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——— Abstract

Extreme classification is a rapidly growing research area within machine learning focusing on

multi-class and multi-label problems involving an extremely large number of labels (even more
than a million). Many applications of extreme classification have been found in diverse areas
ranging from language modeling to document tagging in NLP, face recognition to learning uni-
versal feature representations in computer vision, gene function prediction in bioinformatics, etc.
Extreme classification has also opened up a new paradigm for key industrial applications such
as ranking and recommendation by reformulating them as multi-label learning tasks where each
item to be ranked or recommended is treated as a separate label. Such reformulations have led to
significant gains over traditional collaborative filtering and content-based recommendation tech-
niques. Consequently, extreme classifiers have been deployed in many real-world applications in
industry.

Extreme classification has raised many new research challenges beyond the pale of traditional
machine learning including developing log-time and log-space algorithms, deriving theoretical
bounds that scale logarithmically with the number of labels, learning from biased training data,
developing performance metrics, etc. The seminar aimed at bringing together experts in machine
learning, NLP, computer vision, web search and recommendation from academia and industry
to make progress on these problems. We believe that this seminar has encouraged the inter-
disciplinary collaborations in the area of extreme classification, started discussion on identification
of thrust areas and important research problems, motivated to improve the algorithms upon the
state-of-the-art, as well to work on the theoretical foundations of extreme classification.
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1 Executive Summary
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The topic of this seminar is in the general context of machine learning [10] which concerns the
study and development of algorithms that learn from empirical data how to make accurate
predictions about yet unseen data without being explicitly programmed. Multi-class and
multi-label learning are classical problems in machine learning. The outputs here stem from
a finite set of categories (classes), and the aim is to classify each input into one (multi-class)
or multiple (multi-label) out of several possible target classes. Classical applications of
multi-class and multi-label learning include handwritten optical character recognition [8],
part-of-speech tagging [11], and text categorization [7]. However, with the advent of the big
data era, learning problems can involve even millions of classes. As examples let us consider
the following problems:

Person recognition in Facebook images (there are billions of Facebook users; given an

image, we might want to predict the subset of users present in the image for such

applications like security, surveillance, social network analysis, etc.).

Predicting Wikipedia tags for new Wikipedia articles or webpages (Wikipedia has almost

2 million tags now).

Recommending Amazon items where each of the 100 million items on Amazon is a

separate label.

Search on Google/Bing where each of the 100 million queries is a separate label.

Language modelling — predicting the next word in a sentence from the millions of words

available.

The problems of this type are often referred to as extreme classification. They have posed new
computational and statistical challenges and opened a new line of research within machine
learning.

The main goal of extreme classification is to design learning and prediction algorithms,
characterized by strong statistical guarantees, that exhibit sublinear time and space complexity
in the number of classes. Unfortunately, the theoretical results obtained so far are still not
satisfactory and very limited. Moreover, the problems at this scale often suffer from unreliable
learning information, e.g., there is no chance to identify all positive labels and assign them
precisely to training examples. The majority of labels is used very rarely, which leads to
the problem of the long-tail distribution. In practical applications, learning algorithms
run in rapidly changing environments. Hence, during testing/prediction phase new labels
might appear that have not been present in the training set [4, 2]. This is the so-called
zero-shot learning problem. Furthermore, typical performance measures used to assess the
prediction quality of learning algorithms, such as 0/1 or Hamming loss, do not fit well to the
nature of extreme classification problems. Therefore, other measures are often used such as
precision@k [9] or the F-measure [6]. However, none of the above is appropriate to measure
predictive performance in the long-tail problems or in the zero-shot setting. Hence, the goal
is to design measures, which promote a high coverage of sparse labels [5].
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The seminar aimed at bringing together researchers interested in extreme classification to
encourage discussion on the above mentioned problems, identify the most important ones
and promising research directions, foster collaboration and improve upon the state-of-the-
art algorithms. The meeting in this regard was very successful as participants from both
academia and industry as well as researchers from both core machine learning and applied
areas such as recommender systems, computer vision, computational advertising, information
retrieval and natural language processing, were given the opportunity to see similar problems
from different angles.

The seminar consisted of invited talks, working groups, presentation of their results, and
many informal discussions. The talks concerned among others such topics as: common applic-
ations of extreme classification, potential applications in bioinformatics and biotechnology,
neural networks for extreme classification, learning theory for problems with a large number
of labels, approaches for dealing with tail labels, learning and prediction algorithms, extreme
classification challenges in natural language processing, multi-task learning with large number
of tasks, pitfalls of multi-class classification, recommendation systems and their connection
to extreme classification, counterfactual learning and zero-shot learning. The short abstracts
of these talks can be found below in this report. The four working groups focused on the
following problems: loss functions and types of predictions in multi-label classification, deep
networks for extreme classification, zero-shot learning and long tail labels, and generalization
bounds and log-time-and-space algorithms. Short summaries of the results obtained by the
working groups can also be found below.

During the seminar, we also discussed different definitions of extreme classification. The
basic one determines extreme classification as a multi-class or multi-label problem with a very
large number of labels. The labels are rather typical identifiers without any explicit meaning.
However, there usually exists some additional information about similarities between the
labels (or this information can be extracted or learned from data). From this point of view,
we can treat extreme classification as a learning problem with a weak structure over the
labels. This is in difference to structured output prediction [1], where we assume much
stronger knowledge about the structure. The most general definition, however, says that
extreme classification concerns all problems with an extreme number of choices.

The talks, working groups, and discussions have helped to gain a better understanding of
existing algorithms, theoretical challenges, and practical problems not yet solved. We believe
that the seminar has initiated many new collaborations and strengthen the existing ones
that will soon deliver new results for the extreme classification problems.
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3 Overview of Talks

3.1 Discovering Tail-labels Through Robustness in Extreme
Classification

Rohit Babbar (Aalto University, FI)

License ) Creative Commons BY 3.0 Unported license
© Rohit Babbar
Joint work of Rohit Babbar, Bernhard Scholkopf
Main reference Rohit Babbar, Bernhard Scholkopf: “Adversarial Extreme Multi-label Classification”, CoRR,
Vol. abs/1803.01570, 2018.
URL http://arxiv.org/abs/1803.01570

The goal in extreme multi-label classification is to learn a classifier which can assign a small
subset of relevant labels to an instance from an extremely large set of target labels. Datasets
in extreme classification exhibit a long tail of labels which have a small number of positive
training instances. The tail-labels exhibit a substantial change in their feature distribution
within the training set and also from the training set to those encountered during prediction.

We, therefore, pose the learning task in extreme classification as learning in the presence
of adversarial perturbations. By drawing connections to robust optimization, we show that
this motivates the well-known 11-regularized SVM from an adversarial robustness perspective.
For distributed training, the proposed method relies on one-vs-rest paradigm similar to
DiSMEC [1], and resulting method leads to much better performance than state-of-the-art
methods on publicly available datasets consisting of up to 670,000 labels.
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3.2 Insights on representational similarity in neural networks with
canonical correlation

Samy Bengio (Google Inc. — Mountain View, US)
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© Samy Bengio
Joint work of Ari S. Morcos, Maithra Raghu, Samy Bengio
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Comparing different neural network representations and determining how representations
evolve over time remain challenging open questions in our understanding of the function of
neural networks. Comparing representations in neural networks is fundamentally difficult
as the structure of representations varies greatly, even across groups of networks trained on
identical tasks, and over the course of training. In this work, we present a new projection
weighted CCA (Canonical Correlation Analysis) as a tool for understanding neural networks,
building off of SVCCA [1], a recently proposed method. We first improve the core method,
showing how to differentiate between signal and noise, and then apply this technique to
compare across a group of convolutional networks (CNNs), demonstrating that networks
which generalize converge to more similar representations than networks which memorize,
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that wider networks converge to more similar solutions than narrow networks, and that
trained networks with identical topology but different learning rates converge to distinct
clusters with diverse representations. We also investigate the representational dynamics of
recurrent neural networks (RNNs), across both training and sequential timesteps, finding that
RNNs converge in a bottom-up pattern over the course of training and that the hidden state
is highly variable over the course of a sequence, even when accounting for linear transforms.
Together, these results provide new insights into the function of CNNs and RNNs, and
demonstrate the utility of using CCA to understand representations.

References
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3.3 Extreme classification: applications and generalizations
Krzysztof Dembezyriski (Poznan University of Technology, PL)
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In this talk we shortly reviewed potential applications of extreme classification. We started
with well-known applications that are usually referred to in research articles, such as tagging
of Wikipedia articles [3] or predicting queries for which a given add will be clicked [2]. We
then made a link to two types of dyadic problems [1] where predictions are made for pairs
of objects. In the first type only ids of objects are known (e.g., collaborative filtering via
matrix factorization), while in the second type also the feature descriptions of objects are
given (e.g. link prediction, learning to rank, zero-shot learning). We showed that extreme
classification is in-between these two types of dyadic prediction.

To be more precise, consider two types of objects coming from two different domains
X and Y. Assume that each object, either z € X or y € Y, is identified by its id and/or
described by a set of features. We are interested in determining the relation between a pair
of objects (z,y). This relation could be a label (similar or not), an ordinal value (like stars),
or real value (strength of the relation). Some of the objects are seen during training, while
the others are not. In such setting, we can define four different learning scenarios: A, B, C
and D. Scenario A corresponds to collaborative filtering in which all objects, xs and ys, are
known. It is enough to use their ids to perform matrix factorization to obtain the final model.
Alternatively, one can also try to use side information available for the objects. Scenarios
B and C correspond to (extreme) multi-class or multi-label classification or multivariate
regression where one type of objects is completely known during training and plays the role of
labels or output variables. The features of the labels or the output variables can also be used
to improve the final models. The most challenging scenario is D as the objects of interest
have not been seen during training. It corresponds to zero-shot learning in classification, the
cold-start problem in recommendation systems, and learning similarity functions in general.
This generalized view shows that extreme classification is in fact strictly related to dyadic
prediction. A similar observation is also behind the popular Star Space model [4].

This link to dyadic prediction shows new potential applications of extreme classification
in a wide spectrum of problems with a large set of possible choices such as product recom-
mendation, smart email replies, suggestion of related queries or assignment of experts to
queries posted on Q&A platforms.
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3.4 Extreme Classification Challenge — Seed Sorting
Matthias Enders (NPZ Innovation GmbH, DE)

License ) Creative Commons BY 3.0 Unported license
© Matthias Enders

Plant seeds are by far the most important source of human nutrition. All over the world
large quantities are harvested and processed every year. Only covering five important crops
(Barley, Maize, Rapeseed, Wheat, Rice) 7.4x1016 seeds where harvested in 2016. A major
step in processing these seeds is cleaning. This is accomplished using the combination of
some physical methods (sieving, blowing out lightweight objects, ...) and novel optical seed
sorters, which imaging single seeds and sort them according to size, shape and color. This
sorting and cleaning is of major importance, as some objects (e.g. see Ergotism / Claviceps
purpurea) are hazardous and can contaminate large quantities after milling. On the other
hand, the state-of-the-art setup of cleaning machinery has a rough false positive rate of about
0.01. Thus, at least 1% of all harvested seeds are sorted out mistakenly, summing up to
more than 27 million tons per year for the five crops given above. Improving sorting systems
thus may contribute to meet the necessary increase in food production required to cope with
the growing world population. Extreme classification could be employed to tackle a range of
challenges like the enormous number of species (classes) which could potentially be found in
a seed lot, the bias in the numbers of objects (crop vs. weed) both in the training set, as
well as later in the classification or the huge amount of variance within on class versus the
small amount of variance between some classes. Furthermore, image acquisition technologies
evolve further providing multiple, heterogeneous (multi-modal) data sources which could be
combined with traditional imaging.
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3.5 Extreme classification challenges in natural language processing

Edouard Grave (Facebook — Menlo Park, US)
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Main reference Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, Hervé Jégou: “Efficient
softmax approximation for GPUs”, in Proc. of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, Proceedings of Machine
Learning Research, Vol. 70, pp. 1302-1310, PMLR, 2017.
URL http://proceedings.mlr.press/v70/gravel7a.html

In this talk, we give a brief (and incomplete) overview of extreme classification problems which
arise in the field of natural language processing. First, we discuss the problem of statistical
language modeling, which has applications in machine translation, speech recognition and
summarization. The goal of language modeling is to learn a probability distribution over
sequences of words. This problem is usually framed as learning the conditional probability of
word at position t, given the history of all words appearing up to time t-1. Nowadays, this
conditional probability is usually estimated using neural networks, which implies computing
a softmax over the full vocabulary. Many datasets contain hundreds of thousands of words
in their vocabulary, and computing the softmax can be seen as an extreme classification
problem. Different approaches have been proposed to speed up this computation bottleneck,
such as negative sampling, hierarchical classifiers, or vocabulary selection. A second challenge
for language models are out-of-vocabulary words, such as new named entities or unseen
inflected forms of words for morphologically rich languages. We discuss potential solutions
for this problem, such as: using character level information, copy mechanisms (e.g. in
machine translation) or few shot learning with cache models. Finally, in the last part of
the presentation, we briefly discuss extreme classification challenges in other applications
of natural language processing, such as entity linking, learning word representation or text
classification.

3.6 Combinatorial and Structural Results for gamma-Psi-dimensions
Yann Guermeur (LORIA & INRIA Nancy, FR)

License ) Creative Commons BY 3.0 Unported license
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Joint work of Yann Guermeur
Main reference Yann Guermeur: “Combinatorial and Structural Results for gamma-Psi-dimensions”, CoRR,
Vol. abs/1809.07310, 2018.
URL http://arxiv.org/abs/1809.07310

One of the main open problems of the theory of margin multi-category pattern classification
is the characterization of the way the confidence interval of a guaranteed risk should vary
as a function of the three basic parameters which are the sample size m, the number C of
categories and the scale parameter gamma. This is especially the case when working under
minimal learnability hypotheses. In that context, the derivation of a bound is based on
the handling of capacity measures belonging to three main families: Rademacher/Gaussian
complexities, metric entropies and scale-sensitive combinatorial dimensions. The scale-
sensitive combinatorial dimensions dedicated to the classifiers of interest are the gamma-Psi-
dimensions. This talk introduces the combinatorial and structural results needed to involve
them in the derivation of guaranteed risks. Such a bound is then established, under minimal
hypotheses regarding the classifier. Its dependence on m, C and gamma is characterized.
The special case of multi-class support vector machines is used to illustrate the capacity of
the gamma-Psi-dimensions to take into account the specificities of a classifier.
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3.7 Loss in Translation: Learning Bilingual Word Mapping with a
Retrieval Criterion

Armand Joulin (Facebook — Menlo Park, US)

License @@ Creative Commons BY 3.0 Unported license
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Main reference Armand Joulin, Piotr Bojanowski, Tomas Mikolov, Edouard Grave: “Improving Supervised
Bilingual Mapping of Word Embeddings”, CoRR, Vol. abs/1804.07745, 2018.
URL http://arxiv.org/abs/1804.07745

Continuous word representations learned separately on distinct languages can be aligned so
that their words become comparable in a common space. Existing works typically solve a
least-square regression problem to learn a rotation aligning a small bilingual lexicon, and
use a retrieval criterion for inference. In this talk, we propose an unified formulation that
directly optimizes a retrieval criterion in an end-to-end fashion. Our experiments on standard
benchmarks show that our approach outperforms the state of the art on word translation,
with the biggest improvements observed for distant language pairs such as English-Chinese.

3.8 Multi-task Learning with A Very Large Number of Tasks
Christoph H. Lampert (IST Austria — Klosterneuburg, AT)

License ) Creative Commons BY 3.0 Unported license
© Christoph H. Lampert and Anastasia Pentina
Joint work of Anastasia Pentina, Christoph H. Lampert
Main reference Anastasia Pentina, Christoph H. Lampert: “Multi-task Learning with Labeled and Unlabeled
Tasks”, in Proc. of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, Proceedings of Machine Learning Research, Vol. 70,
pp. 2807-2816, PMLR, 2017.
URL http://proceedings.mlr.press/v70/pentinal7a.html

We study a multi-task learning setting in which a learning system is given a very large
number of supervised learning tasks and needs to solve all of them. A typical example is a
personalization task, where individual predictors should be constructed for many users. In
contrast to previous work, which required that annotated training data must be available for
all tasks, we consider a new setting, in which for some tasks, potentially most of them, only
unlabeled training data is provided. Consequently, to solve all tasks, information must be
transferred between tasks with labels and tasks without labels. Focusing on an instance-based
transfer method we analyze two variants of this setting: when the set of labeled tasks is fixed,
and when it can be actively selected by the learner. We state and prove a generalization
bound that covers both scenarios and derive from it an algorithm for making the choice of
labeled tasks (in the active case) and for transferring information between the tasks in a
principled way.
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3.9 Contextual Memory Trees
John Langford (Microsoft Research — Redmond, US)
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Main reference Wen Sun, Alina Beygelzimer, Hal Daumé I1I, John Langford, Paul Mineiro: “Contextual Memory
Trees”, CoRR, Vol. abs/1807.06473, 2018.
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We design and study a Contextual Memory Tree (CMT), a learning memory controller that
inserts new memories into an experience store of unbounded size. It is designed to efficiently
query for memories from that store, supporting logarithmic time insertion and retrieval
operations. Hence CMT can be integrated into existing statistical learning algorithms as an

augmented memory unit without substantially increasing training and inference computation.

We demonstrate the efficacy of CMT by augmenting existing multi-class and multi-label
classification algorithms with CMT and observe statistical improvement. We also test CMT
learning on several image-captioning tasks to demonstrate that it performs computationally

better than a simple nearest neighbors memory system while benefitting from reward learning.

3.10 Statistical models of genotype-phenotype associations
Christoph Lippert (Maz-Delbriick-Centrum — Berlin, DE)

License ) Creative Commons BY 3.0 Unported license
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Arikan, Alena Harley, Axel Bernal, Peter Garst, Victor Lavrenko, Ken Yocum, Theodore Wong,
Mingfu Zhu, Wen-Yun Yang, Chris Chang, Tim Lu, Charlie W. H. Lee, Barry Hick

Main reference Christoph Lippert, Riccardo Sabatini, M. Cyrus Maher, Eun Yong Kang, Seunghak Lee, Okan
Arikan, Alena Harley, Axel Bernal, Peter Garst, Victor Lavrenko, Ken Yocum, Theodore Wong,
Mingfu Zhu, Wen-Yun Yang, Chris Chang, Tim Lu, Charlie W. H. Lee, Barry Hicks, Smriti
Ramakrishnan, Haibao Tang, Chao Xie, Jason Piper, Suzanne Brewerton, Yaron Turpaz, Amalio
Telenti, Rhonda K. Roby, Franz J. Och, and J. Craig Venter: “Identification of individuals by trait
prediction using whole-genome sequencing data”, In Proceedings of the National Academy of
Sciences 114.38, 2017: 10166-10171.

URL https://doi.org/10.1073/pnas.1711125114

Technological advances in clinical measurement devices based on sequencing, imaging, and
wearables promise to accurately diagnose diseases in their earliest stages when they can be
readily treated. Machine learning is central to this vision of personalized medicine, where
each individual is monitored based on their medical history, as well as their own genetic
and environmental disease risk. While today, medicine is still centered around treating
symptoms rather than personalized treatment of disease mechanisms, current prospective
cohort studies such as the UK Biobank and the German NaKo that pair deep phenotyping,
genetics and detailed longitudinal recordings of occurrence and progression of disease in large
numbers of individuals will serve as reference populations to assess and predict disease risk
and progression of an individual in a data-driven way. With these large cohorts comprising
multi-modal structured data types coming online, the need for Machine Learning methods for
extracting, quantifying, and integrating high-dimensional disease phenotypes from multiple
data sources is mounting. Accurate statistical models that take into account confounding,
data biases and multiple testing are essential to determine robust associations and derive
precise risk models for diseases in the presence of environment, lifestyle, medication, and
molecular measurements that ultimately will serve as an empirical footing for personalized
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predictive medicine. While high-throughput methods have been simplifying the process of
screening enormously large cohorts for genomic variation and imaging phenotypes, the ability
to obtain accurate quantitative phenotypic information is becoming the next bottleneck
to closing the genotype-phenotype gap. In my talk I will present a proof-of-concept study,
where we applied whole-genome sequencing, detailed phenotyping, and statistical modeling
to predict a wide range of phenotypes, including height, weight, BMI, age, and 3D facial
images [1].
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3.11 Gravity: Efficient Training on Very Large Corpora via Gramian
Estimation

Nicolas Mayoraz (Google Research — Mountain View, US)
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John R. Anderson: “Efficient Training on Very Large Corpora via Gramian Estimation”, CoRR,
Vol. abs/1807.07187, 2018.
URL http://arxiv.org/abs/1807.07187

We study the problem of learning similarity functions over very large corpora using neural
network embedding models. These models are typically trained using SGD with sampling of
random observed and unobserved pairs, with a number of samples that grows quadratically
with the corpus size, making it expensive to scale to very large corpora. We propose new
efficient methods to train these models without having to sample unobserved pairs. Inspired
by matrix factorization, our approach relies on adding a global quadratic penalty to all
pairs of examples and expressing this term as the matrix-inner-product of two generalized
Gramians. We show that the gradient of this term can be efficiently computed by maintaining
estimates of the Gramians, and develop variance reduction schemes to improve the quality of
the estimates. We conduct large-scale experiments that show a significant improvement in
training time and generalization quality compared to traditional sampling methods.
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3.12 Extremely Fast Extreme Classification
Alexandru Niculescu-Mizil (NEC Laboratories America, Inc. — Princeton, US)
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With the advent of big data, the number of extreme classification problems, as well as
the number of labels per problem, is bound to dramatically increase. One consequence of
the explosion in the number of labels is a significant increase in the test-time (production
time) computational burden. Most approaches to multiclass and multilabel classification,
such as the very popular one-vs-all scheme or the Crammer-Singer multiclass SVM, have to
systematically evaluate the match between each label and the test instance in order to make
a prediction, leading to a test-time complexity linear in the number of labels.

As the number of labels grows the systematic evaluation of all labels becomes prohibitive
for applications where the constraints on computational resources and response time are very
stringent in production. Examples of such applications are interactive tag recommendation
or real-time bidding where a real-time response is required in production; high volume
streaming problems such as ad placement where a large volume of data has to be processed
in production; or applications where classifiers must be deployed on restricted hardware
such as laptops, smartphones or satellites. In all these types of applications, reducing the
computational burden in production while maintaining top performance is critical.

In my talk at Dagstuhl I will give a quick overview of existing techniques for reducing
the test-time computational burden of multilabel classifiers and I will discuss remaining
challenges in this direction.

3.13 Structural Assumptions for Extreme Classification
Pradeep Ravikumar (Carnegie Mellon University — Pittsburgh, US)
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Extreme classification problems, either multiclass or multilabel, have such a large number of
classes, that even training or prediction costs that are linear in the number of classes become
intractable. State-of-the-art methods aim to reduce this complexity by imposing structural
constraints among the labels, or the classifier itself, either implicitly or explicitly. One class
of methods exploit correlations among the labels, such as low-rank matrix structure, or a
balanced tree structure over the set of labels. A related class of methods aim to compress
the space of labels, that in turn imposes implicit constraints on the set of labels. Lastly,
some methods impose either primal or dual sparsity on the classifier estimation problem.

We briefly discuss these varied assumptions that have been proposed in the literature,
and pose the open question of which assumptions might be most natural in practical extreme
classification settings. A related question is understanding the dependence of statistical
complexity, specifically the generalization properties of extreme classification methods, on
such structural assumptions.

75

18291


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://proceedings.mlr.press/v54/niculescu-mizil17a.html
http://proceedings.mlr.press/v54/niculescu-mizil17a.html
http://proceedings.mlr.press/v54/niculescu-mizil17a.html
http://proceedings.mlr.press/v54/niculescu-mizil17a.html
http://proceedings.mlr.press/v54/niculescu-mizil17a.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

76

18291 — Extreme Classification

References

1 PD-Sparse: A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel
Classification. I. En-Hsu Yen, X. Huang, P. Ravikumar, K. Zhong, I. Dhillon. In Interna-
tional Conference on Machine Learning (ICML) 33, 2016.

2 PPDSparse: A Parallel Primal-Dual Sparse Method for Extreme Classification. I. En-Hsu
Yen, X. Huang, W. Dai, P. Ravikumar, I.S. Dhillon and E.P. Xing. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD) 23, 2017.

3 Loss Decomposition for Fast Learning in Large Output Spaces. I. En-Hsu Yen, S. Kale, F.
Yu, D. Holtmann-Rice, S. Kumar, P. Ravikumar. In International Conference on Machine
Learning (ICML) 35, 2018.

3.14 Fixing biases in extreme classification
Adith Swaminathan (Microsoft Research — Redmond, US)
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Datasets for extreme multi-class classification and extreme multi-label learning often have
severe biases — for instance, manually annotated data-points may have several relevant labels
missing — that preclude standard supervised machine learning methods. Propensity-scored
loss functions address this bias [1], but training high capacity models (e.g. deep neural
networks) with these losses often suffers from propensity over-fitting [2]. Self-normalized
estimators remain resistant to such over-fitting but it was not clear how they can be optimized
over massive datasets in a scalable way. In recent work [3], we develop a trick to optimize
self-normalized estimators using stochastic gradient descent and show how deep neural
networks can be trained to fit propensity-scored loss functions reliably.
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3.15 Is zero-shot learning possible without side information?
Willem Waegeman (Ghent University, BE)
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In the talk I discussed a novel challenge in extreme classification, about zero-shot learning
without side information. This setting was motivated by applications in species identification,
for which often a lot of species are not observed during the training phase. When no side
information is available, one can question whether zero-shot learning is still possible. In the
talk I proposed a first approach to tackle this challenging problem. The approach consisted of
(1) learning a metric that can be transferred to zero-shot classes (2) applying an unsupervised
peak detection algorithm to spot novel classes.

4 Working groups

4.1 Generalization bounds and log-time-and-space algorithms

Krzysztof Dembezyriski (Poznan University of Technology, PL) and Yann Guermeur (LORIA
& INRIA Nancy, FR)

License ) Creative Commons BY 3.0 Unported license
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During this working group we discussed the existing results concerning the generalization
bounds for multi-class classification with a very large number of categories. We mainly
referred to the recent results [2, 1] which suggest square-root or even logarithmic dependence
between the error and the number of classes. These results, however, concern only the 0/1
loss. In case of multi-label classification a multitude of loss functions is used and there are
still no concrete theoretical results concerning these measures. As the result of the working
group we emphasized the need of research in this direction.

We also discussed the possibility of involving the space and time complexity into the
confidence interval of a guaranteed risk. We even derived the first extreme classification
bound that bounds the 0/1 error by the logarithm of the number of classes for any algorithm
with logarithmic space and time complexity in the number of classes. Unfortunately, this
bound is completely uninformative as it is always greater or equal to 1. Nevertheless, its
goal is to show this interesting new research direction in learning theory.
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4.2 Loss functions and types of predictions in multi-label classification
Eyke Hullermeier (Universitit Paderborn, DE)
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The discussion in this working group centered around the extension of loss functions from
standard classification to multi-label classification to extreme multi-label classification
(XMLC). While the step from standard multi-class classification to multi-label classific-
ation is characterized by a significant increase of the number of reasonable loss functions
that can be used, the step from multi-label classification to XMLC is more concerned with
the question of which loss functions are still meaningful in settings with an extremely large
label space.

To structure the discussion in a systematic way, a distinction was made between the type
of ground truth that can be assumed and the type of prediction produced by a learning
algorithm; these two do not necessarily coincide. Examples for assumptions on the ground
truth include subsets and graded subsets (in the latter, the relevance of a label is a matter
of degree). In this regard, there was also an interesting discussion about factual versus
counterfactual ground truth. Indeed, there are many applications in which the existence of
a (unique) ground truth is not obvious, or in which the “truth” is not independent of the
prediction itself (as an example, the case of recommender systems was discussed). As for
the predictions, there is an even larger spectrum of possibilities, including subsets, graded
subsets, rankings, stratified rankings, scored rankings, etc. The case of rankings appears to
be of specific importance in XMLC. All these predictions can be generalized further. For
example, rankings could be partial instead of total orders. Moreover, predictions can be
equipped with information about the uncertainty of the learner.

In principle, a loss function could be defined for each combination of ground truth and
type of prediction. As for the reasonableness of such combinations, there was an agreement
that this strongly depends on the purpose of a prediction and the type of application. A
longer discuss centered around the idea of abstention, also known under the notion of “eject
option” in standard classification. Abstention seems to be useful and highly relevant in
XMLC, even if it did not attract much attention so far. It even appears to be more interesting
in XMLC than in standard classification, because in XMLC it can be partial (i.e., the learner
may abstain on some but not all labels). Obviously, allowing for (partial) abstention again
calls for a proper adaptation of loss functions. Finally, there was a discussion of the case
where the label space is equipped with a structure, i.e., where labels are not simply identical
or different from each other; for example, it might be possible to define a natural measure of
similarity between labels, or an order relation like in ordinal classification. Needless to say,
loss functions should take such a structure in account. Again, in spite of the importance and
practical relevance, there is only little work on this issue so far.
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4.3 Deep eXtreme Classification
Marius Kloft (TU Kaiserslautern, DE)
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In the working group Deep eXtreme Classification we have considered the central question:
How can we learn good representations for XC using deep learning methodologies?

We found that typically the label matrix (# instances x # label classes) is very sparse, so
when applying deep learning we have a misfit of a high number of parameters to learn, yet a
sparse target. This raises the question of developing models that explore the given structure
of the target efficiently and effectively.

Furthermore, already for shallow models, XC induces a substantial computational burden.
Some authors address this by using extensive CPU parallelization (cf. Dismec). On the
hand, vanilla (non-XC) deep learning requires substantial computational (GPU) resources.
Combining XC with deep learning raises the problem of developing efficient architectures
and computational infrastructures to train deep XC models.

The workgroup participants agreed that potentially deep XC may offer further boosts in
accuracy, but further breakthroughs into that direction might be necessary to get it working.

4.4 Zero-Shot Learning and Long-Tail Labels
Alezandru Niculescu-Mizil (NEC Laboratories America, Inc. — Princeton, US)
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In this working group we discussed the about few and zero-shot learning in the context of
extreme classification. Due to the extremely large number of labels, the majority of them are
bound to have very few training examples, and many might not even appear in the training
set. Thus dealing with tail labels and with new labels is one of the most important challenges
facing extreme classification.

In the working group we talked about whether it would be more appropriate to tread
head and tail labels differently, for example, by using different techniques that might be
more suitable for different conditions. We discussed the possibility of using “label features’
to enhance the accuracy and/or speed for tail labels, and about the necessity of using them
for zero-shot learning. Label features convey information about the labels themselves, rather

i

then individual examples. Such information may come in the form of label descriptions, label
taxonomies, properties associated with labels, etc. and it is prevalent in real applications.
Finally, we have remarked the unreasonable effectiveness of one vs. all classification.
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