and 𝑠 [1]. Let𝜓 ∈ Ψ, let ⋄ ∈ {&, |}, and let ï ∈ {\A, \z}.

𝜹𝑥 (ï) def

= ⊥
𝜹𝑥 (𝜀) def

= ⊥
𝜹𝑥 (𝑅 ⋄ 𝑆) def

= 𝜹𝑥 (𝑅) ⋄ 𝜹𝑥 (𝑆)
𝜹𝑥 (~𝑅) def

= ~𝜹𝑥 (𝑅)
𝜹𝑥 (𝑅*) def

= 𝜹𝑥 (𝑅)·𝑅*

𝜹𝑥 (𝑅{𝑚}) def

= 𝜹𝑥 (𝑅)·𝑅{𝑚 − 1}

𝜹𝑥 (𝜓) def

=

{
𝜀, if hd (𝑥) ∈ [[𝜓]] ;
⊥, otherwise.

𝜹𝑥 (𝑅·𝑆) def

=

{
𝜹𝑥 (𝑅)·𝑆|𝜹𝑥 (𝑆), ifNull𝑥 (𝑅) = true;
𝜹𝑥 (𝑅)·𝑆, otherwise.

There is one aspect of this definition that deserves attention as it differs from derivatives of bounded

loops in [Moseley et al. 2023] where 𝜹𝑥 (𝑅·𝑅) is not always equivalent to 𝜹𝑥 (𝑅)·𝑅 when 𝑅 is not

always nullable. One culprit is the word border anchor \b that is (currently) not allowed in ERE but

is in RE# defined via lookarounds. In general, 𝜹𝑥 (𝑅·𝑅) and 𝜹𝑥 (𝑅)·𝑅 are always equivalent in RE#.

Derivation Relation. The derivation relation 𝑥 𝑅−→𝑦 between locations 𝑥,𝑦 ∈ Loc and regexes

𝑅 ∈ ERE is used to reason about consecutive derivative steps. The derivation relation combines

steps so that, e.g., 𝑥 𝜀−→𝑥 and 𝑥 𝑅−→𝑥+2 means that 𝜹𝑥+1 (𝜹𝑥 (𝑅)) is nullable in location 𝑥+2.

𝑥 𝑅−→𝑦
def

= Null𝑥 (𝑅) and 𝑥 = 𝑦 or Nonfinal(𝑥) and 𝑥+1 𝜹𝑥 (𝑅)−−−−−→𝑦

4.8 Adding Lookarounds
Here we consider LNF(RE#). Let 𝑅 = (?<=𝐵)·𝐸·(?=𝐴) where𝐴, 𝐵, 𝐸 ∈ ERE. We are first interested

in finding the latest end location of a match of 𝑅, we replace (?<=𝐵) with _*·𝐵. Say 𝐷 = _*·𝐵·𝐸.
The general derivative rule for concatenation in Section 4.7 remains unchanged for concatenation

in 𝐷 ·(?=𝐴) where it uses the derivative rule for lookaheads as defined below. The basic insight

for lookaheads is the fact that if (?=𝐴) was reached there was a nullable location after matching

the regex 𝐷 before it. In order to recall the offsets to those locations, lookaheads are annotated as

(?=𝐴)𝐼 where 𝐼 is a set of offsets and (?=𝐴) = (?=𝐴){0} where 0 is the immediate offset.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

RE#: High Performance Derivative-Based Regex Matching 1:13

The derivative rule for lookahead is as follows, where 𝐴 is treated as 𝜀 when nullable, and recall

that 𝜹𝑥 (𝜀) = ⊥. We also let (?=⊥)𝐼
def

= ⊥ and (?=𝐴)𝐼
def

= 𝜀𝐼 when 𝐴 is nullable, where 𝜀𝐼 is 𝜀

annotated with 𝐼 . Let 𝐼 + 1
def

= {𝑖 + 1 | 𝑖 ∈ 𝐼 }.

𝜹𝑥 ((?=𝐴)𝐼)
def

=

{
⊥, ifNull𝑥 (𝐴);
(?=𝜹𝑥 (𝐴))𝐼+1, otherwise.

Then (?=𝐴)𝐼|(?=𝐴)𝐽 is always rewritten to (?=𝐴)𝐼∪𝐽 . So 𝜀𝐼|𝜀 𝐽 = 𝜀𝐼∪𝐽 . Also 𝜀𝐼 ·𝜀 𝐽 = 𝜀𝐼∪𝐽 .

Example 4.4. Consider the regex \d+(?=:-) that looks for a price in a text and let 𝑠 = "50:- ".
Then 𝜹𝑠 [0] (\d+(?=:-)) = \d*(?=:-) and 𝜹𝑠 [1] (\d*(?=:-)) = \d*(?=:-) since the lookahead

did not kick in yet. Then we get 𝜹𝑠 [2] (\d*(?=:-)) = (?=𝜹𝑠 [2] (:-)){1} = (?=-){1} and finally that

𝜹𝑠 [3] ((?=-){1}) = (?=𝜀){2} = 𝜀{2} in location 𝑠 [4], so the match end is 𝑠 [4 − 2]. ⊠

Implementation of Lookahead Annotations. The set 𝐼 above is represented by a pair ⟨𝑘,𝑋 ⟩ containing
a relative offset 𝑘 and an index set 𝑋 so that 𝐼 denotes {𝑘 + 𝑖 | 𝑖 ∈ 𝑋 } and 𝐼 + 1

def

= ⟨𝑘 + 1, 𝑋 ⟩; a
specialized union 𝐼 ∪ 𝐽 is also implemented that adjusts the result to the lowest relative offset.

For purposes of DFA state caching, the sets 𝐼 are only ever compared with pointer equality and

there is a builder to keep track of unique set instances. This makes several orders of magnitude

difference in the memory footprint and construction time. In practice, the sets 𝐼 are usually sparse

which allows the lookahead context to be hundreds or even thousands of characters long without

contributing significantly to state space.

The complete set 𝐼 is needed in the generalized algorithm for finding all matches. In the case

when only the first match is searched, 𝐼 is only ever needed to maintain the minimal offset in it

and in this case becomes just that offset. Then, e.g., (?=𝐴)𝐼|(?=𝐴)𝐽 rewrites to (?=𝐴)
min(𝐼 ,𝐽) .

4.9 Latest Match End
We consider again regexes in RE# in the normal form described earlier and focus on the simplified

and transformed case 𝑅 = _*·𝐵·𝐸(?=𝐴) where 𝐴, 𝐵, 𝐸 ∈ ERE. We search for 𝑗 such that

𝑠 [0] _*·𝐵 ·𝐸−−−−−−→ 𝑠 [𝑗] 𝐴·_*−−−−→ 𝑠 [|𝑠 |]
and want to find the maximal 𝑗 if it exists. To this end we use the function MaxEnd (𝑠 [𝑖], 𝑅,𝑚)
below where 𝑠 [𝑖] is the current location and 𝑚 is the maximal match end so far. We let 𝜀𝐼 ∈ 𝑅

denote the epsilon with the annotations that exists (implicitly) in 𝑅, e.g., 𝜀{0,5} ∈ a*|𝜀{5} because
a* contains 𝜀 implicitly. Initially𝑚 = −1 and the search starts from the initial location. We first

consider any nonfinal location 𝑠 [𝑖], i.e., 𝑖 < |𝑠 |.

MaxEnd (𝑠 [𝑖], 𝑅,𝑚) def

=


𝑚, if𝑅 = ⊥;
MaxEnd (𝑠 [𝑖 + 1], 𝜹𝑠 [𝑖] (𝑅),max(𝑚, 𝑖 −min(𝐼))), else if 𝜀𝐼 ∈ 𝑅;
MaxEnd (𝑠 [𝑖 + 1], 𝜹𝑠 [𝑖] (𝑅),𝑚), otherwise.

The latest match end so far becomes max(𝑚, 𝑖 −𝑘) where 𝑘 = min(𝐼) is the minimal offset from the

current index 𝑖 to where a valid match of 𝐸 ended when 𝑠 [𝑖 −𝑘] 𝐴−→ 𝑠 [𝑖]. In particular if𝑚 = −1 then
𝑖 − 𝑘 is the first match end that was found. Later search may reveal other match ends (including

both earlier and later ones) but only the latest one is remembered here.

We now consider the case of the final location in 𝑠 . In the following let 𝑅\z ↦→𝜀 stand for 𝑅

where \z is replaced by 𝜀 . In particular, any lookahead (?=𝐴)𝐼 such that 𝐴\z ↦→𝜀
is nullable is now

automatically rewritten to (?=𝜀)𝐼
def

= 𝜀𝐼 .

MaxEnd (𝑠 [|𝑠 |], 𝑅,𝑚) def

=

{
max(𝑚, |𝑠 | −min(𝐼)), if 𝜀𝐼 ∈ 𝑅\z ↦→𝜀 ;
𝑚, otherwise.

For example if 𝑅 = \z|(?=a*\z){5} then 𝑅
\z ↦→𝜀 = 𝜀|𝜀{5} = 𝜀{0,5} and thus max(𝑚, |𝑠 | − 0) = |𝑠 |.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

1:14 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

The following lemma is key in establishing the formal relationship between the derivation

relation for RE# and the formal match semantics. It makes fundamental use of the theory of

derivatives of ERE≤ that has recently been fully formalized and proved correct [Zhuchko et al.

2024] using the Lean proof assistant. The general derivative theory developed for ERE≤ is highly

nonlinear for use in practice but subsumes RE#, which enables us to apply the main correctness

result of ERE≤ relating the general theory of derivatives in ERE≤ with the formal match semantics.

Lemma 1. Let 𝑠 [𝑖0] ∈ Loc and 𝑅 ∈ LNF(RE#), and let MaxEnd (𝑠 [𝑖0], 𝑅,−1) = 𝑗 . Then
(1) 𝑗 = −1⇔ � 𝚤 ≥ 𝑖0, 𝚥 : ⟨𝑠 [𝚤], 𝑠 [𝚥]⟩ |= 𝑅.
(2) If 𝑗 ≥ 0 then 𝑗 is the maximal 𝚥 such that ∃ 𝚤 ≥ 𝑖0 : ⟨𝑠 [𝚤], 𝑠 [𝚥]⟩ |= 𝑅.

Proof Outline. Consider 𝑖0 = 0 and let 𝑅 = (?<=𝐵)𝐸(?=𝐴) where 𝐴, 𝐵, 𝐸 ∈ ERE. First observe
that when 𝜹𝑠 [𝚥] ((?=𝐴)) is invoked it is when 𝑠 [0] _*·𝐵 ·𝐸−−−−−−→ 𝑠 [𝚥]. This follows because (?<=𝐵) is

replaced by _*·𝐵 and MaxEnd just iterates derivatives from one location to the next. From this

point forward the offsets after taking each derivative are increased. For the current location 𝑠 [𝑖]
and (?=𝐷)𝐼 where 𝐷 has been derived from 𝐴 we know that the latest candidate match exists at

index 𝑖 −min(𝐼). MaxEnd then keeps track of the latest valid match end index when 𝐷 is nullable.

So MaxEnd (𝑠 [0], 𝑅,−1) returns the latest such index or -1 if there is none. The final location is

handled separately which is the only location where \z is equivalent to 𝜀 .
We now use the fact that RE# is a fragment of ERE≤ and that the derivative rules for ERE are

the same as in ERE≤ . We use [Zhuchko et al. 2024, Theorem 2] (say †)
∃ 𝚤 : ⟨𝑠 [𝚤], 𝑠 [𝚥]⟩ |= 𝑅 ⇔ ∃ 𝚤 : 𝑠 [𝚤] |= (?<=𝐵) and ⟨𝑠 [𝚤], 𝑠 [𝚥]⟩ |= 𝐸 and 𝑠 [𝚥] |= (?=𝐴)

†
⇔ ∃ 𝚤 : 𝑠 [0] _*·𝐵−−−−→ 𝑠 [𝚤] 𝐸−→ 𝑠 [𝚥] 𝐴·_*−−−−→ 𝑠 [|𝑠 |]

†
⇔ 𝑠 [0] _*·𝐵 ·𝐸−−−−−−→ 𝑠 [𝚥] 𝐴·_*−−−−→ 𝑠 [|𝑠 |]

This completes the proof because MaxEnd returns the maximal such 𝚥 iff it exists or else −1. □

4.10 Leftmost-Longest Match Algorithm
We now describe the main match algorithm in RE#. It uses reversal and the MaxEnd algorithm

above in two directions to compute the match such that the so-called POSIX semantics holds. What

is unique about this algorithm is that in the general case described below it traverses the input

string in reverse in the first phase in order to find the earliest or leftmost start index. We describe

the algorithm for 𝑅 = (?<=𝐵)·𝐸·(?=𝐴) as follows.

LLMatch(𝑠, 𝑅) def

= let𝑘 = MaxEnd (𝑠r [0], 𝑅r,−1) in
if 𝑘 = −1 then return⊥ else
let 𝑖 = |𝑠 | − 𝑘 ; 𝑗 = MaxEnd (𝑠 [𝑖], 𝐸·(?=𝐴),−1) in
return ⟨𝑠 [𝑖], 𝑠 [𝑗]⟩

Theorem 3 (LLMatch). LLMatch(𝑠, 𝑅) returns ⊥ if there exists no match of 𝑅 in 𝑠 else returns the
match ⟨𝑠 [𝑖], 𝑠 [𝑗]⟩ of 𝑅 where 𝑖 is minimal and 𝑗 is maximal for 𝑖 .

Proof. Let 𝑅 = (?<=𝐵)·𝐸·(?=𝐴). Then 𝑅r = (?<=𝐴r)·𝐸r·(?=𝐵r). Let 𝑘 = MaxEnd (𝑠r [0], 𝑅r,−1).
If 𝑘 = −1 then, by Lemma 1(1), �𝜃 ∈ Span(𝑠r) : 𝜃 |= 𝑅r and, by Theorem 2, �𝜃 ∈ Span(𝑠) : 𝜃 |= 𝑅.
Assume 𝑘 ≥ 0. Then, by Lemma 1(2), 𝑘 is the maximal index such that ∃ 𝑥 : ⟨𝑥, 𝑠r [𝑘]⟩ |= 𝑅r.

So, by Theorem 2, 𝑖 = |𝑠 | − 𝑘 is the minimal index such that ∃ 𝑥 : ⟨𝑠 [𝑖], 𝑥⟩ |= 𝑅. (Recall that

𝑠r [𝑘]r = 𝑠 [|𝑠 | − 𝑘].) Thus, 𝑖 is the minimal index such that

∃ 𝑥 : 𝑠 [𝑖] |= (?<=𝐵) and ⟨𝑠 [𝑖], 𝑥⟩ |= 𝐸 and 𝑥 |= (?=𝐴)

In particular, it follows that ∃ 𝑥 : ⟨𝑠 [𝑖], 𝑥⟩ |= 𝐸·(?=𝐴). Now, by using Lemma 1(2) again, it follows

that that 𝑗 = MaxEnd (𝑠 [𝑖], 𝐸·(?=𝐴),−1) is the maximal index such that ⟨𝑠 [𝑖], 𝑠 [𝑗]⟩ |= 𝑅. □

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

RE#: High Performance Derivative-Based Regex Matching 1:15

In the implementation of LLMatch for a single POSIX match search as described above, the sets 𝐼

in (?=𝐴)𝐼 are implemented by only keeping their minimal elements – then 𝐼 ∪ 𝐽 = min(𝐼 , 𝐽). This
does not affect any of the statements above, because only the minimal element is ever used above

but the more general formulation is needed in AllEnds below.

Theorem 4 (InputLinearity). The complexity of LLMatch(𝑠, 𝑅) is linear in |𝑠 |.

Proof. The main search algorithm runs twice over the input 𝑠 . The regexes reached by reading

the symbols from 𝑠 are internalized and cached as states in a DFA with 𝑞0 = 𝑅 as the initial

state and 𝜹𝑎 (𝑞) as the transition function of the DFA, where the operators | and & are treated as

associative, commutative and idempotent operators, which results in a finite state space whose size

is independent of |𝑠 |. The offset annotation 𝐼 maintained in (?=𝐴)𝐼 is incremented linearly up to

the point when 𝐴 becomes nullable and where (?=𝐴)𝐼|(?=𝐴)𝐽 = (?=𝐴)
min(𝐼 ,𝐽) . □

All nonbacktracking engines are in principle input linear for a single match search and internally

maintain some form of DFA. When the number of DFA states grows too large they fall back in an

NFA mode. Such a fallback mechanism is currently not supported in RE# but can be implemented

by working with a generalized form of Antimirov derivatives [Antimirov 1996].

The RE# engine capitalizes on the fact that the symbolic derivative based automata construction

is small and independent of the alphabet size, but the state space can still grow super-exponentially

with respect to the size of the regex in the worst case. For the most critical use cases, we provide

the option to precompile the regex into a complete DFA up front. This allows for extremely fast

matching at the cost of a potentially large memory footprint, which can be known ahead of time.

The worst-case scenario for RE# involves the lazy construction of one extra unique transition

and node per compressed character of the input. For example, the regex \d+ uses two compressed

characters, one for all digits and the other one for all non-digits. Taking the size of the regex into

account, this involves 𝑂 (𝑚 ∗ 𝑛) operations, where𝑚 is the number of unique syntax nodes created

per-transition and 𝑛 is the length of the input;𝑚 is independent of 𝑛 but can be super-exponential

in the size of 𝑅 (that includes the size of the compressed alphabet that is typically very small related

to the size of the Unicode alphabet Σ). As a last resort, the engine has a configurable memory limit

that can be set to trigger an exception if the memory usage exceeds a certain threshold.

Finding All Nonoverlapping Leftmost-Longest Matches. The key algorithm MaxEnd above is general-

ized in RE# into an algorithmAllEnds that produces all match ends as follows. We then discuss more

informally how AllEnds is used in the general match algorithm in RE# to locate all nonoverlapping

POSIX matches. Similar to MaxEnd the algorithm takes a regex 𝑅 = (?<=𝐵)·𝐸·(?=𝐴) ∈ LNF(RE#)
and a start location 𝑠 [𝑖] but in this case a set 𝑀 of match end indices found so far. We consider only

the case of 𝑖 < |𝑠 | with the case 𝑖 = |𝑠 | being analogous to above.

AllEnds(𝑠 [𝑖], 𝑅, 𝑀) def

=


𝑀, if𝑅 = ⊥;
AllEnds(𝑠 [𝑖 + 1], 𝜹𝑠 [𝑖] (𝑅), 𝑀 ∪ 𝑖 − 𝐽), else if 𝜀 𝐽 ∈ 𝑅;
AllEnds(𝑠 [𝑖 + 1], 𝜹𝑠 [𝑖] (𝑅), 𝑀), otherwise.

where 𝑖 − 𝐽
def

= {𝑖 − 𝚥 | 𝚥 ∈ 𝐽 }. Let MaxEnd (𝑥, 𝑅) def

= MaxEnd (𝑥, 𝑅,−1). Thus MaxEnd (𝑠 [0], 𝑅) =

max(AllEnds(𝑠 [0], 𝑅, ∅)), provided that max(∅) def

= −1 here, where all match ends, including the

maximal one, are collected in𝑀 .

If we now first compute 𝐼 = |𝑠 | − AllEnds(𝑠r [0], 𝑅r, ∅) then it holds, similarly to case above, that

𝐼 contains all the start indices 𝑖 such that 𝑠 [𝑖] |= (?<=𝐵) and ∃ 𝑗 : ⟨𝑠 [𝑖], 𝑠 [𝑗]⟩ |= 𝐸·(?=𝐴).
Starting with 𝑖 = min(𝐼) we compute 𝑗 = MaxEnd (𝑠 [𝑖], 𝐸·(?=𝐴)). This gives us the first POSIX

match ⟨𝑠 [𝑖], 𝑠 [𝑗]⟩. We now repeat the same search from 𝐼 := {𝚤 ∈ 𝐼 | 𝑖 < 𝚤, 𝑗 ≤ 𝚤} to ignore

overlapping matches. Observe that 𝑖 < 𝚤 is necessary to make progress when 𝑗 = 𝑖 .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

1:16 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

This concludes our high-level overview of the main matching algorithm LLMatches(𝑠, 𝑅) in RE#.
The implementation of LLMatches(𝑠, 𝑅) is not linear, but may in the worst case be quadratic in |𝑠 |.
However, our extensive evaluation does consistently indicate linear behavior, even for the quadratic
benchmark (see Section 6.1.4).

Example 4.5. Let 𝑅 = b+(?=c) and 𝑠 = "aaaaabcababbc". Then initially

𝐼 = |𝑠 | − AllEnds("cbbabacbaaaaa"[0], (?<=c)b+, ∅) = 13 − {2, 3, 8} = {5, 10, 11}

The first match starts from 5 and ends at MaxEnd (𝑠 [5], b+(?=c)) = 6. This leaves 𝐼 := {10, 11}.
The next match starts from 10 and ends at MaxEnd (𝑠 [10], b+(?=c)) = 12. This leaves 𝐼 := ∅ and

concludes the search. Thus LLMatches(𝑠, 𝑅) = {⟨𝑠 [5], 𝑠 [6]⟩, ⟨𝑠 [10], 𝑠 [12]⟩}. ⊠

5 Implementation
Here we give a brief overview of the implementation of the engine along with some key optimiza-

tions and performance considerations. At the high level, derivatives are computed lazily and cached

in a DFA with regexes internalized as states and use the transition function 𝜹𝑎 (𝑞) for states 𝑞.
The core parser was taken directly from the .NET runtime, but was modified to read the symbols

& and ~ as intersection and complement respectively. The parser was also extended to interpret the

symbol _ as the set of all characters, since it is very commonly used in our regexes. Fortunately

the escaped variants \&, \~ and _ were not assigned to any regex construct, and existing regex

patterns can be used by escaping these characters.

The parser also supports Unicode symbols for operators (⇎,⇔,⇒), as explained in Table 3,

for more advanced Boolean operations. Moreover, rather than implementing those operators

through the core Boolean operators, one can add specialized rules. Derivative rules for the extended

operations are in fact identical as for ⋄ in Section 4.7. Nullability, for example for XOR, can be

defined by Null𝑥 (𝐿 ⇎ 𝑅) def

= (Null𝑥 (𝐿) ≠ Null𝑥 (𝑅)), and analogously for the other operators.

The matching implementation of nearly all industrial regex engines consists of two separate

components: a prefilter and a matcher. The prefilter is essential to be competitive with other engines,

and is used to quickly eliminate non-matching strings. Our derivative-based approach is used in

both components, which in some cases provides a significant advantage over other engines.

5.1 Prefilter
The prefilter is an input-parallel operation on the side that is applied aggressively. For simple

regexes, such as [abc], the prefilter can locate the entire match in parallel, where the only real-

world limitation is availability of space per parallel operation. For more complex regexes, the

prefilter is used to locate the prefix of the input string that is guaranteed to match the regex, before

the core engine kicks in. In RE# the prefilter is using vectorized bitwise operations, which are

very efficient on modern CPUs. The speedup of processing 64 bytes at a time, e.g., using AVX512

instructions, is significant and immediately visible in the overall performance.

It is important to note that, unlike in many other engines, the prefilter optimizations in our

engine are not limited to simple regexes, but are applied to all regexes in a derivative-based manner,

including lookarounds, which makes the extensions very competitive in real-world scenarios. The

impact of this systematic approach to prefilters is shown in Sections 6.2.6 and 6.2.4.

5.1.1 Breadth-First Derivative Calculation. Derivatives are used to examine the optimizations

available for the regex pattern. One key optimization is to explore all derivatives symbolically, or

in a breadth-first manner, and bitwise-merge their conditions until reaching the first successful

match. This provides a way to optimize the matching process with more specialized algorithms.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

RE#: High Performance Derivative-Based Regex Matching 1:17

5.1.2 Prefix Search. Often, the entire regex pattern is a single string literal or a set of words. In

such cases, we optimize the matching process by using a dedicated string matching algorithm. We

first check if the regex pattern is a string literal or a small set (up to 20) of string literals, and if so,

we use the Teddy [Qiu et al. 2021] algorithm, recently supported in .NET9 to locate matches.

5.2 Combined Techniques and Inner Loop Vectorization
A key difference from other regex engines is that we do not just use specialized search algorithms

for locating the prefix, but the algorithms are deeply integrated with the core engine. We combine

the search algorithms with automaton transitions that have been cached from derivatives, which

allows us to use specialized algorithms for the prefix in the input text, and transition through

multiple steps in the automaton right away.

One such example is the regex pattern abcd.*efg, which can be optimized to match the string

literal abcd in the input text and then immediately transition to the automaton state representing

.*efg for the rest of the match.

We also use the derivatives to perform intermediate prefix computations and appropriate skipping

in inner loop of the match. The breadth-first calculation of derivatives is used to compute the prefix

of the remaining regex, which is then used to skip over large parts of the input string in a single

step, and only perform the more expensive automaton transitions on the remaining positions. This

means that the rest of the aforementioned pattern .*efg makes use of input-parallel algorithms as

well.

All of the DFA states have pre-computed optimizations during construction, which are used

whenever possible to skip over parts of the input string. A benchmark scenario illustrating the

power of inner-loop optimizations is shown in Section 6.2.4, where RE# is shown to be significantly

faster on long matching strings than other engines.

However, it is important to note that vectorization is not always beneficial. For example, even

though the AVX512 instruction set can process 64 bytes at a time, the overhead of setting up the

vectorized operations can be significant for large common character sets, such as [a-zA-Z]. In
such cases, the engine falls back to automaton transitions. Even the Teddy algorithm is not always

beneficial, as it has a certain upper limit (roughly 20) on the number of strings it can process

efficiently, otherwise the engine falls back to automaton transitions for large alternations as well.

5.3 Rewrite Rules and Subsumption
Our system implements a number of regex rewrite rules, which are essential for the efficiency of

the implementation. Figure 6 illustrates the basic rewrite rules that are always applied when regular

expressions are constructed. Intersection and union are implemented as commutative, associative

and idempotent operators, so changing the order of their arguments does not change the result.

Each 𝑅 ∈ ERE comes with a predicate 𝜑𝑅 ∈ Ψ that approximates its relevant characters. The

definition is: 𝜑𝜓
def

= 𝜓 , 𝜑~𝑅
def

= _, 𝜑𝐿|𝑅 = 𝜑𝐿 ·𝑅
def

= 𝜑𝐿 ∨ 𝜑𝑅 , 𝜑𝐿&𝑅 def

= 𝜑𝐿 ∧ 𝜑𝑅 , and 𝜑𝑅{𝑚} = 𝜑𝑅*
def

= 𝜑𝑅 .

Also 𝜑𝜀 = 𝜑\A = 𝜑\z
def

= ⊥. All operations of A are 𝑂 (1) operations and if 𝜑 ≡ 𝜓 then 𝜑 = 𝜓 . For

example, the test \n ∉ [[𝜑𝑅]] is 𝜑\n ∧ 𝜑𝑅 = ⊥ and the test [[𝜙]] ⊆ [[𝜓]] is 𝜙 ∨𝜓 = 𝜓 in Figure 6.

There are many further derived rules that can be beneficial in reducing the state space. Unions

and intersections are both implemented by sets. If a union contains a regex 𝑆 , such as a predicate𝜓 ,

that is trivially subsumed by another regex 𝑅, such as𝜓*, then 𝑆 is removed from the union. This

is an instance of the loop rule in Figure 6 that rewrites𝜓*|𝜓{1} to𝜓* (where𝜓* = 𝜓{0,∞}).
A further simplification rule (using 𝜑𝑅 in Figure 6) for unions is that if a union contains a regex

𝜓* and all the other alternatives only refer to elements from [[𝜓]] then the union reduces to 𝜓*.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

1:18 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

~(_*)
⊥

~⊥
_*

~~𝑅

𝑅

~𝜀

_+

~(_+)
𝜀

⊥·𝑅
⊥

𝑅·⊥
⊥

𝜀 ·𝑅
𝑅

𝑅·𝜀
𝑅

⊥*
𝜀

_*|𝑅

_*

_*&𝑅

𝑅

(?=⊥)𝐼
⊥

loop

𝑅{𝑙,𝑚}|𝑅{𝑘, 𝑛}

𝑅{𝑙,max(𝑚,𝑛)} (𝑙 ≤ 𝑘 ≤ 𝑚,𝑚 ≤ ∞) .*|𝑅

.*
\n ∉ [[𝜑𝑅]]

.*&𝑅

𝑅
\n ∉ [[𝜑𝑅]]

sub1

(𝑅1&𝑅2)|𝑅1
𝑅1

dedup

𝑅1 ⋄ 𝑅2 ⋄ 𝑅1
𝑅1 ⋄ 𝑅2 sub2

(𝑅1&(𝑅2|𝑅3))|(𝑅1&𝑅2)
(𝑅1&(𝑅2|𝑅3))

𝑅1𝑅2|𝑅1𝑅3
𝑅1(𝑅2|𝑅3)

𝑅1𝑅3|𝑅2𝑅3
(𝑅1|𝑅2)𝑅3

𝜙{0,𝑚}𝜓*

𝜓*
[[𝜙]] ⊆ [[𝜓]] (?=𝑅)𝐼

𝜀𝐼
Null (𝑅)

Fig. 6. Basic rewrite rules where ⋄ ∈ {|, &} and 𝜙,𝜓 ∈ Ψ.

This rule rewrites any union such as (.*ab.*|.*) to just .* (recall that . ≡ [^\n]), which significantly

reduces the number of alternatives in unions.

5.4 Overhead Elimination
To make the engine competitive in scenarios with frequent matches, it is important to keep the

engine as lightweight as possible and to avoid unnecessary operations. Many optimizations are

cached into bit flags, which are used to quickly determine if a certain operation is necessary. For

example, there is a bit flag for checking if a regex is always nullable, which is immediately marked

as true if the regex accepts the empty string 𝜀 . There is also a specialized flag for anchor nullability,

which is used to quickly determine if an anchor was valid in the previous position.

There are also shortcuts to quickly return ⊥ if a dead state is reached, and for checking if an

automaton state has more specialized algorithms available. We are also extensively using pointer

comparisons for equality checks, e.g. for checking if two regexes are the same, or if a regex is a

subset of another regex.

For match end lookups, as we know the position of the match start, we often skip a number of

transitions in the automaton, e.g. if the regex is abcd.*efg, we can skip the transitions for abcd
entirely and start the match 4 characters ahead with the transitions for .*efg, which is a significant

optimization for many regexes.

The engine also supports using ASCII bytes as input, which effectively doubles the speed of

vectorized operations, as the engine can process double the characters per parallel step. We do not

use this optimization in any of the benchmark comparisons, as the UTF-16 input is more mature

in .NET and has more algorithms readily available, but it is a significant optimization for many

real-world scenarios, especially when processing large amounts of data. We are also planning to

support UTF-8 input directly in the future.

When the engine detects no opportunities for more-specialized algorithms and falls back to

automaton transitions, it uses a highly optimized loop, which does not store any intermediate

results, and only uses the automaton transitions to determine the match end. Additionally, the

engine compiles very small regexes directly into full DFAs, which eliminates a conditional branch

dead center in the hot-path, which would otherwise be used to lazily create new states.

5.5 Pending Nullable Position Representation in Lookahead Annotations
The set of pending match positions is a key component of the engine, and is used to keep track

of context throughout the matches. As the set can grow very large, it is important to keep the

representation and operations on the set lightweight in terms of memory and CPU usage.

The set is represented as a sorted list of ranges, which is minimized during construction. One

frequent operation is to increment all the positions in the set, which is done by simply incrementing

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

RE#: High Performance Derivative-Based Regex Matching 1:19

the start and end of each range. Contiguous ranges are also merged during this operation, which

often results in a very small memory overhead. For example, a pending match set of 10000 sequential

positions can be represented as a single range, which can take up as little as 8 bytes of memory

for int32 positions. This allows the context length to be very large in practice, and the engine can

handle complex regexes with many lookarounds.

5.6 Validating Correctness of RE# Implementation Using Formalized Lean Semantics
There are many low-level optimizations and rewrite rules in the RE# engine. For example, for

obvious reasons, no input string 𝑠 is ever actually reversed but 𝑠r is an abstraction that hides

underlying index calculations. We use the Lean formalization of ERE≤ and its POSIX matching

semantics [Zhuchko et al. 2024] that is executable because the membership test 𝑎 ∈ [[𝜓]] in A is

executable. The span universe Span is in Lean defined as Σ∗ × Σ∗ × Σ∗
with ⟨𝑢, 𝑣,𝑤⟩ representing

⟨𝑠 [𝑖], 𝑠 [𝑗]⟩ where 𝑠 = 𝑢r𝑣𝑤 , 𝑖 = |𝑢 | and 𝑗 = |𝑢𝑣 |. Although the semantics in Lean is highly nonlinear
it does have the same semantics for RE# (as RE# ⊊ ERE≤) and is the only test oracle available.

TheRE# enginewas extensively testedwith thousands of regexes, and the results where compared

with the expected results according to the Lean specification. This helped to find numerous bugs

throughout the development of the engine, such as the handling of the edges of the input string

and detecting off-by-one errors in reversal. One such bug we found during implementation was in

the regex ^\n+, which should have matched the full input string "\n\n", but instead matched only

the second \n, because the engine did not handle the edge of the input string correctly.

6 Evaluation
We have evaluated the performance of our engine on a number of regex benchmarks, and compared

it to other regex engines available in the BurntSushi/rebar benchmarking tool [Gallant 2024]. The

benchmarks are split into two categories: the baseline comparison (Section 6.1) consists of the

curated regex benchmark suite from the BurntSushi/rebar tool; the extended comparison (Section 6.2)

consists of a set of regexes that are designed to emphasize the strengths of our engine.

The benchmarks report the throughput of the engine in terms of the number of bytes processed

per second, and the geometric mean (𝜇𝑔) ratio of the throughput is used as the primary metric for

comparison. Each of the benchmarks is reported by the ratio of throughput compared to the best

performing engine in the benchmark, where 1x is the leader in each individual benchmark. The

overall 𝜇𝑔 ratio is displayed for each major category, where the displayed ratio means, e.g., 3x is

twice as fast as 6x. Any number larger than 1x implies that the engine lost some benchmarks in

the category. The results are shown in Table 4. Below we analyze the results in some detail.

The measurements were performed on a machine running an Ubuntu 22.04 Docker image with

an AMD Ryzen Threadripper 3960X 24-Core Processor and 128 GB of memory. As an important

note, the only form of parallelism that is used in the engine is vectorization, which is also used by

many other engines to achieve shown results.

6.1 Baseline Comparison
The baseline comparison is done on the popular curated regex benchmark suite and using the

publicly available BurntSushi/rebar benchmarking tool, from which we included all benchmarks

that our engine supports. There are 27 benchmarks in total. Benchmarks requiring unsupported

features, e.g., capture groups, are excluded from the comparison. Since RE# (resharp) uses leftmost-
longest matching semantics, the match results are carefully compared with the other engines.

The benchmarks also use earliest matching semantics in the case of Hyperscan. In 25 out of 27

benchmarks, the match results are identical to leftmost-greedy engines.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

1:20 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

Table 4. Benchmark 𝜇𝑔 slowdown. Top three outcomes in each benchmark category are indicated in bold.

(a) Baseline evaluation (Section 6.1).
𝜇𝑔 relative slowdown ratio

Engine
Sec

6.1

Sec

6.1.1

Sec

6.1.2

Sec

6.1.3

Sec

6.1.4

Sec

6.1.5

resharp 1.48 1.98 1.12 1.43 1.86 1
rust/regex 2.54 1.49 3.69 1.38 21.9 1.2
hyperscan 2.76 1.69 1.76 102 1 2.26
dotnet/comp 5.29 2.7 3.71 3.77 4.52 208

pcre2/jit 7.86 3.48 2.3 615 23.6 17.6

dotnet/nobt 9.14 5.88 6.61 27.7 42.7 3.58

re2 12.3 11.7 5.05 16.7 39.1 25.6

javascript/v8 19.5 6.26 4.78 1503 25.4 140

regress 50.5 23.4 5.34 3690 77.1 521

python/re 65.2 40 11.6 900 149 599

python/regex 66.1 21.7 17 4516 122 800

perl 74.7 41.1 44.9 2572 146 20.8

java/hotspot 77.4 86.5 9.13 3841 40.1 618

go/regexp 166 237 29.5 189 423 997

pcre2 285 472 42.6 8519 161 651

(b) Extended evaluation (Section 6.2).
𝜇𝑔 relative slowdown ratio

Engine
Sec

6.2

Sec

6.2.1

Sec

6.2.2

Sec

6.2.3

Sec

6.2.4

Sec

6.2.5

Sec

6.2.6

resharp 1.09 1 1 1.09 1.02 1 1.14
hyperscan 3.77 1.08 2.14 1.79 5.85 - -

dotnet/nobt 10.7 2.13 9.19 - 67.4 11.6 -

pcre2/jit 20 23.8 - 86.2 38.5 9.21 15.8
rust/regex 29.5 4.16 2747 7.63 20.1 82.9 -

dotnet/comp 41.3 80.9 554 694 7.48 25.6 5.26
re2 48.9 175 1440 28 16.5 - -

python/regex 141 139 1673 1196 50.7 48.3 79.6

javascript/v8 214 86.5 449 66.9 - - 141

python/re 233 93 2005 936 188 62.4 135

regress 360 99.6 1264 749 - - 188

pcre2 503 2399 - 599 1076 943 255

java/hotspot 698 176 2597 769 423 56.3 718

go/regexp 957 318 2733 1135 763 - -

perl 1143 6.32 199 1310 7195 2863 1189

The baseline benchmarks are ran “as is”, without any modifications to the regexes or the input

strings. Certain apples-to-apples benchmarks, when appropriate, are included in the Section 6.2 to

display the performance of the engine in a more controlled environment. The baseline summary

geometric mean of speed ratios is shown in Table 4a with a separate column for each benchmark
category below as indicated by the column title.
In the figures dotnet/comp is the regex option Compiled in .NET and dotnet/nobt is the regex

option NonBacktracking in .NET. The javascript/v8 engine is used in backtracking mode in all

experiments. We have omitted the engine version numbers, but have used the most recent available

stable versions in all cases.

6.1.1 Literal and Literal-Alternate Categories (10 benchmarks). The literal category consists of

regexes that are simple string literals, and the literal-alternate category consists of regexes that are

simple alternations of string literals.

These categories are orthogonal to the engine itself, as the performance is mostly determined by

the string matching algorithms used in the engine, and whether an how well the engine supports

the literal optimizations, e.g., those in Section 5.1.

RE# does not win in either of these categories, see Table 4a, but it is consistently close to the

top performer, with the worst performance being in the literal-alternate ‘sherlock-ru’ benchmark,

where the engine is 3x slower than the best performing engine, rust/regex.

Having more highly optimized 8-bit string literal matching algorithms would be beneficial to

compete in the ASCII categories of this benchmark, but the engine is still competitive here, and

not far off from the top in both categories. Rust and Hyperscan perform excellent in both of these

categories with their strong string literal optimizations and geometric mean performance ratio.

Hyperscan has a single outlier in the unicode literal ‘sherlock-ru’ benchmark, where it is 10x slower,

which brings the geometric mean performance down to 1.69x.

6.1.2 Words and Bounded-Repeat Categories (8 benchmarks). The words and bounded repeat (or

counters) categories consist mostly of benchmarks that are simple with many short matches, such

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

RE#: High Performance Derivative-Based Regex Matching 1:21

200 400 600 800 1000

Input length (num of characters)

100

101

102

R
el

a
ti

ve
sl

ow
d

ow
n

m
u

lt
ip

li
er

(x
)

dotnet/compiled

dotnet/nobacktrack

hyperscan

java/hotspot

javascript/v8

pcre2/jit

perl

python/re

python/regex

re2

regress

resharp

rust/regex

Fig. 7. Quadratic benchmark results for 1x=100, 2x=200, 10x=1000

as \b\w+\b and [A-Za-z]{8,13}. RE# performs very well in these categories, as do other automata-

based engines. What sets RE# apart is the ability to efficiently handle Unicode as discussed also later
in Section 6.2. On patterns such as \b\w{12,}\b, RE# is over 7x faster than the next best engine,

pcre2/jit, and over 10x faster than the rest of the competition.

The reason for this gap is that \w denotes a very large character set, and other automata-based

engines cannot handle it as efficiently, as \w may contribute with tens of thousands of individual

transitions. RE# also has a very efficient implementation of the word boundary \b – represented via

negative lookarounds in the engine and encoded directly into DFA transitions – which causes the

engine to have a very fast inner matching loop. Another benchmark where RE# excels at is the ‘con-
text’ benchmark, which uses [A-Za-z]{10}\s+[\s\S]{0,100}Result[\s\S]{0,100}\s+[A-Za-z]{10},

it is over 8x faster than other automata-based engines, which struggle with the [\s\S]{0,100} part

of the pattern, as it creates many transitions in the automaton. This is where the algebraic approach

to regex matching shines, as the engine can easily detect redundant transitions through the loop

rule in Figure 6 and thereby minimize the automaton on the fly.

6.1.3 CloudFlare-ReDOS (3 benchmarks). This category is designed to showcase worst-case perfor-

mance of regex engines. The regexes themselves are not very practical, but useful to distinguish

between the engines that have good worst-case performance and those that do not.

The cloud-flare-redos category is a set of regexes that are designed to trigger catastrophic

backtracking in backtracking regex engines. The benchmark comes in three variants: the ‘original’

variant is using the pattern that caused the CloudFlare outage in 2019, while the ‘simplified-short’

and ‘simplified-long’ variants are matching the regex .*.*=.*, which on linear complexity engines

is essentially benchmarking “how fast can you find the equals sign”, and on backtracking engines is

a worst-case scenario, where certain backtracking engines are hundreds of thousands, even millions

of times slower than the best performing engines. RE# is the top performer in the ‘original’ variant

of the benchmark, which does not really show anything meaningful about the engine, apart from

the fact that it does not suffer from catastrophic backtracking.

6.1.4 Quadratic (3 benchmarks). The regexes here are intended to trigger quadratic behavior in

all-match scenarios. The benchmark comes in three variants: ‘1x’, ‘2x’, and ‘10x’, which illustrate

how the performance of the engines scales with the input length. While the reason for Hyperscan’s

excellent performance is earliest match semantics, which guarantees linearity, the reason for RE#’s
close-to-linear performance is different. While Table 4a shows the 𝜇𝑔 relative slowdown ratios,

Figure 7 illustrates the three variants separately.

The reason for RE#’s excellent performance in the quadratic category is that the engine finds

a match in a fixed number of input-parallel steps, which it detects at the level of the algebraic

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

1:22 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

representation of the regex. The engine still suffers from the number of matches, which brings the

performance down to 𝑂 (𝑝𝑛), where 𝑝 is the number of parallel steps required to process the input,

and 𝑛 is the number of matches. The engine is still significantly faster than other engines in the

category apart from Hyperscan, which has a linear time complexity by design.

6.1.5 Date and Dictionary (3 benchmarks). These are large regexes with many alternations. The

date benchmark is described as a tokenizer for dates in various formats, which has numerous short

matches of <5 characters. The dictionary benchmark consists of approximately 2500 words, which

measures the speed of traversing a string with many alternations.

While RE# wins here, see Table 4a, both of these categories have flaws and should be taken

with a grain of salt. Neither of the patterns are sorted by descending length, which means that the

pattern consists of many alternations completely unreachable to PCRE engines, such as may|mayo,
where the engine will never match mayo at all.

Upon further inspection, this behavior seems to originate from a near decade old semantic bug

in a Python library for finding dates [Koumjian 2024], that gets millions of downloads per month,

but has somehow gone unnoticed. And the dictionary benchmark consists of many alternations

ordered such as (absentmindedness|absentmindedness’s), where the second alternation will

never be matched. Furthermore, the dictionary benchmark contains only one match, which barely

explores any of the state space of the automaton than can arise from the regex.

Since RE# uses a larger regex in both of these benchmarks, it also reports a slightly higher match

length sum of 111832 instead of 111825 in the two date benchmarks, where certain matches are

longer than their leftmost-greedy counterparts. For this reason, these benchmarks are separately

analyzed in the extended benchmark in Section 6.2, where the patterns are sorted by length, and

the performance of the engines is compared in a more controlled environment.

6.2 Extended Comparison
The extended comparison consists of a set of regexes to emphasize the strengths of our engine. The

benchmarks have been split into several categories. The first category consists of modified versions

of the date and dictionary benchmarks from the rebar benchmark suite. Hyperscan is included in

very few of these benchmarks as it does not support \b with Unicode characters or lookarounds or

patterns that exceed a certain length, but for the sake of comparison, we include it in benchmarks

using multi-pattern mode and earliest match semantics whenever possible.

The extended summary 𝜇𝑔 of speed ratios is shown in Table 4b with a separate column for each
benchmark category below as indicated by the column title. The actual 𝜇𝑔 of several engines is larger
than shown, as many of the benchmarks are designed to push the engines to their limits, and the

engine may not finish the benchmark in 1 minute that is the cut-off time.

6.2.1 Date and Dictionary Amended (2 benchmarks). The benchmarks are the same as in the baseline

comparison apart from two small, but significant, changes:

✓ alternations (unions) are sorted in descending order by length

✓ inputs contain not just one but over a thousand unique matches

The large amount of unique matches is especially important, as it prevents the lazy automata

engines from creating a tiny purpose-built automaton for matching the exact same string over

and over. Adding more matches to the input drops the performance of the lazy automata engines

significantly, including RE#.
The throughput reported for RE# in the dictionary benchmark is 564.5MB/s with 1 match, and

107.3MB/s with 2663 matches. But what is notable here is that the performance of RE# does not fall
with complexity at the same rate as the other automata engines. Where the throughput of rust/regex

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

RE#: High Performance Derivative-Based Regex Matching 1:23

falls from 535.6MB/s to 8.9MB/s, and the throughput of re2 falls from 3.6MB/s to 618KB/s. Even the

throughput of Hyperscan falls from 5.4 GB/s to 104.6MB/s by increasing the number of matches,

which is just slightly below the throughput of RE#. RE# still maintains this level of performance

with even far more complex regexes, as show in the monster regex category in Section 6.2.2.

6.2.2 Monster Regexes (5 benchmarks). This category comprises of large regexes designed to stress

the engines to their limits. These regexes are challenging for both backtracking as well as automata

engines, where the former will suffer from redundant work and the latter will suffer from large state

space complexity. This category illustrates one of the biggest strengths of RE#, where it dominates

the competition in all of the benchmarks in this category, see Figure 2a, thanks to both its small

symbolic automaton and algebraic rewrites. Hyperscan is included in the first three benchmarks as

these patterns can be split into multiple individual patterns and run in multi-pattern mode, but not

in the last two benchmarks, as these consist of one large pattern, which exceeds the maximum size

supported by Hyperscan. All of the patterns exceed the maximum size supported by pcre2/jit as

well, which is why it is not included.

The first benchmark in this category is the same dictionary regex as in the previous benchmark,

but with case insensitivity enabled (IgnoreCase option or (?i:𝑅)). Ignoring case on the dictionary

regex significantly increases the state space complexity of the regex, and neither backtracking nor

the automata engines can handle it. Hyperscan with multi-pattern mode does well here, albeit with

an easier pattern than the others because of earliest match semantics. Perl seems to have some

interesting optimizations for ASCII dictionaries specifically, being the only backtracking engine

that can handle it. But the interesting part in this benchmark is how, very counterintuitively, the

performance of RE# and dotnet/nobt increases when case is ignored.

The throughput of RE# with the case-insensitive dictionary regex actually increases by ≈ 40%

over the case-sensitive version, which is due to the size of the automaton decreasing when case is

ignored, as the engine can merge transitions together. This is a very interesting result, as many

others completely fall apart with case insensitivity enabled, with their throughput falling hundreds

of times compared to the case-sensitive version.

The second and third benchmarks are similar dictionary regexes, but with unicode characters.

This benchmark illustrates the performance of the engine on unicode character classes, which are

difficult to handle for most engines. On the case-insensitive version of the unicode dictionary, most

engines are several orders of magnitude behind RE#, apart from hyperscan and dotnet/nobt, which

are 5.2x and 5.5x slower than RE#, which are still very good results, as the fourth-fastest engine,

perl, is 862x slower than RE#.
The last two benchmarks add a context of 50 characters in the form of .{0,50} on either side of

an already difficult case-insensitive dictionary regex, which forces the engine to explore a significant

amount of possibilities, as the context can be anything. These benchmarks are a difficult scenario

for even dotnet/nobt, which otherwise manages to keep up in these difficult scenarios, here even

dotnet/nobt is 20x slower than RE#.

6.2.3 Hidden Passwords (11 benchmarks). This category illustrates something that is very difficult

to express in standard regex syntax, which causes the pattern to be very large and slow to handle

for most engines. RE# uses intersection to demonstrate how the performance does not degrade at

the rate of other engines that use union to express an equivalent pattern but at a factorial cost. The
main regex is an intersection of constraints, where the match must contain at least one character

in all of [0-9], [a-z], [A-Z], [!-/], and the password must have a certain length that varies

throughout the benchmark. To simplify, all of the inputs here have been limited to ASCII.

This benchmark, see Figure 8, illustrates the same principle as the monster regexes, where the
performance of the engine does not degrade at the rate of other engines. While re2 and rust/regex

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

1:24 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

4 6 8 10 12 14

Password length (num of characters)

100

101

102

103

R
el

a
ti

ve
sl

ow
d

ow
n

m
u

lt
ip

li
er

(x
)

dotnet/comp

go/regexp

hyperscan

java/hotspot

javascript/v8

pcre2

pcre2/jit

perl

python/re

python/regex

re2

regress

resharp

rust/regex

Fig. 8. Searching for hidden passwords of increasing length.

are able to handle the pattern up to 8 characters, both of the engines hit a wall at 9 characters, where

the performance of the engines drops significantly. The performance of Hyperscan is also dropping

at 9 characters, but it stops accepting the pattern at 10 characters. The search-time performance of

RE# is still reasonable at 15 characters and above, and the throughput of the engine is still in the

hundreds of MB/s. Without intersections, the performance of RE# would also hit a wall soon after

the others, as the state space of the automaton grows at an exponential rate, but using intersections

allows to keep the automaton small and the performance of the engine high.

6.2.4 Long Matches (7 benchmarks). This category is designed to test the engines’ ability to

accelerate long matching patterns, see Figure 9a. The input used in this category consists of long

lines, averaging around 3000 characters in length. The patterns used in the category are designed

so that the engine has to scan the entire line to find a match, but the engine has many opportunities

to skip characters during the inner loop of matching.

An interesting observation from this category is that many of the engines have one-off optimiza-

tions for long matches, where certain patterns with the exact same language are significantly faster

than others. For example the pattern used in the skip-5 benchmark, (?m)^.*1.*1.*1.*1.*1.*$
is 120x faster than the pattern in the skip-5-loop benchmark (?m)^.*(1.*){5}$ for dotnet/comp,

as optimizations get detected and applied in the former, but not in the latter. The same is true

for python/re and pcre2/jit which both lose performance noticeably with the loop variant of the

pattern. RE# actually loses one benchmark in this category, the skip-2 benchmark with the pattern

(?m)^.*1.*1.*$, where dotnet/comp vectorizes the first part of the pattern as well. The bench-

marks skip-3 and skip-5 show that this behavior does not apply to the remainder of the pattern, as

the performance of dotnet/comp drops significantly with the number of skips.

The reason why RE# is able to outperform the other engines in this benchmark is that derivatives

allow the engine to cheaply infer which transitions are redundant, which lets the engine use

input-parallelism to skip over large parts of the input, which gives the engine an advantage of an

order of magnitude over most other engines in this category.

6.2.5 Character Sets and Unicode (7 benchmarks). This category shows the performance of symbolic

character sets in RE#, i.e., the power of A. The patterns used in this category are to find words

containing a certain character set, such as \b\w*[abc]w*\b. To add a layer of complexity, both the

input and character set are unicode characters, which makes the pattern difficult to handle for most

engines, see Figure 2b.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

RE#: High Performance Derivative-Based Regex Matching 1:25

re
sh

ar
p

hy
pe

rs
ca

n

do
tn

et
/c

om
p

re
2

ru
st
/r

eg
ex

pc
re
2/

jit

py
th

on
/r

eg
ex

do
tn

et
/n

ob
t

py
th

on
/r

e

ja
va

/h
ot

sp
ot

go
/r

eg
ex

p
pe

rl

100

101

102

103

104

R
e
la

t
iv

e
s
lo

w
d

o
w

n
m

u
lt

ip
li
e
r

(
x
)

skip-2

skip-3

skip-5

skip-5-loop

skip-5-concat

skip-5-unicode-char

skip-5-unicode-set

(a) Long matches (Section 6.2.4).

re
sh

ar
p

do
tn

et
/c

om
p

pc
re
2/

jit

py
th

on
/r

eg
ex

ja
va

sc
rip

t/
v8

re
gr

es
s

py
th

on
/r

e
pe

rl

ja
va

/h
ot

sp
ot

100

101

102

103

104

R
e
la

t
iv

e
s
lo

w
d

o
w

n
m

u
lt

ip
li
e
r

(
x
)

lookbehind-fixed

lookahead-fixed

context-ahead-10

context-ahead-20

context-ahead-50

context-both-10

context-both-20

context-both-50

(b) Lookarounds (Section 6.2.6).
Fig. 9. Long and Lookaround benchmarks. 𝑦-axis is relative slowdown in log scale.

The first two benchmarks word-vowels-1 and word-vowels-2, illustrate how RE# is able to use the

derivative-based framework to incorporate vectorized character set matching into simple word

patterns and be an order of magnitude faster than the other engines.

The word-vowels-3 and word-vowels-4 benchmarks are more complex both in terms of number of

matches and the complexity of the pattern, where the performance of RE# is still very good, but

not as dominant as in the first two benchmarks.

The word-vowels-5-to-digits and word-digits-to-vowels-5 benchmarks illustrate that this character

set efficiency works in both directions, where certain engines (e.g., python/re and dotnet/comp)

locate the digits-first variant significantly faster than the vowels, but the throughput for RE# is
nearly identical for both. The many-set-constraints benchmark illustrates a more complex scenario,

where the engine has to find many of these set constraints in a single match, which severely slows

several engines down, but RE# is still able to maintain a throughput of 757.7MB/s, where most

other engines are in KB/s.

6.2.6 Lookarounds (8 benchmarks). The lookarounds category illustrates that all the optimizations

apply to lookarounds in RE# as well. There are many benchmarks in this category where the

performance of the engine is several orders of magnitude faster than in other engines, see Figure 9b.

Note that certain engines (e.g. pcre2/jit) are omitted from the context-both benchmarks as they do

not support unbounded lookbehinds.

The lookbehind-fixed and lookahead-fixed benchmarks demonstrate the efficacy of simple string

literal prefilter optimizations, e.g. those in Section 5.2, where the engine is able to vectorize the

search for patterns containing both prefix and suffix lookarounds, which makes RE# several orders
of magnitude faster than the other engines.

While Figure 3 showed that the performance of lookbehinds is linear for all matches, the same is

not true for lookaheads. The only guarantee for lookaheads is that a single match is input-linear,

but the performance of the engine degrades if there are multiple matches depending on the same

lookahead context, which is located far away from the match. The context-ahead benchmarks

illustrate this, where the performance of the engine is slightly behind dotnet/comp, as both of the

engines suffer from quadratic all-matches behavior in this case.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

1:26 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

Despite this, the performance of RE# is still very good in this category compared to the rest of

the engines, where there is a noticeable lack of optimizations for lookarounds. How to eliminate

quadratic all-matches behavior for lookaheads is a topic for future work.

The context-both benchmarks illustrate the scenario where each match is dependent on both a

lookbehind and a lookahead, where RE# has a lead similar to Figure 3, as the linear time all-matches
complexity of lookbehinds is not applicable to other engines.

6.3 Optimizations and Overall Effect on Performance
The performance of the engine is a result of a combination of many optimizations, which are

described in the paper. Out of the list of optimizations mentioned, the two with the most significant

influence on the performance of the engine are:

• DFA memory efficiency, enabling the strong worst-case 𝑂 (𝑛) search-time complexity.

• Opportunistic algorithms reaching beyond standard 𝑂 (𝑛) DFA speeds, e.g. vectorization.

Many benchmarks are designed around string literals, which are necessary to optimize for, as

they are the most common comparison of regex engines, where most implementations have some

kind of vectorized optimizations in place. Simply having a search-time 𝑂 (𝑛) DFA algorithm is

not enough to compete with the best engines here, as the performance is dependent on clever

parallel algorithms and the ability to optimize the search for string literals, which we have shown

in the literal and literal-alternate categories in Section 6.1.1. We emphasize that our approach to

vectorization is general and applies to a large class of regexes, including those with lookarounds,

as shown in Sections 6.1.4, 6.2.4 and 6.2.6.

In the cases where context-sensitive features e.g. anchors, lookarounds, are necessary, the engine

boasts a unique zero-cost implementation of the word boundary \b – represented via negative

lookarounds in the engine and encoded directly into DFA transitions, which is highlighted in the

words benchmark in Section 6.1.2.

To a large extent, the real performance of the engine is due to its memory efficiency, which it

owes to algebraic rewrites and redundancy elimination. This efficiency becomes most evident in

large patterns, as there are more opportunities for rewrites. It is nontrivial to consistently simplify

a large set of active states while also detecting opportunities to optimize, which is achieved in

RE#. The memory efficiency of the engine is also partly due to alphabet compression, as done in

[Moseley et al. 2023].

In themonster regex category in Section 6.2.2, the engine is able to dominate the competition, as it

is able to detect and eliminate redundant states in the automaton. RE# explicitly uses a search-time

𝑂 (𝑛) algorithm not an 𝑂 (𝑚 ∗ 𝑛) algorithm, and not having to fall back to the 𝑂 (𝑚 ∗ 𝑛) algorithm
in complex scenarios such as shown in Section 6.2.2 is only possible due to the memory efficiency

gained from rewrites and detection of redundant states in derivatives. The fact that all transitions

in the automaton can be cached, including those on lookarounds, is a major contributor to the

performance of the engine, as it allows to maximize the throughput of the engine by reusing the

transitions created.

A key design decision in the engine is to give strong guarantees on the expected performance

similar to e.g. Hyperscan, which has many lesser-known restrictions, such as restricted anchors

with unicode support, yet guarantees consistently high performance. In comparison to recent work

on linear complexity lookarounds, such as [Mamouras and Chattopadhyay 2024] or [Barrière and

Pit-Claudel 2024] our work is less general, but our performance target is in line with the very

top, which is enabled by some features, such as the ability to cache transitions on lookarounds for

subsequent inputs and locating matches in strictly one reverse pass over the input, as opposed to

one-or-more passes.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

RE#: High Performance Derivative-Based Regex Matching 1:27

7 Related and Future Work
This work builds upon and uses the theory of location based derivatives introduced in [Mose-

ley et al. 2023], and the implementation builds upon the open source .NET regular expression

library [Microsoft 2022]. The match semantics supported in RE# is leftmost-longest (POSIX) rather
than leftmost-greedy (a.k.a., backtracking or PCRE) semantics. It is unclear how to support extended

Boolean operators in backtracking in the first place and what their intended semantics would be –

this is primarily related to that | is non-commutative in the backtracking semantics and therefore

some key distributivity laws such as 𝑋 (𝑌|𝑍) ≡ 𝑋𝑌|𝑋𝑍 no longer preserve match semantics. For

example, in PCRE (a|ab)(c|b) matches the prefix "ab" of "abc" but (a|ab)c|(a|ab)b matches

the whole string "abc". Consequently, many rewrite rules based on derived Boolean laws, such as

sub1 and loop in Figure 6, become invalid in PCRE.

In functional programming derivatives were studied in [Fischer et al. 2010; Owens et al. 2009]

for IsMatch. [Ausaf et al. 2016; Sulzmann and Lu 2012] study matching with Antimirov derivatives

and POSIX semantics and also Brzozowski derivatives in [Ausaf et al. 2016] with a formalization in

Isabelle/HOL. The algorithm of [Sulzmann and Lu 2012] has been recently further studied in [Tan

and Urban 2023; Urban 2023]. It is also mentioned in [Urban 2023, p.22] that reversal, as used
in [Moseley et al. 2023], is not directly applicable in the context of the [Sulzmann and Lu 2012]

algorithm. Partial derivatives of regular expressions extended with complement and intersection

have also been studied in [Caron et al. 2011]. These works do not support lookarounds (or anchors).

The key difference with the work of transition regexes used in SMT [Stanford et al. 2021] is that

the theory of transition regexes does not support lookarounds. However, generalizing transition

regexes to location based derivatives is an interesting direction for future work.

The conciseness of using intersection and complement in regular expressions is demonstrated

in [Gelade and Neven 2012] where the authors show that using intersection and complement in

regular expressions can lead to a double exponentially more succinct representation of regular

expressions. Here we have experimentally shown how the enriched expressivity can enable practical

scenarios for matching that are otherwise not possible.

Regular expressions have in practice many extensions, such as backreferences and balancing
groups, that reach far beyond regular languages in their expressive power. Such extensions, see [Lor-

ing et al. 2019], fall outside the scope of RE#. Lookaheads do maintain regularity [Morihata 2012]

and regular expressions with lookaheads can be converted to Boolean automata [Berglund et al.

2021b]. [Chida and Terauchi 2023] consider extended regular expressions in the context of back-

references and lookaheads. They build on [Carle and Narendran 2009] to show that extended

regular expressions involving backreferences and both positive and negative lookaheads leads to

undecidable emptiness, but, when restricted to positive lookaheads only is closed under complement

and intersection. [Miyazaki and Minamide 2019] present an approach to finding match end with

derivatives in regular expressions with lookaheads using Kleene algebras with lookahead as an

extension of Kleene algebras with tests [Kozen 1997] where the underlying semantic concatenation

is commutative and idempotent – it is unclear how lookbehinds and reversal fit in here. Derivatives

combined with Kleene algebras are also studied in [Pous 2015].

Some aspects of our work here are related to SRM [Saarikivi et al. 2019] that is the predecessor

of the NonBacktracking regex backend of .NET [Moseley et al. 2023], but SRM lacks support

for lookarounds as well as anchors and is neither POSIX nor PCRE compliant. Intersection was

also included as an experimental feature in the initial version of SRM by building directly on

derivatives in [Brzozowski 1964], and used an encoding via regular expression conditionals that
unfortunately conflicts with the intended semantics of conditionals and therefore has, to the best

of our knowledge, never been used or evaluated.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

1:28 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

State-of-the-art nonbacktracking regex matchers based on automata such as RE2 [Cox 2010]

and grep [GNU 2023] using variants of [Thompson 1968], and Hyperscan [Wang et al. 2019] using

a variant of [Glushkov 1961], as well as the derivative based NonBacktracking engine in .NET

make heavy use of state graph memoization. None of these engines currently support lookarounds,

intersection or complement. A general advantage of using derivatives is that they often minimize

the state graph (but do not guarantee minimization), as was already shown in [Owens et al. 2009,

Table 1] for DFAs. Similar discussion appears also in [Sulzmann and Lu 2012, Section 5.4] where NFA

sizes are compared for Thompson’s and Glushkov’s, versus Antimirov’s constructions, showing

that Antimirov’s construction consistently yields a smaller state graph. Further comparison with

automata based engines appears in [Moseley et al. 2023].

The two main standards for matching are PCRE (backtracking semantics) and POSIX [Berglund

et al. 2021a; Laurikari 2000]. Greedy matching algorithm for backtracking semantics was originally

introduced in [Frisch and Cardelli 2004], based on 𝜖-NFAs, while maintaining matches for eager

loops. In the current work we focused on the expressivity of a single regular expression. Compared

to lookarounds, there are different approaches to achieving contextual information, e.g. it can be

done programmatically by matching multiple regular expressions, or by the use of transducers, e.g.

Kleenex [Grathwohl et al. 2016], that can produce substrings in context at high throughput rates.

The theory of derivatives based on locations that is developed here can potentially be used to

extend regular expressions with lookarounds in SMT solvers that support derivative based lazy

exploration of regular expressions as part of the sequence theory, such solvers are CVC5 [Barbosa

et al. 2022; Liang et al. 2015] and Z3 [de Moura and Bjørner 2008; Stanford et al. 2021]. A further

extension is to lift the definition of location derivatives to a fully symbolic form as is done with

transition regexes in Z3 [Stanford et al. 2021]. [Chen et al. 2022] mention that the OSTRICH string

constraint solver could be extended with backreferences and lookaheads by some form of alternating

variants of prioritized streaming string transducers (PSSTs), but it has, to our knowledge, not been

done. Such extensions would widen the scope of analysis of string verification problems that

arise from applications that involve regexes using anchors and lookarounds. It would then also be

beneficial to extend the SMT-LIB [SMT-LIB 2021] format to support lookarounds.

Counters are a well-known Achilles heel of essentially all nonbacktracking state-of-the-art

regular expression matching engines as recently also demonstrated in [Turoňová et al. 2022], which

makes any algorithmic improvements of handling counters highly valuable. In [Turoňová et al.

2020], Antimirov-style derivatives [Antimirov 1996] are used to extend NFAs with counting to

provide a more succinct symbolic representation of states by grouping states that have similar

behavior for different stages of counter values together using a data-structure called a counting-set.
It is an intriguing open problem to investigate if this technique can be adapted to work with location

derivatives within our current framework. [Glaunec et al. 2023] point out that it is important to

optimize specific steps of regular expressionmatching to address particular performance bottlenecks.

The specific BVA-Scan algorithm is aimed at finding matches with regular expressions containing

counters more efficient. [Holík et al. 2023] report on a subset of regexes with counters called

synchronizing regexes that allow for fast matching.

Recently [Mamouras and Chattopadhyay 2024] presented a new algorithm for matching look-

arounds with Oracle NFAs, which are essentially cached queries to the oracle that can be used

to match lookarounds. The semantics presented in their paper is consistent with the semantics

of RE≤ , as described in [Moseley et al. 2023, Section 3.7] using derivation relations, for example,

⟨𝑠 [𝑖], 𝑠 [𝑗]⟩ |= (?=𝑅) iff 𝑖 = 𝑗 and 𝑠 [𝑖] 𝑅 ·_*−−−−→ 𝑠 [|𝑠 |]. We could not find any implementation of the

algorithm, but it would be interesting to compare the lookaround approaches.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

RE#: High Performance Derivative-Based Regex Matching 1:29

[Barrière and Pit-Claudel 2024] present a new nonbacktracking algorithm for matching JavaScript

regular expressions with lookarounds in linear time. The first steps of the algorithm construct an

oracle similar to the one in [Mamouras and Chattopadhyay 2024], but leveraging JavaScript seman-

tics for the unique capability of matching capture groups both in the main regex and lookarounds in

linear time. The algorithm is implemented as an NFA engine, whereas RE# is a lazy DFA engine. The

fragment RE≤ of regexes is orthogonal to the regexes in RE#: while intersection and complement

are not allowed, at the same time lookarounds can be used freely in any context. But there is a

common subset of regexes of the form (?<=𝑅1)𝑅2(?=𝑅3) where 𝑅𝑖 ∈ RE on which it would be

interesting to see how the two approaches compare in practice. Moreover, alternations of such
regexes are currently not supported in RE# but their support is ongoing work.

The full fragment RE≤ is supported in both of the above works, including nested lookarounds. In

particular, the new –enable-experimental-regexp-engine flag in Javascript V8 supports nested

lookarounds. We believe that RE# could support some fragment of nested lookarounds in a similar

manner to Javascript V8.

Supporting capture groups in RE# is an interesting extension for future work, which could

potentially be done as in [Moseley et al. 2023] that is related to tagged-NFA’s [Laurikari 2000],

or building on the works in [Barrière and Pit-Claudel 2024; Mamouras and Chattopadhyay 2024].

A fundamental challenge in RE# is to first specify the intended semantics of capture groups that
overlap in an intersection.

8 Conclusion
We have presented both a theory and an implementation for extended regular expressions including

complement, intersection and positive and negative lookarounds that have not previously been

explored in depth in such a combination. Prior work has analyzed different other sets of extensions

and their properties, but several such combinations veer out of the scope of regular languages.

We have demonstrated the practicality of the class RE# and the power of algebraic simplification

rules through derivatives. We have included extensive evaluation using popular benchmarks and

compared to industrial state-of-the-art engines that come with decades of expert level automata

optimizations, where RE# shows 71% improvement over the fastest industrial matcher today, already

for the baseline, while enabling reliable support for features out of reach for all other engines. There

are also many interesting open problems and extensions remaining.

We expect that these new insights will change how regular expressions are perceived and

the landscape of their applications in the future. Potentially enabling new applications in LLM

prompt engineering frameworks, new applications in medical research and bioinformatics, and new

opportunities in access and resource policy language design byweb service providers, where regexes

are an integral part but today limited to very restricted fragments of RE due to their application in

security critical contexts with high reliability requirements in policy engines.

Acknowledgments
We thank all the anonymous reviewers for their detailed and valuable comments and numerous

helpful suggestions.

Artifact Availability
The artifact [Varatalu 2024a] covers all the results reported in Section 6. The .NET library for RE# is
available as a nuget package [Varatalu 2024c]. The online web application [Varatalu 2024b] provides

an interactive experience with the features of RE# and includes several examples.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

1:30 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

References
Valentin Antimirov. 1996. Partial Derivatives of Regular Expressions and Finite Automata Constructions. Theoretical

Computer Science 155 (1996), 291–319. https://doi.org/10.1007/3-540-59042-0_96

Fahad Ausaf, Roy Dyckhoff, and Christian Urban. 2016. POSIX Lexing with Derivatives of Regular Expressions (Proof Pearl).

In Interactive Theorem Proving, 7th International Conference, ITP 2016 (Nancy, France) (LNCS, Vol. 9807), Jasmin Christian

Blanchette and Stephan Merz (Eds.). Springer, Cham, 69–86. https://doi.org/10.1007/978-3-319-43144-4_5

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,

Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare

Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference, TACAS 2022 (Munich, Germany) (LNCS, Vol. 13243),
Dana Fisman and Grigore Rosu (Eds.). Springer, Cham, 415–442. https://doi.org/10.1007/978-3-030-99524-9_24

Aurèle Barrière and Clément Pit-Claudel. 2024. Linear Matching of JavaScript Regular Expressions. Proc. ACM Program.
Lang. 8, Article 201 (June 2024), 25 pages. https://doi.org/10.1145/3656431

Martin Berglund, Willem Bester, and Brink van der Merwe. 2021a. Formalising and implementing Boost POSIX regular

expression matching. Theoretical Computer Science 857 (2021), 147–165. https://doi.org/10.1016/j.tcs.2021.01.010

Martin Berglund, Brink van der Merwe, and Steyn van Litsenborgh. 2021b. Regular Expressions with Lookahead. Journal of
Universal Computer Science 27, 4 (2021), 324–340. https://doi.org/10.3897/jucs.66330

Janusz A. Brzozowski. 1964. Derivatives of regular expressions. JACM 11 (1964), 481–494. https://doi.org/10.1145/321239.

321249

Benjamin Carle and Paliath Narendran. 2009. On Extended Regular Expressions. In Language and Automata Theory
and Applications, Third International Conference, LATA 2009 (Tarragona, Spain) (LNCS, Vol. 5457), Adrian-Horia Dediu,
Armand-Mihai Ionescu, and Carlos Martín-Vide (Eds.). Springer, Berlin, Heidelberg, 279–289. https://doi.org/10.1007/978-

3-642-00982-2_24

Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot. 2011. Partial Derivatives of an Extended Regular Expression.

In Language and Automata Theory and Applications - 5th International Conference, LATA 2011 (Tarragona, Spain) (LNCS,
Vol. 6638), Adrian-Horia Dediu, Shunsuke Inenaga, and Carlos Martín-Vide (Eds.). Springer, Berlin, Heidelberg, 179–191.

https://doi.org/10.1007/978-3-642-21254-3_13

Taolue Chen, Alejandro Flores-Lamas, Matthew Hague, Zhilei Han, Denghang Hu, Shuanglong Kan, AnthonyW. Lin, Philipp

Rümmer, and Zhilin Wu. 2022. Solving String Constraints with Regex-Dependent Functions through Transducers with

Priorities and Variables. Proc. ACM Program. Lang. 6, POPL, Article 45 (jan 2022), 31 pages. https://doi.org/10.1145/3498707
Nariyoshi Chida and Tachio Terauchi. 2023. On Lookaheads in Regular Expressions with Backreferences. IEICE Trans. Inf.

Syst. 106, 5 (2023), 959–975. https://doi.org/10.1587/transinf.2022edp7098

Russ Cox. 2010. Regular Expression Matching in the Wild. https://swtch.com/~rsc/regexp/regexp3.html

Loris D’Antoni and Margus Veanes. 2021. Automata Modulo Theories. Commun. ACM 64, 5 (May 2021), 86–95. https:

//doi.org/10.1145/3419404

James C. Davis. 2019. Rethinking Regex Engines to Address ReDoS. In Proceedings of ESEC/FSE’19 (Tallinn, Estonia) (ESEC/FSE
2019). ACM, New York, NY, USA, 1256–1258. https://doi.org/10.1145/3338906.3342509

James C. Davis, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee. 2018. The Impact of Regular Expression Denial

of Service (ReDoS) in Practice: An Empirical Study at the Ecosystem Scale. In Proceedings of ESEC/FSE’18 (Lake Buena
Vista, FL, USA) (ESEC/FSE 2018). ACM, New York, NY, USA, 246–256. https://doi.org/10.1145/3236024.3236027

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’08) (Budapest, Hungary) (LNCS, Vol. 4963). Springer,
Berlin, Heidelberg, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

Sebastian Fischer, Frank Huch, and Thomas Wilke. 2010. A Play on Regular Expressions: Functional Pearl. SIGPLAN Not. 45,
9 (2010), 357–368. https://doi.org/10.1145/1863543.1863594

Alain Frisch and Luca Cardelli. 2004. Greedy Regular Expression Matching. In Automata, Languages and Programming
(ICALP’04) (Turku, Finland) (LNCS, Vol. 3142), Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella (Eds.).

Springer, Berlin, Heidelberg, 618–629. https://doi.org/10.1007/978-3-540-27836-8_53

Andrew Gallant. 2024. BurntSushi: rebar. https://github.com/BurntSushi/rebar

Wouter Gelade and Frank Neven. 2012. Succinctness of the Complement and Intersection of Regular Expressions. ACM
Trans. Comput. Log. 13, 1 (2012), 4:1–4:19. https://doi.org/10.1145/2071368.2071372

Alexis Le Glaunec, Lingkun Kong, and Konstantinos Mamouras. 2023. Regular Expression Matching using Bit Vector

Automata. Proc. ACM Program. Lang. 7, OOPSLA1 (2023), 492–521. https://doi.org/10.1145/3586044

Victor Mikhailovich Glushkov. 1961. The abstract theory of automata. Russian Math. Surveys 16 (1961), 1–53. https:

//doi.org/10.1070/RM1961v016n05ABEH004112

GNU. 2023. grep. https://www.gnu.org/software/grep/.

Google. 2024. RE2. https://github.com/google/re2.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

https://doi.org/10.1007/3-540-59042-0_96
https://doi.org/10.1007/978-3-319-43144-4_5
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/3656431
https://doi.org/10.1016/j.tcs.2021.01.010
https://doi.org/10.3897/jucs.66330
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.1007/978-3-642-00982-2_24
https://doi.org/10.1007/978-3-642-00982-2_24
https://doi.org/10.1007/978-3-642-21254-3_13
https://doi.org/10.1145/3498707
https://doi.org/10.1587/transinf.2022edp7098
https://swtch.com/~rsc/regexp/regexp3.html
https://doi.org/10.1145/3419404
https://doi.org/10.1145/3419404
https://doi.org/10.1145/3338906.3342509
https://doi.org/10.1145/3236024.3236027
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1863543.1863594
https://doi.org/10.1007/978-3-540-27836-8_53
https://github.com/BurntSushi/rebar
https://doi.org/10.1145/2071368.2071372
https://doi.org/10.1145/3586044
https://doi.org/10.1070/RM1961v016n05ABEH004112
https://doi.org/10.1070/RM1961v016n05ABEH004112
https://www.gnu.org/software/grep/
https://github.com/google/re2

RE#: High Performance Derivative-Based Regex Matching 1:31

Niels Bjørn Bugge Grathwohl, Fritz Henglein, Ulrik Terp Rasmussen, Kristoffer Aalund Søholm, and Sebastian Paaske

Tørholm. 2016. Kleenex: compiling nondeterministic transducers to deterministic streaming transducers. In 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016 (St. Petersburg, FL, USA), Rastislav
Bodík and Rupak Majumdar (Eds.). ACM, USA, 284–297. https://doi.org/10.1145/2837614.2837647

Lukás Holík, Juraj Síc, Lenka Turonová, and Tomás Vojnar. 2023. Fast Matching of Regular Patterns with Synchronizing

Counting. In Foundations of Software Science and Computation Structures - 26th International Conference, FoSSaCS 2023
(Paris, France) (LNCS, Vol. 13992), Orna Kupferman and Pawel Sobocinski (Eds.). Springer, Cham, 392–412. https:

//doi.org/10.1007/978-3-031-30829-1_19

Alec Koumjian. 2024. akoumjian: datefinder. https://github.com/akoumjian/datefinder

Dexter Kozen. 1997. Kleene algebra with tests. TOPLAS 19, 3 (1997), 427–443. https://doi.org/10.1145/256167.256195

Ville Laurikari. 2000. NFAs with tagged transitions, their conversion to deterministic automata and application to regular

expressions. In 7th International Symposium on String Processing and Information Retrieval (A Curuna, Spain). IEEE,

Piscataway, NJ, USA, 181–187. https://doi.org/10.1109/SPIRE.2000.878194

Tianyi Liang, Nestan Tsiskaridze, Andrew Reynolds, Cesare Tinelli, and Clark Barrett. 2015. A Decision Procedure for

Regular Membership and Length Constraints over Unbounded Strings?. In Frontiers of Combining Systems, FroCoS 2015
(Wroclaw, Poland) (LNCS/LNAI, Vol. 9322). Springer, Cham, 135–150. https://doi.org/10.1007/978-3-319-24246-0_9

Blake Loring, Duncan Mitchell, and Johannes Kinder. 2019. Sound Regular Expression Semantics for Dynamic Symbolic

Execution of JavaScript. In 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI’19
(Phoenix, AZ, USA). ACM, New York, NY, USA, 425–438. https://doi.org/10.1145/3314221.3314645

Konstantinos Mamouras and Agnishom Chattopadhyay. 2024. Efficient Matching of Regular Expressions with Lookaround

Assertions. Proc. ACM Program. Lang. 8, POPL (2024), 2761–2791. https://doi.org/10.1145/3632934

Robert McNaughton and Hisao Yamada. 1960. Regular expressions and state graphs for automata. IRE Transactions on
Electronic Computers EC-9 (1960), 39–47. https://doi.org/10.1109/TEC.1960.5221603

Microsoft. 2021a. CredScan. https://secdevtools.azurewebsites.net/helpcredscan.html.

Microsoft. 2021b. Regular Expression Language - Quick Reference. https://docs.microsoft.com/en-us/dotnet/standard/base-

types/regular-expression-language-quick-reference.

Microsoft. 2022. .NET Regular Expressions. https://github.com/dotnet/runtime/tree/main/src/libraries/System.Text.

RegularExpressions.

Takayuki Miyazaki and Yasuhiko Minamide. 2019. Derivatives of Regular Expressions with Lookahead. J. Inf. Process. 27
(2019), 422–430. https://doi.org/10.2197/ipsjjip.27.422

Akimasa Morihata. 2012. Translation of Regular Expression with Lookahead into Finite State Automaton. Computer Software
29, 1 (2012), 147–158. https://doi.org/10.11309/jssst.29.1_147

Dan Moseley, Mario Nishio, Jose Perez Rodriguez, Olli Saarikivi, Stephen Toub, Margus Veanes, Tiki Wan, and Eric Xu. 2023.

Derivative Based Nonbacktracking Real-World Regex Matching with Backtracking Semantics. In PLDI ’23: 44th ACM
SIGPLAN International Conference on Programming Language Design and Implementation (Orlando, FL, USA), Nate Foster

et al. (Ed.). ACM, New York, NY, USA, 1026–1049. https://doi.org/10.1145/3591262

OISF. 2024. Suricata. https://suricata.io/

OWASP. 2024. Regular expression Denial of Service - ReDoS. https://owasp.org/www-community/attacks/Regular_

expression_Denial_of_Service_-_ReDoS

Scott Owens, John H. Reppy, and Aaron Turon. 2009. Regular-expression Derivatives Re-examined. J. Funct. Program. 19, 2
(2009), 173–190. https://doi.org/10.1017/S0956796808007090

Damien Pous. 2015. Symbolic Algorithms for Language Equivalence and Kleene Algebra with Tests. ACM SIGPLAN Notices
– POPL’15 50, 1 (2015), 357–368. https://doi.org/10.1145/2775051.2677007

Kun Qiu, Harry Chang, Yang Hong, Wenjun Zhu, Xiang Wang, and Baoqian Li. 2021. Teddy: An Efficient SIMD-based Literal

Matching Engine for Scalable Deep Packet Inspection. In ICPP 2021: 50th International Conference on Parallel Processing
(Lemont, IL, USA), Xian-He Sun, Sameer Shende, Laxmikant V. Kalé, and Yong Chen (Eds.). ACM, USA, 62:1–62:11.

https://doi.org/10.1145/3472456.3473512

Rust. 2024. The Rust Programming Language: regex. https://github.com/rust-lang/regex

Olli Saarikivi, Margus Veanes, Tiki Wan, and Eric Xu. 2019. Symbolic Regex Matcher. In Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’19 (Prague, Czech Republic) (LNCS, Vol. 11427), Tomáš Vojnar and Lijun

Zhang (Eds.). Springer, Cham, 372–378. https://doi.org/10.1007/978-3-030-17462-0_24

SMT-LIB. 2021. The Satisfiability Modulo Theories Library. http://smtlib.cs.uiowa.edu/

Henry Spencer. 1994. A Regular-expression Matcher. In Software Solutions in C. Academic Press Professional, Inc., USA,

35–71. https://dl.acm.org/doi/10.5555/156626.184689

Caleb Stanford, Margus Veanes, and Nikolaj Bjørner. 2021. Symbolic Boolean Derivatives for Efficiently Solving Extended

Regular Expression Constraints. In PLDI 2021: Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (Virtual Event). ACM, New York, NY, USA, 620–635. https://doi.org/

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

https://doi.org/10.1145/2837614.2837647
https://doi.org/10.1007/978-3-031-30829-1_19
https://doi.org/10.1007/978-3-031-30829-1_19
https://github.com/akoumjian/datefinder
https://doi.org/10.1145/256167.256195
https://doi.org/10.1109/SPIRE.2000.878194
https://doi.org/10.1007/978-3-319-24246-0_9
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1145/3632934
https://doi.org/10.1109/TEC.1960.5221603
https://secdevtools.azurewebsites.net/helpcredscan.html
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://github.com/dotnet/runtime/tree/main/src/libraries/System.Text.RegularExpressions
https://github.com/dotnet/runtime/tree/main/src/libraries/System.Text.RegularExpressions
https://doi.org/10.2197/ipsjjip.27.422
https://doi.org/10.11309/jssst.29.1_147
https://doi.org/10.1145/3591262
https://suricata.io/
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://doi.org/10.1017/S0956796808007090
https://doi.org/10.1145/2775051.2677007
https://doi.org/10.1145/3472456.3473512
https://github.com/rust-lang/regex
https://doi.org/10.1007/978-3-030-17462-0_24
http://smtlib.cs.uiowa.edu/
https://dl.acm.org/doi/10.5555/156626.184689
https://doi.org/10.1145/3453483.3454066
https://doi.org/10.1145/3453483.3454066

1:32 Ian Erik Varatalu, Margus Veanes, and Juhan Ernits

10.1145/3453483.3454066

Martin Sulzmann and Kenny ZhuoMing Lu. 2012. Regular Expression Sub-Matching Using Partial Derivatives. In Proceedings
of the 14th Symposium on Principles and Practice of Declarative Programming (PPDP’12). ACM, New York, NY, USA, 79–90.

https://doi.org/10.1145/2370776.2370788

Chengsong Tan and Christian Urban. 2023. POSIX Lexing with Bitcoded Derivatives. In 14th International Conference on
Interactive Theorem Proving (Schloss Dagstuhl, Germany) (LIPICS, 26), A. Naumowicz and R. Thiemann (Eds.). Dagstuhl

Publishing, Dagstuhl, 26:1–26:18. https://doi.org/10.4230/LIPIcs.ITP.2023.27

Ken Thompson. 1968. Programming Techniques: Regular Expression Search Algorithm. Commun. ACM 11, 6 (jun 1968),

419–422. https://doi.org/10.1145/363347.363387

Stephen Toub. 2024. Performance Improvements in .NET 9. Microsoft .NET Blog. https://devblogs.microsoft.com/dotnet/

performance-improvements-in-net-9/

Lenka Turoňová, Lukáš Holík, Ivan Homoliak, Ondřej Lengál, Margus Veanes, and Tomáš Vojnar. 2022. Counting in

Regexes Considered Harmful: Exposing ReDoS Vulnerability of Nonbacktracking Matchers. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, Boston, MA, 4165–4182. https://www.usenix.org/conference/

usenixsecurity22/presentation/turonova

Lenka Turoňová, Lukáš Holík, Ondřej Lengál, Olli Saarikivi, Margus Veanes, and Tomáš Vojnar. 2020. Regex Matching

with Counting-Set Automata. Proceedings of the ACM on Programming Languages 4, OOPSLA, Article 218 (Nov. 2020),
30 pages. https://doi.org/10.1145/3428286

Christian Urban. 2023. POSIX Lexing with Derivatives of Regular Expressions. Journal of Automated Reasoning 67 (July

2023), 1–24. https://doi.org/10.1007/s10817-023-09667-1

Ian Erik Varatalu. 2024a. Artifact for this paper. https://doi.org/10.5281/zenodo.13937348

Ian Erik Varatalu. 2024b. RE# Interactive. https://ieviev.github.io/resharp-webapp/

Ian Erik Varatalu. 2024c. Resharp. https://www.nuget.org/packages/Resharp

Ian Erik Varatalu, Margus Veanes, and Juhan Ernits. 2023. Derivative Based Extended Regular Expression Matching

Supporting Intersection, Complement and Lookarounds. In arXiv. https://doi.org/10.48550/arXiv.2309.14401

Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu Hu, and Heqing Zhu. 2019. Hyperscan:

A Fast Multi-pattern Regex Matcher for Modern CPUs. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19). USENIX Association, Boston, MA, 631–648. https://www.usenix.org/conference/nsdi19/

presentation/wang-xiang

Ekaterina Zhuchko, Margus Veanes, and Gabriel Ebner. 2024. Lean Formalization of Extended Regular Expression Matching

with Lookarounds. In 13th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP’24) (London,
UK). ACM, New York, NY, USA, 118–131. https://doi.org/10.1145/3636501.3636959

Received 2024-07-10; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 1. Publication date: January 2025.

https://doi.org/10.1145/3453483.3454066
https://doi.org/10.1145/3453483.3454066
https://doi.org/10.1145/2370776.2370788
https://doi.org/10.4230/LIPIcs.ITP.2023.27
https://doi.org/10.1145/363347.363387
https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-9/
https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-9/
https://www.usenix.org/conference/usenixsecurity22/presentation/turonova
https://www.usenix.org/conference/usenixsecurity22/presentation/turonova
https://doi.org/10.1145/3428286
https://doi.org/10.1007/s10817-023-09667-1
https://doi.org/10.5281/zenodo.13937348
https://ieviev.github.io/resharp-webapp/
https://www.nuget.org/packages/Resharp
https://doi.org/10.48550/arXiv.2309.14401
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://doi.org/10.1145/3636501.3636959

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Preliminaries
	4 Regexes with Lookarounds and Location Derivatives
	4.1 Full Class ERE with Lookarounds
	4.2 Regexes Supported in RE#
	4.3 Match Semantics
	4.4 Reversal
	4.5 Nullability
	4.6 Lookaround Reductions in ERE with Lookarounds
	4.7 Derivatives in ERE
	4.8 Adding Lookarounds
	4.9 Latest Match End
	4.10 Leftmost-Longest Match Algorithm

	5 Implementation
	5.1 Prefilter
	5.2 Combined Techniques and Inner Loop Vectorization
	5.3 Rewrite Rules and Subsumption
	5.4 Overhead Elimination
	5.5 Pending Nullable Position Representation in Lookahead Annotations
	5.6 Validating Correctness of RE# Implementation Using Formalized Lean Semantics

	6 Evaluation
	6.1 Baseline Comparison
	6.2 Extended Comparison
	6.3 Optimizations and Overall Effect on Performance

	7 Related and Future Work
	8 Conclusion
	References

