Marah Abdin
Ronen Eldan

Phi-4 Technical Report

Jyoti Aneja
Suriya Gunasekar

Harkirat Behl
Michael Harrison

Sébastien Bubeck
Russell J. Hewett

Mojan Javaheripi Piero Kauffmann James R. Lee Yin Tat Lee
Yuanzhi Li Weishung Liu Caio C. T. Mendes Anh Nguyen
Eric Price Gustavo de Rosa Olli Saarikivi Adil Salim
Shital Shah Xin Wang Rachel Ward Yue Wu
Dingli Yu Cyril Zhang Yi Zhang

Microsoft Research

Abstract

We present phi-4, a 14-billion parameter language model developed with a training recipe that
is centrally focused on data quality. Unlike most language models, where pre-training is based pri-
marily on organic data sources such as web content or code, phi-4 strategically incorporates synthetic
data throughout the training process. While previous models in the Phi family largely distill the
capabilities of a teacher model (specifically GPT-4), phi-4 substantially surpasses its teacher model
on STEM-focused QA capabilities, giving evidence that our data-generation and post-training tech-
niques go beyond distillation. Despite minimal changes to the phi-3 architecture, phi-4 achieves strong
performance relative to its size — especially on reasoning-focused benchmarks — due to improved data,
training curriculum, and innovations in the post-training scheme.

1 Introduction

Recent advancements in Large Language Models (LLMs) have shown that significant improvements in
data quality can rival, and sometimes surpass, the performance gains traditionally achieved by scaling
compute with model and dataset size. Building on the success of the Phi family [GZA*23 [LBE"23,
JBA23, IAAAT24], we introduce phi-4, a 14-billion parameter model that further advances performance
of small language models by introducing innovative synthetic data generation methods for reasoning-
focused tasks, by optimizing the training curriculum and data mixture, and by introducing new tech-
niques in post-training.

Synthetic data constitutes the bulk of the training data for phi-4 and is generated using a diverse
array of techniques, including multi-agent prompting, self-revision workflows, and instruction reversal.
These methods enable the construction of datasets that induce stronger reasoning and problem-solving
abilities in the model, addressing some of the weaknesses in traditional unsupervised datasets. Synthetic
data in phi-4 also plays a crucial role in post-training, where techniques such as rejection sampling and
a novel approach to Direct Preference Optimization (DPO) are employed to refine the model’s outputs.

The development of phi-4 is guided by three core pillars:

1. Synthetic Data for Pretraining and Midtraining: High-quality synthetic datasets are de-
signed to prioritize reasoning and problem-solving, carefully generated to ensure diversity and

Small models Large models

phi-4 phi-3 Qwen 2.5 GPT Llama-3.3 Qwen 2.5 GPT
14b 14b 14b instruct 4o-mini 70b instruct 72b instruct 40

MMLU 848 779 79.9 81.8 86.3 85.3 88.1
P GPQA 56.1 31.2 42.9 40.9 49.1 49.0 50.6
g MATH 80.4 446 75.6 73.0 66.31 80.0 74.6
& HumanEval 826 67.8 72.1 86.2 78.91 80.4 90.6
& MGSM 80.6 535 79.6 86.5 89.1 87.3 90.4
w SimpleQA 30 76 5.4 9.9 20.9 10.2 39.4
DROP 755 683 85.5 79.3 90.2 76.7 80.9
MMLUPro 704 513 63.2 63.4 64.4 69.6 73.0
HumanEval: 82.8 69.2 79.1 82.0 77.9 78.4 88.0
ArenaHard 754 45.8 70.2 76.2 65.5 78.4 75.6
LiveBench ~ 47.6 28.1 46.6 481 57.6 55.3 57.6
IFEval 63.0 57.9 78.7 80.0 89.3 85.0 84.8
iii;ﬁﬁ 562 43.9 49.8 58.7 57.1 64.6 72.4

Table 1: Performance of phi-4 on a set of standard benchmarks. The first set of benchmarks uses OpenAl’s
SIMPLE-EVALS framework |[Ope24b], specifying the prompts/extraction/temperature=0.5. We compare to small
models of similar inference cost, as well as to larger models.

relevance. We change our training curriculum and create new pretraining and midtraining data
mixtures to increase the allocation of synthetic tokens, compared to older generations of phi.

2. Curation and Filtering of High-Quality Organic Data: We meticulously curate and filter
organi(ﬂ data sources, including web content, licensed books, and code repositories to extract seeds
for the synthetic data pipeline that encourage high-depth reasoning and prioritize educational
value (to the model). These seeds form the foundation of the synthetic generation pipeline. To
complement these synthetic datasets, we also filter the web for high-quality data (in terms of
knowledge and reasoning) to use directly in pretraining.

3. Post-Training: We further advance the post-training recipe in phi-4 by creating new refined
versions of SF'T datasets, as well as by developing a new technique to create DPO pairs, based on
pivotal token search.

With these innovations, the performance of phi-4 on reasoning-related tasks is comparable to or
surpasses much larger models. For example, its performance on many widely used reasoning-related
benchmarks meets or exceeds that of Llama-3.1-405B. In Table [I| we compare the performance of
our model on academic benchmarks to several contemporary foundation models. We find that phi-
4 significantly exceeds its teacher GPT-40 on the GPQA (graduate-level STEM Q&A) and MATH
(math competition) benchmarks.

!These scores are lower than those reported by Meta, perhaps because SIMPLE-EVALS has a strict formatting requirement
that Llama models have particular trouble following. We use the SIMPLE-EVALS framework because it is reproducible, but
Meta reports 77 for MATH and 88 for HumanEval on Llama-3.3.

2We use organic to refer to human-generated or otherwise non-synthetic data.

Average performance on November 2024 AMC 10/12 tests

. g‘_ Large model gog 918
5 901 mEE Small model
?Q
52 807 74.8
© < T
] (0]
z g 70 | 66.4
40_)1 xI
~ 60 . :
R
QNS o7 &
Q’Z} & PP o
0

Figure 1: Average performance of different models on the November 2024 AMC-10 and AMC-12 tests. This is
the average score (with maximum score 150) over the four tests on 100 runs with temperature ¢ = 0.5. We chose
t = 0.5 to follow SIMPLE-EVALS [Ope24b]. Error bars are 20 of the estimate. On competition math, phi-4 scores
well above its weight-class even compared to non—open-weight models.

1.1 Addressing Overfitting and Data Contamination

Decontamination: One pitfall of foundation models is overfitting to benchmarks, such as through
the leakage of benchmark test sets via the web corpus. We improved the data decontamination process
for phi-4 compared to previous Phi models to ensure no unfair influence on evaluation results. More
details of the decontamination method are given in Appendix

AMC Benchmark: The surest way to guard against overfitting to the test set is to test on fresh data.
We tested our model on the November 2024 AMC-10 and AMC-12 math competitions [Com24], which
occurred after all our training data was collected, and we only measured our performance after choosing
all the hyperparameters in training our final model. These contests are the entry points to the Math
Olympiad track in the United States and over 150,000 students take the tests each year.

In Figure [I] we plot the average score over the four versions of the test, all of which have a maximum
score of 150. phi-4 outperforms not only similar-size or open-weight models but also much larger frontier
models. Such strong performance on a fresh test set suggests that phi-4’s top-tier performance on the
MATH benchmark is not due to overfitting or contamination. We provide further details in Appendix [C|

Relying on Contamination-Proof Benchmarks: We give significant weight to benchmarks which
were designed in such a way that the questions are original and do not appear on the web, such as
GPQA |[RHS"23|. While optimizing our model, we relied on an internal benchmark composed primarily
of original prompts written by the team (see Section [5| for further details).

Long Chain-of-Thought Models: A style of LLM that scales inference-time compute by generating
long chains of thought has emerged over the past few months, as pioneered by OpenAI O1 |[Ope24a] and
followed by DeepSeek-R1-Lite-Preview [Dee24] and Qwen/QwQ-32B-Preview [Tea24]. These models
perform well on reasoning benchmarks, where QwQ, the only such model with open weights, averages
124.5 points in the AMC-10/12 setting of Figure However, QwQ also uses 4X more tokens on this
task than phi-4 and has more than twice as many parameters. Thus, the inference cost of QwQ is an

order of magnitude higher than phi-4. Consequently, these models are not in the same class as phi-4 with
respect to cost or latency.

2 Approach to Data

The pretraining phase of phi-4 relies heavily on synthetic datasets generated through a variety of tech-
niques. In addition, we employ several methods for filtering organic data sources that are used both as
complementary datasets in the pretraining and as seeds for generating synthetic data.

2.1 Purpose of Synthetic Data

Synthetic data as a substantial component of pretraining is becoming increasingly common, and the Phi
series of models has consistently emphasized the importance of synthetic data. Rather than serving as
a cheap substitute for organic data, synthetic data has several direct advantages over organic data.

Structured and Gradual Learning. In organic datasets, the relationship between tokens is often
complex and indirect. Many reasoning steps may be required to connect the current token to the next,
making it challenging for the model to learn effectively from next-token prediction. By contrast, each
token generated by a language model is by definition predicted by the preceding tokens, making it easier
for a model to follow the resulting reasoning patterns. In this way, synthetic data may act as a form of
“spoonfeeding,” presenting challenges in a digestible and progression-oriented manner.

A simple example to illustrate this is that a human-written solution to a math problem might start
with the final answer. This answer is much too hard to output immediately, for either a human or an
LLM—the human produced it by nonlinear editing, but pretraining expects the LLM to learn to produce
it linearly. Synthetic solutions to math problems will not have such roadblocks.

Alignment with Inference Contexts. Synthetic data is typically closer to the format of outputs
we expect our models to generate. Training on such data helps align the model’s pretraining experience
with the scenarios it encounters during inference. This alignment ensures that the context seen during
generation remains in-distribution with respect to the data the model was pretrained on.

For example, web forums are very different in style from LLM interactions. If a fact only appears
in web forum data, the pretrained model will think it is very unlikely to occur in the chats it produces.
Rewriting facts from the web forum into the language style of an LLM makes the facts more accessible
during the LLM chat context of inference.

Principles. Our approach to generating synthetic data for phi-4 is guided by the following principles:

1. Diversity: The data should comprehensively cover subtopics and skills within each domain. This
requires curating diverse seeds from organic sources.

2. Nuance and Complexity: Effective training requires nuanced, non-trivial examples that reflect
the complexity and the richness of the domain. Data must go beyond basics to include edge cases
and advanced examples.

3. Accuracy: Code should execute correctly, proofs should be valid, and explanations should adhere
to established knowledge, etc.

4. Chain-of-Thought: Data should encourage systematic reasoning, teaching the model various
approaches to the problems in a step-by-step manner. This fosters coherent outputs for complex
tasks.

2.2 Synthetic Data for Pretraining and Midtraining

We created 50 broad types of synthetic datasets, each one relying on a different set of seeds and dif-
ferent multi-stage prompting procedure, spanning an array of topics, skills, and natures of interaction,
accumulating to a total of about 400B unweighted tokens. In Appendix D] we give a few examples
of transcripts taken from our synthetic generations. Here, we highlight novel methodologies used in
generating synthetic datasets for phi-4:

e Seed Curation: The synthetic dataset generation begins with high-quality seeds sourced from
multiple domains. These curated seeds provide the foundation for synthetic data generation,
enabling the creation of exercises, discussions, and reasoning tasks tailored to the model’s training
objectives.

1. Web and Code-based Seeds: Excerpts and snippets are extracted from web pages, books,
and code repositories with a focus on content that demonstrates high complexity, reasoning
depth, and educational value. To ensure quality, we employ a two-stage filtering process:
first, identifying pages with strong educational potential, and second, segmenting the selected
pages into passages, scoring each for its factual and reasoning content.

2. Question Datasets: A large set of questions was collected from websites, forums, and Q&A
platforms. These questions were then filtered using a plurality-based technique to balance
difficulty. Specifically, we generated multiple independent answers for each question and
applied majority voting to assess the consistency of responses. We discarded questions where
all answers agreed (indicating the question was too easy) or where answers were entirely
inconsistent (indicating the question was too difficult or ambiguous). This filtering process
produces a dataset of questions that challenge the model’s reasoning and problem-solving
abilities while remaining approachable. The plurality answers were used in place of the
ground truth in our rejection-sampling based generations.

3. Creating Question-Answer pairs from Diverse Sources: Another technique we use
for seed curation involves leveraging language models to extract question-answer pairs from
organic sources such as books, scientific papers, and code. This approach does not rely on
merely identifying explicit Q& A pairs within the text. Instead, it involves a pipeline designed
to detect deduction chains or logical progressions in the text. The language model identifies
key steps in reasoning or problem-solving processes and reformulates them into questions
and corresponding answers. Our experiments show that, if done correctly, training on the
resulting content can be far more effective (in terms of improvement on academic and internal
benchmarks) than training on the original content.

e Rewrite and Augment: Seeds are transformed into synthetic data through multi-step prompting
workflows. This includes rewriting most of the useful content in given passages into exercises,
discussions, or structured reasoning tasks.

e Self-revision: The initial responses are then iteratively refined through a feedback loop where
a model critiques and subsequently improves its own outputs, guided by the rubrics focused on
reasoning and factual accuracy.

e Instruction Reversal for Code and Other Tasks: To enhance the model’s ability to generate
outputs from instructions, we used an instruction reversal technique. For example, we take existing
code snippets from the code data corpus and use it to generate corresponding instructions that
include the problem description or task prompt. The resulting synthetic data pairs were structured
with the instruction appearing before the code. Only data with high fidelity between the original
and regenerated code are retained, ensuring alignment between the instructions and the outputs.
This method can be generalized to other targeted use cases.

e Validation of Code and Other Scientific Data: When appropriate, we incorporate tests for
validating our reasoning-heavy synthetic datasets. The synthetic code data is validated through ex-
ecution loops and tests. For scientific datasets, the questions are extracted from scientific materials
using a method designed to ensure high relevance, groundedness, and difficulty balance.

2.3 Curation and Filtering of Web and Q&A Data

Q& A datasets. We collected tens-of-millions high-quality organic problems and solutions by review-
ing public websites, relying on existing datasets, and acquiring external datasets. Our experience from
previous models showed that question-answer data contributed significantly to various capabilities, such
as mathematical reasoning and academic performance. Our ablation studies showed that organic ques-
tions are substantially more effective than synthetic questions. We used several ways to synthetically
augment the dataset of organic questions to obtain a larger dataset. While these rewritten questions
improved the model’s capabilities, the gains were not as pronounced. A significant portion of the col-
lected questions lacked accurate solutions. To address this, we replaced the answers with synthetically
generated ones and used majority-voting to increase accuracy. All collected questions and solutions
underwent a thorough decontamination process to ensure there is no overlap with test setsﬂ

Targeting High-quality Web Data. We collected a wide variety of high-quality organic data sources
for phi-4, prioritizing reasoning-dense and nuanced material (e.g., academic papers, educational forums,
and programming tutorials). In addition to directly training on this text, we used various web sources
as seeds for specialized synthetic data generation pipelines. We found clean and correct natural data to
be absolutely crucial for seeding synthetic data: minor errors can result in severe quality degradations
for derived synthetic documents. We therefore invested heavily in the perfectionistic curation of our web
data. We discuss the main techniques and considerations below:

e Targeted Acquisitions: We included major repositories of reasoning-dense documents that are
publicly permissible for use (e.g., arXiv, PubMed Central, GitHub) or explicitly licensed (e.g.,
licensed books) aiming for a level of comprehensiveness, recency, and cleanliness above the typical
standard of externally available corpora.

e Filtering Web Dumps: To capture the long tail of information-rich web sources (e.g., forums,
blogs, course material, domain-specific wikis), we took the approach of selecting a small fraction
of highest-quality documents from bulk web dumps, using small (non-LLM) classifiers trained on
~10% LLM-generated annotations. This approach tends to over-index on STEM-related keywords,
so we created a specialized pipeline to amplify high-quality non-STEM content (e.g., arts, history,
travel, culture, and entertainment). These topic classifications were also obtained by distilling an

3This step is crucial to the reliability of some of the academic benchmarks: for instance, some test benchmark variants
can be found on platforms like Hugging Face. Moreover, benchmarks such as MMLU are frequently compiled from web-
sourced questions.

LLM annotator. Finally, we removed corrupted text and binary files by detecting outliers according
to n-gram statistics and compression ratios.

e Multilingual Data: We incorporated multilingual datasets to ensure that our model could han-
dle a wide range of languages, including German, Spanish, French, Portuguese, Italian, Hindi
and Japanese. This involved sourcing and processing high-quality multilingual documents from
CommonCrawl and Wikipedia. Our multilingual processing pipeline consists of a language identifi-
cation model, based on fastText used to categorize documents into 176 languages, then uses the
same classifiers for filtering web dumps to filter for quality. Note that the classifiers were trained
on multilingual LLM-generated annotations.

e Custom Extraction and Cleaning Pipelines: To ensure sufficient cleanliness and uniformity
between heterogeneous organic data sources, we needed a collection of customized heuristics and
parsers. For each targeted data source, we built custom pipelines to ingest a variety of file formats
(e.g., multi-file TeX source, ePub and other XML-like formats, Microsoft Word documents, and
PDFs). For general web data, we built a custom HTML-to-text extractor, taking significant
care to preserve fragile content that is frequently corrupted by naive parsers (e.g., TeX/MathML
equations, code blocks, tables, and forum thread structure). This extractor prunes and normalizes
the DOM tree, using a variety of signals (e.g., HTML tag names, CSS classes, content length, and
tree depth) to distinguish elements such as boilerplate, advertisements, equations, and syntax-
highlighter artifacts.

2.4 Post-Training datasets

Our post-training data is composed of:

e Supervised Fine-Tuning (SFT) Datasets: Using carefully curated user prompts taken from
a mixture of publicly available datasets and synthetically generated data, we generate multiple
model responses and select the best using an LLM-based evaluation process.

e Direct Preference Optimization (DPO): We generate DPO pairs based on rejection sampling
and LLM evaluation, a part of which is based on our approach to creating pivotal token-based
pairs, explained in Section below.

3 Pretraining details

The phi-4 model is based on a decoder-only transformer architecture [VSP*17| with 14B parameters and
a default context length of 4096. This is later extended to a 16K context length during midtraining. The
architecture closely follows phi-3-medium, except that we now use the tiktoken tokenizer (for better
multilingual support) with a padded vocabulary size of 100,352 (including unused tokens) and we use
full attention over the 4K context length, rather than a 2K sliding window used in phi-3-medium.

The model was pretrained for approximately 10T tokens using linear warm-up and decay schedules
with peak learning rate of 0.0003, constant weight decay of 0.1, and global batch size of 5760. The
training hyperparameters are tuned using interpolations from shorter horizon runs and further adjusted
by stress testing the learning rate warm-up stage for stability. Pretraining is followed by a shorter
midtraining stage to increase the original context length of 4k to 16k.

Since pre-trained models are not good at instruction following, it is not very informative to use
0-shot evaluations that require the answer to be in a specific format, for example SIMPLE-EVALS. We

MMLU MMLU pro GSM8k Human-Eval ARCC MBPP MATH TQA
phi-4 (4k) +3.0 +10.3 +2.2 +7.8 +1.1 +6.8 +8.9 -0.7
phi-4 (16k) +2.7 +8.9 +1.2 +9.0 +0.9 +9.6 +8.4 -1.5

Table 2: Pretraining benchmarks for phi-4 compared to its predecessor, phi-3-medium after pretraining.

therefore use an internal implementation of benchmarks for pretraining which uses a mixture of log-
likelihood and/or few-shot prompts for various tasks. Specifically, we used log-likelihood evaluations
for MMLU (5-shot), MMLU-pro, and ARCC (1-shot). We used 1, 3, 4, and 8 few-shot examples for
TriviaQA (TQA), MBPP, MATH, and GSM8k to help the model adhere to the answer format for easier
extraction of the solution. We use this evaluation method throughout Section 3| Table [2| summarizes
the performance boost of pretrained phi-4 compared with its predecessor phi-3-medium.

3.1 Data Composition in Pretraining

The phi-3 model family were trained using a two-phase strategy. Most of the training tokens were used
in phase 1 of the training, which consisted largely of filtered web data. Phase 2 was trained with a
data mixture consisting primarily of synthetic tokens and a much smaller allocation for ultra-filtered
and reasoning-heavy web data. As the size and complexity of our synthetic data grew, we observed a
marginal drop in the benefit from using non-synthetic tokens for the phi-3 family of model sizes. We
note two key observations.

e Web datasets showed small benefits on reasoning heavy benchmarks. Prioritizing more epochs
over our synthetic data led to better performance with respect to adding fresh web tokens.

e Models trained only with synthetic data underperformed on the knowledge-heavy benchmarks and
demonstrated increased hallucinations.

Figure [2] demonstrates the first phenomenon using smaller scale phase 2 pretraining exercises. In
this example, we conduct two training runs per model scale, using the same number of training tokens
on top of phase 1 pretrained checkpoints. For all runs, the number of unique synthetic tokens is fixed
(a subsample of full synthetic data) but the number of repetitions on this data changes, namely 4 and
12 epochs. The rest of the training tokens are fresh unique tokens supplied from web sources. As seen,
performing more iterations on the synthetic data is more beneficial than supplying more web tokens.

Inspired by this scaling behavior of our synthetic data, we trained a 13B parameter model solely on
syntheti(ﬂ data, for ablation purposes only — the model sees over 20 repetitions of each data source. For
the sake of ablations, we partitioned our synthetic data into web rewrites, which includes more direct
rewrites of our filtered web content relative to all other types of synthetic data. Table [3| compares the
previous phi-3-medium model with the new model trained entirely on the synthetic data. Throughout
training, all benchmarks consistently improved, despite the increase in epochs, and the majority of
the benchmarks showed improvements over phi-3. However, knowledge-related benchmarks, like 1-shot
triviaga (TQA), show a large gap where synthetic models are subpar. These observations led us to
rethink the role of web data in our data mixture.

4This is an updated mixture of synthetic data that contains new sources compared to phi-3.

-- 14B - 4x synth epochs -- 14B — 12x synth epochs
7B —4x synth epochs — 7B — 12x synth epochs

SR .
LRSS

0.76 v gentte

checkpoint/idx

400k 450k 500k 550k

Figure 2: 5-shot MMLU score for phase 2 pretraining runs with 4 and 12 epochs of synthetic data. All models are
trained for the same token horizon, thus the model with 4 epochs of synthetic has seen more (unique) web tokens.
We see that despite many epochs on synthetic data, we do not see overfitting behavior and in fact the 12 epoch
models perform better than those that have seen more unique web tokens.

MMLU MMLU pro GSM8k Human-Eval ARCC MBPP MATH TQA

Synthetic +0.8 +4.0 +2.2 +12.1 0.0 +5.0 +4.9 -148
Synthetic + Web Rewrites +0.3 +4.1 +1.8 +13.3 +3.0 +7.6 +8.1 -7.7

Table 3: Benchmark performance of 13B models (used for ablations only) trained on data mixtures containing
no web data. The respective training tokens are either from synthetic sources, or an equal share of synthetic
data and web rewrites. All numbers are reported relative to the performance of phi-3-medium, which has seen a
combination of web and synthetic data.

3.2 Data Mixture

To design our pretraining data mixture for a given training token budget, we search over different
allocation of tokens coming from various sources, namely, 1) synthetic, 2) web rewritesEl, 3) filtered web
(divided into reasoning and knowledge-heavy portions), 4) targeted acquisitions and organic data (e.g.,
academic data, books, and forums), and 5) code data.

We conducted ablations using a shorter token horizon of 1T tokens to derive the data mixture.
These ablations rely on our established result on the high-rank correlation of short training with longer
training, up to the over-fitting saturation threshold of data sources. In addition we observe a high rank
correlation between the performance of the 7B and 14B models on different data mixtures, given a large
enough distance between the data mixtures. This allowed us to conduct the experiments at 7B scale and
transfer the findings to phi-4. Among the numerous ablations, we highlight a few that show best insights
on our data composition. Specifically, we freeze the ratio of tokens coming from targeted acquisitions
and code categories, and change the ratio of tokens for the synthetic, web, and web rewrites clusters.

Table [] summarizes the results for the hand-picked ablations, as compared with the data mixture
that was used for the final training run. A uniform allocation of tokens among the three categories is
suboptimal due to the higher quality of synthetic data and the only benchmark that shows a clear benefit
from web data is TQA. While the synthetic-heavy variations on rows 2 and 3 of the table are marginally
better than the chosen final data mixture, we decided to integrate the targeted and knowledge-heavy
filtered web data sources to improve knowledge benchmarks (see Section to balance all model

5Web rewrites is a sub-category of synthetic data that is substantially large and contains direct rewrites of web content.

MMLU MATH GSM8k Human-Eval ARCC MBPP TQA MMLU pro Average

Uniform -3.3 -5.4 -5.8 -1.2 +0.6 -2.0 +3.3 -3.6 -2.2

S +3.3 +4.0 +2.1 -6.1 +1.9 +0.4 -3.0 +3.7 +0.8
S+ WR +0.6 +1.2 +1.5 -1.2 +1.6 +1.6 -3.7 +1.2 +0.4
S+ W -0.6 -0.7 -0.7 -4.3 +0.3 -2.0 +6.9 +0.9 0.0

Table 4: Ablations on the allocation of 75% of training tokens to synthetic (S), filtered web (W), and web rewrite
(WR) categories, while other data sources are held constant in the remaining 25% token budget. All benchmark
numbers are measured relative to the final data mixture used for training phi-4.

capabilities. We also note that we observed the gap between the chosen data mixture and the synthetic
heavy runs largely closes as the model goes through the post-training stage. An end-to-end optimization
of pretraining data mixture that also takes into account the effects of post-training is an interesting
future area of investigation.

Data Fraction Unique Number of
Source of Training Token Count Epochs
Web 15% 1.3T 1.2
Web rewrites 15% 290B 5.2
Synthetic 40% 290B 13.8
Code data 20% 820B 2.4
Acquired sources 10% 580B 1.7

Table 5: Data mixture for pretraining.

The final data mixture used for phi-4 allocates 30% of the training tokens to web and web rewrites
data sources, divided equally between them. The remaining tokens are largely sourced from synthetic
data which accounts for 40% of the data mixture tokens. Finally we allocate 20% of tokens to code data
(mixture of synthetic and raw code) and 10% to targeted acquired sources like academic data and books.
In terms of total number of unique tokens in each data mixture cluster, filtered web data is the largest
cluster with ~ 1.3T tokens. Code and targeted acquisitions are the second and third largest clusters with
~ 820B and ~ 580B tokens, respectively. Finally, web rewrites and synthetic data have similar token
count of ~ 290B tokens. The total number of epochs on each data source is determined using the ratio
of allocated tokens in the mixture and the number of unique tokens in that source.

3.3 Midtraining Details

phi-4 includes a midtraining stage where the context length is increased from the original 4K to 16K.
We conduct several ablations to study the role of data on long-context performance. Specifically, we try
data sources that are inherently long context, and compare them with artificially created long context
data where samples are padded together to fill the sequence. We observe the former to perform better
in longer context tasks.

Inspired by this, we further filter our high-quality non-synthetic datasets (i.e., academic, books, and
code data) to separate samples above 8K context. We then up-weight the data subsets that are 16K or
higher in length. We also create new synthetic datasets that satisfy the > 4K sequence requirement. The
final data mixture includes 30% of the newly curated longer context data and a 70% portion of recall

10

Model Max Length Recall RAG ICL Re-rank QA Summ

phi-4 8K 100.0 58.1 68.0 65.3 26.7 38.3
Qwen-2.5-14B 8K 100.0 62.2 67.8 58.2 24.7 37.2
Llama-3.3-70B 8K 92.0 65.3 69.4 64.4 30.0 37.8
GPT-40-mini 8K 99.2 65.8 74.4 69.4 31.3 38.5

GPT-4o 8K 100.0 66.9 83.0 75.1 37.3 43.0

phi-4 16K 99.0 57.1 77.0 54.4 36.0 40.5
Qwen-2.5-14B 16K 100.0 59.1 67.6 50.3 29.7 42.3
Llama-3.3-70B 16K 92.0 62.2 70.0 63.3 36.7 41.9
GPT-40-mini 16K 100.0 63.6 78.4 63.9 36.0 45.2

GPT-40 16K 100.0 66.7 85.6 73.8 43.7 46.3

Table 6: Evaluation results on the long-context benchmark HELMET [YGH"24].

tokens from the pretraining stage. To accommodate longer context, we increase the base frequency of
rope position encoding to 250K following [AI23]. We drop the maximum learning rate by a factor of 10
compared to the pretraining stage and train for a total of 250B tokens.

To effectively evaluate the long-context capability of our model, it is essential to have a comprehensive
evaluation framework with practical scenarios. While synthetic benchmarks like needle-in-a-haystack and
RULER are preferred for their simplicity and control, our emphasis is on a diverse range of tasks that
reflect real-world applications, such as reasoning across entire documents. We report the performance
of phi-4 and other models on the tasks we selected from the HELMET [YGH'24] evaluation suite in
Table [6] and outline our evaluation methods below. Note that results are average across 5 runs for each
categories.

e Recall: The task involves retrieving the corresponding value from a randomly-generated long JSON
file given a specific key (Metric: SubEM)

e RAG: Answer questions based on many retrieved and shuffled Wikipedia documents. The datasets
used for this task are NaturalQuestions, HotpotQA, and PopQA. Final results are average of all
datasets (Metric: SubEM)

e Re-rank: The task is to re-rank the top-10 documents given a query and many retrieved and
shuffled documents. This uses the MSMARCO dataset (Metric: nDCG@10)

e [CL: The task involves many-shot in-context learning with datasets such as TREC coarse, TREC
fine, Banking77, NLU and CLINC150. Final results are average of all datasets (Metric: F1)

e QA: Answer questions given a lengthy document. The dataset associated with this task is Narra-
tiveQAv2 (Metric: GPT-4o scoring)

e Summ: The task involves summarizing a lengthy legal document, and the dataset used is Multi-
LexSum (Metric: GPT-40 scoring)

11

Dataset Name Sample Count

unknown -+ safety data 3,000 Dataset Name Sample Count
generic multiple-choice Q&A 132,859 unknown + safety data 43,842
math data 76,552 any vs any overall 266,000
python data 16,080 any vs any accuracy 532,000
cpp, go, java, js, rust data 21,806

Table 8: Data Mixture for Judge Guided DPO
Table 7: Data Mixture for Pivotal Token DPO

4 Post-Training

Post-training is aimed at transforming the pretrained language model into an Al assistant that users
can safely interact with. We align the pretrained model with one round of SFT [4.I, one round of
DPO [RSM*23] on data from our pivotal token search method (see Section [4.3)), and one round of DPO
on full length preference pairs. The model is chat finetuned using the standard chatml format, example
usage template for two rounds of a conversation is as follows:

<Jim_start|>system<|im_sep|>systemmessage<|im_end|>
<Jim_start|>user<|im_sep|>promptl<|im_end|><|im_start|>assistant<|im_sep|>responsel<|im_end|>
<|im_start|>user<|im_sep|>prompt2<|im_end|><|im_start|>assistant<|im_sep|>

4.1 Supervised Fine-Tuning

In this phase, we fine-tune the pretrained model with a learning rate of 106 on a variety of data generated
from high-quality data across diverse domains, including math, coding, reasoning, conversation, model
identity, and safety. We also added multilingual data for 40 languages. We use around 8B tokens of
data in this phase, all formatted in the chatml format.

4.2 Direct Preference Optimization

We use DPO [RSM*23] to align the model with human preferences, and also to steer the model away
from unwanted behavior through pairs of desired and undesired outputs. DPO data covers chat format
data, reasoning, and Responsible AT (RAI) data and improves the model in math, coding, reasoning,
robustness, and safety. We do two rounds of DPO on the SF'T model. We introduce a technique, Pivotal
Token Search (PTS), to generate pairs for DPO for the first DPO round. Details of the data mixture
for first round are provided in Table [7}

For the second round, which we call judge-guided DPO, we gather approximately 850k pairs of
desired and undesired outputs. The prompts are sourced from various publicly available instruction
tuning datasets and also include prompts related to safety and Responsible AT (RAI). Next, for each of
these prompts, we generate responses from GPT-40, GPT-4t and our model. From these responses, we
create various combinations of DPO pairs and use GPT-40 as a judge to label positive or negative for
a given pair. For a given pair of responses, each assistant response is given a score based on accuracy,
style, and detail. We label the response with higher accuracy or overall (average of accuracy, style, and
detail) score as the positive response. We provide the prompt we used in Appendix [A| The data mixture
for this round is provided in Table Both stages also include a small amount of data for safety and
mitigating hallucinations.

12

User: Suppose that the roots of 22 +322+42-11=0 are a, b, and ¢, and that the roots
of 22 +r2®+sr+t=0 are a+b, b+c, and c+a. Find t.
AI: To solve the problem, we need to_deal with the roots of the two cubic equations

given. First, consider the cubic_polynomial \(x"3 + 3x°2 + 4x - 11 = 0 \),

with roots \(a \), \(b \), and \ c \). By Vieta’s formulas, we have: \[a +

b+ c=-3,\1\I ab + bc + ca = 4, \ \[abc = 11. \] Now, consider the_other
polynomial \(x"3 + rx"2 + sx + t = 0 \) with roots \(a+b \), \(b+c \), and \(

c+a \). We need to find the value of \(t \), which_corresponds to the %igi%%ge of

the product of the roots_according to Vieta’s formulas: \[+b) (b+c) (cta) .
5 — 0.

\] First,_ note the_important identity: \[(a+b) (b+c) (c+a) = (a+b+c) (ab+bct+ca) -
abc. \] Plugging in_known values from our Vieta’s results_for \(a \), \(b \), and
\(c\), we have: \[a_+ b + c=-3, \1 \[ab + bc + ca =4, \1 \[abc = 11. \]
Substitute these into the identity: \[(a+b) (b+c) (c+a) = (-3)((4) - 11 = -12 - 11 =
-23. '\l Thus, \(t = —(a+b) (b+c) (c+a) = 23 \). Therefore, the value of \(t \)

\ (\boxed\23\\) .

~~ 1

%

[0

Q

Q

=1

3z,

=4

o
5
5

Figure 3: Illustration of pivotal tokens for GPT-40 at temperature 1 on a problem from the MATH bench-
mark [HBK*21], where the initial success probability is 0.31. Each token is colorized by the probability of success
for an independent completion (N = 529) continued from after the token, with red for p(success) = 0 and blue
for p(success) = 1. The line plot shows the same probabilities. The tokens that changes p(success) by > 0.2 are
shown , with subscripts showing the change in probability. Tokens with probability < 0.1 are underlined to
illustrate that pivotal tokens are distinct from low-probability tokens. The token probabilities of m and
. were 0.31 and 0.12, respectively. The greedy tokens for the same prefixes are with 0.66 probability
and (t) with 0.88 probability.

procedure PIVOTALTOKENSEARCH(Q, T, Pgap)
procedure SUBDIVIDE(Tprefix, 1)

if [T|<1or |p(success | Torefix) — p(success | Tprefix + 1) ‘ < Pgap then > Base cases.
. return [T]
Teft Tright < SPLIT(T) > We split at the cumulative midpoint of token log probabilities.
. return SUBDIVIDE(Tprefix, Tiest) U SUBDIVIDE(Tprefix + Tieft, Tright)
Tpreﬁx — €

for all 7' e SUBDIVIDE(€, Ttyy) do
if |T|=1 and | p(success | Tpreix) — p(success | Tprefix + 1) | > Pgap then

L yield (Q, Tprefix: T') > QOutput pivotal tokens T and context for postprocessing.
L L Tpreﬁx < Lprefix +T

Figure 4: Pseudocode for Pivotal Token Search (PTS). Note that estimating p(success | ...) involves sampling the
language model and invoking the oracle. In an efficient implementation p(success |...) should be memoized.

13

4.3 Pivotal Token Search

Consider a generative model producing a token-by-token response to a given prompt. For each token
produced, which corresponds to a prefix of the model response, one can consider the conditional proba-
bility of the model’s answer being correct given that prefix, as well as the increment in this probability
with respect to that token (in other words, the difference in the probability of being correct before and
after producing that token). It is often the case that the overall correctness is highly dependent on
a successful generation of a small number of key tokens. For example, we can see in Figure [3] where
the model outputs a math solution and a “fortunate” sampling of a crucial token shifts the

solution from possible failure to likely success, while sampling of the token subsequently risks failure
again. We refer to these tokens as pivotal tokens as they have an outsized effect on the course of the
solution.

Now, consider how the solution from Figure [3| would be used in DPO as a full-length accepted
response. As the figure shows, there are many tokens with probabilities much lower than the 0.31 of
, which would contribute to noise in the gradients diluting the signal from the pivotal token.
Even worse, the token that contributed to the lack of robustness would receive a strong positive
learning signal thanks to its low probability of 0.12.

Moreover, intuition suggests that when two texts substantially deviate from each other, comparison
of their individual next-token log probabilities (as done in DPO) is not very meaningful. Rather, it
makes more sense that the signal should come from the first tokens after the two texts starts diverging
from each other.

To alleviate these effects, we employ a method we call Pivotal Token Search (PTS) for generating
preference data that specifically targets pivotal tokens in isolation, creating DPO pairs in which the
preference optimization takes effect with respect to a single token.

PTS identifies points of a completion token sequence Tty = t1,to,... for some user query () where
the next token ¢; has a significant impact on the probability of success p(success | t1,...,t;). PTS es-
timates these probabilities by sampling completions starting from @ +t1,...,t;, which are checked for
correctness with an oraclelﬂ for Q. Figure [4) shows a basic instantiation of the algorithm. The proce-
dure SUBDIVIDE recursively splits the sequence into segments ¢;,...,t; until the change in probability
|p(success | t1,...,ti—1) — p(success | t1,...,t;)| for each segment is below a threshold pga;, or the segment
is just a single token. Tokens with a sharp change in success probability are kept as pivotal. We turn
pivotal tokens into preference data by taking Q +t1,...,%;_1 as the query, and single tokens Z,cc and #¢
that increase/decrease p(success | t1,... ,ti_l,tacc/rej) as the accepted and rejected completions, respec-
tively[] The binary-search algorithm for PTS is not always guaranteed to find all pivotal tokens, but
it only finds pivotal tokens and it finds all of them if the success probability is near-monotone over the
course of the solution.

We used PTS to generate preference data for tasks where ground-truth is readily available, such as
mathematics, various forms of question answering and coding. To improve sample efficiency, we filter
the target questions to only include those with 0.2 < p(success) < 0.8, as pivotal tokens are rare for tasks
that are very easy or hard.

See Figure [5] for examples of preference data we generated using PTS. The math question answering
example shows how pivotal tokens often are not actual mistakes, but choices that drive the model down
a less advantageous path. Here, multiplying both sides by the denominators separately is equally valid
to directly cross-multiplying, but for the model doing the latter here is more robust. By generating
DPO data targeting such choices, we believe PTS helps phi-4 work better in the modes it is especially

5For coding, a comprehensive test suite can be used. For math problems, answers can be compared to the ground truth.
"We find drawing tace and trej from rollouts PTS already used to estimate p(success | t1,...,t,-1) to be effective.

14

User: Find the product of all real values of r for which L = 1%£ has exactly one real

2z
solution.
AI: To solve the problem, we need to determine the values of r such that the equation

1 r-xz
2 7
has exactly one real solution for =z.
First, clear the fractions by
Good: cross-multiplying Bad: multiplying both sides by

User: Consider a 1 keV helium atom impinging at a one-degree incidence angle on a LiF
crystal surface. Adopt the axial channeling approximation to model the interaction
between the helium atom and the crystal as a 2D potential energy landscape. Apply
Newton’s equations to compute the helium atom’s trajectory and determine the subsequent
momentum transfers from binary collisions with surface atoms. Sum the total virtual
energy transferred across all collisions and compute the probability, FP., that the
helium atom remains elastically scattered assuming a vibrational frequency for surface
atoms of w=1x10"Hz. What is P.?

1. I%:=exp(—€%f%), 2. }%:=exp(§LLf), 3. I%::exp(—E““S), or 4. PL=ﬁl—eXp(—§@E£)

h;g hw hw

AI: To determine the probability P. that the helium atom remains elastically scattered,
we need to calculate the total virtual energy transferred, FEjoss, during the helium
atom’s interaction with the LiF crystal surface.

Given

Good: the vibrational frequency Bad: that the potential interactions

User: Read the following function signature and docstring, and fully implement the
function described. Your response should only contain the code for this function.

def reorder_sequence(n: int, sequence: list[int]) -> list[int]:
nmmnn
Given a sequence of integer numbers that Polycarp wrote down on the board, this
function rearranges (reorders) elements of this sequence to match the order
Polycarp could have possibly written them. Each next number should be exactly two
times the previous number or exactly one third of the previous number.

:param n: The number of elements in the sequence (2 <= n <= 100).

:param sequence: A list of integer numbers in arbitrary order (1 <= elements <= 3 «*
10718) .

:return: A reordered list of integer numbers representing a valid sequence Polycarp
could have written.

mmww

AI: ...
from collections import defaultdict

Create adjacency list where each number can point to its possible predecessor and
successors
graph = defaultdict (list)
for num in sequence:
for other in sequence:
if num != other:
if num == other » 2 or (
Good: other % 3 Bad: num % 2

Figure 5: Preference data generated by Pivotal Token Search in answering math and physics questions, and
implementing a function in Python. The tokens that form the actual pair for DPO are underlined.

15

SimpleQA performance over the course of post-training

100

S 80 38.7%
]
o 60
©
T 40
]
I
5 20
a
0
68% Base SFT DPO Stage 1 Final
Emm Correct Hm Not Attempted Incorrect

Figure 6: The post-training process described in Appendix decreases hallucinations. One measure is that
the problems in SimpleQA—which the model very rarely gets correct—are increasingly not attempted during the
course of post-training. We believe the final result is better behavior, even though the SIMPLE-EVALS score for
SimpleQA (the F1 score) actually gives our base model a higher score than our final model.

stronger.

Related Work: In [LLX"24] a contrastive estimation approach involving a model trained on incorrect
trajectories is used to score which tokens likely contributed to failure, which is further employed to
weigh rejected responses in DPO. In comparison, our PTS avoids complications from learned proxies by
directly estimating p(success). They also report difficulties applying their method to accepted responses
in DPO, while our method generates both positive and negative preference data directly targeting pivotal
tokens. Automated process supervision methods [WLS™24, [LLL*24] have applied search and rollouts to
generate data for training process reward models. PTS can be seen as an automated process supervision
method that generates token-level preference data suitable for DPO.

4.4 Hallucination mitigation

We generate SF'T data and DPO pairs to mitigate hallucination. If the model does not know the answer,
we would rather it refuse to answer than to make up a hallucination. We present the details of this
process, including prompts to create the data, in Appendix This greatly decreases hallucinations
in SimpleQA (see Figure [6]).

4.5 Post-Training Ablation

In Table [I] we show how our benchmark scores evolve during post-training. We also evaluate dropping
pivotal token DPO and only performing the second stage of DPO. In general, we find that pivotal token
DPO is most useful on reasoning-heavy tasks (GPQA, MATH) while judge-guided DPO is particularly
useful for the benchmark that itself involves a GPT-4 judge: ArenaHard. We also find the two approaches
to be complementary.

5 Benchmarking Considerations

While academic benchmarks are a widely used to measure the progress in LLM advancement, they
suffer from several limitations that can fail to reveal a model’s true capabilities and weaknesses. These
limitations include:

e Data Contamination: Many benchmarks rely on datasets that overlap with pretraining corpora,
creating a risk of data contamination. Although we took extensive measures to deduplicate and

16

DPO DPO phi-4

SFT stage 1 stage 2 only (stage 1 + 2)
MMLU 82.8 84.8 84.2 84.8
P GPQA 473 53.6 52.4 56.1
g MATH 771 80.5 77.6 80.4
& HumanEval 795 81.6 81.5 82.6
3 MGSM 80.8 80.8 81.5 80.6
@ SimpleQA 3.7 2.9 2.9 3.0
DROP 828 86.1 71.8 75.5
MMLUPro 619 70.0 67.2 70.4
HumanEval+ 77.9 81.9 81.4 82.8
ArenaHard 56.7 66.5 69.8 75.4
IFEval 66.2 63.0 63.0 63.0
ziifr?j)l 482 545 53.0 56.2

Table 9: Performance through the post-training process. DPO stage 1 is pivotal token DPO, and DPO stage 2 is
more standard judge-guided DPO. Each also has 1-5% hallucination and safety data mixed in.

decontaminate our training data, including standard n-gram deduplication and decontamination,
these methods are not effective against all scenarios, including rephrasing, which leaves some
uncertainty about the true extent of generalization.

e Limited Skill Scope: Most benchmarks evaluate models on narrowly defined skills, such as
solving specific style of math problems at certain grade level or implementing isolated Python
functions. This narrow scope can fail to capture a model’s broader capabilities and weaknesses.

¢ Bias in Generation-Based Benchmarks: Some benchmarks use LLM-as-judge for evaluat-
ing generated outputs. These judgments sometimes may prioritize style, fluency, or surface-level
qualities over accuracy and validity of the reasoning chain, leading to potential biases in scoring.

e Limitations of Multiple-Choice Tasks: Benchmarks that rely on multiple-choice questions
often test a model’s ability to make clever guesses that can be achieved by pattern matching
rather than effectively utilizing the underlying concepts through reasoning.

To address these issues, we maintain an internal benchmark called PhiBench, which is tailored to
evaluate the diverse skills and reasoning abilities that we found critical to phi-4’s development. This
benchmark was designed with the following goals:

1. Originality: All questions in the benchmark were composed by our team making sure that they
were not present in our pretraining data. Our goal for the internal benchmark is to reveal model’s
generalization ability in various domains.

2. Skill Diversity: Our benchmark includes a wide range of tasks to assess multiple dimensions
of model performance. For instance, in coding, it goes beyond isolated function implementation
to include debugging, extending incomplete code, and explaining code snippets. Similarly, in

17

mathematics, it incorporates tasks like identifying the errors in proofs or generating related prob-
lems, rather than simply solving equations. This ensures that the benchmark captures a broader
spectrum of skills and reasoning processes.

3. Rigorous Scoring for Generation Tasks: For tasks requiring judgment of model-generated
outputs, we addressed the common pitfalls of LLM-based scoring by carefully curating detailed
judge instructions (or “judge notes”). These rubrics specify exactly how to evaluate responses,
focusing on achieving accuracy, logical structure, and adherence to task requirements, while min-
imizing tendencies towards stylistic biases. We observed significantly improved consistency and
reduction of adverse impact due to subjective preferences in the scoring outcomes.

PhiBench played a central role in optimizing phi-4. We used it to guide decisions about dataset
mixtures and hyperparameter choices for more effective post-training techniques. PhiBench was also
used to perform high-signal studies that identify weaknesses in the model and provide feedback for new
incoming data sources.

6 Performance on Key Benchmarks

Our benchmark results were presented in Table [1] along with comparisons to other models. We first re-
port the values from OpenAl’s SIMPLE-EVALS benchmark, which is a framework (including prompts, tem-
perature, and extraction) for evaluating MMLU [HBB*20], GPQA diamond [RHS"23|, MATH [HBK"21],
HumanEval [CTJ"21], MGSM [SSF*22|, and the SimpleQA [WKC*24] Fl-score. We also consider
MMLU-pro [WMZ"24], HumanEval+ [LXWZ23|, ArenaHard |[CZS"24|, and IFEval [ZLM*23], for which
we use an internal framework and prompting and extraction. Finally, we use PhiBench, our internal
collection of evaluations (see Section [f)).

phi-4 outperforms the closest in-class contemporary model, Qwen-2.5-14B-Instruct, in 9 out of 12
benchmarks. While phi-4 underperforms relative to Qwen-2.5-14B-Instruct on the benchmark numbers
for SimpleQA, DROP, and IFEval, we consider phi-4’s behavior on SimpleQA to actually be better
than Qwen’s. In fact, our base model gets a higher benchmark score than Qwen-2.5-14B-Instruct on
SimpleQA, and we intentionally modified the model’s behavior in post-training to optimize for a better
user experience rather than a higher benchmark score. See Figure [6] and Appendix for details.

Our model excels at STEM Q&A tasks. For example, on GPQA (graduate-level STEM questions)
and MATH (math competitions), it even outscores its teacher model, GPT-4o. It also scores higher at
coding, as measured by HumanEval and HumanEval+, than any other open-weight model we benchmark
against, including much larger Llama models.

phi-4’s weakest benchmark scores are on SimpleQA, DROP, and IFEval. We believe for the first
two that the number reported by SIMPLE-EVALS is reductive and does not accurately reflect model
performance on the benchmark problems. However, IFEval reveals a real weakness of our model — it
has trouble strictly following instructions. While strict instruction following was not an emphasis of our
synthetic data generations for this model, we are confident that phi-4’s instruction-following performance
could be significantly improved with targeted synthetic data.

7 Safety

We developed phi-4 in accordance with Microsoft’s Responsible Al principles. Our overall approach to
RAT consisted of safety alignment in post-training, red-teaming, and automated testing and evaluations
across dozens of RAI harm categories. We leveraged helpfulness and harmlessness preference datasets

18

phi-3 phi-3 phi-3 Mistral Mistral Llama-3 Gemma

(3B-4K) (7TB-8K) (14B-4K) (7B-v0.1) (7B~v02) (8B) (7B) Phi4
Grounding 4.469 4.701 4.787 4.065 4.692 4.672 4.32 4.619
3P Content Harms Books, News, Recipes, Songs
(DR1) 0.26 0.253 0.251 0.562 0.399 0.373 0.383 0.121
Harmful Content Hate/Fairness, Self-Harm, Sexual, Violence
Continuation (DR3) 0.007 0.003 0.01 0.026 0.018 0.013 0.013 0.036
Harmful Content Hate/Fairness, Self-Harm, Sexual, Violence
Summarization (DR3) 0.105 0.11 0.112 0.223 0.16 0.082 0.103 0.102
Jailbreak(DR1) See text for covered topics
0.117 0.107 0.111 0.156 0.153 0.13 0.114 0.073

Table 10: Performance comparison across models. Lower scores are better, except for “Grounding,” where a higher
score is better. phi-4 values are bold for readability.

[BJN*22, [JLD*23| with modifications inspired by [BSA*24] and multiple in-house generated datasets to
address the RAI harm categories in safety post-training.

7.1 RAI Benchmarks

Table shows the results of in-house RAI benchmarks [MHJ"23]| for phi-4 compared to the phi-3 models
[AAAT24], Mistral-7b-v0.1 [JSM™23|, Mistral-7b-v0.2, Gemma 7b [TMH"24], and Llama-3-instruct-8b
[AI23]. This benchmark utilized GPT-40 to simulate multi-turn conversations in five different cate-
gories and to evaluate the model responses. Grounding is scored between 0 (not grounded) and 5 (fully
grounded), and measures if the information in a response is based on a given prompt. In other cate-
gories, responses were evaluated in terms of the severity of harmfulness and scored from 0 (no harm)
to 7 (severe harm) and the defect rates (DR-x) were computed as the percentage of samples with the
severity score being greater than or equal to . The Jailbreak (DR1) benchmark consists of simulated
conversations around child grooming, illegal persuasion, leaking of 100 words of guidelines, popular con-
spiracy, prejudice against real people, step-by-step illegal advice, and violence against real people. For
more details on the RAI prompts and evaluation framework, see [HPBP™24].

7.2 Red Teaming

In addition to RAI benchmarking, we collaborated with the Microsoft AT Red Team (AIRT), an inde-
pendent group tasked with identifying safety and security vulnerabilities in Microsoft’s GenAl products.
AIRT conducted a two-week red-teaming exercise that tested phi-4 for risky behaviors by emulating both
average and adversarial users in single and multi-turn scenarios. Overall, AIRT found that the behavior
of phi-4 was similar to that of the phi-3 family, but identified several risky behaviors that were addressed
by further rounds of safety post-training. In addition, the adversarial user scenario tested a wide range
of techniques aimed at intentionally subverting the model’s safety training including jailbreaks, prompt
encodings, and multi-turn attacks. phi-4 showed strong defenses against these techniques. AIRT also
generated adversarial suffixes using the GCG algorithm [ZWC*23| on phi-3-medium, but found that
these suffixes did not transfer to phi-4. Further red teaming is required to identify possible risks across
a broader range of scenarios and harm categories.

19

8 Weaknesses

While phi-4 achieves similar level of language understanding and reasoning ability as much larger models,
it is still fundamentally limited by its size for certain tasks, specifically in hallucinations around factual
knowledge. For example, if X is a plausible human name, the model sometimes responds to prompts of the
form “Who is X?” with a hallucinated biography of the person X. This limitation would be improved by
augmenting the model with a search engine, but factual hallucinations cannot be eliminated completely.

While phi-4 demonstrates relatively strong performance in answering questions and performing rea-
soning tasks, it is less proficient at rigorously following detailed instructions, particularly those involving
specific formatting requirements. For instance, when tasked with generating outputs in strict tabular
formats, adhering to predefined bullet structures, or precisely matching stylistic constraints, the model
may produce outputs that deviate from the specified guidelines. This limitation arises in part from the
model’s training focus, which prioritized synthetic datasets tailored toward Q&A and reasoning tasks
over instruction-following scenarios.

Even on reasoning tasks, phi-4 can make mistakes. For example, when asked “which number is
smaller, 9.9 or 9.117” the model can conclude incorrectly that “9.9 is smaller than 9.11”.

Moreover, as our data contains a lot of chain-of-thought examples, phi-4 sometimes gives long elab-
orate answers even for simple problems—this might make user interactions tedious. We also note that
while phi-4 can function as a chat bot, it has been fine-tuned to maximize performance on single-turn
queries.

Despite diligent RAI efforts, we acknowledge challenges around reproduction or amplification of
biases, inappropriate content generation, and safety issues. The use of carefully curated training data, as
well as targeted post-training, and improvements from red-teaming insights, have resulted in mitigating
these issues across all dimensions, but have not resolved the issues completely.

Acknowledgments

We thank Janardhan Kulkarni and Sivakanth Gopi from Microsoft Research for the initial discussion
around Pivotal Token Search. We thank the AI Red Team (AIRT) at Microsoft, especially Blake
Bullwinkel, Bolor-Erdene Jagdagdorj, Daniel Jones, Shiven Chawla, Tori Westerhoff, and Ram Shankar
Siva Kumar, and Olga Dutova-Fairfax from the Deployment Safety Board and the Office of Responsible
AT at Microsoft for collaborating with us on evaluating and improving our model on vulnerabilities
in safety and security, which helped us adhere to the Microsoft’s RAI standards. Many thanks to
our colleagues in Azure, especially Cassie Esvelt, Cory McCullough, Facundo Santiago, Hugo Aponte,
Jose Calzada, Nemanja Rajic, Ravi Ramchandran, Sanghee Oh, Vidyaraman Sambasivam, and Vivek
Ramaswamy for their indefatigable support. Finally, we are grateful to Ece Kamar, Doug Burger and
Peter Lee from Microsoft Research for the support provided to the team during the work on the model.

References

[AAA*24] Marah Abdin, Sam Jacobs Ade, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah,
Hany Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3
technical report: A highly capable language model locally on your phone. arXiv preprint
arXiv:2404.14219, 2024.

[AI23] Meta AI. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2023.

20

[BIN*22]

[BSA*24]

[Com24|

[CTJ™21]

[CZS*24]

[Dee24]

[GZA*23]

[HBB*20]

[HBK*21]

[HPBP*24]

[JBA*23]

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Ka-
davath, Jackson Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-
Dodds, Danny Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt,
Neel Nanda, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish,
Chris Olah, Ben Mann, and Jared Kaplan. Training a helpful and harmless assistant with
reinforcement learning from human feedback, 2022.

Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio, Paul Réttger, Dan Jurafsky, Tatsunori
Hashimoto, and James Zou. Safety-tuned Llamas: Lessons from improving the safety of large
language models that follow instructions, 2024.

American Mathematics Competitions. American mathematics competitions problems and
solutions: Amc 10/12. https://www.maa.org/math-competitions, 2024. Accessed:
2024-12-08.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evalu-
ating large language models trained on code. arXiv preprint arXiw:2107.03374, 2021.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica.
Chatbot arena: An open platform for evaluating llms by human preference, 2024.

DeepSeek. Deepseek rl lite preview. |https://api-docs.deepseek.com/news/
news1120, 2024. Accessed: 2024-12-08.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno,
Sivakanth Gopi, Mojan Javaheripi, Gustavo de Rosa Piero Kauffmann, Olli Saarikivi, Adil
Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan,
Adam Tauman Kalai, Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need. arXiv
preprint arXiv:2306.11644, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math
dataset. NeurIPS, 2021.

Emman Haider, Daniel Perez-Becker, Thomas Portet, Piyush Madan, Amit Garg,
Atabak Ashfaq, David Majercak, Wen Wen, Dongwoo Kim, Ziyi Yang, et al. Phi-3
safety post-training: Aligning language models with a “break-fix”cycle. arXiv preprint
arXiv:2407.13833, 2024.

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Caio César
Teodoro Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, Suriya
Gunasekar, Piero Kauffmann, Yin Tat Lee, Yuanzhi Li, Anh Nguyen, Gustavo de Rosa, Olli
Saarikivi, Adil Salim, Shital Shah, Michael Santacroce, Harkirat Singh Behl, Adam Tau-
mann Kalai, Xin Wang, Rachel Ward, Philipp Witte, Cyril Zhang, and Yi Zhang. Phi-2:
The surprising power of small language models. Microsoft Research Blog, 2023.

21

https://www.maa.org/math-competitions
https://api-docs.deepseek.com/news/news1120
https://api-docs.deepseek.com/news/news1120

[JCWZ17]

[JLD*23]

[JSM*23]

[LBE*23]

[LLL*24]

[LLX*24]

[LXWZ23]

[MHJ*23]

[Ope24a]

[Ope24b]
[RHS*23]

[RSM*23]

[SSF*22]

[Tea24]

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale
distantly supervised challenge dataset for reading comprehension, 2017.

Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan, Chi Zhang, Ce Bian, Chi Zhang, Ruiyang
Sun, Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of
llm via a human-preference dataset, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and
Yin Tat Lee. Textbooks are all you need II: phi-1.5 technical report. arXiv preprint
arXiv:2309.05463, 2023.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei
Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning
in language models by automated process supervision, 2024.

Zicheng Lin, Tian Liang, Jiahao Xu, Xing Wang, Ruilin Luo, Chufan Shi, Siheng Li, Yujiu
Yang, and Zhaopeng Tu. Critical tokens matter: Token-level contrastive estimation enhances
llm’s reasoning capability, 2024.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatgpt really correct? rigorous evaluation of large language models for code generation.
arXw preprint arXiw:2305.01210, 2023.

Ahmed Magooda, Alec Helyar, Kyle Jackson, David Sullivan, Chad Atalla, Emily Sheng,
Dan Vann, Richard Edgar, Hamid Palangi, Roman Lutz, Hongliang Kong, Vincent Yun,
Eslam Kamal, Federico Zarfati, Hanna Wallach, Sarah Bird, and Mei Chen. A framework
for automated measurement of responsible Al harms in generative Al applications, 2023.

OpenAl. Learning to reason with language models. https://openai.com/index/
learning-to-reason-with—-11ms/, 2024. Accessed: 2024-12-08.

OpenAl. Simple evals. https://github.com/openai/simple—evals| 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang,
Julien Dirani, Julian Michael, and Samuel R. Bowman. Gpga: A graduate-level google-proof
q&a benchmark, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon,
and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
model. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei.
Language models are multilingual chain-of-thought reasoners, 2022.

Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024.

22

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://github.com/openai/simple-evals

[TMH*24] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju,
Shreya Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al.
Gemma: Open models based on gemini research and technology, 2024.

[VSP*17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, volume 30, 2017.

[WEM*24] Yue Wu, Yewen Fan, So Yeon Min, Shrimai Prabhumoye, Stephen McAleer, Yonatan Bisk,
Ruslan Salakhutdinov, Yuanzhi Li, and Tom Mitchell. Agentkit: Flow engineering with
graphs, not coding. In COLM, 2024.

[WKC*24] Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia
Glaese, John Schulman, and William Fedus. Measuring short-form factuality in large lan-
guage models, 2024.

[WLS*24] Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu,
and Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human
annotations, 2024.

[WMZ*24] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex
Zhuang, Rongqi Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and chal-
lenging multi-task language understanding benchmark, 2024.

[YGH*24] Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe
Wasserblat, and Dangi Chen. Helmet: How to evaluate long-context language models effec-
tively and thoroughly, 2024.

[ZLM*23] Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan,
Denny Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv
preprint arXw:2311.07911, 2023.

[ZWC*23] Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned language models, 2023.

A Post-Training Dataset Details

A.1 Refusal to Hallucinate

We created post-training SFT and DPO data to mitigate hallucinations in simple settings. Without
any mitigation, phi-4 would almost never admit to ignorance. For example, in response to too-difficult
questions like “Who is the 297th highest ranked tennis player?” the model would essentially act as an
improv-style “Yes, and...” engine, inventing a superficially plausible answer.

Our goal in pretraining was to pack as much information into the model as possible, that is, to teach
more to the model rather than to teach it its own limitations. Then in post-training, we can identify
the level of problem that is too difficult for the model, and teach it to generate refusals rather than
hallucinations on those problems.

We started with seed trivia problems, such as from TriviaQA [JCWZ17]. For each question, we ran
phi-4 multiple times to estimate its chance of accurately solving it. We also used GPT-40 to generate

23

(1) a correct answer, (2) a refusal to answer, (3) a bogus variant of the question that is impossible to
solve, and (4) a refusal to answer the bogus question.

For SFT data, we used the pair (question, correct answer) wherever the base phi-4 model was usually
correct, (question, refusal) where the model was usually wrong, and (bogus question, refusal) for all bogus
questions. For DPO data, we used (correct > refusal) for every question that the base phi-4 sometimes
answered correctly, and (refusal > wrong) if phi-4 sometimes answered incorrectly. The DPO data used
the first 5 tokens of the response. Example synthetic generation prompts can be found below.

To evaluate our progress, we can use SimpleQA [WKC*24|, which is a dataset mostly comprised
of obscure facts from Wikipedia (e.g., “How many more votes did Freeman Freeman-Thomas win than
George Sandys in the 1906 Bodmin by-election?”). Small models like phi-4 or GPT-40-mini can only
correctly answer 5-10% of them. Our performance can be found in Figure [6]

Note that SimpleQA is included in Table 1 as part of SIMPLE-EVALS, and our model does not have a
good score. This is because SIMPLE-EVALS uses the F1 score, which is not a good measure of quality at
this accuracy scale. For example, suppose we start with a model that always guesses, but almost always
wrongly, 6% correct and 94% incorrect. Some of the 6% correct answers will be from lucky guesses, so
post-training to limit hallucination will have fewer correct answers, and for example, the result might be
(3% correct, 3% incorrect, 94% refusal). In this case, a model will score worse by the F1 metric compared
to original (5.6% rather than 6%), while exhibiting more user-friendly and responsible behavior.

A.1.1 Synthetic Generation Prompts

Here, we share the main synthetic generation prompts, provided to GPT-4o0, to generate post-training
data to decrease hallucinations.

Generation of bogus questions

Consider the following trivia question:

Question
{{ gquestion }}

Instructions

Your job is to turn this problem into a nonsensical one, for which the
-~ answer is invalid or unlikely to be known by anyone. For example, you
- might change the name from a well-known figure to a random name, or
-~ change the date from a well-known event to a random date, or the place
- to a different one. For example, you might change "When did Amelia
-~ Earhart cross the Atlantic Ocean?" to "When did Edgar Greenwood cross
-~ the Atlantic Ocean?" or "How many times did Amelia Earhart cross the
-~ English Channel?".

Your goal is that the new gquestion is #*plausibly real*, but impossible to

-~ answer. You should not make the question obviously fake, silly, or
-~ fictional; for example, all country names should be real countries, and
-~ no names should be obvious homages to the original question. It should

-~ sound like a serious trivia question.

24

You may start with a very brief discussion, then end with two markdown
-~ sections:
— The section '# Response' that contains the question.
— The section '# Quality' that rates the generated question in quality
- from 1-5, with 5 being the highest quality.
A high quality question is (1) different from the given gquestion and
- (2) plausible

Generations of refusals

Consider the following question:

Question
{{ gquestion }}
Instructions
You might well know the answer, but imagine that you were an LLM that did
-~ not know the correct answer. Write a plausible response to this
-~ question that the LLM might give if it did not know the answer and
-~ would like to say so rather than guess incorrectly.
This LLM cannot look things up. It could suggest relevant information that
-~ 1t knows; it can also just say that it does not know the answer, if it

-~ 1is unlikely to know anything useful.

You may start with a very brief discussion, then end with a markdown
-~ section '# Response' that contains the response.

Answer checking

I am grading solutions to a trivia question. Your job is to determine
-~ whether the given submission matches the answer key.

Original question
{{ question }}

Submission

{{ response }}

Answer key

{{ answer.value }}

{% if answer.alternates %}

25

Alternative Answer Forms
{% for alt in answer.alternates %}

{{ alt }}

{% endfor %}
{% endif %}

Instructions

You job is **NOT to solve the question*x. Your Jjob is to determine whether
-~ the given submission should be graded as correct *without needing a
-~ protestx. It does not matter if you disagree with the official answer;
-~ you should only consider whether the submission is equivalent to the
-~ answer key. (There is a separate process for protests.)

Give a freeform analysis comparing the submission to the answer key. You

- should then output a JSON dictionary in the following form:

T json

{
}

"matches_key": [Answer 'True', 'False', or 'Uncertain'],

A.2 Judge-guided DPO

For the second round of DPO, we generate responses from GPT-40, GPT-4t and our model. To label
responses as positive or negative, we use GPT-40 as a judge and use the following prompt.

Your task is to judge which of the following reply given by an AI assistant
-~ 1s better.

Conversation

{{ chat }}

Replies

{{ replies }}
Guideline

Produce your output in the following JSON format (without comments and with
-~ correct escape characters):

{

json

"faults": {

26

"Assistant 1": "(string) List all the problems with the assistant 1

-~ reply. For each problem try to determine whether this is due to
- lack of comprehension of the relevant material, a logical error,
-~ a factual error, a stylistic issue. If the answer is perfect,
-~ write none. If the question did not ask for a specific level of
-~ detail in the explanation, do not penalize the answer for being
-~ too detailed or too concise.",

"Assistant 2":

b
"faults_discussion”: " (string) Discuss the general strengths and
-~ weaknesses of each assistant. What are the main differences between
-~ the answers in terms of style, accuracy and level of detail?",
"accuracy": {
"Assistant 1": (1-5) how would you rate assistant 1 in terms of
-~ accuracy?,

I®

"style": {
"Assistant 1": (1-5) how would you rate assistant 1 in terms of
-~ style?,

I

"detail": {
"Assistant 1": (1-5) how would you rate assistant 1 in terms of
-~ level of detail?,

B Data Processing

B.1 Decontamination

We decontaminate against the ARC-Easy, MBPP, phibench, CommonsenseQA, WinoGrande, mcphi,
MedQA, MATH, AGIEval, PIQA, OpenBookQA, HellaSwag, GPQA, mt-bench, MMLUPro, GSM8K,
HumanEval, arena_hard, ARC-Challenge, and MMLU benchmarks. We apply a hybrid n-gram algorithm
for decontamination which uses 13-gram and 7-gram features for removing matches to the test set, which
is described in more detail in [I} We create a set of common 13-grams in the Wiki and train set and try
to not remove them since these are some common phrases which are ubiquitous. Some examples include
‘a1 only b ii only c iii only d ii and iii’, ’a true true b false false c¢ true false d false true’, ’logically
equivalent b contradictory ¢ neither logically equivalent nor contradictory but consistent d’, ’a (ii) and
(iv) only b (i) and (iii) only ¢ (i) (ii)’, bebabeccbdced.

27

Algorithm 1 Decontamination Algorithm

Require:
Input training text train
Benchmark texts tests
Allowed 13-grams allowed_13gram
Thresholds: info_Tgram_threshold, contaminated_Tgram_threshold
Ensure:
A result object with contamination details
1. procedure CHECKCONTAMINATION (train)
2: Step 1: Extract 13-grams and Check Contamination
3: features_13 < ExtractNGrams(train,13)
4: for all feature € features_13 do
5: L if feature € BenchmarkFeatures s and feature ¢ allowed_13gram then
6: . return Contaminated (13-gram match)
7 Step 2: Extract 7-grams and Compute Overlaps
8: features_7 <« ExtractNGrams(train,7)
9: overlap_counts < CountOverlaps(features_7, BenchmarkFeaturesz)
10: Step 3: Compute Overlap Ratio for Tests
11: max_ratio < 0, max_test « None
12: for all test € BenchmarkTests do
13: ratio < — overlap_counts[test]
min(len(features_7),len(BenchmarkFeaturesy[test]))
14: if ratio > max_ratio then
15: | maz_ratio < ratio, max_test < test
16: Step 4: Determine Contamination
17: if max_ratio > info_Tgram_threshold then
18: if maz_ratio > contaminated_Tgram_threshold then
19: ‘ return Contaminated (7-gram match)
20: else
21: | return Partial Contamination (7-gram info match)
22: return Clean (No significant overlap)

28

contaminated: True

Train: There are some oarsmen in a boat. The average weight is increased by 1.8 kg
when one of the crew, who weighs 53 kg, is replaced by a new man who weighs 71 kg. How
many oarsmen are there in the boat?

Train Dataset: orca-math-word-problems-200k

13gram test: The average weight of 10 oarsmen in a boat is increased by 1.8 kg when
one of the crew, who weighs 53 kg is replaced by a new man. Find the weight of the new
man.A. 71 B.62 C.43 D.67 E.40

Test Dataset: AGIEval

13gram_segment: one of the crew who weighs 53 kg is replaced by a new

l3gram contaminated: True

7gram test: The average weight of 10 oarsmen in a boat is increased by 1.8 kg when one
of the crew, who weighs 53 kg is replaced by a new man. Find the weight of the new
man.A. 71 B. 62 C. 43 D. 67 E. 40

7gram overlaps: [”1 8 kg when one of the’, ’'of the crew who weighs 53 kg’, ’the

crew who weighs 53 kg is’, ’'increased by 1 8 kg when one’, ’crew who weighs 53 kg is
replaced’, ’"weighs 53 kg is replaced by a’, '8 kg when one of the crew’, ’'is increased
by 1 8 kg when’, 'kg when one of the crew who’, ’53 kg is replaced by a new’, ’'when one
of the crew who weighs’, by 1 8 kg when one of’, kg is replaced by a new man’, ’one
of the crew who weighs 53’, ’"who weighs 53 kg is replaced by’]

Tgram.ratio: 0.39473684210526316

C AMC Evaluation Details

In this section, we fully describe our inference and grading schemes used for to obtain the November
2024 AMC scores displayed in Figure [I} The 78 questions in these contests (4 sets of 25 questions, with
overlaps between the 10A/12A and 10B/12B exams) were made available on or after November 6, 2024.
All external models we tested were published before this date, as were the datasets for all stages of phi-
4’s training. Thus, these contests are our best attempt at conducting a completely contamination-proof
evaluation of mathematical reasoning capabilities. We only benchmarked on this dataset after choosing
the hyperparameters used in post-training our final candidate models, making this dataset completely
independent of our final model. [f

We obtained the questions from the Art of Problem Solving Wikﬂ and formatted them with the
following template:

The following question is from a 25-question, multiple choice test. Each
- question is followed by answers marked A, B, C, D, and E. Only one of
-~ these is correct.

SCORING: You will receive 6 points for each correct answer, 1.5 points for
-~ each problem left unanswered, and 0 points for each incorrect answer.

Solve the question step by step, then answer \boxed{A}, \boxed{B},
-~ \boxed{C}, \boxed{D}, \boxed{E}, or \boxed{blank}.

Question

8For full disclosure, we evaluated our final three candidate models on this dataset and all three average scores exceeded
89. We settled on our final model based on other factors, before measuring its score but after seeing the scores for the other
two candidates.

thtps://artofproblemsolving.com/wiki/index.php/2024_AMC_lOA(1OB,12A712B)

29

https://artofproblemsolving.com/wiki/index.php/2024_AMC_10A

{{question}}

() {{option_a}}
(B) {{option_b}}
(c) {{option_c}}
(D) {{option_d}}
(E) {{option_e}}

With each question formatted this way, we obtained 10 independent generations at temperature 0.5
from each model we tested. We then followed the grading scheme described in the above prompt. We
found that every model we tested (including our own) frequently failed to follow the “box your final
answer” instruction, particularly after a long chain of thought. To stabilize the evaluations, we decided
to count otherwise correct solutions (e.g. boxing the correct numerical expression) as correct. To do
this, we prompted GPT-4o to extract a final answer (A/B/C/D/E or none) from each model’s solution,
with temperature 1.

D Synthetic generation examples

D.1 Generation examples

We review a few examples of what our synthetic datasets look like, to give a general flavor of some of
our techniques.

D.1.1 Extracting and Tagging Excerpts from Content

To construct a dataset focused on reasoning and complexity, we extract excerpts from sources such as
web pages, books, and scientific articles. Each excerpt is annotated with metadata such as complexity
level, factual obscurity, and the presence of reasoning chains. These annotations help identify high-value
content for synthetic data generation. Below, we provide an example of metadata we generated for
scientific content:

Start Line: 8, End Line: 11

Information Type: Empirical Result Discussion

Brief Description: Discussion of the role of SNPs in AD development and severity.
Complexity Level: B

Factual Obscurity: C

Chain of Reasoning: True

Reasoning Steps:

1. Assumption: Specific SNPs influence immune response.

Conclusion: These SNPs may affect AD severity by modulating IgE levels.
Description: The study links genetic variations to clinical phenotypes.

2. Assumption: SNPs associated with AD are replicated across cohorts.
Conclusion: Replication supports their role as potential genetic markers.
Description: Statistical analysis confirms the robustness of the findings.

Dependencies: Previous GWAS findings, statistical methods (lines 10-15)

The raw content will later be filtered based on the metadata, and both will be used as seed for a variety
of synthetic generations pipelines.

30

D.1.2 Self-revision

Another component of our synthetic data pipeline is the iterative self-revision process. This process
involves multiple stages where the model generates, critiques, and revises its output to meet specific
criteria. Below, we give an example of this workflow, focusing on the creation of a reading comprehension
exercise based on a scientific excerpt:

**ExXcerpt:x«

"Future studies should replicate our findings for OXTR and BDNF, but also
-~ 1include additional stress-related candidate genes. [...] could reverse
-~ aberrant DNA methylation-could become an important goal in the
-~ development of new treatment approaches."

**Revision 0:*x*

*Plan:x To create an advanced reading comprehension exercise:
— Incorporate technical terms from genetics and epigenetics.
— Add nested counterfactuals and conditional reasoning.

- Require logical reasoning and background knowledge.

*Exercise:x Researchers focused on DNA methylation following psychosocial
- stress. What conclusion can be drawn from studies examining both
-~ aversive and positive experiences, diversified cohorts, and refined
-~ sampling intervals?
1. A monotonic relationship between stress and methylation is confirmed.
2. Differential methylation patterns reveal bidirectional sensitivity
o (correct) .
3. Early-life adversities remain the primary influence.
4. Positive experiences have negligible effects.

**Requirements (Flavored) :#*x*

- Exercises must require both understanding the text and external advanced
-~ knowledge.

— Incorrect choices should be plausible enough to mislead without full
-~ comprehension.

— The content should challenge advanced undergraduates in genetics or
-~ epigenetics.

**Critique (Agent) :*x

- *xxExternal Knowledge:x* Does not explicitly require concepts beyond the
-~ excerpt. xScore: 1%

— *%xPlausibility of Choices:** Incorrect options are plausible but not
-~ misleading enough. =*Score: 2%

- xxSuggestions:** Introduce external concepts like epigenetic drift or the
-~ diathesis—-stress model, and refine incorrect choices to address common
-~ misconceptions.

*xRevision 1:#*x*

31

*Plan:+ Add references to the hypothalamic-pituitary-adrenal (HPA) axis and
-~ cortisol's role in stress responses, integrating advanced
-~ neuroendocrinology knowledge.

*Exercise:x Considering DNA methylation and the HPA axis's role, how could
-~ cortisol influence classical and non-classical epigenetic changes?
1. Cortisol is irrelevant to the modifiers discussed.
2. Cortisol effects are linear and align with classical models.
3. The dynamic epigenetic role of cortisol enriches research paradigms
-~ (correct).
4. Cortisol’s role is limited to downregulation of methylation.

**Critique (Agent) :x*x

— *xChallenge Level:xx Still insufficiently difficult for advanced
-~ undergraduates. *Score: 1x

- *xSuggestions:** Add nuanced alternatives based on theories like eustress
-~ Vvs. distress or glucocorticoid response elements.

**Revision 2:xx

*Plan:+x Refine incorrect options and add concepts like glucocorticoid
-~ response elements to deepen the challenge. Reframe exercise to compare
-~ classical and non-classical pathways in epigenetics.

D.1.3 Creating Conversations from Snippets

Another component of our synthetic data pipeline involves transforming factual snippets into multi-turn,
nuanced conversations. This process is designed to produce dialogues that are contextually accurate and
intellectually engaging, encouraging critical thinking and deeper reasoning. The process of generating
conversations includes several iterative steps:

1. Initial Turn: Based on the snippet, the model generates a foundational response that presents
core information in a clear and direct manner. This step may also include an optional curation of
a participant’s profile that guides the tone and style of dialogue throughout the generation.

2. Subsequent Turns: The dialogue grows through a dynamic flow of agents generating alternating
turns, directing the conversation, summarizing earlier context and injecting new scenarios and
topics consistent with earlier messages.

3. Self-Revision: After each turn, the model evaluates its responses, brainstorms the best next
course of action given the current context, to maximize the complexity and nuance of the discussion.
This includes suggestions for exploring alternative perspectives or creating connections to broader
contexts.

D.2 Fill-in-the-middle exercises

Many data generation techniques require pairs of contexts and ground-truth answers for seeding and
rely on rejection sampling during data generation. One approach we developed creates fill-in-the-middle

32

exercises from free-form text that does not naturally translate into such pairs. This involves removing
a meaningful portion of the text (the “middle”), framing the remaining text as the context, and using
the removed content as the ground-truth answer. The key challenge lies in identifying portions of the
text where reasoning can reconstruct the removed content, ensuring a “correct” answer exists. For
instance, we generate such pairs from public code snippets, turning them into exercises and producing
their solutions (augmented with chain-of-thought tokens) via rejection sampling. We give an example of
such a transcript.

+xFill-in-the-Middle Exercisexx

*xContext (Excerpt from Code Snippet) :*x
for p in [path + [n] for n in graph[node]]:
smalls = collections.defaultdict (lambda: 0)
for n in path:
if all_c['start'] > 1 or all_c['end'] > 1:
continue
for ¢ in smalls.values{():
if ¢ <= 1:
continue
<<THIS PART DELETED>>
if not bad:
paths.append (p)

**Solution: **

*xBackground: x %

This snippet processes paths in a graph, tracking visits to nodes,
-~ particularly "small" nodes identified by lowercase strings. Key
-~ conditions:

- Start and end nodes cannot be revisited.

- "Small" nodes may have specific limits on revisits.

**Reasoning: x*

The missing part handles violations of small node visit limits using two
-~ variables:

— “cused’ indicates if one small node has already been revisited.

- “bad’ marks the path as invalid if a second such revisit occurs.

The loop iterating over “smalls.values()"

-~ node is revisited for the first time (allowing it by setting “cused™ to

- "True’) or violates the limit (setting “bad™ to “True® and breaking the

-~ loop) .

likely checks whether a small

**Final Guess:x*
The missing part is likely:
if ¢ > 1:
if not cused:
cused = True

33

else:
bad = True
break

*xComparison to Correct Answer:*x

— The solution captures the general logic but omits the specific condition
- "elif c¢c == 2 and not cused’, making it broader.

- xxCorrectness Discussion:xx The logic is close but lacks precision, as
-~ the revisits must explicitly check for exactly two visits.

**Grading and Feedback:*x

- *«xGrade:*x 3 (partial correctness).

— xxHint:xx Consider revisiting the specific condition for revisits. Focus
-~ on the exact count of visits that should trigger allowances.

D.3 Agents

Agent tasks that involve interactions with longer horizons may present unique challenges such as plan-
ning, reflection, and error correction. Our training data consists of trajectories collected from Agen-
tKit [WEM*24] with detailed chain-of-thought. Specifically, we generate high-quality trajectories by
running AgentKit on a wide range of environments, and rewrite the guided raw reasoning outputs from
AgentKit into a variety of self-contained statements or thoughts that aim to capture the gist of Agen-
tKit reasoning. Training with AgentKit data improves planning, reasoning, tool use, math, and error
correction on our internal benchmark.

In agent tasks, phi-4 follows a characteristic chain-of-thought with explicit planning and reflections.
We show an example of phi-4 interacting with the tower of Hanoi below:

Analyzing the current situation and reflecting on past actions is crucial
-~ for determining the next best step. Here's a breakdown of the thought
-~ process:

Analysis of Current and Past Environment

1. xxCurrent Configuration:xx
- Rod A: |bottom, [0], topl
- Rod B: |bottom, [1l], topl
- Rod C: |bottom, [2], topl

2. x*Past Performance: xx*
— There have been repeated unsuccessful attempts to move disks,
-~ particularly from rod B to C and A to C. These failures were due to
-~ rule violations, such as attempting to place a larger disk on a
- smaller one.

3. xxEnvironmental Patterns and Rules:x*x
— Only one disk can be moved at a time.
— A larger disk cannot be placed on a smaller disk.
— The goal is to move all disks from rod A to rod C.

34

Reflection on Past Performance

— *xxMistakes Identified:«x
— Repeated attempts to make illegal moves indicate a misunderstanding or
-~ oversight of the rules.
— The plan was not effectively followed, as seen by the repeated failed
-~ attempts to move disks from rod B to C and A to C.

— xxCorrect Moves:*x*
— Successfully moved disk 0 from C to A, which was a necessary step to
-~ free rod C for subsequent moves.

Relevant Considerations

- *«xCurrent Objective:xx
— The immediate goal is to move disk 1 from rod B to rod C. This move 1is
- legal and aligns with the rules since disk 1 is smaller than disk 2
- on rod C.

— xxStrategic Alignment:*x*
— Moving disk 1 from B to C is a strategic step that aligns with the
-~ overall plan to eventually stack all disks on rod C in the correct
- order.

Additional Thoughts

— Ensuring compliance with the rules is paramount to avoid repeated
-~ failures.

- Each move should be evaluated for legality before execution to maintain
-~ progress towards the goal.

Updated Plan

1. x*xMove Disk 1 from B to C:xx%
— Completion Quantification: Disk 1 is on rod C.
— Certainty: Known. This move is legal and necessary to progress towards
-~ the goal configuration.

2. *xMove Disk 0 from A to C:x*x
— Completion Quantification: Disk 0 is on rod C, on top of disk 1.
— Certainty: Known. This move is legal once disk 1 is on rod C.

3. *xMove Disk 2 from C to B:ixx
— Completion Quantification: Disk 2 is on rod B.
— Certainty: Known. This move is necessary to free rod C for the final
-~ sequence.

35

Chosen Action

Based on the analysis and the updated plan, the next logical and legal
- action is to move disk 1 from rod B to rod C. This move adheres to the
-~ rules and progresses towards the goal configuration.

<updated plan>
1. xxMove Disk 1 from B to Cxx:
— Completion Quantification: Disk 1 is on rod C.
— Certainty: Known. This move is legal and necessary to progress towards
-~ the goal configuration.

2. xxMove Disk O from A to Cxx:
— Completion Quantification: Disk 0 is on rod C, on top of disk 1.
— Certainty: Known. This move is legal once disk 1 is on rod C.

3. xxMove Disk 2 from C to Bxx:
— Completion Quantification: Disk 2 is on rod B.
— Certainty: Known. This move is necessary to free rod C for the final
- sequence.
</updated plan>

<action>Move the top disk of rod B to the top of rod C</action>

36

	Introduction
	Addressing Overfitting and Data Contamination

	Approach to Data
	Purpose of Synthetic Data
	Synthetic Data for Pretraining and Midtraining
	Curation and Filtering of Web and Q&A Data
	Post-Training datasets

	Pretraining details
	Data Composition in Pretraining
	Data Mixture
	Midtraining Details

	Post-Training
	Supervised Fine-Tuning
	Direct Preference Optimization
	Pivotal Token Search
	Hallucination mitigation
	Post-Training Ablation

	Benchmarking Considerations
	Performance on Key Benchmarks
	Safety
	RAI Benchmarks
	Red Teaming

	Weaknesses
	Post-Training Dataset Details
	Refusal to Hallucinate
	Synthetic Generation Prompts

	Judge-guided DPO

	Data Processing
	Decontamination

	AMC Evaluation Details
	Synthetic generation examples
	Generation examples
	Extracting and Tagging Excerpts from Content
	Self-revision
	Creating Conversations from Snippets

	Fill-in-the-middle exercises
	Agents

