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Following the sequence and structure revolutions, predicting functionally rel-

evant protein structure changes at scale remains an outstanding challenge. We

introduce BioEmu, a deep learning system that emulates protein equilibrium en-

sembles by generating thousands of statistically independent structures per hour

on a single GPU. BioEmu integrates over 200 milliseconds of molecular dynam-

ics (MD) simulations, static structures and experimental protein stabilities using

novel training algorithms. It captures diverse functional motions – including cryp-

tic pocket formation, local unfolding, and domain rearrangements – and predicts

relative free energies with 1 kcal/mol accuracy compared to millisecond-scale
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MD and experimental data. BioEmu provides mechanistic insights by jointly

modelling structural ensembles and thermodynamic properties. This approach

amortizes the cost of MD and experimental data generation, demonstrating a

scalable path towards understanding and designing protein function.

Proteins and protein complexes are the functional building blocks of life and play a central

role in drug development and biotechnology. While next-generation sequencing and deep learning-

based structure prediction tools (1–4) have revolutionized access to sequence and structure, scalable

methods for exploring protein function remain elusive. A key driver of protein function is the ability

to transition between distinct conformational states (i.e., sets of different structures), often coupled

to the binding of ligands or other proteins. For example, actin’s ability to form muscle fibers arises

from its ATP/ADP-regulated conformational dynamics (Fig. 1A).

Current technologies that quantitatively probe such conformational transitions and their cou-

pling with binding states are not scalable. Single-molecule experiments can provide the full equi-

librium distributions of observables such as intramolecular distances (5), but require bespoke

molecular constructs and time-consuming data collection. Cryo-electron microscopy can resolve

multiple conformational states of biomolecular complexes and their probabilities (6), but these

experiments are time-consuming and costly. Molecular Dynamics (MD) simulation is, in principle,

a universal tool that allows both structure and dynamics of biomolecules to be explored at all-

atom resolution. However, biomolecular forcefields are far from perfect and the sampling problem

makes studying protein folding or association via MD a feat of epic computational costs – even

with special-purpose supercomputers or enhanced sampling methods (7,8). Machine-learned (ML)

coarse-grained MD models have an opportunity to achieve similar accuracy as all-atom MD at 2-3

orders of magnitude lower computational cost (9, 10) but are still under development.

The grand challenge to complete our understanding of protein function thus motivates the de-

velopment of a technology that can elucidate protein conformational states and binding states, as

well as their associated probabilities. This technology should ideally achieve an accuracy compa-

rable to a converged MD simulation, or a cryo-EM experiment with multi-conformation analysis,

but it should only require a few hours of wall-clock time and cost no more than a few dollars per

experiment. Boltzmann Generators (11) (BGs) have demonstrated that physics-based generative

ML models can sample equilibrium distributions of arbitrary molecular energy functions, however

2



scaling such approaches to large macromolecules while maintaining high sample efficiency is chal-

lenging. Concurrently, data-based generative ML models, such as diffusion models are now widely

used in protein structure prediction and design (2,4). Such models (12–14), as well as perturbation-

based derivatives of AlphaFold (15, 16) have also been shown to be capable of generating distinct

protein structures and can be combined with MD simulation to alleviate the sampling problem (17).

As yet, generative ML systems have mainly demonstrated an ability to qualitatively sample dis-

tinct protein conformational states. A demonstration that generative ML can quantitatively match

equilibrium ensembles and predict experimental observables is critical going forward (18).

Model

Here we develop a biomolecular emulator, BioEmu – a generative deep learning system designed to

approximately sample from the equilibrium distribution of protein conformations. BioEmu uses a

similar model architecture as Distributional Graphormer (DiG) (12), but employs a distinct training

approach. Starting from the input protein sequence, single and pair representations of the sequence

are computed using the AlphaFold2 evoformer (1). This sequence representation serves as input to

a denoising diffusion model that generates protein structures (Fig. 1B,C; materials and methods).

Sequence encoding is performed only once per protein, and an efficient integration scheme enables

structure generation in as few as 30-50 denoising steps (Fig. S11, materials and methods). As

a result, 10,000 independent protein structures from the learned equilibrium distribution can be

sampled within minutes to a few hours on a single GPU, depending on their size.

A major challenge in training BioEmu is the absence of a single high-quality data source for

protein equilibrium distributions, due to the aforementioned challenges with experimental methods

and MD (19). We therefore integrate training data from different, complementary sources. BioEmu

is pre-trained on a clustered version of the AlphaFold database (AFDB) using a data augmentation

strategy that encourages it to sample diverse conformations (Fig. 1D,E, materials and methods).

In a second stage, we continue training the model on over 200 milliseconds of all-atom MD

data of thousands of small-to-medium proteins (Fig. 1D, Table S1, materials and methods). To

mitigate the sampling problem, MD data was reweighed towards equilibrium using either Markov

State Models (20), or weights from experimental data, when possible (materials and methods).
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Finally, we fine-tune the model on 500,000 sequences of the MEGAscale dataset (21), a large-scale,

homogeneous collection of in vitro protein stability measurements (Fig. 1D). As the MEGAscale

dataset does not contain structures, we developed a new algorithm called property-prediction fine-

tuning (PPFT) that can efficiently incorporate experimental measurements into diffusion model

training (Fig. 4A, materials and methods). To ensure generalization, we filter our training set such

that no protein has more than 40% sequence similarity to a pre-defined holdout set including all

reported test proteins of at least 20 residues or longer. The term “BioEmu” refers to the fine-

tuned model, trained on AFDB, MD simulations and experimental protein stability measurements.

Subsequent results use this model unless otherwise described.

Sampling conformational changes related to protein function

We consider the ability to qualitatively sample distinct, biologically relevant conformations as a

foundation for building a quantitative equilibrium sampler. Therefore, we first test whether BioEmu

can predict known conformational changes and compare this capability with AFCluster (15),

AlphaFlow (13), DiG (12), and uniform MSA subsampling (22) as representative baseline methods

(materials and methods). To benchmark BioEmu’s ability to capture functionally relevant structural

variability, we curated four benchmark sets comprising around 100 proteins with experimentally

validated transitions (Fig. S1-S4). The first set, OOD60, assesses sequence generalization. The

remaining three target specific types of conformational change: domain motions, local unfolding

transitions, and cryptic pocket formations.

OOD60 is designed to tests strong generalization: its proteins were deposited in the PDB

after the AlphaFold2 cutoff date, and share no more than 60% and 40% sequence similarity

with the AlphaFold2 monomer model and BioEmu training sets, respectively. OOD60 includes

various challenging cases such as large-scale conformational changes induced by binding with

other biomolecules (Fig. S1). BioEmu significantly outperforms all baselines on this benchmark

(Fig. S7). For the other benchmarks, BioEmu matches or exceeds baseline performance, except in

predicting apo states of cryptic pockets, where AFCluster performs best. The performance gap is

especially pronounced for proteins outside the AlphaFold2 training set (Fig. S7).

The domain motion benchmark consists of proteins that undergo large-scale motions as part
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of their functional cycle (Fig. 2A). In the open–close transition of Adenylate Kinase, the closed

state brings the substrates together to catalyze the ATP+AMP⇌ 2ADP reaction. Single-molecule

experiments have confirmed that opening and closing occurs reversibly on timescales of tens of

microseconds when the substrates are bound (23). BioEmu predicts a range of open and closed

states, including close matches with crystallographic structures. A second example is the open-

close transition of LAO-binding protein which is required to bind and release lysine, arginine

and ornithine for transport across membranes as part of the ATP-binding cassette protein family.

Another interesting example of domain motions is that of the receptor module which regulates

the concentration of cyclic di-GMP in bacteria. In this case one domain undergoes a large-scale

rotation and repacks to the other domain with a completely different contact pattern. See Fig. S2 for

15 further examples. Overall, BioEmu predicts 83% of the reference experimental structures with

≤3 Å RMSD (Fig. 2A), indicating the model’s ability to predict which protein regions are rigid

and which are flexible, as well as which resulting motions can occur.

Next we consider local unfolding transitions, in which part of a protein chain unfolds or detaches

from its main structure as part of a signaling pathway (Fig. 2B). Predicting local unfolding challenges

the model to correctly rank the relative stabilities of a protein’s fold. A famous example of local

unfolding is Ras p21, a conformational switch which signals cell growth and whose mutants are

often linked to cancer development (24). In its active state, stabilized by binding GTP, the Switch II

region forms a short alpha-helix, which partially unfolds in the inactive GDP-bound state. Rhomboid

intramembrane protease is a more complex case involving domain swapping. Its monomeric form

features a globular conformation, while in its dimeric form the central beta-sheet unfolds and the

helices of the two monomers bind to each other. Finally, CaM Kinase II presents an autoinhibition

mechanism, wherein the N-terminus binds into the active site. BioEmu correctly predicts the local

unfolding of these structure elements, and samples 70% of the folded and 81% of locally unfolded

states across 20 protein examples (Fig. 2B, Fig. S3).

As a final class of conformational changes we consider the formation of pockets that are absent

in the apo PDB structure but can form to bind a small molecule (Fig. 2C). Such “cryptic” binding

pockets can be discovered with high-performance MD simulation (25, 26), but the millisecond

timescales often involved in the spontaneous opening of such pockets make MD on commer-

cial hardware rarely viable for in silico drug discovery pipelines. We have curated 34 cases of
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experimentally-validated formation of cryptic binding pockets from the literature (Fig. S4). The

sialic acid binding factor presents a case where a large opening in the apo state can partially close

and form a binding site for the ligand. Fascin is a four-domain protein where two domains can

rotate with respect to each other, to reveal a binding site. In Glu PRPP amidotransferase, part of

the chain is unfolded in the apo state and folds into a structure that completes the binding site for

the ligand. To ensure capturing subtle changes, we define success by a very strict 1.5Å RMSD

threshold to the apo and holo reference structures. Surprisingly the model has a strong preference

for holo states, successfully predicting the cryptic pocket in 86% of cases, while it only succeeds

in predicting 56% of the apo structures, indicating further room for improvement (Fig. 2C). We

hypothesize that the model may be picking up a bias implicit in the embeddings - proteins may

have a few apo structures deposited in the PDB, but it is common to find multiple structures of the

same protein with different small molecules bound.

To conclude, we conducted several tests to confirm that BioEmu’s multi-conformation prediction

is a hallmark of generalization rather than memorization of sequence-structure pairs. BioEmu’s

ability to predict multiple conformations depends only weakly on the sequence similarity between

the query molecule and the training set, with the clearest trend seen for domain motions where the

final performance is reached at 30% sequence similarity (Fig. S5, materials and methods). As our

test proteins contain examples that overlap with the AlphaFold2 training set, we ablated whether

multi-conformation prediction performance stems from trivial extraction of the information already

present in the AlphaFold2 evoformer embeddings. To this end we trained an end-to-end version

of the model that uses MSA information directly instead of pre-trained embeddings, on a training

set that is at most 40% sequence similar to any protein belonging to the the multi-conformation

benchmarks. The resulting model shows similar performance in the previously mentioned multi-

conformation benchmarks to the fine-tuned BioEmu (Fig. S6, materials and methods).

Emulating MD equilibrium distributions

A major motivation for developing BioEmu is to overcome the well-known sampling problem in

molecular dynamics (MD): simulating the full range of protein conformations and estimating their

equilibrium probabilities often requires extensive MD simulations – on the order of 100 microsec-
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onds to 10 milliseconds (7, 8, 27). These timescales are necessary to capture rare but functionally

important transitions, yet achieving them is computationally demanding – if not prohibitive, even

with specialized supercomputers (28) or large-scale distributed simulations integrated via statistical

models (8,29). Here, we assess BioEmu’s ability to emulate the equilibrium distribution that would

be sampled with extensive MD simulations. To this end, we have amassed all-atom simulations

of proteins with a total aggregated simulation time of over 200 ms (Table S1), which are used for

fine-tuning BioEmu (Fig. 1D).

Before analyzing the model trained on the full dataset, we first tested whether our machine

learning architecture and training protocol permit learning to emulate long-timescale MD equi-

librium distributions. To this end, we used D. E. Shaw Research (DESRES) simulations of 12

fast-folding proteins generated on the Anton supercomputer (7). For each protein, we fine-tuned

a separate model on the other 11 proteins and evaluated it on the held-out 12th – an approach

known as leave-one-out cross-validation (see materials and methods). This setup ensures that each

test case is evaluated independently of its training data and avoids bias from arbitrary train–test

splits in this small dataset. As expected, the AFDB-pretrained model predicts the native state but

performs poorly in sampling the full free energy surface (Fig. S9). Surprisingly, however, the

“DESRES-finetuned models”, each trained on only 11 fast folders, predict free energy surfaces on

the held-out proteins that closely match the MD ground truth (Fig. 3A, Fig. S9). For all proteins,

the model predicts both native as well as the unfolded states with similar shapes on the free energy

landscape. In many cases, several or all folding intermediates visible on the two-dimensional free

energy surface are predicted (Fig. 3A, Fig. S9): For beta-beta-alpha protein (BBA), both MD and

the DESRES-finetuned models predict the existence of an intermediate with the alpha-helix formed

and the beta-sheet broken. For protein G, both MD and the DESRES-finetuned models sample

intermediates with half of the beta-sheet still formed, while the other half and most of the helix are

broken. For homeodomain, MD and model agree in the prediction of an intermediate with only one

helix turn unwound, while the unfolded states still feature some degree of helical propensity. There

is an excellent agreement of the predicted secondary structure propensities with the MD data (Fig.

3A). Quantitatively, the mean absolute error between the MD and model 2D free energy landscapes

is only 0.74 kcal/mol, ranging from 0.30 kcal/mol for BBA to 1.63 kcal/mol for 𝜆-repressor, which

is on the order of differences expected from two different classical MD force fields (30, 31).
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We compare the computational costs of MD data generation and BioEmu in GPU-hours (on an

NVIDIA Titan V; Fig. 3A, top right). For all BioEmu results shown here, we draw 10k samples,

which incurs computational costs of under one GPU-minute for Chignolin to around one GPU-

hour for 𝜆-repressor. For MD we consider the cost for generating the DESRES simulations, whose

lengths have been chosen to include roughly 10 folding-unfolding transitions. The MD costs then

range from 2,000 GPU-hours for Chignolin to more than 100,000 GPU-hours for NTL9, resulting

in a speedup of BioEmu over MD of four to five orders of magnitude. We also note that for most

proteins shown here, performing sufficiently long MD simulations to directly observe folding and

unfolding in single trajectories is still not possible on consumer-grade hardware but instead requires

a much more complex methodological framework (29, 32).

The main BioEmu model is fine-tuned on more than 200 ms MD simulations with Amber

force fields at or near a temperature of 300K (Table S1). We chose to combine data from slightly

different simulation conditions as each of these MD models is inherently imperfect, and we regarded

experimental data as being more reliable for weighing between conformations (Fig. 1D). Differences

in the simulation conditions of our own generated data are intentional, e.g. AMBER ff99sb-disp (33)

was chosen to avoid spuriously misfolded states produced by other force fields in the context of

protein folding (materials and methods). A large fraction of training data, 46 ms, is dedicated to 1100

CATH domains, common building blocks of protein structure (34) (materials and methods). We

designate 17 CATH systems with more than 100 𝜇s simulation time as test set and report statistics

comparing MD and model distributions (Fig. 3B, Fig. S10, materials and methods). Similar as

for DESRES simulations, BioEmu predicts the native state with local fluctuations and typically

several other substates and structures sampled by MD. Most secondary structure propensities match

well (Fig. 3B). We observed a free energy mean absolute error over the converged test set of 0.9

kcal/mol, again comparable to the differences expected between different MD force fields.

To understand whether our model’s ability to sample accurate equilibrium distributions is limited

by training data or model expressivity, we trained 3 models with the same architecture as BioEmu

from scratch, using only 1%, 10% and 100% of the CATH systems in the training dataset. We

observed decreased free energy errors and an increased coverage of the conformations sampled by

MD as the amount of training proteins increased (Fig. 3B, bottom right), suggesting that the model

can be further improved by adding more training data. Notably, the finetuned model’s error on the
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same test set is further reduced to 0.9 kcal/mol, demonstrating the potential benefit of pre-training

and integrating multiple datasets even if they do not use identical simulation conditions.

Finally, we have evaluated BioEmu for two case studies that involve larger proteins: Complexin

II (134 aa) and tetraspanin CD9 (225 aa). Complexin II is an intrinsically disordered protein

(IDP) from the neurotransmitter release apparatus (35). IDPs tend to be difficult to sample with

MD, however, BioEmu can efficiently emulate a flexible ensemble of complexin II structures

(Fig. 3C) while reproducing known secondary structure elements such as the central and accessory

helices (35, 36). Achieving convergence of IDPs of this size with all-atom MD is unpractical. At

an orders of magnitude higher computational cost than with BioEmu, we have conducted ∼ 5 𝜇𝑠

of MD simulations with all-atom MD, which are most likely not converged but already display

qualitatively different behavior: The AMBER ff14sb force field produces a very rigid compact

structure with a small radius of gyration and little to no variation in secondary structure content,

whereas AMBER ff99sb-disp tends to destabilize known secondary structure elements (Fig. 3C).

The second case-study, tetraspanin CD9, plays a role in cell adhesion and fusion (Fig. 3D). The

large extracellular loop (LEL) of CD9 is part of our OOD60 test set (Fig. S1) in which our pre-trained

model samples both crystallographic reference structures (6rlo, 6rlr), whereas the BioEmu model

finetuned on MD data samples 6rlo but discards 6rlr. This is consistent with the observation that both

structures exist in crystal environments, however, 6rlr cannot be realized in a folded monomeric

protein and is therefore correctly discarded when fine-tuning BioEmu (Fig. S12A-C). We also

sample the full-length CD9 structure, which has less than 40% sequence similarity to both BioEmu

and AlphaFold training sets (Fig. 3D). In agreement with MD simulations of (37), BioEmu predicts

the widely open state 1 and closed state 2 and similar contact distributions between the small and

large extracellular loops (SEL, LEL) as reported in (37). A principal component analysis reveals that

BioEmu and MD sample similar sets of conformations (Fig. 3D). MD predicts an experimentally-

unknown metastable closed state 3 which is unstable in BioEmu. BioEmu’s samples closed states 2

very similar with the experimental structure 6k4j (1.9 Å RMSD), whereas the closest MD sample

has an RMSD of 4.6 Å to the crystal structure (Fig. S12D).
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Predicting protein stabilities

Understanding protein stability is crucial for various applications in molecular biology, drug design,

and biotechnology. From a modeling point of view, predicting a protein’s stability is a specific case

of predicting the equilibrium probabilities of its different conformational states, and these all arise

from the same underlying biophysics. We therefore desire to train BioEmu so that the proportion

of samples in folded and unfolded states matches the experimentally-measured protein stability.

We classify protein structures as folded or unfolded based on their fraction of native contacts, and

define the folding free energy as Δ𝐺 = 𝐺folded − 𝐺unfolded (materials and methods).

To facilitate protein stability prediction, BioEmu is trained on 502,442 mutant sequences gen-

erated from 361 wild types, a subset of the over 674,000 experimental measurements in the

MEGAscale dataset (materials and methods) (21). We evaluate BioEmu on a test set of randomly

chosen mutants from 95 wild types. For a subset of 271 wildtype proteins and 21458 mutants, we

have additionally conducted a total of 25 ms of all-atom MD simulations of the folded and unfolded

states (materials and methods). To address MD sampling and force field issues, we weigh the

folded and unfolded samples based on the experimentally-measured protein stabilities (materials

and methods). To accelerate training convergence and leverage the large number of MEGAscale

measurements, we developed the Property Prediction Fine-Tuning algorithm (PPFT; Fig. 4A, mate-

rials and methods) that integrates experimental expectation values, such as protein stabilities, into

diffusion model training without requiring protein structures. PPFT uses fast approximate sampling

with only 8 denoising steps, which we observed to be sufficient to confidently predict whether each

sampled structure will be classified as folded or unfolded. By comparing the mean foldedness of

sampled structures with experimental measurements and backpropagating the error, our model can

be efficiently trained to match experimental protein stabilities.

BioEmu achieves a mean absolute error below 0.9 kcal/mol and a Spearman correlation coeffi-

cient of approximately 0.6 for the MEGAscale test proteins (Fig. 4B). The BioEmu ensembles also

correlate well with stability changes of point mutants, ΔΔ𝐺, achieving mean absolute errors below

0.8 kcal/mol and a Spearman correlation coefficient above 0.6 (Fig. 4C). Errors of approximately 1

kcal/mol are achieved for test proteins that have 40% sequence similarity with the training set, but

the best performance is obtained for test sets that include sequences with 50% or greater similarity

10



(Fig. 4B,C). As there are only 361 distinct wild-type sequences in the MEGAscale training data,

it is likely generalization performance can be further improved with a training dataset that is more

diverse in protein sequence space.

To check whether BioEmu makes physically reasonable predictions outside the MEGAscale set

of proteins, we tested it on proteins that are known to be very stable or unstable. We first selected

stable proteins from ProThermDB (38) with Δ𝐺 < −8 kcal/mol (materials and methods) Our

model consistently samples these proteins in their folded states with a fraction of native contacts

always exceeding 0.65 (Fig. 4D). To test whether our model systematically predicts intrinsically

disordered proteins (IDPs) as unfolded, we used the CALVADOS test set (39). Most proteins

sampled displayed a radii of gyration (𝑅𝑔) similar to random coil structures and mostly larger than

typical folded proteins (Fig. 4E). Unlike other models (40, 41), ours has not been directly trained

on IDPs; nonetheless, it provides zero-shot predictions of 𝑅𝑔 that correlate well with experimental

measurements (Fig. 4E).

In comparison with black box methods that predict protein stability directly from sequences

(42–45), BioEmu has competitive or superior prediction accuracy. However, in contrast to a black-

box prediction of Δ𝐺, we can analyze the structure ensemble generated by our model to reveal

insights on mutation-caused stability changes. For illustration, we show mutants of the design

protein HHH rd1 0335 and PDB entry 2JWS (Fig. 4F). In HHH rd1 0335, the mutation I7P leads

to a destabilization of the first helix, as indicated by the model’s prediction of a ΔΔ𝐺 of 1.8 kcal/mol

compared to the experimental 2.1 kcal/mol. The analysis shows a decrease in average helicity which

particularly affects the helix where the mutation is located. For 2JWS, the mutation I24D in the

middle helix results in partial unfolding, with the model predicting a ΔΔ𝐺 of 2.1 kcal/mol, closely

matching the experimental value of 2.9 kcal/mol. This mutation replaces a hydrophobic residue

with a negatively charged aspartate, disrupting core stability and leading to a localized structural

change. These analyses highlight BioEmu’s ability to correlate predictions of thermodynamics with

structural causes, which is not possible with black-box prediction models.
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Discussion

We have introduced BioEmu, a generative machine learning system to approximately sample the

equilibrium distributions of proteins and through that explore two key aspects of molecular func-

tion: protein conformations and their equilibrium probabilities. The system has been demonstrated

to sample experimentally known structures of proteins undergoing a variety of conformational

changes, to approximate the equilibrium distributions of extensive MD simulations, and to predict

experimentally-measured protein stabilities within errors of 1 kcal/mol. The cost of running infer-

ence is on the order of one GPU-hour per computational experiment — many orders of magnitude

less than running MD simulations even if enhanced sampling methods are invoked, and orders

of magnitude cheaper than experiments that can provide detailed structure-function relationships.

Nonetheless, there are further opportunities to reduce BioEmu’s inference cost. Conditional flow-

matching (46) can be used to generate protein structures using even fewer integration steps (47).

The computational cost of evaluating the transformer network in the score model (Fig. 1C) can

potentially be reduced by leveraging sparse or low-rank attention mechanisms.

BioEmu and MD simulation are complementary: our system was trained on large amounts of MD

simulation data for soluble proteins, and within this scope, it has shown to be able to approximate

MD distributions at a tiny fraction of the MD simulation costs. However, BioEmu is not designed to

generalize beyond this scope — for example membrane environments and small molecule ligands

are neither represented in the model nor in the training data, and reliable predictions cannot be

assumed when such factors play a key role in the process. In contrast, MD can be readily generalizing

to such conditions, though it remains constrained by the sampling problem. Our system can be used

to generate a guess for the equilibrium distribution, and MD trajectories can be launched from a

BioEmu ensemble in order to obtain chemically accurate all-atom structures, refine the distribution,

and even compute dynamical properties. We therefore do not expect emulators such as BioEmu to

make MD simulation obsolete; rather, we anticipate we anticipate that MD will increasingly serve

as a data generation and validation tool. A similar shift of roles is already in progress for other

simulator-emulator pairs such as quantum chemistry methods and machine-learned forcefields.

An important limitation of BioEmu is that it generates distributions entirely empirically, whereas

MD simulation uses potential energy functions which are connected to equilibrium distributions and
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expectation values by statistical mechanics. If direct access to a reduced potential energy function

𝑢(𝑥) was available that is consistent with the generated distribution by 𝑝(𝑥) ∝ e−𝑢(𝑥) , it could be

used for reweighting and making rigorous enhanced sampling simulations available through the

emulator. BioEmu can potentially also be improved by going beyond score matching and using

energy or forces information from MD force fields at training time, as considered in Boltzmann

Generators (11) and variational force matching (9, 48).

While BioEmu samples approximate equilibrium distribution, it does not model protein dy-

namics which is done by MD and other methods (49), nor does its training incorporate dynamical

information as it does for Markov State Models (20). A pragmatic approach to generate a dynamic

ensemble is to predict starting points with BioEmu and launch MD simulations from them. On

the other hand, a starting point for a future model architecture that can both model dynamics and

exploit dynamical information in the training data is the Implicit Transfer Operator approach (50).

We have demonstrated that using the PPFT method developed here, BioEmu can be efficiently

fine-tuned on experimental data. Here, we have chosen to do that for protein stabilities using the

MEGAscale dataset, because it presents a very favorable tradeoff of large data scale and quantitative

reliability. However, in principle, PPFT can be used to fine-tune BioEmu and other diffusion

models to match any set of experimental observables, including Nuclear Magnetic Resonance

data, small-angle X-ray scattering, fluorescence measurements etc. Being able to fine-tune the

generated ensemble to arbitrary experimental data is an important advantage compared to MD

forcefields: these can also be tuned to fit experimental data (51), but the processes that give rise to

the experimental observables must be sampled during the training process — a task that is tedious

or even unfeasible for observables that involve complex rare events, such as folding free energies.

A widely used feature of AlphaFold is its ability to predict confidence in an output structure, and

a similar confidence module for BioEmu would be highly desirable. Training a confidence module is

relatively straightforward in AlphaFold, which serves a single prediction task (structure) and relies

on a single ground truth dataset (the PDB), whereas equilibrium structure ensembles serve multiple

downstream tasks and observables and no universal ground truth dataset is available. Confidence

prediction or uncertainty quantification of arbitrary observables thus remains an important future

research direction and may leverage ongoing research in the deep learning community (52). Even a

rough notion of model confidence in observables, such as free energy differences, could be exploited
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to improve training data efficiency: In the MD community, Markov State Models and other kinetic

models have been used to guide MD data production in an active learning loop (8,53), and a similar

approach could be implemented to have BioEmu request new MD or experimental data that are

most likely to increase model confidence.

Another limitation of the current system is that it emulates single protein chains under a

fixed thermodynamic condition of 300K. A proper emulator for proteins requires conditioning on

experimentally and biologically relevant parameters such as temperature and pH, and needs to

be able to model multiple interacting molecules, as proteins rarely have a function on their own.

We envision two ways of achieving this: (i) training on additional MD simulation data at relevant

thermodynamic ranges, and (ii) the incorporation of relevant additional experimental data (e.g.,

melting curves for temperature) into finetuning strategies.

An important future direction is to extend BioEmu’s modalities by incorporating multiple

protein chains and ligands, which are already included in recent biomolecular structure prediction

systems (2, 4). Currently, oligomer and ligand binding state are implicit, which may cause biases

in the training data to show up in the sampled distribution. A hallmark of this may be BioEmu’s

preference to predict holo over apo structures in the cryptic pocket benchmark (Fig. 2C). Such

biases in the sampling distribution can be avoided by explicitly conditioning the prediction of the

structure ensemble to ligands, which is however hampered by the lack of training data. While we

have shown that the ability to accurately emulate the equilibrium distributions of small proteins

increases with more training data, the sampling problem limits MD as a data generation engine.

For learning changes of conformation and binding state of large biomolecular complexes, as well

as learning the subtle binding affinity differences between binding partners, and ultimately tackle

the quest for reliably predicting protein function, highly scalable experimental techniques that can

be incorporated as training data will become key.

These results demonstrate that the large upfront costs of MD simulation and experimental data

generation can be amortized by a deep learning emulator whose prediction error decreases with

an increasing amounts of high-quality training data. This indicates a path forward for predicting

biomolecular function at genomic scale.
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Figure 1: Overview of model and architecture. (A) Actin as a representative example of pro-

tein function driven by conformational changes. Actin filament formation depends on open/close

transition of monomers, which is controlled by ADP/ATP binding. (B) Given a protein sequence,

BioEmu samples protein structures from an approximate equilibrium distribution, from which

properties such as free energy differences can be computed. (C) ML model architecture consisting

of protein sequence encoder, denoising diffusion model and score model. The protein structure

is represented using coarse-grained backbone frames. (D) Data integration and model training

pipeline. (E) Data processing pipeline for pre-training. Abbreviations: Adenosine diphosphate

(ADP), adenosine triphosphate (ATP), molecular dynamics (MD), multi-layer perceptron (MLP),

representation (repr.), features (feat.).
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Figure 2: BioEmu samples functionally distinct protein conformations. (A) Large-scale domain

motions. (B) Local unfolding or unbinding of parts of the protein. (C) Formation of cryptic binding

pockets that are not present in the apo ground state. Left column: coverage of pretrained and fine-

tuned BioEmu models, defined as the percentage of reference structures that are sampled by at least

0.1% of samples within a given distance. Global and local root mean square deviation (RMSD)

are used for domain motions and cryptic pocket formation benchmarks, respectively, and fraction

of native contacts (FNC) for local unfolding. Successful coverage of reference states is defined

by probability density left of and below the dashed lines in A,C and outside the dashed lines in

B. BioEmu sampled structures: green, PDB structures: grey, key secondary structure elements:

blue. Abbreviations: Lysine arginine ornithine (LAO), guanosine monophosphate (GMP), calcium-

calmodulin dependent (CaM). See Table S4 for 12-letter PDB codes and original citations.
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Figure 3: BioEmu achieves fast emulation of all-atom molecular dynamics (MD) equilibrium

distributions. (A) DESRES fast-folding proteins. Left to right: Representative structures (green:

model, grey: MD, blue: regions of interest). Free energy surfaces over slowest time-lagged in-

dependent components (TIC) (54). Secondary structure propensities. Computational cost for MD

(magenta: full DESRES data; yellow: single folding-unfolding roundtrip) versus model (cyan: 10k

samples). Mean absolute error (MAE) of free energy differences and fraction of unphysical model

samples. (B) CATH domains. Structures, free energy surfaces and errors as in A. Bottom right: data

scaling for specialized CATH-only model with free energy MAE and state coverage as function of

training data. Cyan star: BioEmu. (C) Complexin II: Structures, helix content and radius of gyra-

tion (R𝑔) compared between BioEmu and two all-atom force fields. (D) Tetraspanin CD9 results

from BioEmu and MD (37). Open-close transition, as histogram in log scale of small and large

extracellular loop (SEL-LEL) contacts, as defined in (37). 2D-principal component (PC) analysis of

exp(−𝑑𝑖 𝑗 ) of Ca-Ca distances 𝑑𝑖 𝑗 between SEL and LEL. Star marks experimental structure (6k4j).
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Figure 4: Prediction of experimentally measured protein stabilities. (A) Property-prediction

fine-tuning algorithm for fine-tuning a pre-trained diffusion model to match experimentally mea-

surable properties such as the protein stability. (B) Comparison of experimental measurements of

folding free energies (21) with model predictions, generated by direct sampling and counting of

folded and unfolded states for test proteins, the mean absolute error (MAE) and the Spearman corre-

lation coefficient as a function of the sequence similarity between test and train proteins. (C) Same

as B for the change in folding stability upon point mutation. (D) Validation that very stable proteins

that are not included in the MEGAscale experimental dataset are consistently predicted as folded.

(E) Validation that intrinsically disordered proteins (IDPs) reported in (39) and (41) are predicted

as unfolded. Radius of gyration (𝑅𝑔) is compared between model (orange crosses) experimental

measurement (blue dots) and Flory scaling (55). (F) Analysis of the effect of two destabilizing

mutants on the folded structures as predicted by the model: HHH rd1 0335 with mutation I7P and

2JWS with mutation I24D. See Table S4 for 12-letter PDB codes and original citations.
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a million mutations. Adv. Neural Inf. Process. Syst. 36, 76229–76247 (2024).

43. M. Cagiada, S. Ovchinnikov, K. Lindorff-Larsen, Predicting absolute protein folding stability

using generative models. Prot. Sci. 34, e5233 (2025).

44. P. Notin, et al., ProteinGym: Large-scale benchmarks for protein fitness prediction and design.

Adv. Neural Inf. Process. Syst. 36, 64331–64379 (2024).

45. T. Widatalla, R. Rafailov, B. Hie, Aligning protein generative models with experimental

fitness via Direct Preference Optimization. bioRxiv (2024), doi:10.1101/2024.05.20.595026.

22



46. Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel, M. Le, Flow Matching for Generative

Modeling. arXiv:2210.02747 (2022).

47. J. Yim, et al., Fast protein backbone generation with SE(3) flow matching. arXiv:2310.05297

(2023).

48. W. G. Noid, et al., The multiscale coarse-graining method. I. A rigorous bridge between

atomistic and coarse-grained models. J. Chem. Phys. 128, 244114 (2008).

49. L. Klein, et al., Timewarp: transferable acceleration of molecular dynamics by learning time-

coarsened dynamics. Adv. Neural Inf. Process. Syst. 37, 52863–52883 (2023).

50. M. Schreiner, O. Winther, S. Olsson, Implicit transfer operator learning: Multiple time-

resolution models for molecular dynamics. Adv. Neural Inf. Process. Syst. 36, 36449–36462

(2024).
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transition state. J. Mol. Biol. 224, 159–177 (1992).

101. C. H. Chan, C. C. Wilbanks, G. I. Makhatadze, K. B. Wong, Electrostatic contribution of

surface charge residues to the stability of a thermophilic protein: benchmarking experimental

and predicted pKa values. PLoS One 7, e30296 (2012).

102. C. W. Müller, G. J. Schlauderer, J. Reinstein, G. E. Schulz, Adenylate kinase motions dur-

ing catalysis: an energetic counterweight balancing substrate binding. Structure 4, 147–156

(1996).

103. S. Ahmad, M. Z. Kamal, R. Sankaranarayanan, N. M. Rao, Thermostable Bacillus subtilis

lipases: in vitro evolution and structural insight. J. Mol. Biol. 381, 324–340 (2008).

104. R. Vergara, et al., The interplay of protein-ligand and water-mediated interactions shape

affinity and selectivity in the LAO binding protein. FEBS J. 287, 763–782 (2020).

27



105. L. H. Weaver, B. W. Matthews, Structure of bacteriophage T4 lysozyme refined at 1.7 Å res-
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Luna, Michael Gastegger, Yu Xie, Andrew Y. K. Foong, Victor Garcı́a Satorras, Osama Abdin,

Bastiaan Veeling, Soojung Yang, Arne Schneuing, and Frank Noé.
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Materials and Methods

Data

AlphaFoldDB processing An AlphaFold database (AFDB) snapshot was downloaded in July

2024 and preprocessed for model pre-training (Fig. 1D,E). The aim of this preprocessing is to

identify sets of similar sequences with heterogeneous predicted structures, and this is accomplished

through a series of steps:

1. We used mmseqs (63) to cluster all sequences at 80% sequence identity and 70% coverage,

resulting in a set containing more than 93 million clusters.

2. To reduce the sequence clusters to a representative set, we clustered the centroids of these

clusters at 30% sequence identity and discarded all but the largest 80%-sequence-identity

cluster within each 30%-sequence-identity group. The result was a set of sequence clusters

with 80% sequence similarity within each cluster and at most 30% sequence similarity

between the centroids of different clusters.

3. We discarded sequence clusters with fewer than 10 members, leaving roughly 1.4 million

sequence clusters.

4. We performed structure-based clustering within each sequence cluster, using foldseek (64)

(version 9.427df8a) with a sequence identity threshold of 70% at 90% coverage.

5. We discarded everything except the representative member of each structure cluster, leaving

a set of sequence clusters, each containing a few structure representatives.

6. We discarded sequence clusters with only one structure representative and those where all

the structure representatives were disordered (defined as being composed of more than 50%

coil in their secondary structure).

7. To account for structural heterogeneity that was incorrectly flagged due to missing regions in

structure representatives, we performed structural alignments in sequence-aligned regions of

proteins and discarded structure representatives with a TM-score greater than 0.9 to another

structure representative, as computed by foldseek.
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8. Similarly to (65), we removed sequence clusters lacking at least one structure with a pLDDT

greater than 80, and a pLDDT standard deviation lower than 15 across residues

After running this pipeline, we had ∼50k sequence clusters with structural diversity. We utilize the

structural diversity to generate augmented data during the pre-training phase (see “Pre-training on

AFDB”).

Protein Data Bank processing A snapshot of the PDB was downloaded on Nov. 23rd, 2023,

including all of the available asymmetric units in the mmCIF format. We use the pdbecif Python

package (version 1.5) for mmCIF parsing and consider an entry for processing if the overall number

of residues in the entry was below 2500 with a resolution below 9.5 Å, if a resolution value was

available. All molecular entities per entry were separated according to their type (i.e., polymer

or non-polymer), discarding those associated with other nucleic acids (e.g., RNAs, DNAs). Non-

biologically relevant non-polymer entities (e.g., solvents, ions) were further filtered out by a list

provided in (4). Non-binding polymer chains were then kept on an entry basis if they contained

standard amino acid types and depending on whether other non-binding chains corresponding

to the same entity identifier had already been processed. So as to better capture ligand-binding

conformational effects, all binding polymer chains with unique binders, defined by a distance

threshold of 6 Å between any binder and protein atom, were kept.

Molecular Dynamics simulation data In the following, we list synthetic all-atom molecular

dynamics (MD) data used in this article. An overview of all publicly available and in-house

datasets is provided in Tab. S1. In-house datasets are described in detail in “In-house MD datasets”,

with our standard MD protocol specified in “MD simulation protocol”. Publicly available datasets

are listed under “Public MD datasets”. As our model is for single protein chains and there were

several MD simulations of multi-chain systems, we extracted individual protein chains and treated

them independently. As a consequence, the effective cumulative simulation time for such multi-

chain simulations is reported as a sum over all chains. For datasets curated from the literature, a

reference is provided. Details for MD simulations generated specifically for this work are described

in “In-house MD datasets”.
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MD simulation protocol We internally developed code specifically tailored towards running

large MD production campaigns on Azure compute resources. Our code is based on OpenMM (60)

as its compute engine, albeit setups are generated using OpenMM or GROMACS (66) as a backend,

depending on the specific case. Unless specified otherwise, all MD simulations followed the protocol

described below: We use explicit solvent and the tip3p water model (67), solvate the structures in a

cubic box with 1 nm padding and 0.1 M NaCl buffer. The solvent is equilibrated with a harmonic

constraint force on the solute heavy atoms for 0.1 ns under constant temperature and volume (NVT)

followed by 0.9 ns under constant temperature and pressure (NPT). The constraint force is gradually

removed over an additional 0.1 ns of simulation. During the equilibration phase, the integration

time-step is set to 2 fs. Production runs are conducted in the NPT ensemble, using hydrogen

mass repartitioning with a hydrogen mass of 4 amu (68), with hydrogen bond constraints, and an

integration time-step of 4 fs. The temperature is set to 300 K and the pressure to 1 bar, unless noted

otherwise.

In-house MD datasets Most simulation data described in this work was generated using T4-

based (NC4as T4 v3) Azure compute instances. Model training data is provided under the links

below.

Octapeptides The octapeptide dataset consists of 1100 peptides of 8 amino acids length. The

selection of systems had been previously described (see Ref. (10) for details about system selection

and initial structure seeding procedures). We extend this dataset with longer trajectories to better

represent equilibrium. For each system, 5 new trajectories with 1 𝜇s length were generated using

our in-house protocol (“MD simulation protocol”), using the same force field as in the original

dataset (Amber ff99SB-ildn (69)), at 300K. The total simulation time amounts to 8 ms. Download

link: https://doi.org/10.5281/zenodo.15641199.

CATH1 This data consists of 50 CATH domains as previously described in Ref. (10). We

also extend this dataset, previously consisting of 4 x 0.5 𝜇s trajectories per system, with longer

MD trajectories to better represent long-timescale dynamic behavior of different protein domains.

Trajectories between 1 and 5 𝜇s in length using the amber ff99SB-ildn forcefield (69) were produced,

totaling 100 𝜇s per CATH domain. Data production was conducted using an adaptive sampling (70)
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scheme, where the first trajectory epoch was seeded from a reference PDB structure, while the

following 2 epochs were seeded by extracting frames from previous epochs via a minRMSD

clustering (71) approach. The total simulation time of the combined dataset (original and in-house)

amounts to 5.2 ms. Download link: https://doi.org/10.5281/zenodo.15629740.

CATH2 The CATH2 dataset focuses on sequence coverage rather than overall simulation length.

Similar to CATH1 and to the procedure described in (10), systems were selected from the CATH

database (34) (version 4.3.0) by filtering out non-contiguous structures or sequences, non-standard

amino acids, proteins with disulfide bonds, coil fractions above 50%, or a relative shape anisotropy

≥ 0.05. Only domains containing between 50 and 200 amino acids were selected, forming a set

of ∼1100 domains. Out of those, for 1040 we could generate valid MD setups using our in-house

protocol (“MD simulation protocol”). 1 𝜇s trajectories for these domains were generated using the

Amber99SB-ildn (69) forcefield, producing a total of approximately 39 𝜇s per CATH domain, with

the exact amount varying due to compute availability reasons. We used the same adaptive sampling

strategy as in the CATH1 dataset, and 2 epochs of reseeding. The cumulative simulation time for

the whole dataset is 41 ms.

Download link: https://doi.org/10.5281/zenodo.15629740.

MEGAsim The MEGAscale domain simulation dataset (“MEGAsim” in short) is dedicated

to including folding-unfolding transitions in the training data. In total, it consists of extended

simulations of 271 wild-types, and 1 𝜇𝑠 simulations for each of the 22,118 point mutants, including

single-residue insertion/deletions. The systems and mutants in our dataset were taken from the

megascale measurements of protein domain stability via cDNA display proteolysis (21). To ensure

that every sampled system had a corresponding experimental measurement of the folding free

energy Δ𝐺 during the folding process, we focused on wild-types and mutants within the curated

set (“Dataset2 Dataset3”) of the reference publication. Our final dataset consists of a smaller

subset of systems due to finite computational resources and several applied filters, detailed below.

For the wildtype dataset, we adapted the general simulation setup to efficiently sample in both

the folded and unfolded states. The seeding structures included both the folded state as well as

less structured decoys. Folded structures were obtained from the AF2 predictions available on the

S5



Zenodo repository of Ref. (21). Unfolded (decoy) starting structures were obtained by simulated

thermal denaturization in implicit solvent at 400K, followed by several rounds of adaptive sampling

in explicit solvent at an elevated temperature. For both the equilibration and production phases,

two force fields were used: amber ff14sb (72) and amber ff99SB-disp (33). In comparison to more

traditional force fields like ff14sb, ff99sb-disp is specifically designed to model disordered proteins

and does not overstabilize globular decoy structures (33). Even though generally reliable, we noticed

that a99sb-disp can destabilize the native fold of a protein after extensive simulations. For those

cases we relied on ff14sb to generate samples of the folded state.

To optimize compute efficiency, we chose a rhombic dodecahedron simulation box with a 1.5

nm padding for each individual seed. Equilibration was performed with 0.2 ns NVT and 0.6 ns NPT

simulations, targeting 295K and 1 bar with a Langevin integrator and a 4 fs time step. Production

simulations were performed for 1.5 𝜇𝑠 per starting structure at 295K in the NVT ensemble and a

4 fs time step. Bond constraints and hydrogen mass were kept identical to section “MD simulation

protocol”), and we discarded the first 500 ns of each trajectory to only consider the last 1 𝜇𝑠 in the

subsequent analysis. Post processing was carried out with the goal of obtaining a clear separation

between folded and unfolded samples as well as minimizing the effect of mixing samples from two

force fields. We used the fraction of native contacts (FNC) to define the relative foldedness of each

MD frame, and built FNC histograms for all samples from each force field. While, theoretically, for

two-state folding-unfolding transitions one can expect the a bimodal distribution, in practice it can

be multimodal. However, we observed that the folded and unfolded states have well-defined density

peaks in the FNC distribution, and thus performed a kernel density estimation. For each forcefield,

we used the FNC with the lowest estimated density as the folding threshold.

For the unfolded state, we picked the samples below the FNC threshold from trajectories

simulated with the ff99sb-disp forcefield, whereas for the folded ones we used samples from the

same forcefield, i.e., ff99sb-disp by default. However, some cases remained where the samples

above the FNC threshold from the ff99sb-disp forcefield were multimodal, that spread over a large

range, or that had lower FNCs than the samples from ff14sb. For those systems, we selected ff14sb

for the folded state. We discarded systems where neither force field resulted in a clear density peak

in the FNC distribution above 0.8, or where either the folded or unfolded samples consisted of less

than 10% of the entire dataset. In difficult cases, we checked several sample structures as well as the
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FNC and RMSD time series and made a decision based on visual inspection. After processing, the

“MSR-megasim-merge” dataset consisted of 271 wild-type systems, out of which 77 had folded

states from amber ff14sb and unfolded states from amber ff99sb-disp, while the rest 194 featured

both folded and unfolded samples from amber ff99sb-disp.

Due to the large number of sequences present in the mutant dataset, we could not afford to

conduct sampling as thorough as for the wild-types. Instead, we relied on the presumption that

point mutations or single insertion/deletion mainly affect local interactions in the folded state, and

only weakly perturb the sample distribution in the unfolded state. Since our model only considers

the protein backbone, we reused the unfolded samples from the wild-types for all point mutants,

and generated MD simulations for all mutants in the folded state. Here we also assumed that the

mutant folded state does not deviate completely from the native state of its wild-type, but would

only be involved in local rearrangements, such as side-chain repacking. This assumption allowed

MD simulations of mutant structures to be seeded from their wild-type folded conformation, as

well as the use of the wild-type FNC to probe mutant foldedness. It further means that we can

use the FNC defined by the wild-type native contacts to probe the foldedness of the mutants. In

practice, we generated the mutant starting structures from their corresponding wildtype reference

structure by exchanging the side-chain accordingly and by performing energy minimization. This is

followed by a 1 𝜇s simulation for each of the mutants using the amber ff99sb-disp force field. Since

we expect the starting structure to be not the exact native structure of the mutant, we anticipated

the need for a burn-in period, to allow the system to relax to a more stable native folded state. To

select the length of such period, we split the trajectory into two parts so that the difference of the

mean FNCs of each part would be maximized. The part after the burn-in period was then kept for

the folded samples, except for situations where the FNC decreased monotonically throughout the

simulation.

To validate the combination of samples of each wild-type with its mutants, we considered

the impact of including mutant folded samples on the folding threshold for FNC computation.

In cases where the previously classified unfolded samples had surpassed the folding threshold,

it was no longer possible to define foldedness for the mutant based on its wild-type native con-

tacts. In all other cases, samples were combined, since those coming from wild-type simulations

only contributed to the unfolded population. After excluding cases violating the previous two
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assumptions, we obtained a set containing samples for 21,458 mutants, which we named the

“MSR-megasim-mutants-mosaic-disp” dataset.

Download link: https://doi.org/10.5281/zenodo.15641184.

Complexin We have generated a small MD dataset for complexin-2 (Uniprot ID Q6PUV4), which

is solely used for qualitative comparison of model predictions in Fig. 3C. The simulations were

seeded using the AlphaFold2 predicted structure deposited in Uniprot. First, we produced a 5 𝜇𝑠

trajectory with the Amber ff14sb force field (72) using our standard MD simulation protocol (“MD

simulation protocol”). Subsequently, we generated dynamics with the Amber ff99sb-disp (33) force

field. Here, the setup and equilibration were conducted in GROMACS (66) with initial structures

being solvated in a cubic box with 1.2 nm padding and 0.135 molar KCL buffer and the custom

ff99sb-disp TIP4P water model. After local energy minimization, the system was equilibrated in

0.1 ns (NVT) and 0.1 ns (NPT). Four production simulations of 1.5 𝜇𝑠 were conducted in OpenMM

following “MD simulation protocol”

We evaluated the simulation speed on an NVIDIA TitanV: 200 ns/day for ff14sb and 60 ns/day

for ff99sb-disp. The latter throughput is reduced due to the more expensive 4-point water model.

Public MD datasets The following MD datasets were curated from public sources, as specified

below.

• DESRES fast-folding proteins We use the fast folding protein simulations described in

Ref. (7) under license. The dataset consists of 12 systems simulated with the charmm22*

force field (73), with a cumulative simulation time of 8.2 ms. This dataset has only been

used for a separate model whose results are shown in Fig. 3A and S9, but it is not used to

obtain any of the other results presented throughout the manuscript. Data can be obtained

from DESRES upon request.

• DDR1 Simulations of 9 DDR1 kinases published in Ref. (74) with the amber ff99sb-ildn (69)

forcefield and featuring a cumulative simulation time of 6.8 ms. Downloaded from:

https://osf.io/4r8x2/

• SETD8 Simulations of methyltransferase SETD8 (75) excluding trajectories involving small
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molecules. The dataset consists of 26 systems, has a total simulation length of 5.9 ms and

uses the amber ff99sb-ildn force field. Downloaded from: https://osf.io/2h6p4/

• SARS-CoV-2 exascale We use the publicly available subset of the data published with

Ref. (26), which consists of simulations for 24 systems and uses the Amber ff03 force

field (76). The cumulative simulation time is 56.5 ms (when counting by trajectory), or an

effective 81 ms (when treating chains independently). Downloaded from:

https://registry.opendata.aws/foldingathome-covid19/.

AWS resource name: arn:aws:s3:::fah-public-data-covid19-cryptic-pockets.

• SARS-CoV-2 non-exascale Non-glycosylated SARS-CoV-2 RBD data by Ref. (77). The

dataset consists of a single system with 1.9 ms cumulative simulation time and uses the

amber ff14sb (72) forcefield. Downloaded from:

https://registry.opendata.aws/foldingathome-covid19/. AWS resource name:

arn:aws:s3:::fah-public-data-covid19-antibodies.

• MHC2 peptide simulations We use the dataset of MHC2 in complex with peptides as

published by Ref. (78). It consists of 68 systems with multiple chains and uses the amber

ff99sb forcefield (79). The cumulative simulation time is 9 ms (when counting by trajectory)

or effectively 27 ms (when treating protein chains independently). Downloaded from:

https://zenodo.org/records/15436451.

• Barnase-Barstar Simulations provided by Ref. (8), consisting of one system with two

chains using Amber ff99sb (79). The cumulative simulation time is 2.0 ms (when counting

by trajectory) or 4.0 ms effective (when treating chains independently). Downloaded from:

https://zenodo.org/records/8252423.

Experimental thermodynamics data High-throughput experimental measurements of protein

stability at ambient temperature were used to fine-tune the model in combination with in-house

generated datasets. Specifically, we extracted the Δ𝐺 (“dG ML”) and ΔΔ𝐺 values (“ddG ML”)

and the corresponding amino acid sequences for wild-types and mutants within the curated set

(“Dataset2 Dataset3”) from the associated data in Ref. (21), resulting in approximately 674,000
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cleaned entries. We randomly selected 43 wild types and a few mutants per wild type to add to the

test proteins. They are added together with test proteins from other benchmarks and analysis for

generating train/valid/test split, as described in “Data splitting procedure”. After the split, 502,442

sequences including 361 wild types and their mutants are in the training set. In Fig. 4, we present

results for 95 wild-type proteins and their randomly sampled mutants, none of which were included

in the training set. This evaluation set comprises proteins from the 43 initially selected wild types,

along with additional proteins chosen to span a range of sequence similarities to the training data.

This design allows us to assess how prediction accuracy varies with sequence similarity.

Model architecture

In this section, we describe the architecture of the proposed model and how it is trained. BioEmu

is defined as a conditional generative model. BioEmu receives as input a protein sequence and

generates independent and identically distributed (iid) samples from the approximate equilibrium

distribution of that protein’s conformations. The iid generation of samples can be parallelized across

a batch of random seeds, enabling efficient exploration of the equilibrium distribution of protein

conformations orders of magnitude faster than standard sequential, correlated molecular dynamics

simulations.

Protein sequence encoder As in prior work (12), the protein sequence 𝑆 is encoded through the

protein sequence encoder (Fig. 1C) to compute single and pair representations using pre-trained

AlphaFold2 (1). We used mmseqs (63) from the Colabfold (80) interface colabfold search

with default parameters for efficient and large-scale multiple sequence alignment search, excluded

templates entirely, and disabled AlphaFold2 recycling iterations. For generation, we fix the random

seed to 0 and use the single and pair embeddings generated by AlphaFold2 model 3.

As the protein sequence encoder depends on no other variables than the protein sequence 𝑆, the

single and pair embeddings for all proteins used in training and inference are pre-computed once

and stored for fast retrieval.

Coarse-grained protein structure representation BioEmu represents 3D protein structures

using a coarse-grained approach, following (81) (Fig. 1C). Only the backbone heavy atoms of the
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protein are represented via the backbone frame representation introduced in (1). As in (81), but

unlike (1), BioEmu does not explicitly model side-chains or hydrogen atoms.

To convert an all-atom protein conformation to its backbone frame representation for a given

residue, we use its C𝛼 atom coordinate r ∈ R3 and apply the Gram-Schmidt orthogonolization on

the displacement vectors C𝛼 → N and C𝛼 → C. This yields an orthonormal basis which can be

represented as a rotation matrix Q ∈ SO(3). Repeating this for each residue, we obtain a sequence

of position-orientation tuples, x := {(r𝑖,Q𝑖)}𝑁𝑖=1, for all 𝑁 protein residues. To recover the Cartesian

backbone atom positions from the frame representation, we start with a reference backbone heavy-

atom frame per residue type, with idealized atom positions, similarly to AlphaFold2 (1) or OpenFold

(82). For example, for alanine, the idealized frame atom positions are:

N

C𝛼

C

C𝛽

O

©­­­­­­­­­­«

−0.525 1.363 0.000

0.000 0.000 0.000

1.526 0.000 0.000

−0.529 −0.774 −1.205

0.627 1.062 0.000

ª®®®®®®®®®®¬
.

We then apply the rotation matrix Q𝑛 to obtain the rotated frame, and add the position vector r𝑛 to

the coordinates of all the atoms in the frame. Note that since the C𝛼 is at the origin of the idealized

frame, it will be at exactly location r𝑛 upon applying this transformation.

Diffusion conditional generative model BioEmu functions as a sequence-conditional generative

model: given a protein amino acid sequence, it parameterizes a distribution over backbone confor-

mations. Formally, let 𝑆 = (𝑎1, 𝑎2, . . . , 𝑎𝑁 ) be a protein sequence with 𝑁 residues 𝑎𝑖 ∈ R from the

set of 20 standard amino acids. BioEmu is a conditional diffusion model that can be used to sample

3D protein conformations x from a conditional distribution

x0 ∼ 𝑝𝜃 (x|𝑆), (S1)

where 𝜃 are the learnable weights that parameterize the neural network that acts as a score model

𝑠𝜃 (x|𝑆). Since the dimensionality of x depends on the protein sequence length 𝑁 , the dimensionality

of the space that BioEmu defines a distribution over depends on the length of 𝑆. The sampling

procedure that characterizes 𝑝𝜃 (x|𝑆) is obtained by simulating the reverse of a forward diffusion
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process, defined by a stochastic differential equation on the space of backbone frame representations

x:

𝑑x = f (x, 𝑡)𝑑𝑡 +G(x, 𝑡)𝑑w, (S2)

where w is a standard Wiener process, and f and G, drift and diffusion coefficients respectively, are

functional hyper-parameters. We choose f and G such that all residues as well as their positions r and

orientations Q are corrupted independently. Specifically, the positions are corrupted with a variance-

preserving stochastic differential equation (SDE) and a cosine noise schedule as described in (83).

We refer the reader to (84) for further details on diffusing over the space of orientations, SO(3).

The orientations are corrupted with a geometric noise schedule so that the marginal distribution of

the change in orientation after time 𝑡 is:

IGSO(3) (𝜔, 𝜎2) = 1 − cos(𝜔)
𝜋

∞∑︁
𝑙=0
(2𝑙 + 1)𝑒−𝑙 (𝑙+1)

𝜎2

2
sin((𝑙 + 1

2 )𝜔)
sin(𝜔2 )

, (S3)

where 𝜔 is the angle between rotations Q𝑡 and Q0 computed as:

𝜔 = arccos(trace(Q⊤𝑡 Q0)/2 − 1/2). (S4)

We use 𝑝(x, 𝑡) to denote the probability distribution of x at diffusion time 𝑡 when x is corrupted

in the above way, with the boundary condition that 𝑝(x, 0) = 𝑝(x) (the target distribution). If the

initial positions r0 are bounded (a reasonable assumption for physical protein structures centered

at the origin), then 𝑝(x, 1) is close to a simple prior distribution under which positions have a

standard isotropic Gaussian distribution and orientations are uniformly distributed.

It has been shown that by training on samples x(0) from 𝑝(x) together with corresponding

samples from the conditional distribution of x(𝑡) given x(0), a model can approximate the score

∇x𝑝(x, 𝑡); furthermore, if we know the score, we can construct SDEs under which the evolution of

the probability density 𝜕
𝜕𝑡
𝑝(x, 𝑡) is reversed (85). Starting by sampling positions r and orientations

Q from the prior and gradually ‘denoising’ by simulating one of these SDEs from 𝑡 = 1 to 𝑡 = 0,

we can approximately sample from the target distribution.

Model training details are further described in section “Training methodology”. For inference

purposes, we smoothen the model weights using an exponential moving average. To sample struc-

tures with the trained model, we have investigated the Heun sampler (86) and the DPM solver (87),

both leading to high-quality samples with fewer function evaluations compared to a traditional
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Euler-Maruyama sampler. See Fig. S11 for a comparison of distributions with different samplers

and number of steps. All results in the paper were obtained using the DPM solver.

Score model The score model (Fig. 1C) receives single and pair representations of the protein

sequence h := {h𝑖}𝑁𝑖=1 and z := {z𝑖 𝑗 }𝑁𝑖, 𝑗=1, corrupted frames x := {r𝑖,Q𝑖}𝑁𝑖=1, relative sequence

positions p := {𝑝𝑖}𝑁𝑖=1, and a diffusion timestep 𝑡, and predicts the score 𝑠𝜃 (x, h, z, 𝑡). It resembles

the structure modules of the AlphaFold2 (1) and Distributional Graphormer (12) models, and

uses the invariant point attention (IPA) transformer architecture. See Fig. 1C for an overview of

the architecture and Algorithm 1 for a detailed description. The translation and rotation scores

produced by the score model in Algorithm 1 are defined in the local coordinate frame of each

residue, and are invariant under rotation or translation of the entire structure. During denoising, the

updates to backbone atom positions are therefore equivariant under rotation and translation of the

whole structure.

Training methodology

Training begins with a pre-trained sequence encoder from AlphaFold2 (1), whose weights are

frozen while a custom structure module is trained from scratch. We first train on a synthetic dataset

derived from AFDB, with high sequence diversity and varied conformations for each sequence

(“AFDB pretraining” in Table S3, see section “Pre-training on AFDB” for details). The pretrained

model can predict diverse conformations for the same protein sequence, but it does not accurately

model the probabilities of different conformational states. We then fine-tune on MD simulation

data mixed with AFDB structures with the corresponding fractions of 95% and 5% (“Amber MD

finetuning” in Table S3, see section “Fine-tuning on Amber MD data” for details). After fine-tuning

on MD data, we perform one more stage of fine-tuning with the megascale experimental folding

free energy measurements with PPFT, while still keeping AFDB and MD data with a small fraction

(“Property prediction fine-tuning” in Table S3, see section “Training on folding free energies via

property prediction fine-tuning (PPFT)” for details). This training procedure results in the main

model BioEmu reported in this paper. We also separately fine-tuned the pre-trained model on

DESRES fast-folders data (section “Fine-tuning on CHARMM MD data of fast-folding proteins”),

which was used to produce the results in Figures 3A, S9 but not for any other results.
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In all stages, we use the standard denoising score-matching loss as in (81). To train on ex-

perimental thermodynamic data, we add a novel loss term described in “Training on folding free

energies via property prediction fine-tuning (PPFT)”. Table S3 provides a summary of all training

settings. We define a training epoch as the model processing 500,000 protein structures.

Data splitting procedure We first defined a list of test proteins for benchmarking and analysis,

then excluded from the training and validation sets any protein with a sequence similar to those test

proteins. Specifically, we used the mmseqs2 software (63) (version 15.6f452) and removed proteins

if they have 40% or higher sequence similarity with any test protein of at least 20 residues in size,

using mmseqs2 with its highest sensitivity setting (8.0).

Pre-training on AFDB We initially train our model using a dataset derived from AFDB to encour-

age protein conformational variability (section “AlphaFoldDB processing” for details). Training

examples are drawn by randomly selecting a sequence cluster and then a structure from within that

cluster. While the structure is randomly selected, we always use the sequence associated with the

highest pLDDT structure in the cluster as input to the model. This procedure effectively maps a

single sequence to multiple structural conformations (Fig. 1E). In this stage of training, we use

the standard denoising diffusion loss (81), defined as a sum over residues. We set the loss to zero

in positions where there are insertions or deletions in the sampled structures relative to the repre-

sentative sequence. The final model checkpoint was chosen based on the performance obtained on

our curated OODVal benchmark (section “Multi-conformation benchmark sets”). For exact training

parameters, please refer to Table S3.

We compared our pre-training strategy to the more straightforward approach of training the

model on the PDB. Additionally, to assess whether the performance of the model was due to an in-

creased diversity in sequence space, we additionally trained on foldseek (64) cluster representatives

of AFDB with a pLDDT greater than 90 (88). This constituted a set of ∼250k sequences distinct in

both sequence and structure space. We found that models trained on the PDB and the high pLDDT

subset of AFDB are worse in their ability to sample diverse conformations (Fig. S8), indicating

that our curated subset of AFDB is an important contribution to facilitate multi-conformational

learning.
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Fine-tuning on CHARMM MD data of fast-folding proteins For the results shown in Fig.

3A and Fig. S9, we fine-tuned our best pre-trained model on a set of 12 fast-folding proteins (7)

simulated with the charmm22* force field featuring sequence lengths ranging from 10 to 80 residues.

For evaluation, this set is split into training, validation, and test subsets following a 10:1:1 ratio

for each protein (leave-one-out cross-validation). PRB is used as the validation system in all splits

except in the one where PRB is the test system. In that case, UVF was used instead. Specific training

settings are reported in Table S3. All fast-folders results are obtained by evaluating the final model

checkpoint from the last training epoch.

Fine-tuning on Amber MD data Starting from the best model identified during the pre-training

stage, we perform two stages of fine tuning using the Amber MD datasets listed in Table S1, plus

high-throughput experimental measurements of folding free energies from (21). In each fine-tuning

stage, the training data is augmented with a small percentage of all datasets from the previous training

stage, to prevent catastrophic forgetting. The hyper-parameters for finetuning are shown in Table S3.

In the first stage of fine-tuning, we use standard denoising diffusion loss for all the MD simulation

data and a small fraction of AFDB structures. In the second stage of fine-tuning, we include a

large scale of 502,442 sequences (including 361 wild types and their mutants) with experimental

folding free energy measurements (“MegaExp” dataset in Table S2), and use a novel loss to match

experimental folding free energies by backpropagating through the sampling procedure (section

“Fine-tuning on CHARMM MD data of fast-folding proteins”). We increase the proportion of MD

simulations for which experimental folding free energies are available (“MSR-megasim-merge” and

“MSR-megasim-mutants-mosaic-disp”). We have also included all the other MD simulations

and AFDB structures with a smaller fraction. In this stage, we only fine-tune the model parameters

of layer 1 and 8 of our score model (Algorithm 1). We find the inclusion of previous training data

and freezing part of the model parameters help prevent catastophic forgetting and mode collapse.

During each training epoch, 500,000 training and 50,000 validation frames are sampled at with

a weighted sampler. The probability weight of each frame is the product of a MD dataset percentage

and a normalized frame weight. The dataset percentages, given in Tab. S2, were determined based

on accumulated simulation time, sequence diversity and degree of convergence of the different

datasets.
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Most MD datasets use a frame weight of 1, but specific weights are applied for systems belonging

to the following MD datasets:

• Systems in the ONE-octapeptides dataset are reweighted via Markov State Models (MSMs)

so that each state (a region of configuration space) is sampled with the frequency determined

by the MSM equilibrium probability (section “MSM reweighting for small peptide datasets”).

• Systems in the MSR-megasim-merge and MSR-megasim-mutants-mosaic-disp datasets

are reweighted based on their foldedness so that the training distribution recovers the experi-

mental folding free energies (section “Connectivity filtering for post-hoc analyses”).

In order to deal with systems of varying size, we define batches based on the total number of

protein residues in a batch, up 1440 or 2048 depending on the training stage (Table S3). In order to

reduce overhead caused by zero-padding, systems of similar size and same loss type (PPFT loss vs

score matching loss) are grouped together when generating batches.

MSM reweighting for small peptide datasets The data distribution generated by MD is often

biased towards the seeding structure since simulations are usually run in parallel, often starting

from the same or a small number of seed structures. MSMs are a common approach to remedy this

problem (20). In short, the classical approach first projects the 3𝑁-dimensional protein system into

a low-dimensional representation, discretizes this projection using a clustering algorithm such as

𝑘-means, and estimates a transition matrix on these discrete states (89). This approach gives access

to the equilibrium probabilities via the eigenvector of that matrix that corresponds to eigenvalue 1.

Such eigenvector is then used as a probability distribution to draw samples from the MD simulation

accordingly.

This analysis was applied to the ONE-octapeptide dataset, using two-dimensional TICA pro-

jections based on C𝛼-C𝛼 distances and dihedral angles. We used a lag time of 1 ns for both TICA

and MSM estimation, and 100 discrete states via 𝑘-means discretization for the MSM. These

equilibrium probabilities are then used to reweight the sampling of training frames.

Connectivity filtering for post-hoc analyses It is common practice to perform MSM analyses

on sets of states that are reversibly connected. A connected set of states is here referred to as one
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where each state is reachable from each other state via a sequence of trajectory transitions. Since

multiple connected sets may exist, we select the one containing the most MD samples. As obtaining

a connected set from data is numerically more stable than estimating a converged equilibrium

distribution, this filter can be applied in situations where a converged MSM estimate could not be

obtained.

This analysis was conducted for the ONE-cath1 dataset, using a linear VAMP projection (90)

using a lag time of 5 ns and residue-residue minimal distances on heavy backbone and C𝛽 atoms,

excluding one residue at each terminus and two neighboring residues. Subsequent connectivity

analysis was conducted by counting transitions between discretized states at a lag time of 500 ns

based on the first 5 VAMP dimensions and a 𝑘-means clustering approach to obtain 200 states.

Data outside of the largest connected set was discarded from subsequent analyses, which roughly

translated to keeping 90-95% of the data on average. Free energy plots of ONE-cath1 (i.e., CATH

domains presented in Fig. 3 and Fig. S10) were based on a secondary TICA projection obtained

from trajectories inside the connected set of states.

Reweighting MD with experimental folding free energies As described above, we have gen-

erated MD simulation data for a subset of the sequences that are represented in the dataset of

experimental folding free energies (Δ𝐺) provided by (21). Since the MD simulations are too short

to represent a converged sample of folding and unfolding events, the folding free energies estimated

from histogramming the raw simulation data do not match their corresponding experimental mea-

surements but primarily reflect whether the trajectory was started in the folded or unfolded state.

To account for this, we reweigh the MD simulation data of each MEGAscale protein system with

the corresponding experimental Δ𝐺. For each system, first we classify all the MD conformations

into folded and unfolded states, and then sample the folded and unfolded structures with different

frequencies during training, such that the ratio of folded versus unfolded states seen by the model

during training matches the target ratio given by the experimental Δ𝐺. Specifically, the folding free

energy is related to the probability that a protein will be found in a folded state in the equilibrium

distribution.

The folding free energy Δ𝐺 can be defined in either of two directions, here we choose the

convention to define it as the change in free energy when folding, i.e. Δ𝐺 = 𝐺folded − 𝐺unfolded.
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Then the probability of being in the folded state, 𝑝folded, is related to the folding free energy is Δ𝐺

by:
𝑝folded

1 − 𝑝folded
= exp

(
− Δ𝐺
𝑘𝐵𝑇

)
, (S5)

where 𝑇 is the temperature and 𝑘𝐵 is the Boltzmann constant. The probability of being in the folded

state can be expressed as the expectation value of foldedness 𝑝folded = Ex [ 𝑓 (x)], where 𝑓 ranges

from 0 (unfolded) to 1 (folded). For both our reweighting and model evaluation, we define 𝑓 as:

𝑓FNC(x) = 𝐻 (𝑄(x) −𝑄threshold) , (S6)

where 𝐻 is the Heaviside step function, 𝑄(x) the fraction of native contacts, and 𝑄threshold a system-

dependent threshold. For a given protein structure x, the fraction of native contacts (FNC) is defined

from pairs of residues that are at least 3 residues apart in the amino acid sequence but which are

physically within 10 Å of each other in a reference folded structure. Specifically, we follow notations

as in (91):

𝑄(x) = 1
𝑁

∑︁
(𝑖, 𝑗)

1

1 + exp
[
𝛽

(
𝑟𝑖 𝑗 (x) − 𝜆(𝑟0

𝑖 𝑗
+ 𝛿)

)] , (S7)

where 𝑟𝑖 𝑗 (x) and 𝑟0
𝑖 𝑗

are the contact distances between 𝑖 and 𝑗 in the configuration 𝑥 and the reference

conformation (native state). 𝛽 = 5, 𝜆 = 1.2, and 𝛿 = 0 are constants, representing the softness of

the switching function, the reference distance tolerance and offset, respectively. For each simulated

MEGAscale system, we use its PDB structure as the reference conformation. Any given sampled

structure can then be classified as folded or unfolded by setting a threshold on the calculated FNC

value.

To account for differences in the observed FNC distributions, we set the FNC threshold in a

system-dependent but unsupervised manner. Specifically, considering that we initialized multiple

MD trajectories separately starting from folded and unfolded states for every protein, and those

are not long enough to observe transitions, the distribution of FNC for each system is generally

separated into peaks near 1 and 0, representing folded and unfolded states, respectively. In order to

obtain a smoother distribution of FNC values for each system, we use a kernel density estimate and

then use its minimum within the range of 0.45-0.9.

Training on folding free energies via property prediction fine-tuning (PPFT) Although the

reweighting method encourages the model to learn the correct experimental folding free energies

S18



with MD simulation data alone, we have empirically found that this convergence is slow, especially

for systems where unfolded states are rare (large negative Δ𝐺). More importantly, experimental

observables such as Δ𝐺 can only be used in a standard diffusion model training approach if both

folded and unfolded structures are available, e.g. obtained via MD simulation, whose computational

costs would limit us to rather few training systems. Here we conducted a large number of MD

simulations for 22,389 protein sequences from the MEGAscale dataset, and yet this only corresponds

to about 2% of the entire experimental dataset. On the other hand, directly training diffusion

models to sample distributions that match a given set of expectation values via generation and

backpropagation is computationally prohibitive. Training costs would increase roughly in proportion

to the number of denoising diffusion steps compared to regular score matching – in our case that

would be a factor of 50 to 100.

To avoid these limitations and take advantage of high-throughput experiments such as the

ones in (21), we have developed a novel and efficient method that trains diffusion models to

generated distributions that respect a given set of properties of these distributions, e.g. experimental

expectation values. As the method is most likely effective with a pre-trained diffusion model, we

call it property-prediction fine-tuning (PPFT).

PPFT leverages that many low-dimensional properties of the distribution can be accurately

predicted without performing a complete rollout of the diffusion model. Nonetheless, the training

principle follows a simple prediction and backpropagation scheme. For a given sequence with an

associated experimental Δ𝐺, we can roll out the denoising process to generate a clean sample and

compute its foldedness. We rewrite Eq. S5 to relate the sample expectation value of foldedness to

the folding free energy:

Ex [ 𝑓 (x)] =
exp

(
− Δ𝐺

𝑘𝐵𝑇

)
1 + exp

(
− Δ𝐺

𝑘𝐵𝑇

) . (S8)

where we use 𝑇 = 295K because the experimental measurements are performed at room tem-

perature. Then, for each protein sequence 𝑠 in a PPFT training batch, we define its loss term

as:

𝐿ppft(𝑠) =
2

𝑀 (𝑀 − 1)

𝑀∑︁
𝑚=1

∑︁
𝑛>𝑚

(
𝑓 (x𝑚) − 𝑓target

) (
𝑓 (x𝑛) − 𝑓target

)
, (S9)

where we generate 𝑀 iid samples with the same protein sequence, and compute 𝑓target from the

right hand side of Eq. S8 using the corresponding experimental Δ𝐺. The cross term in Eq. S9 is
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used to minimize the expectation:

Ex𝑚,x𝑛
[
( 𝑓 (x𝑚) − 𝑓target) ( 𝑓 (x𝑛) − 𝑓target)

]
=
(
Ex [ 𝑓 (x)] − 𝑓target

)2
. (S10)

If a standard mean squared error loss were to be used instead,

Ex
[
( 𝑓 (x) − 𝑓target)2

]
=
(
Ex [ 𝑓 (x)] − 𝑓target

)2 + Var[ 𝑓 (x)] (S11)

would be minimized, which contains an additional variance term that would encourage mode

collapse. After that, we average over the sequences in the batch to get the PPFT loss term 𝐿ppft.

We notice that the definition of foldedness 𝑓 (x) by Eq. S6 is non-differentiable due to the

Heaviside step function, and the system-dependent threshold adds additional complication. In

PPFT, we replace the step function with a sigmoid function:

𝑓FNC(x) = 𝜎 (𝑘 (𝑄(x) −𝑄threshold)) , (S12)

We choose 𝑘 = −20,𝑄threshold = 0.5 for all protein systems. The sigmoid function 𝜎 is differentiable

and thus enables backpropagation. It also approaches a Heaviside step function when the slope 𝑘 is

sufficiently large.

In the model finetuning stage, for those systems with both simulation and experimental Δ𝐺

data, we combined 𝐿ppft with the usual score matching loss 𝐿sm, i.e.:

𝐿 = 𝐿sm + 𝑤𝐿ppft, (S13)

with a weight 𝑤 = 10. Even though the simulation data was reweighted using the experimental

Δ𝐺 based on the method described in section “Reweighting MD with experimental folding free

energies”, we find that the inclusion of the 𝐿ppft loss notably sped up Δ𝐺 model convergence.

As described above, a key requirement for PPFT to be computationally efficient is to avoid

executing full diffusion model denoising with hundreds of denoising steps. To mitigate this cost,

and considering that folding/unfolding are changes easily recognizable at a coarsed-grained level

at earlier denoising levels, we considered reducing the number of integration timesteps, which

sacrifices sample quality, but still predicts the foldedness accurately. In practice, we find that 35

timesteps are sufficient when used alongside the DPMsampler. To further reduce cost, we denoised

S20



to a specified intermediate noise level 𝑡 to then perform clean sample extrapolation x̂0 using the

reparameterization trick (92), with

x̂0 = (x𝑡 −
√︁

1 − 𝛼̄𝑡𝜖0)/
√︁
𝛼̄𝑡 . (S14)

The foldedness is then predicted from x̂0 after denoising 8 out of 35 timesteps. We remark that

while the coarse-grained nature of foldedness enables us to greatly reduce the number of rollout

steps and model evaluations, this may not be applicable for every properties of interest. In such

scenarios the adjoint method may be needed for computationally-affordable and numerically-stable

training (93).

As a final measure towards increasing efficiency we leverage partial backpropagation, which

has shown to effectively reduce computational costs in image-related tasks (94,95). Here we apply

backpropagation only through the final extrapolation and denoising step 3, 4, 5. In other denoising

steps the score function is detached from the computational graph.

We summarize the PPFT method in Algorithm 2, and a combination of techniques contribute

to its performance:

1. Definition of a differentiable target function,

2. A base model that is able to qualitatively sample multiple conformations,

3. Partially freeze model parameters,

4. Cross-target matching loss term,

5. Joint training with regular score matching,

6. Use of a higher order sampler to reduce integration timesteps

7. Extrapolation, and

8. Partial backpropagation.

We find that 2-5) are particularly helpful for reducing the mode collapse problem that results

from overoptimization of the property prediction loss function, while 6-8) help to greatly reduce

the rollout and backpropagation steps, such that direct backpropagation is feasible with current

compute requirements.
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Multi-conformation benchmarking

We begin by describing the benchmark sets, their rationale for inclusion, and curation criteria in

“Multi-conformation benchmark sets”. Additional details about how we constructed an uncontam-

inated benchmark for evaluation is provided in “Curation of the OOD family of benchmarks”.

In “Multi-conformation metrics” we provide details on the summary metrics we use in order to

evaluate multi-conformation sampling capabilities of BioEmu and other competing models. The

influence of sequence similarity and AlphaFold2 evoformer embeddings on model performance is

investigated in “Influence of sequence similarity on multi-conformation performance” and “Influ-

ence of AlphaFold2 evoformer training on multi-conformation performance”, respectively. Finally,

in section “Multi-conformation baseline methods” we provide insights into the baseline methods

used for comparison with our models as well as the parameters that were chosen for them.

Multi-conformation benchmark sets In order to evaluate the multi-conformation sampling

capabilities of the pre-trained and fine-tuned models, we manually curated several several example

sets of structural biology interest. For some of the benchmarks, this curation includes manual

labeling of residues involved in specific conformational changes. Full lists of PDB and chain

identifiers (label asym id), along with residue labels for alignment and metric computation, are

provided in the benchmark repository (61). Details on each individual benchmark are provided

below:

• OOD60: A collection of 19 examples from the PDB deposited after the AlphaFold2 monomer

model cutoff date (April 30, 2018). A 60% sequence similarity cutoff is used to remove any-

thing from this benchmark that is similar to any chain in the PDB prior to the specified cutoff

date. This benchmark represents an unbiased evaluation of multi-conformation sampling,

and contains several representative examples of the type of conformational changes present

in other benchmarks. Metric-wise, we use RMSD as defined on either a local region, or the

entirety of the protein, depending on each case.

• Domain motion: 22 examples representing large-scale hinge motions. Only global RMSD is

used for evaluation in this benchmark.
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• Cryptic pocket: 34 example pairs featuring a conformational change characterized by the

formation of a binding site that is induced in a holo (bound) structure, but not in the apo

(unbound) structure. Many of these examples were further curated from the CryptoSite

benchmark (96) or other related works (97). The binding site and other parts involved in the

conformational changes were manually-defined, and local RMSD was used as a metric.

• Local unfolding: A set of 21 examples, where a segment of at least 8 residues undergoes

an unfolding transition, including some examples from the benchmark proposed in (98). For

this benchmark we defined the segment of the protein that can unfold or detach and measure

the fraction of native contacts between this segment and the entire protein to track whether a

sample was folded or unfolded.

• OODVal: A manually curated set of 11 examples picked after the AlphaFold 2 monomer

model cutoff date but has no overlap with the OOD60 set described above, which we use

for pre-trained model selection purposes. Only global RMSD is used as a metric in this

benchmark.

Curation of the OOD family of benchmarks As mentioned in “Multi-conformation benchmark

sets”, we selected pairs of reference PDB structures deposited after the AlphaFold2 monomer

model cutoff date to avoid potential dataset contamination during evaluation. We first extracted

and separated all chains for all PDB entries after the mentioned cutoff date. Each protein entity

inside each entry is then associated with a unique UniProt segment using SIFTS annotations (99).

A sequence clustering procedure using mmseqs2 is then applied on all Uniprot segments, using a

minimum sequence identity threshold of 0.99. Within each sequence cluster, we perform a structure

clustering procedure on the associated PDB entities, similar to the one reported in (13). We used

TM-score as the primary structural similarity metric within each sequence cluster. An agglomerative

clustering procedure, implemented in scikit-learn, was then applied with a maximum allowed

TM-score of 0.7 between clusters. Benchmark pairs were selected from cluster representatives

based on the following criteria, which are applied to the resolved structures: (i) Minimum sequence

length of 50 residues, (ii) Maximum coil content of 40%, (iii) Minimum sequence identity of 80%

between structures, (iv) Maximum difference in sequence lengths of 50 residues.
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For the OOD60 benchmark, care was taken that the remaining pairs were at most 60% sequence-

similar to the AFDB training set. OODVal was selected as the set difference between the whole

OOD and OOD60 sets. Both sets underwent thorough manual curation to ensure unphysical or

unrealistic examples were excluded. Some of the criteria applied for curation included checking

whether an intra-domain conformational transition was present, whether that occurred in a region

that is resolved in both references, or filtering for chains that formed a single long helix, as we

deemed their stability outside a complex unlikely.

Multi-conformation metrics For most benchmarks we used RMSD of backbone atoms as the

primary metric. For the local unfolding benchmark, we used a contact map based solely on C𝛼 atoms

to measure interactions between the unfolding region and the rest of the protein, since the unfolded

state lacks a well-defined reference structure. For most multi-conformation benchmarks, we used the

experimental sequence as defined by the entity poly.pdbx seq one letter code can field

in the mmCIF dictionary entry. If the experimental sequences differed between the two reference

structures, we sampled both sequences in equal proportion. For the cryptic pocket benchmark, only

the apo conformation’s experimental sequence was used, as the apo conformation is more difficult

to sample. Global pairwise sequence alignments were used to compute metrics as needed when the

sampled sequences differed from the experimentally-resolved reference sequences in the mmCIF

files. For this, we mostly used the default parameters of BioPython’s PairwiseAligner, apart

from manually setting an open gap penalty of 0.5.

We computed two key summary statistics to evaluate the multi-conformation capabilities of our

model, as well as to compare it against other approaches:

• Coverage: the fraction of reference conformations sampled, evaluated using a chosen metric

across various thresholds. We consider a conformation as covered if at least 0.1% of samples

are within a specific threshold the corresponding reference structure.

• 𝑘-recall: the average metric value (e.g., RMSD or FNC) for the top 0.1% of samples closest

to each reference structure.

Before computing metrics, we filtered out unphysical samples exhibiting chain breaks or atomic

clashes. Specifically, we looked at C𝛼-C𝛼 and C-N distances between sequence-adjacent residues
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and ensured that these do not surpassed 4.5 Å and 2.0 Å thresholds, respectively. Additionally,

distances were computed between any two backbone atoms of different residues and we ensured

that samples did not contain any such distances below a threshold of 1.0 Å.

For a detailed definition of the metrics and benchmarks please refer to our benchmarks repository

at https://github.com/microsoft/bioemu-benchmarks.

Influence of sequence similarity on multi-conformation performance We analyzed how

BioEmu’s performance depends on sequence similarity to the training set to assess generalization

and reduce the risk of memorization. We evaluated the fraction of successfully sampled reference

conformations (coverage) using predefined success thresholds: 3Å RMSD for OOD60 and domain

motion, 1.5 Å RMSD for cryptic pockets, FNC values of < 0.3 and > 0.7 for unfolded and folded

states, respectively, in the local unfolding benchmark. Multi-conformation coverage is computed

for different subsets of the test set, as a function of sequence similarity to the entire training set (Fig.

S5A). Additionally, we show the recall – defined as the mean RMSD or FNC values of the 0.1%

best samples – plotted against train-test sequence similarity (Fig. S5B). Here, we define sequence

similarity as the maximum similarity of a test sequence to the training dataset given at least 30%

coverage of the test sequence. Sequence similarities below 25% are considered unreliable due to

their sensitivity to alignment parameters. Between 25% and 40% sequence similarity values, the

coverage of the domain-motion benchmark increases, and that of OOD60 slightly increases. Other

benchmarks show little dependence on sequence similarity. In the local unfolding benchmark, the

folded state coverage slightly decreases with sequence similarity, while the unfolded state coverage

slightly increases. No clear trend is observed in other benchmarks. Even for domain motion, per-

formance plateaus beyond 35% sequence similarity, suggesting that the fine-tuned BioEmu model

does not rely on memorization beyond a baseline similarity.

Influence of AlphaFold2 evoformer training on multi-conformation performance Because

BioEmu’s input module uses AlphaFold2 evoformer embeddings, there is a risk that its performance

on multi-conformation benchmarks (Fig. S7) may stem from memorization or retrieval from the

embeddings, rather than true generalization – except in the OOD60 benchmark.

Towards that end, we trained an entirely new end-to-end model for encoding protein sequences,
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thus avoiding the dependence on AlphaFold2 evoformer embeddings. The end-to-end model pro-

cesses MSA data directly, similar to AlphaFold2, and employs 4 MSA blocks and 48 Pairformer

layers, following the AlphaFold3 architecture (2). Pairformer layers were used instead of evoformer

ones due to their reduced computational cost. The model was first trained on a non-redundant subset

of the PDB, and its embeddings were then used in the same pretraining and fine-tuning stages as

BioEmu. Specifically, for the training of this model we excluded any training sequence with more

than 40% sequence similarity to any test sequence in the static multi-conformation benchmarks.

The resulting model achieved performance comparable to BioEmu (Fig. S6). The performance in

the OOD60 benchmark at a 3Å success threshold is roughly 10% lower than BioEmu, but exceeds

the BioEmu performance at 4Å and beyond. Since OOD60 is out-of-distribution for both BioEmu

and AlphaFold2 training sets, this performance variation is unlikely due to the train-test split. In all

other benchmarks, the end-to-end model performance is either equal or surpasses that of BioEmu.

Although the end-to-end model was trained with a stricter train-test split, it still matches or outper-

forms all other baseline methods. These baselines either use more lenient splits or reuse AlphaFold2

parameters, such as in MSA subsampling strategies. An exception is AFCluster, which performs

better in the cryptic pocket apo benchmark. However, we note that the majority of systems in this

benchmark were included in the original AlphaFold2 training set, and hence better performance

from this baseline could be expected in this case.

Overall, these findings provide no evidence that the performance of BioEmu in the multi-

conformation sampling tasks relies on memorization. However, because the end-to-end model

does not consistently outperform BioEmu on the static multi-conformation benchmarks, there is

currently no strong justification to replace the AlphaFold2 evoformer embeddings in the main

BioEmu model. For completeness, we repeat the analysis of how multi-conformation performance

depends on the train-test sequence similarity for the end-to-end model (Fig. S5A). Similarly to the

fine-tuned model results, there is no clear trend relating multi-conformation prediction performance

to sequence similarity: For the end-to-end model, domain motions and cryptic pocket transitions

quickly ramp up to their final performance between 25% and 30% sequence similarity, while for

other benchmarks the performance stays constant or even somewhat decreases for more similar,

indicating that there are not sufficient examples in the multi-conformation benchmarks to compute

a reliable trend as a function of the similarity variable, or that global sequence similarity is not the
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best metric to predict performance in these tasks.

Multi-conformation baseline methods We selected AFCluster (15), AlphaFlow (13), DiG (12),

and uniform MSA subsampling (depth 100) as baseline methods for multi-conformation sampling.

AFCluster is an MSA subsampling-based method that clusters the MSA and feeds each cluster

representative to AlphaFold2 to generate distinct samples. In contrast, AlphaFlow and DiG – like

BioEmu – are deep-learning-based generative models. For all of these baselines, MSAs were

generated using ColabFold (80) with default parameters. For AlphaFlow and DiG, we generated

the same number of samples as with BioEmu. For AFCluster, the number of samples was limited to

the number of clustered MSAs produced by the method. For uniform MSA subsampling, we drew

the same number of samples as with BioEmu, except when the original MSA depth was below 100

– in those cases, only a single sample was generated. AlphaFlow runs included the recommended

--self cond --resample flags during evaluation. Comparisons of our trained models against

these baselines on the proposed benchmarks are provided on Fig. S7.

Protein stability benchmarks

System selection We selected proteins from ProThermDB (38) with experimental Δ𝐺 of un-

folding ≥ 8 kcal/mol and a single-chain asymmetric unit. We excluded proteins based on several

criteria, resulting in a final set of 26 proteins. Exclusions included two membrane proteins, one with

an undetermined sequence, and one nucleic acid–protein complex. The initial selection comprised

140 systems. Additionally, we curate a smaller subset consisting of 26 proteins after excluding

systems with one of the following conditions:

• proteins annotated as membrane protein

• proteins with a ligand reported under _refine_hist.pdbx_number_atoms_ligand (e.g.,

1C52)

• proteins with disulfide bonds as reported under _struct_conn.conn_type_id (e.g., 1LVE)

• oligomeric proteins (e.g., 1ROP, supposedly only stable as a dimer) or proteins in protein-

RNA complexes
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• proteins with ligands not reported in _refine_hist.pdbx_number_atoms_ligand (e.g.,

2LCP)

• proteins with repeated entries due to differing capitalization

We also used the CALVADOS test set from IDRome (39, 41), which includes 65 intrinsically

disordered proteins (IDPs), to benchmark stability. Sequence similarity search indicated that there

was only one protein with a similarity above 40% with respect to the training set of BioEmu.

Evaluating free energy predictions We use the same definition of foldedness as in PPFT to

evaluate the folding free energy Δ𝐺 of a given protein sequence. Depending on the experimental

folding free energy, we generate between 200 and 10,000 samples per protein for evaluation. We

compute the change in folding free energy upon mutation, ΔΔ𝐺, as the difference between the

mutant’s Δ𝐺 and that of the wild type: ΔΔ𝐺mut = Δ𝐺mut − Δ𝐺wt. To estimate confidence intervals

in the Δ𝐺 predictions, we used the Clopper-Pearson method.

Energy landscape MAE

Folded-state filtering MD force fields are biased towards folded protein states, which typically

prevents the sampling unfolding transitions at room temperature. The resulting TICA projections

therefore only describe folded-state ensembles and fail to represent unfolded states. Since BioEmu’s

samples represent the full protein ensemble, applying an MD-derived TICA projection often yields

non-informative projections for unfolded samples, usually appearing as high-variance noise in the

free energy landscape. To ensure a fair comparison – especially for datasets like the CATH domains

that only include folded-state MD data – we filter our samples based on their fraction of native

contacts (threshold of 0.5), as defined in Eq. S6.

Macrostate MAE definition Assessing the mean absolute error on protein conformations is

a non-trivial task for two reasons. a) Conformational landscapes and corresponding free energy

surfaces cannot be directly assessed in 3𝑁-dimensional space, but require a projection space in

which density – and thus free energy – can be computed. b) Free energy landscapes are often

very rough and transitional regions have extremely low probabilities compared to metastable states.
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Errors in predicting the relative probabilities of metastable states versus those of transition regions

can be considered two distinct classes of error. In this paper, our goal was to sample metastable states

such as folded or unfolded in the correct ratio, and therefore we focused on the first error. We have

chosen the following approach to quantifying the mean absolute error (MAE) of protein free energy

landscapes over metastable protein states, which are often referred to as macrostates: First, we

parameterized a linear TICA projection (time-lagged independent component analysis (54)). Since

TICA, like all dimensionality reduction techniques, is fundamentally limited by availability of data,

we have limited this analysis to a subset of test systems with sufficient MD data. Only trajectories

within the connected sets described in the section “Connectivity filtering for post-hoc analyses”

were used. Second, we defined macrostates in the 2D TICA space and clustered them using Hidden

Markov Models (HMMs) (90), a commonly used approach in MD simulation analysis. HMMs were

estimated at comparably short lag-times of 1 ns and with 3 hidden states as a numerically stable

choice.

The macrostate MAE (mMAE) was computed by assessing the relative free energies 𝐺𝑖 within

each macrostate 𝑖 by sample counting:

𝐺𝑖 = −𝑘𝐵𝑇 ln(𝑝𝑖) + const, (S15)

with 𝑘𝐵 the Boltzmann constant, 𝑇 the temperature, and 𝑝𝑖 the normalized histogram count for

macrostate 𝑖. As not all macrostates were sampled by our model for the systems considered, a prior

count of 1 was assigned to each macrostate. For a model with 10,000 samples, this corresponds

to setting a minimum probability of 𝑝𝑖 = max(𝑝𝑖, 10−4), which defines the resolution limit of the

model. Relative free energies from ground truth MD distribution and model samples are offset such

that min𝑖 𝐺𝑖 = 0. The overall mMAE between model prediction (ML) and ground truth (GT) was

then computed as:

mMAE =
1
𝑁

𝑁∑︁
𝑖

abs(𝐺ML
𝑖 − 𝐺MD

𝑖 ). (S16)

To evaluate BioEmu’s performance on MD-generated free energy landscapes, we have applied

our mMAE metric to a random test set from the CATH1 dataset. All of these systems have ≥ 100𝜇𝑠

MD data.
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Figure S1: Multi-conformation benchmark: OOD60. Benchmark evaluates BioEmu’s ability

to sample distinct conformations for proteins with ≤ 60% sequence similarity to the AlphaFold2

training set. Each panel compares two distinct experimentally determined PDB structures (red and

yellow). The energy landscapes depict the empirical free energy distributions generated by the

pre-trained and fine-tuned BioEmu models, plotted against the global C𝛼 RMSD to each reference

structure (in Å). A successful match is defined as a sample within 3 Å RMSD of a reference

structure (indicated by dashed lines). The detailed benchmark definition, including PDB codes, is

provided in (61). S30
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Figure S2: Multi-conformation benchmark: Domain motions. This benchmark evaluates

BioEmu’s ability to sample large-scale domain rearrangements. Each panel compares two ref-

erence PDB structures (red and yellow) and shows the empirical free energy landscapes generated

by the pre-trained and fine-tuned models, plotted against global C𝛼 root mean square difference

(RMSD) to each reference (in Å). A match within 3Å RMSD (dashed lines) is considered success-

ful. The detailed benchmark definition, including PDB codes, is provided in (61).
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Figure S3: Multi-conformation benchmark: Local unfolding. This benchmark tests BioEmu’s

ability to sample partially unfolded states. Each panel displays the folded reference structure (red)

and energy landscapes from the pre-trained (black) and fine-tuned (blue) models, plotted against

the fraction of native contacts (FNC) between the unfolding region and the rest of the protein.

Samples with FNC > 0.7 are considered folded; those with FNC < 0.3 are considered unfolded.

The detailed benchmark definition, including PDB codes, is provided in (61). Notable differences

between models include improved unfolded-state sampling for KIX and Trp Cage in the fine-tuned

model, and suppression of structures that are only stable in crystallographic environments (e.g.,

domain swapping in crystals of Nudix hydrolase dimers) that appear metastable in the pre-trained

model.
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Figure S4: Multi-conformation benchmark: Cryptic pockets. Each panel compares two reference

structures (red: apo, yellow: holo) and shows energy landscapes from the pre-trained and fine-tuned

models. Here, local C𝛼 root mean square difference (RMSD) to each reference (in Å) is used

to assess pocket formation. Matches within 1.5 Å (dashed lines) are considered successful. The

detailed benchmark definition, including PDB codes, is provided in (61).
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Figure S5: Multi-conformation benchmark performance as a function of train-test sequence

similarity. (A) coverage and (B) recall (B) for the benchmarks in Figs. S1–S4, shown as a function

of maximum sequence similarity to the training set. Coverage measures the fraction of test systems

with at least 0.1% of samples matching the reference (3Å root mean square deviation (RMSD)

for OOD60 and domain motion, 1.5 Å RMSD for cryptic pocket, fraction of native contacts

(FNC) values of < 0.3 for folded and > 0.7 for unfolded states in the local unfolding benchmark,

respectively). Recall measures the average score of the best 0.1% of samples. Dashed lines indicate

success thresholds, green highlights indicate regions of successful sampling.
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Figure S6: Multi-conformation benchmark comparison for different BioEmu model variants.

Benchmark performance is shown for the pre-trained, fine-tuned, and end-to-end BioEmu models.

The end-to-end model uses multiple sequence alignment (MSA) input instead of starting with

an AlphaFold2 evoformer embedding, and maintains a strict train/test split (≤ 40% sequence

similarity) throughout all training stages. Coverage and recall are shown for each benchmark (Figs.

S1–S4). Green highlights indicate where the fine-tuned model performs best. Abbreviations: root

mean square deviation (RMSD), fraction of native contacts (FNC).
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Figure S7: Multi-conformation benchmark comparison between BioEmu and baseline models.

Comparison of fine-tuned BioEmu with AlphaFlow, AFCluster, uniform MSA subsampling, and

DiG across all benchmarks (Figs. S1–S4). Left column: coverage of reference states (higher is

better). Other columns: recall per benchmark entry (BioEmu on x-axis, baseline on y-axis). Green

regions indicate where BioEmu outperforms the other method. Note: only OOD60 reflects strict

generalization; For other benchmarks cases earlier than the AlphaFold 2 cutoff date were either

directly used in training or were used to train the AlphaFold 2 evoformer representation, depending

on the method. Abbreviations: root mean square deviation (RMSD), fraction of native contacts

(FNC).
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Figure S8: Effect of pre-training data on multi-conformation sampling. Benchmark perfor-

mance on OODVal using different pre-training datasets. Left: coverage of reference states. Middle

and right: recall comparisons between models trained on augmented AFDB (x-axis) vs. PDB and

high-pLDDT AFDB (y-axis). Abbreviations: root mean square deviation (RMSD), fraction of na-

tive contacts (FNC).
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Figure S9: Detailed results for fast-folding proteins. Left: Free energy surfaces of MD (1st

column), fine-tuned BioEmu (2nd column), and pre-trained BioEmu (3rd column) for DESRES

benchmark proteins. Middle: secondary structure propensities of MD (grey) and BioEmu (green).

Right: representative structures from MD (grey) and matching BioEmu samples (green) are shown

where applicable. S38
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Figure S10: Free energy surfaces and 2ndary structure propensities for CATH1 test set. (A)

From left to right: PDB structure. Molecular dynamcis (MD) free energy surface. BioEmu free

energy surfaces shown with filtering for foldedness (excluding unfolded samples with FNC < 0.5)

and without filtering. Secondary structure propensity (BioEmu in green, MD in grey, PDB as dotted

line). For a definition of reference PDB codes, chains and structures see (61). (B) Mean absolute

error (MAE) of free energy differences of CATH domain macrostates and fraction of unphysical

samples, as shown in Fig. 3B, but with all samples instead of restricting to the folded samples.

(C) Macrostate free energy MAE and state coverage as function of training data of a specialized

CATH-only model, as shown in Fig. 3B, but with all samples instead of restricting to the folded

samples. BioEmu marked with a cyan star.
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Figure S11: Impact of sampler and denoising steps on sample quality. For two benchmark

proteins (left: 4jriB00 from the CATH1 molecular dynamics (MD) benchmark, right: LAO-binding

protein from the domain motion multi-conformation benchmark), we compare the convergence of

free energy surface over time-lagged independent components (TIC) and root mean square deviation

(RMSD) with respect to reference structures using Heun and diffusion probabilistic model (DPM)

solvers across different denoising step counts. Bottom: fraction of valid samples (no clashes or

chain breaks) for each sampler configuration.
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Figure S12: Tetraspanin CD9 protein: comparison of crystallographic structures, BioEmu

samples and molecular dynamics (MD) from (37). (A) Crystal structures 6rlo and 6rlr of the

truncated large extracellular loop (LEL) that is part of the OOD60 multi-conformation sampling

benchmark (see Fig. S1). Pre-trained model samples both LEL crystal structures (6rlo, 6rlr); fine-

tuned BioEmu model favors 6rlo. (B) Biological assemblies of the CD9 LEL crystal structures: 6rlo

is a complex with an antibody which binds a CD9 LEL monomer. 6rlr contains dimers in the crystal

unit cell, where the long helix of each monomer swaps places with the other monomer (domain

swapping), leading to a conformational change that is only stable in the dimer of the truncated

LEL. (C) 6rlo aligns with the full-length CD9 structure (6k4j), while 6rlr is incompatible with

the biologically active CD9 protein. (D) Comparison of full-length CD9 structures and ensembles

between BioEmu, MD (37) and PDB 6k4j. BioEmu samples closely match 6k4j (best match 1.9 Å),

outperforming MD (best match 4.6 Å). The most similar structures of MD and BioEmu to 6k4j are

shown for comparison. See Table S4 for 12-letter PDB codes and original citations.
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Table S1: Molecular dynamics training datasets used in this work, their associated number of

systems, number of individual chains, simulation time, and forcefield used.
Dataset Sim. Eff. sim. Force field # MD sys. # ind. chains Ref.

time (ms) time (ms)

DESRES-fastfolders 8.2 8.2 charmm22* 12 12 (7)

FAH-DDR1 6.8 6.8 amber ff99sb-ildn 9 9 (74)

FAH-SETD8 5.9 5.9 amber ff99sb-ildn 26 26 (75)

FAH-sarscov2 4.5 4.5 amber ff14sb 2 2 (77)

FAH-sarscov2-exascale 56.5 81.0 amber ff03 24 46 (26)

FUB-MHCII 8.9 26.2 amber ff99sb 68 201 (78)

FUB-barnase-barstar 2.0 4.0 amber ff99sb 2 4 (8)

MSR-cath2 41.0 41.0 amber ff99sb-ildn 1040 1040

MSR-megasim 3.8 3.8 amber ff14sb & ff99sb-disp 271 271

MSR-megasim-mutants 21.5 21.5 amber ff99sb-disp 21458 21458

ONE-cath1 5.2 5.2 amber ff99sb-ildn 50 50

ONE-octapeptides 8.0 8.0 amber ff99sb-ildn 1100 1100

Total 172.2 216.0 24062 24219
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Table S2: MD dataset percentages (%) used for model fine-tuning, which define the proportion of

samples drawn from a particular dataset.
MD dataset Amber MD finetuning Property prediction finetuning

FAH-DDR1 7.0 2.5

FAH-sarscov2 0.1 0.03

FAH-sarscov2-exascale 0.9 0.33

FAH-SETD8 6.2 2.14

FUB-MHCII 0.9 0.333

FUB-barnase-barstar 5.2 1.8

ONE-cath1 5.3 1.9

ONE-octapeptides 8.2 2.71

MSR-megasim-merge 0.3 0.5

MSR-cath2 42.5 15.2

MSR-megasim-mutants-mosaic-disp 18.7 33.56

AFDB 4.7 5.0

MegaExp 0.0 34.0

Total 100 100
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Table S3: Training hyperparameters in each stage of training

Training stage
AFDB

pre-training

Amber MD

fine-tuning

Property pred.

fine-tuning

DESRES

fine-tuning

Optimizer Adam Adam Adam Adam

𝛽1 0.9 0.9 0.9 0.9

𝛽2 0.999 0.999 0.999 0.999

𝜀 1e-8 1e-6 1e-6 1e-8

Initial LR 1e-3 1e-4 1e-4 1e-4

LR decay factor None 0.8 0.8 None

LR scheduler patience / epochs None 25 25 None

EMA smoothing factor 0.995 0.999 0.999 0.995

Max residues per batch per GPU 2048 1440 1440 2048

GPU type A100 A100 A100 A100

Number of GPUs 32 64 64 4

Days to train ∼5 ∼2 ∼1.5 ∼3

Training epochs 60 100 100 200

Number of seen residues ∼9400M ∼5900M ∼4400M ∼4700M
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Table S4: Details for PDB codes shown in the paper figures: 4-letter and 12-letter PDB access

codes, citation of the original research article and present paper figure where this PDB code is used.
4-letter 12-letter citation Fig. 4-letter 12-letter citation Fig.

1ake pdb 00001ake (100) 2 3n4y pdb 00003n4y (101) 4

4ake pdb 00004ake (102) 2 3d2a pdb 00003d2a (103) 4

6ml0 pdb 00006ml0 (104) 2 2lzm pdb 00002lzm (105) 4

6mlp pdb 00006mlp (104) 2 1y9o pdb 00001y9o (106) 4

6pwj pdb 00006pwj (107) 2 1ril pdb 00001ril (108) 4

6pwk pdb 00006pwk (107) 2 1ifb pdb 00001ifb (109) 4

1q21 pdb 00001q21 (110) 2 1h7m pdb 00001h7m (111) 4

5p21 pdb 00005p21 (112) 2 1ekg pdb 00001ekg (113) 4

4hdd pdb 00004hdd (114) 2 1a23 pdb 00001a23 (115) 4

2lep pdb 00002lep (116) 2 2jws pdb 00002jws (117) 4

2vn9 pdb 00002vn9 (118) 2 6rlo pdb 00006rlo (119) S12

2cey pdb 00002cey (120) 2 6rlr pdb 00006rlr (121) S12

6h76 pdb 00006h76 (122) 2 6krj pdb 00006krj (37) S12

3p53 pdb 00003p53 (123) 2

6i11 pdb 00006i11 (124) 2

1ecj pdb 00001ecj (125) 2

1ecc pub 00001ecc (126) 2
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Algorithm 1 Score model 𝑠𝜃 (x, h, z, 𝑡)
Require: single representations h𝑖, pair representations z𝑖 𝑗 , positions r𝑖, rotations Q𝑖, timestep 𝑡,

relative sequence positions 𝑝𝑖

1: h𝑖 ← Linear(LayerNorm(h𝑖)) + Sinusoidal(𝑡)

2: z𝑖 𝑗 ← LinearNoBias(LayerNorm(z𝑖 𝑗 )) + Embedding(Bucketize(𝑝𝑖))

3: for layer=1, ..., 8 do

4: {h𝑖} +=Dropout(IPA({LayerNorm(h𝑖)}, {z𝑖 𝑗 }, {r𝑖}, {Q𝑖})

5: h𝑖 +=Dropout(Linear(Dropout(gelu(Linear(LayerNorm(h𝑖))))))

6: end for

7: 𝒔𝑟 = Linear(relu(Linear(LayerNorm(h𝑖)))) ⊲ translation score

8: 𝒔𝑄 = Linear(relu(Linear(LayerNorm(h𝑖)))) ⊲ rotation score

9: return 𝒔𝑟 , 𝒔𝑄
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Algorithm 2 Property Prediction Fine-Tuning (PPFT)
Require: Score model 𝑠𝜃 , batch of sequences {𝑠𝑖} with experimental folding free energies {Δ𝐺𝑖},

intermediate time step for extrapolation 𝑡, number of samples 𝑀 .

1: for each training iteration do

2: Sample a batch of sequences {𝑠𝑖} with corresponding Δ𝐺𝑖

3: for each sequence 𝑠𝑖 in batch do

4: Compute target foldedness 𝑓𝑖,target from Δ𝐺𝑖 using Eq. S8

5: for 𝑚 = 1 to 𝑀 do

6: Sample noisy frame x𝑚
𝑡

by denoising from 𝑡 = 𝑇 to 𝑡.

7: Detach score model when it is not in partial backprop steps.

8: Extrapolate to 𝑡 = 0 to get clean sample x̂𝑚0 using Eq. S14

9: Compute foldedness 𝑓𝑚 using Eq. S12

10: end for

11: Compute PPFT loss 𝐿ppft(𝑠𝑖) using Eq. S9

12: end for

13: Average PPFT loss over batch to get 𝐿ppft

14: If simulation data available, compute score matching loss 𝐿sm and total loss 𝐿 using Eq. S13

15: Backpropagate and update model parameters 𝜃

16: end for
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