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Chen et. al., WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing, 2021.
Zhang et. al., SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data, 2022.
Zhu et. al., VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for Speech Representation Learning, 2022.
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Wang et al., Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers. 2023
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Chenetal., VALL-E 2: Neural Codec Language Models are Human Parity Zero-Shot Text to Speech Synthesizers. 2024
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TS3-Codec - Transformer-Based Simple Streaming Single Codec
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1. Streaming! 1. Full duplex speech LMs
2. Low computation? 2. Save computation for speech LMs
3. Single codebook 3. Avoid complicated speech LM decoding strategies
4. Low token rate (bitrate)3 4. Easy the speech LM training

IFixed left context window for self-attention
2TS3-Codec (1.6B paras): 60.52G MACs, while convolutional based BigCodec (160M paras): 61.1G MACs

3Bitrate=0.6k, token rate= 40

Wu, et al., TS3-Codec: Transformer-Based Simple Streaming Single Codec, 2024.



SpeechX — A versatile speech generation model

Versatility: able to handle a wide range of tasks from audio and text inputs.
Robustness: applicable in various acoustic distortions, especially in real-world scenarios where background sounds are prevalent.

Extensibility: flexible architectures, allowing for seamless extensions of task support.

Generated audio =1 | LK

Task Input text Input audio Output audio

Audio Codec Decoder

SpeechX

Noise Transcription  Noisy speech Clean speech
O suppression (optional)
Speech Transcription  Noisy speech Noise
removal (optional)
Neural Codec La nguage Model Target speaker  Transcription  Speech mixture, Clean speech of
extraction (optional) Enrollment speech target speaker
T A Zero-short TTS  Text for Enrollment speech Synthesized speech
? ? T T T T T ? ? ? T T synthesis mimicking target
speaker
Phoneme Conversion Task-based Prompting Clean speech  Edited Clean speech Edited speech
editing transcription
: Noisy speech Edited Noisy speech Edited speech with
noise
Input text Input audio
..||-.||I-I-||-- .
More demo samples: SpeechX - Microsoft Research

Wang et al., Speechx: Neural codec language model as a versatile speech transformer, arXiv:2308.06873, 2023.


https://www.rarnonalumber.com/en-us/research/project/speechx/

Multi-modal Model with Discrete Audio Inputs: VioLA
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Wang, et al., VioLA: Unified codec language models for speech recognition, synthesis, and translation, arXiv:2305.16107, 2023.



Discrete or Continuous Input?

* Discrete: More aligned with LLM which takes discrete text tokens.

* Continuous: Represent speech better to avoid information loss
due to quantization.
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For each time step, MELLE predicts a distribution N (p;, 0'%) conditioned on the history,
from which a latent state z; is sampled for generating the subsequent mel-spectrogram frame.

Meng et al., Autoregressive Speech Synthesis without Vector Quantization. 2024.



Multi-modal Model with Continuous Audio Inputs: WavLLM
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Hu, et al., WavLLM: Towards robust and adaptive speech large language model, arXiv:2404.00656, 2024.



Problems of Most Speech-LLMs

[
1 Need to collect varieties of instruction-tuning data.

® May not follow the instruction unseen in training

w LLM is updated during instruction tuning -> losing text capability.



AlighFormer: Better Zero-shot Instruction-

Following Speech-LLM

100% instruction following for various speech tasks, trained with only ASR data!
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Fan, et al., AlignFormer: Modality Matching Can Achieve Better Zero-shot Instruction-Following Speech-LLM, 2024.



LLM is NOT the Only Way




Join the Journey

Jinyu Li - vou
L Partner Applied Science Manager at Microsoft
5d « Edited « ®
My speech science team at Microsoft is looking for a Principal Applied Scientist who
has rich experience in speech generation and understanding to work on multimodal

modeling: https://Inkd.in/gfA5 T5SF.

#speech #speechgeneration #speechrecognition

Search Jobs | Microsoft Careers

jobs.careers.microsoft.com

jinyli@microsoft.com
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