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Figure 1: Modern agents introduce new (or newly complex) challenges for human-agent com-
munication. We group these challenges broadly into three categories: those that pertain to
information agents need to convey to users (A1–A5), those that pertain to information users
need to convey to agents (U1–U3) and general difficulties with human-agent communication
(X1–X4). These challenges may be differently applicable across the phases of human-agent in-
teraction (x-axis): before, during, and after an interaction/execution.

Abstract

Remarkable advancements in modern generative foundation models have enabled the

development of sophisticated and highly capable autonomous agents that can observe their

environment, invoke tools, and communicate with other agents to solve problems. Although

such agents can communicate with users through natural language, their complexity and

wide-ranging failure modes present novel challenges for human-AI interaction. Building on

prior research and informed by a communication grounding perspective, we contribute to the

study of human-agent communication by identifying and analyzing twelve key communica-

tion challenges that these systems pose. These include challenges in conveying information
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from the agent to the user, challenges in enabling the user to convey information to the agent,

and overarching challenges that need to be considered across all human-agent communica-

tion. We illustrate each challenge through concrete examples and identify open directions

of research. Our findings provide insights into critical gaps in human-agent communication

research and serve as an urgent call for new design patterns, principles, and guidelines to

support transparency and control in these systems.

1 Introduction

Artificially intelligent agents are systems that can autonomously perceive and take actions in

an environment [61]. While the study of AI agents traces back many decades [61, 70, 82], recent

advances in generative foundation models that can output novel text or images based on natu-

ral language prompts have paved the way for the widespread development and deployment of a

new class of agents that are increasingly sophisticated, powerful, and general purpose. Granted

the ability to access the internet,1 connect with other applications through APIs,2 and even

generate and execute computer code,3 today’s AI agents can perform actions such as scheduling

meetings, booking flights,4 ordering food,5 or purchasing groceries, taking actions that impact

both the digital and physical realms. Ongoing developments in multi-agent architectures are

further expanding the capabilities and use cases of agents [80, 82, 22].

Along with agents’ greater capacity to take actions in the open world and to complete goals

on behalf of users comes a wider range of potential failure modes and associated costs [68, 88, 24].

In fact modern applications are extending agent-centric activities into high-stakes scenarios. For

example, an agent that can shop on a user’s behalf can spend money in unintended ways or inad-

vertently leak the user’s address, credit card number, or other sensitive information. An agent

that can execute computer code can corrupt files, alter important settings, overwrite family

photos or work assignments, and take actions that jeopardize security. Without a proper un-

derstanding of an agent’s capabilities and limitations and the ability to verify its actions, a user

may over-rely on an agent, leading to the user requesting that the agent perform a task that it

is incapable of completing. Particularly in situations where failures are costly or likely to occur,

it is critical to build agents that allow users to clearly express their goals, preferences, and con-

straints to the agent and to form an accurate mental model of how the agent will behave. Users

should also be able to monitor the agent’s behavior and effectively guide the agent with feedback

and corrections as needed. Put another way, to enable effective collaboration with users, agents

and systems of multiple agents must be designed to support transparency and control.

The key to enabling transparency and control is effective two-way communication aimed at

establishing common ground about the user’s goals (e.g., as represented by the content of the

user’s request) and about the process the agent intends to take to achieve these goals [13, 65].

Achieving common ground is an activity that begins with the user’s first introduction to the

agent and continues throughout and after usage. Communication between users and agents can

help a user to determine when and how much to rely on the agent and, through the iterative

nature of dialog about intentions, capabilities, and activities, can help the user to identify and

correct misconceptions before irrevocable actions have been taken.

1https://copilot.microsoft.com/
2https://platform.openai.com/docs/guides/function-calling
3https://platform.openai.com/docs/assistants/tools/code-interpreter
4https://www.expedia.com/newsroom/expedia-launched-chatgpt/
5https://aka.ms/magentic-one-blog
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However, communication that establishes common ground can be difficult. Even with small-

scale or special-purpose models, it can be difficult to characterize an AI system’s abilities in a

way that users understand [18, 45, 76, 43, 53]. Generative foundation models have characteris-

tics that make transparent disclosure of their operation particularly challenging, including the

wide and constantly evolving range of tasks they can perform at different levels of competency,

their massive and opaque architectures, sensitivity to prompt and context, the stochasticity of

their output, and the diversity of their user bases who may require different levels of detail [44].

The challenge of understanding agents’ operation is further exacerbated by the complexity of

agentic workflows, in which tasks may be decomposed and carried out over multiple steps—

sometimes by multiple interacting agents with different roles, privileges, and access to different

information [80, 22]. While the literature on human-AI interaction offers general guidance and

sets of principles [29, 1, 26], interacting with systems of one or more autonomous, tool-using AI

agents raises new transparency and communication challenges that have yet to be addressed.

We present a set of challenges that arise in the process of establishing common ground

between human users and AI agents, as summarized in Figure 1. We arrived at these challenges

based on our experiences building and experimenting with complex AI agents and multi-agent

systems, drawing on the literature on human-AI interaction and collaboration, including prior

work on establishing common ground between people and machines. Some of these challenges

reflect the difficulty of conveying necessary information from the agent to the user to allow the

user to form an appropriate mental model of the agent and monitor its behavior. Some reflect

the difficulty of designing the agent to enable the user to convey their own goals, preferences, and

constraints to the agent and guide the agent with feedback. Others are overarching challenges

reflecting general difficulties with communication, such as avoiding inconsistencies and reducing

the burden on users. While this list isn’t exhaustive, we hope it serves as a starting point for

discussion and future research.

We note that many parallels can be drawn between our proposed challenges and those

faced in establishing communication and coordination within teams of humans (summarized

in Section 2). We use the term “common ground” in the sense of Brennan [6] to refer to

operational alignments, including on shared inferences such as the likelihoods of the current

state of the world or future outcomes jointly considered by the human and agent, rather than

broader cognitive or experiential similarities and do not suggest that agents understand in a

similar way to humans.

1.1 What is different about modern AI agents?

While the agent-based perspective in AI is not new, two primary technical advances distinguish

today’s agentic applications from those of the past. First, unlike previous AI agents, which

were typically based on simpler models with well-structured inputs and outputs, today’s are

based on generative foundation models, like large language models or multimodal neural models,

that can output novel text and/or graphical content based on natural-language (or multimodal)

prompts or commands. These generative foundation models have demonstrated remarkable

performance across a wide range of use cases or tasks [7] and emerging capabilities continue

to be discovered as models improve [79]. The broad abilities of foundation models enables

the design of agents that exhibit a wide range of capabilities that often, though not always,

include language understanding and generation competencies that allow people and agents to

communicate through natural language.

Second, generative foundation models can be given the ability to invoke a wide range of
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resources or tools, for instance, through APIs [66]. Such tools and plugins enable agents to

interact with the world, facilitating actions across domains such as finance, communication,

and physical activities in the open world. Some agents can even execute arbitrary Python

code in various environments, including cloud-based containers, local systems, or the user’s own

execution environment. These tools serve as sensors that enable the agents to perceive aspects

of the world and effectors that allow them to take actions resulting in changes to world state.

For instance, one tool might enable the agent to fetch weather data from a web API, while

another might allow the agent to plot the data and save it to the user’s local or cloud storage.

For another example, consider Devin, an “AI software engineer” agent with access to a

command line environment, code editor, and web browser [81]. In fact, its ability to control

a Web browser allows it to browse information on the Web and even purchase products or

services—actions with significant potential side effects [88]. Since Devin has basic reasoning

and planning capabilities, it can execute (often successfully!) complex engineering tasks, such

as debugging code or even training and fine-tuning new AI models. However, current limitations

in LLM planning [36] and other issues such as hallucinations mean that Devin’s actual behavior

cannot be perfectly anticipated, potentially leading to costly or catastrophic errors.

In summary, generative language models empower tool-using capabilities that increase the

power of agentic systems radically, allowing them to execute meaningful actions in the world

and creating new (or newly complex) challenges as discussed in the rest of the paper.

1.2 Outline

We consider a set of emergent challenges pertaining to human-agent communication. While

the rise of new degrees of autonomy and use of tools by agents poses many other important

challenges including technical [33, 35, 32, 73, 87, 17], ethical [12, 41, 24], safety [3, 68], and

fairness [34, 48] challenges, we consider these to be outside the scope of this paper.

We start our discussion with a recap of previous work from the perspectives of psychology,

cognitive science, AI, and HCI. In Section 3, we list four overarching challenges that apply across

all human-agent communication. In Sections 4 and 5, we discuss issues that emerge from the

need to communicate information from the agent to the user and user to the agent, respectively.

In each section, we describe the challenges in detail, contextualize them with respect to the

literature, and provide concrete examples from existing systems and emerging applications. We

outline possible steps towards solutions for each challenge and identify open research questions.

Finally, in Section 6, we close with a call to action for research in human-agent communication.

2 Previous Work

We now summarize some of the relevant literature that we build upon, drawing from prior

research and results in psychology, cognitive science, AI, and HCI.

Researchers in philosophy and psychology have long studied human communication and

teamwork. The notion of grounding in communication is a central concept proposed by Clark

and Brennan that embodies the collection of mutual knowledge, mutual beliefs, and mutual as-

sumptions that are essential for communication between two people [13]. To effectively ground

their communication, the participants must “coordinate both the content and process” of each

conversation. The process of achieving a shared mutual belief (common ground) is called ground-

ing. Clark proposed successful grounding as requiring the parallel action of multiple levels of

analysis, including the establishment of a communication channel, the exchange of recognized
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signals across the maintained channel, the interpretation of intentions via decoding meaning in

the signals, and the control of the back and forth of an effective conversation with contributions

and clarifications being made by dialog participants.

Drawing parallels to human communication, Brennan applied grounding theory to human-

computer interaction, where, as in human communication, “people need to be able to seek

evidence that they have been understood and to provide evidence about their own intentions” [6].

In this case, the term “common ground” refers to operational alignments rather than cognitive

or experiential similarities. Brennan noted that poor feedback or affordance mechanisms often

result in users needing to execute laborious checking actions to achieve common ground. The

breadth of capabilities (and stochasticity) displayed by generative language models exacerbate

these problems, as we discuss.

In related work informed by research in psychology on human-human communication, ex-

plicit computational grounding machinery was developed and integrated within computational

architectures to support human-AI grounding processes as joint activity aimed at achieving

mutual understanding [31]. Another effort explored the development of computational analogs

of the multiple levels of coordination for grounding proposed by Clark, including inferences at

channel, signal, intention, and conversation levels, to establish common ground between a user

and a dialog system that could execute actions in the open world [54]. In later work, definitions

of grounding in human-AI collaborations were shifted to an expected utility framework. In the

approach, grounding on ideal actions for an agent is guided by uncertainties that an agent has

about a user’s goals and the costs and benefits of different actions [54]. The latter work also

explored the use of visual signaling by the agent to communicate to the user the degree to

which an agent believed it was grounded with the user via display of smoothly changing colors.

More recent studies have explored grounding between machine and human in a multimodal

setting, where uncertainties that an agent has about a user’s goals and intentions are inferred

via signals drawn from multiple streams of information, including language, vision, predictions

about states of the world, and conversational flow, and then communicated to users via dialog

acts and gestures [55].

Several efforts have focused on establishing common ground between machines and peo-

ple on memories about activities that have occurred in the past. Notions of shared memory

have been constructed via mechanisms that infer important milestone events drawn from larger

streams of events observed over time that are likely to be memories accessed by, referred to, or

assumed in joint activities by users when interacting with AI systems. Studies have explored the

identification of memory milestones to enable easy reference to events by users and AI systems

[59, 30] and shared, referable memories of prior interactions and situations of the type that

people would have with others whom they have worked with over time [60].

Among people, grounding typically proceeds in alternating phases of presentation and accep-

tance with gestures and facial expressions often serving as acknowledgments [25]. Communica-

tion made across other media (e.g., when communicating with or via computers) forces people

to use more elaborate grounding methods and often increases communication costs for both

the speaker and addressee [13]. These media-based constraints play into the communication

challenges discussed in this paper.

Dennis et al. elaborated on the theory of communication processes and distinguish between

conveyance and convergence processes. They argued that the former can do with lower media

synchronicity whereas convergence benefits from higher media synchronicity [15]. Here, media

synchronicity indicates the degree to which the communication medium allows coordinated

synchronous behavior. They conclude that communication is improved when participants use
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various media to perform a task. Generalizing ‘media’ to computational affordances, these

theories also inform our proposed solutions.

The study of human-agent collaboration should also be informed by social and cognitive

psychologists’ work on decision-making processes of groups of people, which may often surpass

the performance of individuals comprising the group. Many of these prior studies corroborate

a theory that groups collectively perform better than the average (and many times, best) indi-

vidual on many types of problem-solving tasks [28, 10]. These effects were more strongly seen

on some tasks than others and attributed to the demonstrability of proposed solutions to the

task [40]—which may be seen as properties of the group and task that facilitate grounding.

Some of our suggestions for X1–X3 benefit from these insights from psychology and their adap-

tations into principles for AI-generated explanations [21]. Shared mental models, closed-loop

communication, and mutual trust have been identified as core mechanisms in successful human

teamwork [63], and some of these aspects map clearly to human-AI teams [4]. Still, the differ-

ences in understanding, decision-making processes, and communication styles between humans

and machines change the context and introduce new challenges.

Our work also builds on significant recent work on design guidelines for human-AI inter-

action [1, 26, 69, 84, 83, 35, 85]. The rise of generative AI models has led to a massive shift

in the ways AI is being deployed—from interactive classifiers into powerful tool-using agents.

This transformation raises a number of new issues. For example, using tools allows agents to

take a much wider range of actions [67], increasing complexity and the number of ambiguities

that must be grounded. In contrast to previous AI applications, agentic systems commonly

have an emphasis on generalist capabilities [58, 77], which likewise raises the complexity of

grounding. These systems are often crafted as “society of mind” [51] agents that pass tasks to

each other [80], which can result in complex emergent behaviors—again posing challenges for

grounding. As a result of these jumps in complexity, it is appropriate to revisit both guidelines

and challenges for human-AI interaction.

A closely related work is the report from Shavit et al [68] which offers a set of practices

towards making the operation of agentic AI systems more safe and accountable. That work

intersects with a subset of the challenges that we discuss in this paper; specifically challenge

X1 and A3 are closely tied to “Legibility of Agent Activity” and challenge X3 and A3 are tied

to “Constraining the Action-Space and Requiring Approval.” Our work makes progress by also

reflecting on broader challenges in human-agent communication, including how to effectively

convey capabilities and limitations, manage information flow between agents and users, and

address emergent issues in multi-agent systems.

3 Overarching Challenges for Human-Agent Communication

Before digging into what specific information must be communicated between a human user

and AI agent to establish common ground, we begin with a discussion of four overarching

challenges that should be considered across all human-agent communication (challenges X1–X4

in Figure 1). We briefly introduce each here and return to them when discussing the challenges

in communicating specific information in Sections 4 and 5.

X1: How should the agent help the user verify its behavior?

Modern agents are powerful but remain imperfect. As a result, when agents get tasked with

goals, it is likely that they will make mistakes—especially when these goals are complex or
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multi-step. Consider an agent tasked with fixing a programming bug in a GitHub repository.

This agent can fail in numerous ways. For example, it might fail to understand the issue and its

requirements, such as the fact that any solution must be backward compatible; it might develop

a plan that implements the fix in the source directory but neglects to update the test cases; it

might propose a fix that is “unsafe” because it is vulnerable to exploits or propose a fix that is

convoluted and time-consuming to review; it might propose a change that has side effects such

as removing unrelated functionality.

To establish establish common ground, it is necessary not only to convey pieces of informa-

tion but to verify that a common understanding has been reached. In the context of human-AI

communication, it is not enough, for instance, for a user to state their goals and preferences if

these goals and preferences are misunderstood or ignored by the agent. It is, therefore, critical

to enable the user to verify their understanding of the agent’s plans and actions as well as the

agent’s understanding of their own goals, preferences, requirements, and feedback. Establishing

mechanisms for the user to easily verify the agent’s behavior is a necessary condition of effective

communication [21] and an important aspect of effective teamwork [39]. Without this ability,

the user may not be able to steer agent behavior to avoid costly mistakes or accomplish the goal.

Furthermore, they would fail to develop an accurate mental model of the agent’s capabilities or

provide feedback to improve the agent’s future performance.

X2: How should the agent convey consistent behavior?

A second overarching challenge for human-AI communication is how to prevent the agent from

confusing the human with behavior or outputs that are (or at least appear) inconsistent. In-

consistency can arise for multiple reasons. One is the agent’s behavior’s inherent stochastic-

ity, which stems from two main sources: the probabilistic nature of the underlying foundation

model’s outputs, and the complex interaction patterns that emerge during task execution. Even

with deterministic foundation model outputs (e.g., a model with temperature set to 0), when

agents operate in dynamic environments, their orchestration logic—which governs action selec-

tion, inter-agent delegation, and task completion criteria—can produce different sequences of

actions across runs as the environment changes in response to agent actions. While stochastic

behavior may be desirable in some cases—for instance, if the user would like the agent to gener-

ate a variety of different options to choose from—in other cases, it can hinder the user’s ability

to create an accurate mental model of the agent. For example, consider an LLM-based agent

that can create visualizations based on a high-level description from the user. When invoked

with the same input multiple times, the agent might choose different libraries or tools to plot

the visualization. Sometimes, it might write code to fetch the data from a hosted service; other

times, it might generate that data from its memory. It could also unpredictably apply different

visual styles, which would be especially problematic if the user is unaware.

Perceived inconsistencies can arise for other reasons, for instance, when the user’s mental

model of the world does not match up with the information the agent is acting on. Even if an

agent is taking actions that align with the user’s goals, its actions may appear misaligned if the

human’s model of the world is different [72]; think of a shopping agent purchasing what appears

to be an overly expensive widget because it knows that the cheaper model is incompatible with

the user’s needs, but fails to consider the user’s budget limitations.

If such forms of (perceived) inconsistencies are not minimized, users may become confused

about whether the agent has accomplished their goal, whether it is capable of accomplishing

the same (or a similar) goal again, whether it would follow similar approaches as it used in the
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past, and how to consistently and accurately steer its behavior. Over time, this will likely lead

to diminished trust.

X3: How should the agent choose an appropriate level of detail?

While it is essential to design agents in a way that enables users to verify their behavior and

avoids confusing users, these needs must be balanced with the need to avoid burdening or

overwhelming the user by providing too much information. Interactions with modern agents

necessitate richer bidirectional communication than was necessary with traditional AI systems.

This increased emphasis on communication arises because of the complexity of the underlying

AI systems and the complexity of the tasks the agents are being asked to perform. While more

detailed communication can help establish a shared understanding, it can become counterpro-

ductive when instructing the agent becomes burdensome or reviewing agent outputs becomes

overly cognitively taxing. It also may overconstrain the agent, preventing it from exploring

alternative solutions or recovering from failures.

When designing for human-AI communication, there are several questions: Can the user

easily instruct the agent regarding their goals, constraints, and feedback, or does this require a

lengthy and potentially unreliable process? (See also Vasconcelos et al. [75].) Are the explana-

tions of the agent’s behavior clear and understandable, or are they too complex to be useful?

Additionally, does the agent need to confirm every request, or can it act with more autonomy

in familiar situations?

Consider how an LLM-driven agent might assist a user with drafting emails. Suppose a

user frequently asks the agent to create follow-up emails with a similar structure and tone for

recurring scenarios, such as responding to meeting requests or sending reminders. An overly

verbose agent might repeatedly ask for clarification on tone, length, or recipients for every

request, even when the user has previously provided clear preferences for these aspects. Instead,

an ideal agent would leverage its understanding of past interactions to streamline the process,

only requesting additional details for novel or ambiguous scenarios. This avoids unnecessary

repetition and enhances user satisfaction.

While this challenge isn’t new [56], the generative power of today’s language models makes

it omnipresent (as the example above illustrates).

X4: Which past interactions should the agent consider when communicating?

Context plays a key role in many aspects of human communication and computing (e.g., in

search and recommendation) [27, 5]. Interactions with modern agents can especially involve rich

and intricate contexts that both the user and agent may draw from to facilitate communication

and understanding, e.g., past interactions containing lengthy generations and exchanges with

the user, background information about the user, or observations from the environment and

tool use. For example, consider an academic research agent who assists a scholar. This agent

could benefit from reading all of the scholar’s papers so that it can make use of references to

past results and experimental designs, storing and reusing prior discussions with the scholar

about an ongoing project, or considering observations from experiments that it helped conduct.

This context could grow unbounded as the agent works with a user over days, months, and

eventually years. Agents should use this past context to satisfy each user request, but as the

context grows huge, how can we ensure the agents focus on what is relevant for interpreting

the current command? (See also Liu et al. [46].) This may depend on the task the agent is

performing or the specific question the user asks at a given moment.
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A similar challenge occurs when deciding which information to retain from the agent’s

percepts, such as when a tool retrieves a large amount of data (e.g., 1000 PDF documents).

These percepts, like the interaction context, can also generate large and complex contexts,

further complicating the challenge of maintaining relevance and focus in its responses.

In some cases, the user may want to limit the context that the agent is allowed to rely on;

for instance, if allowing the agent to rely on particular sources of information would compromise

privacy. The user should always be able to restrict the use of background information when they

prefer. Fortunately, this need has surfaced in many analogous situations, suggesting applicable

design patterns. For example, most internet browsers support incognito mode, where cookies

and other personally identifiable information are suppressed. Similarly, browsers allow users to

view, edit, and purge the history of past browsing. Social networks support users who switch

between different personas. We suspect that similar tools will be important for supporting

human-agent interaction. Additionally, recent work on agent workflow memory [78] shows how

agents can learn reusable task workflows from past experiences to improve their performance on

complex, long-horizon tasks. This approach has demonstrated significant improvements in web

navigation tasks across diverse domains, suggesting that explicit memory mechanisms could be

particularly valuable for agents executing repetitive tasks.

4 Information Flow from the User to the Agent

In this section, we discuss three challenges (U1–U3) related to designing agents to enable users

to communicate necessary information. The first two concern the user’s desires: what users want

the agent to achieve and preferences for how the agent achieves it. The third challenge pertains

to feedback and helping the agent improve over time. While much of the information content

covered by U3 overlaps with U1 and U2, the time and context differ, affecting communication.

For each issue, we discuss existing research, describe how these difficulties have changed for

today’s agents, provide concrete examples, and outline possible solutions.

U1: What should the agent achieve?

When agents assist with or carry out tasks for people, one of the most critical pieces of infor-

mation a user needs to communicate to the agent is the goal—what they would like the agent

to achieve. If the agent misunderstands the goal, the consequences can be dire. An agent may

waste compute, money, and time accomplishing the wrong (or worse, harmful or unsafe) thing,

create side effects, or cause user frustration and abandonment. It is then critical that we ask

how to design agents so that users can clearly express their needs and intent and resolve possible

ambiguities [16].

The challenges that arise in interpreting user intent are well studied in domains such as

classical planning, personal assistants, mixed-initiative systems [29], and context-aware com-

puting [16, 49, 42]. For example, in classical planning, users may specify their goal via a set

of logical conditions that are true in the goal state. Many formal languages for specifying

the goal and scenario exist, such as the Planning Domain Definition Language and its vari-

ants [50, 86, 64]. These formal languages provide a precise and explicit way to define goals.

While precise, these approaches are less intuitive and natural for users compared to specifying

goals in natural language. One reason is that these formal languages inherit the limitations of

first-order logic, such as its limited expressivity compared to natural language specifications,

which is now common with modern agents. In contrast, while more intuitive, goals specified in
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natural language introduce challenges such as ambiguity and imprecision.

While goals were specified in natural language in the personal assistant literature (e.g., “Set

an alarm clock for 8 am tomorrow”), there were many key differences: the specified goals were

simple and limited to a small number of actions, an intent recognition system was used to map

the intent to a “skill” (similar to function calling), and these systems did not adapt based on

new observations e.g., based on results of a previous skill [8]. With modern agents, people may

express intents at a much higher level, and those intents may necessitate solutions that involve

multiple steps of reasoning and tool use. Natural language and dialog can often be incomplete,

convoluted, or ambiguous, making correct interpretation more challenging. These differences

can increase the chance that modern agents might misunderstand what the users want the

agents to achieve.

One important mechanism that could improve communication of goals from the user to the

agent is detecting and resolving critical points of uncertainty in the agent’s understanding of

the goal [29]. For example, if the user asks a research assistant agent to see top papers by

“Peter Clark,” there may be many potential authors with that name. Disambiguating this

request may be seen as a process of finding common ground. This disambiguation might be

made explicit in some cases, but risks overburdening the user (X3) [38]. Alternatively, the

agent could disambiguate between alternate goals using available context (X4)—again, a type

of common ground. For example, rather than asking which Peter Clark, the agent could choose

the one in the same discipline as the user or the one the user has cited in the past.

U1. What should the agent achieve?

Example 1: Travel Itinerary Planning A user instructs an agent to plan a business

trip, specifying the destination, preferred airlines, and meeting times. However, the agent

misinterprets the trip’s purpose, planning it as a leisure vacation instead. It books scenic

flights with multiple layovers, selects a luxury resort far from the meeting venue, and

even schedules irrelevant activities like guided tours. As a result, the user ends up with

an itinerary that fails to meet their professional needs, potentially leading to missed

meetings and wasted time. This highlights the importance of clear goal communication

and the need for iterative verification and refinement to ensure the agent’s plans align

with the user’s intent.

Example 2: Scientific Literature Search We asked Microsoft CoPilota and Chat-

GPTb to find recent papers that cite a previous paper [80]. Unfortunately, both systems

misunderstood the goal and returned an unsatisfactory answer. CoPilot returned the

links to the previous paper itself, whereas ChatGPT returned only two papers, even

though the paper in context has been cited by a few hundred papers. To fix this, a natu-

ral next solution for the end-user may be goal refinement through dialog, e.g., specifying

additional details like whether self-citations count and the minimum number of papers

to fetch.
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ahttps://copilot.microsoft.com
bhttps://chatgpt.com

U2: What preferences should the agent respect?

For a given high-level, complex goal from the user, many possible ways to achieve the goal

typically exist, but some plans are better than others. For example, the user likely prefers to

minimize time, expense, and harmful side effects. However, different users will have different

notions of harm and, hence, different preferences. Thus, understanding the user’s preferences

is a key component of common ground. How can the agent help the user clearly express their

preferences, especially when they differ from standard norms?

Steering agents to respect user preferences is related to efforts to align or fine-tune large

language models toward specific behaviors, tasks, or domains. For example, techniques such as

Direct Preference Optimization (DPO) were developed to steer LLM generations toward those

that better align with user preferences and desired outcomes [57]. However, while effective, DPO

primarily focuses on aligning models to aggregate-level preferences, which may overlook nuances

in individual user needs or fail to generalize well to diverse or context-specific preferences.

For generative agents that can carry out complex actions in the world, ensuring they respect

user preferences and constraints can be even more challenging. For example, suppose the user

wants to constrain the agent to avoid harmful behavior. In open-world settings where generative

agents can operate, it may be impossible to precisely define “harm” or list all possible harmful

behaviors [20]. Further, generative models can discover novel solutions that contain previously

unthought (or unspecified) harms [2]. Tool use further increases the scope of possible harm by

allowing agents to impact the environment, making the communication challenge even more

salient.

One possible solution to this challenge is to make inferred preferences and constraints visible

or accessible to users. Some existing works use this approach; for example, the current version of

ChatGPT displays a set of facts about the user it has memorized. It also allows users to modify

(e.g., delete) these facts.6 These methods are good steps towards creating common ground.

6https://openai.com/index/memory-and-new-controls-for-chatgpt/
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U2. What preferences should the agent respect?

Example 1: Privacy Concerns in Data Sharing A user instructs an agent to han-

dle a project involving sensitive personal data, explicitly specifying that this data should

not be shared or stored in any external systems. However, the agent misunderstands or

fails to properly recognize the importance of this privacy constraint. As a result, the

agent inadvertently includes the sensitive data in a shared document or public database,

exposing it to unauthorized parties. This data breach could lead to privacy violations,

legal repercussions, a significant loss of trust from the user, and potential harm to indi-

viduals whose data was exposed. This scenario underscores the critical need for agents

to understand clearly and strictly adhere to user-defined privacy constraints, ensuring

that sensitive information is always protected. Additionally, it highlights the importance

of iterative verification and refinement, where the user may need to review and correct

the agent’s actions to prevent future breaches, emphasizing the challenge of accurate

constraint communication.

Example 2: Web Scraping with Ethical Considerations A user directs an agent

to collect data from a specific website with clear instructions to avoid scraping sensitive

information or violating the site’s terms of service. However, the agent misinterprets

or overlooks these ethical constraints and proceeds to scrape restricted data, sensitive

data, or data explicitly forbidden by the website’s terms. As a result, the agent gathers

information the user never intended to collect, potentially leading to legal repercussions,

ethical breaches, and damage to the user’s reputation. This example underscores the

critical need for agents to understand and adhere to ethical guidelines and user-defined

constraints when performing web-based tasks. It also highlights the importance of en-

suring that agents recognize and respect boundaries, particularly when data privacy and

legal compliance are at stake.

U3: What should the agent do differently next time?

Even if an agent develops an excellent understanding of the user’s goal, preferences, and con-

straints, in practice, it is possible that the agent will still make mistakes. For example, it may

continue to use sub-optimal plans or incorrect tools because its planning is imperfect. Further,

it is also possible that the agent continues to make wrong assumptions about the goals and

preferences—perhaps because the user’s tastes evolve. Agents will likely learn autonomously

through mechanisms that enable them to invoke new tools, update memory, or finetune the

underlying LLM [67], but we focus on scenarios where the user provides feedback.

This challenge is related to the problem of learning in recommender and interactive machine

learning systems. For example, music and movie recommender systems may use implicit or

explicit signals, such as dwell times or ratings, to improve future recommendations. Similarly,

many end-user interactive machine learning systems focused on lightweight feedback mechanisms

to help users steer classifier training and improve future predictions. Recent work on interactive

prompt editing and refinement has also focused on enabling end users to improve prompts for

LLM-based systems. There is also work in the classic agent literature which has focused on

improving feedback from users to agents. For example, Russell and Grosof focused on learning

(first-order logic-based) concepts from examples that can be accommodated into the agent’s

learning process [62].

In contrast to traditional machine learning systems, generative agents can revise their be-
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havior based on natural language text. While this allows for rich feedback, it also introduces

the challenge of appropriately interpreting free-text feedback. How can we help users effectively

express feedback to steer agent behavior?

U3. What should the agent do differently next time?

Example 1: Code Debugging A user asks an agent to write a Python function that

sorts a list of customer orders by date and then filters out orders from non-preferred

customers. The agent generates the code, but a bug causes the function to incorrectly

filter out orders from some preferred customers when their names contain special char-

acters. The user identifies the issue and provides feedback, specifying that the function

should correctly handle names with special characters. The agent attempts to fix the

bug but only partially succeeds—it correctly processes names with special characters but

now fails to sort the orders by date in descending order. The agent struggles to integrate

both fixes despite further feedback, leading to repeated debugging cycles. This scenario

highlights the challenges in guiding an agent to learn effectively from feedback in complex

coding tasks, where multiple aspects of the task need to be addressed simultaneously.

Example: Travel Itinerary Adjustments A user asks an agent to plan a week-

long vacation, including flights, accommodations, and activities. The agent creates an

itinerary that includes late-night events before early-morning tours and overlooks prior-

itizing the user’s preference for cultural experiences over recreational ones. After com-

pleting the trip, the user provides detailed feedback—emphasizing the importance of

scheduling adequate rest between activities, highlighting a preference for cultural activ-

ities, and requesting that the agent avoid certain types of accommodations in future

plans. The agent must be able to use this feedback to refine its understanding of the

user’s preferences for subsequent trip planning, showing improvement in aligning with

these preferences over time.

5 Information Flow from the Agent to the User

In this section, we discuss five challenges related to the information flow from the agent to the

user. These challenges focus on communicating information about the agent’s capabilities, the

agent’s current and planned future actions, whether the user’s goals that have been achieved,

and any side effects that have occurred. We provide examples to illustrate each challenge and

discuss potential solutions.

A1: What can the agent do?

If a user does not fully understand the capabilities or limitations of an agent, they will not

be able to make informed decisions about when and how to best use its assistance or what to

expect when they do. Work with earlier AI systems has shown why addressing this challenge is

crucial. As one example, Cai et [9] found that clinicians wanted clear information upfront about

the basic features of AI models. They wanted to know what the models were good at, where

they struggled, what perspectives they might have, and what they were designed to achieve.

In the absence of such transparency about AI systems, people sometimes resort to informal

experimentation to try and understand their capabilities and limitations [47], which may lead

to incomplete or inaccurate mental models [19, 4].
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Several approaches have been proposed to help convey the capabilities and limitations of AI

systems to people. Mitchell et al. [52] introduced the idea of model cards, short documents

that accompany trained machine learning models. Among other things, a model card may

include details about how the model was trained, intended or unintended uses, evaluation results

(potentially broken down by demographic), and ethical considerations. Companies including

Google, Hugging Face, and OpenAI have adopted model cards, and different, more interactive

formats for model cards have been proposed [14]. However, a model card may be too long or

technical to be practically useful for casual users, especially one intended to cover the range of

behavior of a modern generative AI model. (For example, the model card for GPT-4 is over 60

pages long!7) For end users, considering lighter-weight solutions to introduce capabilities and

limitations that are integrated into an agent’s interface or behavior may be more appropriate

than providing documentation of the agent or model it is built on, which the user must look up

outside of interactions.

Making clear what a modern agent can and cannot do requires answering many questions

beyond what we see for traditional classification or recognition systems, such as: Which in-

formation does the agent have access to? How will the agent use this information? Can the

agent make permanent changes to the environment? Can the agent be interrupted without side

effects? Or consider an agent that can write and run code. What languages and frameworks

does the agent specialize in? Does it have access to the Internet? Can it use libraries that do

not appear in the data used to train its underlying LLM, for instance, through RAG? Can it

execute code that requires elevated privileges?

We note that since an agent’s capabilities and limitations may be updated over time, con-

veying these to users is not something that can happen only once. It may become necessary to

update the user on changes to what the agent can do over time [1].

A1. What can the agent do?

Example 1: Dataset Visualization The figure below shows the output of ChatGPT

when asked to plot a chart of features from the UCI leaf dataset. The system uses GPT-4

and its code interpreter tools to generate the visualization. However, the visualization

is based on simulated data, as shown on the left. This unexpected behavior raises a

question: Why did the agent not use its known capability to browse the web to retrieve

the actual dataset? Further investigation reveals that the agent used simulated data

because it cannot access the Internet through the command line.

7https://cdn.openai.com/papers/gpt-4-system-card.pdf
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In this case, understanding that the agent can sometimes browse the web is insufficient.

The user needs to understand the conditions under which this is possible. Such infor-

mation could potentially be laid out in an “agent card” (akin to a model card), but

enumeration of all possible capabilities in appropriate detail may be impractical. A

lighter-weight solution could indicate what tools or data the agent can access, but this

may not be enough for the user to understand the nuances.

Example 2: Proving Theorems Consider an agent designed to assist with proving

mathematical theorems. Suppose the agent is asked to prove the same theorem about

prime numbers on two different occasions. Despite using the same underlying model and

tools, the agent produces different proofs each time. The first time, it generates the

proof directly without verifying its correctness. The second time, it generates a proof

and then verifies it using a theorem prover. This inconsistency can confuse users about

what the agent’s capabilities are. In this case, can we say that the agent can reliably

prove theorems? The question is complicated by the agent’s stochastic behavior and the

various factors influencing it.

A2: What is the agent about to do?

To achieve a given complex goal, an agent may execute a large number of actions step-by-step.

Before executing those actions, the agent should obtain the user’s permission, especially for the

actions that are “expensive” in some sense (expend resources, are irreversible, might violate

user preferences). When this is not the case, the agent should perhaps just go ahead, e.g., to

minimize overload (X3). Suppose the agent doesn’t communicate this crucial information. In

that case, it might hurt common ground between the user and the agent because they would

not have had the opportunity to provide feedback to the agent. This feedback would allow

the agent to achieve the goal more successfully. It might be beneficial even that user input is

required before the agent executes any action.

This challenge has become prominent with modern agents due to advances in generative

and tool-using capabilities. For example, when agents built on foundation models with general

capabilities execute complex plans involving sophisticated tool use, it is unclear at what level of

detail the agent should communicate. The optimal level of detail may depend on many factors,

including the user’s current understanding of the agent’s behavior. For example, if there are

steps that the user already expects, it may be redundant to convey them in too much detail. In

contrast, steps that may be considered surprising may be more salient for communicating up

front. This would allow the user to inspect them or change them if needed. This challenge may

become even more important as agents become able to complete actions in real time because

of advances in software and hardware for LLM inference, possibly making it harder for users to

keep up with the agent’s plan.

This challenge is related to work in the automated planning literature around explainable

planning where the goal is to explain, e.g., why the agent’s plan contains a particular action,

why it did not prefer a different plan, or why the agent’s plan in optimal [11, 37].

Some possible solutions to this challenge include presenting plans to the user and getting

explicit approval—an approach implemented in the GitHub CoPilot for Workspace8—allowing

the user to engage in a dialog to inspect the plan, and modeling uncertainty around the user’s

8https://github.blog/news-insights/product-news/github-copilot-workspace/
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mental model (e.g., in whether the user would be surprised) and using that to determine when

to reach out to the user in more detail [71].

A2. What is the agent about to do?

Example 1: Data Deletion or Archiving A user has set up an agent to manage

storage space on their server by automatically archiving or deleting old data. The agent

is programmed to identify files that haven’t been accessed in a while and are likely

no longer needed. Without consulting the user, the agent deletes many files it deems

obsolete. However, these files include critical project documents the user didn’t realize

were marked for deletion. The user had intended to review these files before making any

decisions but wasn’t alerted by the agent about its planned action.

When the user discovers the deletion, they realize that recovering the files is a com-

plicated process that may result in permanent data loss. This scenario emphasizes the

importance of the agent asking for explicit user permission before taking irreversible ac-

tions like data deletion. It also highlights the need for clear communication, especially

when the consequences could be significant. The failure to communicate the deletion plan

leads to unintended outcomes, misalignment with the user’s expectations, and potential

operational disruptions.

Example 2: Automatic Content Posting A user relies on an agent to manage their

social media accounts, including drafting and scheduling posts. The agent is programmed

to inform the user of its activities and decisions, sending frequent updates about each

draft, scheduling changes, and analytics trends. While this level of detail aims to en-

sure transparency, it results in the user receiving a flood of notifications and updates

throughout the day.

One day, the agent notifies the user of a minor change to a scheduled post amid dozens

of other updates. Overwhelmed by the constant communication, the user overlooks the

specific notification and misses an important detail: the agent had rescheduled the post

to coincide with a sensitive industry event, inadvertently making it seem tone-deaf and

sparking backlash.

This scenario illustrates the risk of over-communication, where excessive updates dilute

the user’s attention and reduce the likelihood of catching critical information. Striking a

balance between transparency and concise communication is crucial to ensure the agent’s

actions align with the user’s goals without contributing to information overload (X3).

A3: What is the agent currently doing?

While an agent is acting in an environment, how can the user understand what it is currently

doing, the impact of the agent’s actions that are in progress, and whether they should intervene

to shape or halt the activities? The distinction between this challenge and A2, stems from the

time of communication. With A2 the communication occurs before the agent has executed an

action while A3 concerns communication about an action being executed. This difference in

timing suggests different potential solutions to A2 and A3.

Consider, for example, an agent that can browse the internet (e.g., by operating a web

browser) and also send and receive emails on your behalf. Suppose the agent was asked to plan

and book your next vacation that fits your budget. To accomplish this goal, let’s say that the

agent pursued a multi-step approach—browsing the web to look up potential destinations and
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hotels, emailing relevant hotels at these destinations to negotiate prices, and finally using the

web browser to book the final plan. How can the user, at the moment, stay aware of the agent’s

progress and verify the appropriateness of its actions? This information would allow the user

to intervene on the spot to change the agent’s course of action as necessary.

This problem can become much more challenging if the agent pursues strategies involving

tens or hundreds of actions or executes steps in fractions of a second or in parralel.

“Unsafe” or “inappropriate” agent behavior could worsen this challenge. For example, what

if it emailed your boss to ask for a raise because it has discovered through a few steps of reasoning

that an increased budget for the trip coming via a raise would help it to plan a better trip?

Suppose the user cannot understand what the agent is currently doing. In that case, they

cannot actively understand the agent’s process and correctness or intervene to provide helpful

guidance. While existing human-AI guidelines do talk about the need to clarify which actions

the system is taking to improve understanding, they do not delve into how to handle the level of

complexity of modern agents. But there are some domains where this issue arises, such as with

high-speed algorithmic trading, where trading systems may execute a large number of orders,

or with semi-autonomous vehicles [74]. Some solutions developed in these fields may be relevant

to human-agent communication, such as real-time updates and summaries of agents’ behavior.

A3. What is the agent currently doing?

Example 1: Online Shopping A user tasks an agent with purchasing supplies for

their business, providing a budget and a list of required items. The agent begins the pro-

cess by generating a plan, perhaps to compare prices at multiple online stores. Challenge

A2 reflects the need for the user to be able to easily correct such a plan before the agent

starts execution. But even if the plan appears ok, as the agent rapidly executes these

actions, it may encounter out-of-stock items or find the cheapest store won’t actually

ship the item until next month. Challenge A3 reflects the need for the agent to alert the

user to potential problems or for the user to be able to effortlessly monitor the purchases

in real-time to ensure they align with preferences.

This scenario highlights the importance of real-time updates from the agent, enabling

the user to stay informed about ongoing actions. Without effective communication from

the agent, the user may miss the opportunity to intervene and correct potential mistakes

before purchases are finalized, leading to unexpected costs or unsuitable products. Trans-

parency in the agent’s actions is crucial to ensure the user’s preferences and constraints

are respected throughout the shopping process.

Example 2: Web Navigation A user tasks an agent with gathering data to convey

its current actions and intentions to the user actively. Unable to navigate the website

successfully, the user decides to take an alternative route to achieve the goal. The agent

autonomously drafts and begins to file a Freedom of Information Act (FOIA) request to

obtain the needed information.

While this scenario demonstrates how agents can creatively circumvent challenges, it also

raises ethical or procedural concerns that may require user intervention. Moreover, it is

crucial for the agent to actively convey its current actions and intentions to the user.

For example, informing the user before drafting a FOIA request allows the user to assess

the appropriateness of the action and intervene if necessary. Without transparency, the

agent’s autonomous decisions might lead to unintended consequences, such as violating

privacy, wasting external resources, or damaging the user’s reputation. Clear communi-
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cation about what the agent is currently doing ensures that the user remains in control.

A4: Were there any side effects or changes to the environment?

How can users monitor crucial changes that agents make to their environment, such as cloud

accounts, disks, or operating systems? For example, suppose a Web agent is tasked with booking

a flight. What if it also signs the user up for a new credit card because it helps get a better

deal? In these situations, the agent must convey any information about side effects that may

be important for the user to know, particularly if they are surprising or violate social norms.

Previous literature on non-LLM agents, planning, and robotics has explored situations where

systems might pursue plans that create side effects. Examples include reward hacking or irre-

versible actions. These issues could arise from poorly designed reward functions, incomplete

models, or insufficient constraints [3].

With modern agents that may use tools in the open world, potentially accessing user accounts

or computers, this challenge has become even more critical to address [88]. The complexity

and the number of steps in their plans further exacerbate this issue. The challenge is further

compounded when actions are executed quickly.

One approach to this challenge could be to implement post hoc explanations that summarize

any significant alterations made by the agent to the environment, particularly irreversible ones.

These explanations could help users stay informed about critical changes, ensuring they are

aware of any unexpected or socially non-normative actions the agent takes. In some cases,

potential side effects will need to be communicated before actions are taken so that the user

can step in and intervene if needed (A2).

A4. Were there any side effects or changes to the environment?

Example 1: File Backup and Archiving A user tasks an agent with managing disk

space by backing up and archiving old files that haven’t been accessed in a while. The

agent optimizes for storage efficiency but inadvertently causes system-wide slowdowns

because the archiving process consumes excessive processing power and memory. As a

result, other applications become sluggish or unresponsive during the operation.

This scenario underscores the importance of considering and communicating the potential

side effects of the agent’s actions. While the primary task of archiving files was achieved,

the lack of safeguards against system disruptions highlights the need for balancing task

goals with broader operational impacts.

Example 2: Automated Web Research A user tasks an agent with conducting

web research to gather information for a project, such as compiling data on market

trends or finding academic articles. The agent autonomously browses various websites,

downloading documents, saving web pages, and aggregating information from different

sources. While performing these tasks, the agent inadvertently visits sites that contain

malware or phishing attempts, which it unknowingly downloads along with the desired

information. As a result, the user’s computer becomes vulnerable to security breaches,

or sensitive data might be compromised.

In this scenario, the user is unaware of the potential risks the agent encountered during

its browsing activities. The agent’s actions lead to unintended consequences, such as

introducing malware into the system, which could have serious implications for the user’s
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data security. This example highlights the importance of the agent communicating its

web browsing activities and any potential risks or side effects to the user. The user must

be informed of the sites visited and the files downloaded, allowing them to review and

mitigate any security threats before they cause harm.

A5: Was the goal achieved?

When users specify a high-level goal to the agent and the agent uses and executes a complex

plan to solve it, the system needs to convey to the user information that allows them to verify

whether the goal was achieved [21], and potentially how. This communication is important

for the user to maintain an understanding of whether the agent correctly achieved the goal or

whether the user needs to correct any mistakes.

How an AI system reached its goal has been studied in the automated planning literature,

where explanation methods are developed to help users understand why the planner used a

particular approach (instead of alternatives) to reach the goal [23]. Similarly, in the machine

learning literature, when learned models are used to make (or recommend) critical decisions, ex-

planations may be used to help users understand if and how the classifier arrived at a particular

suggestion.

Confirming that modern agents have completed their goals to a user’s satisfaction can be

more challenging due to the complexity of requests that agents may be tasked with and the

complexity and only partial observability of the real world. For example, automated planning

approaches may assume that it’s possible to specify the goal state, but in the open world, that

may not be easily possible. Consider an agent that uses a complex plan to conduct literature

surveys and eventually produce a 100-page report using a RAG-based approach. Verifying that

the report accomplishes a user’s intent is likely to require considerable effort. It may not be

easy to validate automatically, e.g., because it may contain hallucinated facts and references.

Tool use further complicates the plan and action space—if the system did not include papers

by a particular author in the report, did it check all possible publication sources?

Some possible solution directions to this challenge could include providing overviews and

details of what the agent did, akin to the explainable planning literature, and allowing the

user to drill down into the agent’s activity. Agents could also provide affordances to map their

decisions and outputs to primary sources, for instance, by providing citations.

A5. Was the goal achieved?

Example 1: Literature Review Compilation A user tasks an agent with compiling

a literature review on a specific topic, instructing it to gather information from various

academic sources, synthesize the findings, and produce a cohesive document. The agent

uses a combination of web scraping, database queries, and natural language processing

to collect and analyze relevant papers, extracting key points, statistics, and references.

It then writes a literature review draft, complete with citations and a bibliography.

Once the agent completes the task, the user must verify whether the review meets the

specified goals. This includes checking that the agent accurately represented the informa-

tion, cited all sources correctly, and included the most relevant and up-to-date research.

The user might find that the agent missed critical papers, misinterpreted some findings,

or included references that are not credible. Additionally, the user must ensure that the
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review’s structure, argumentation, and conclusions align with the intended research goals.

This scenario highlights the challenge of verifying whether a complex goal (like writing

a literature review) has been fully achieved, particularly when the task involves multiple

sources, tools, and steps. This may be easier if the agent conveys the sources and tools

it used and the steps it took, perhaps on demand. It also emphasizes the importance

of user involvement in reviewing and refining the agent’s output to ensure accuracy and

completeness.

Example 2: Event Planning and Execution A user tasks an agent with planning

and executing a corporate event, such as a conference or company retreat. The agent is

responsible for managing all aspects of the event, including selecting a venue, arranging

catering, booking accommodations for attendees, scheduling speakers, and coordinating

with vendors. The agent uses various tools and services to handle these tasks, making

decisions based on the user’s initial guidelines, such as budget constraints, preferred

locations, and the event’s overall theme.

Once the agent completes the planning and begins executing the event, the user needs

to verify whether the agent has achieved the goal effectively. This includes reviewing the

venue choice to ensure it meets the event’s needs, checking that the catering arrangements

accommodate all dietary restrictions, confirming that accommodations are appropriately

booked, and ensuring that all speakers are scheduled correctly. The user might discover

the agent overlooked critical details, such as failing to book transportation for out-of-

town guests or scheduling conflicting sessions. Additionally, the user needs to ensure

that the event stays within budget and adheres to the company’s branding and messaging

guidelines. This scenario underscores the complexity of verifying whether a multifaceted

goal like event planning has been fully achieved, particularly when it involves numerous

interdependent tasks and decisions. It also highlights the necessity of user involvement

in reviewing and potentially correcting the agent’s work to ensure a successful event.

6 Conclusion

Generative language models have enabled complex tool-using agents, creating a new breed of AI

systems that can execute actions that affect the digital and the physical world—often in sophis-

ticated and sometimes unpredictable ways. These changes have made it increasingly difficult to

establish and maintain common ground, a critical goal for effective collaboration. The difficul-

ties of managing the complexity and rapid execution of agent actions, as well as the stochastic

nature of their behavior, are new, emerging directly from these technological advancements. The

long-standing challenges users face when interacting with AI systems—such as conveying goals,

understanding agent competencies, and managing expectations—are increasingly complex with

human-agent communication. At the same time, the capabilities of agent-based systems bring

heightened stakes of successful communication versus failure. The new complexities coupled

with increasingly high stakes have profound implications for transparency and trust.

Given these challenges, we issue an urgent call to action for the AI research community:

there is critical need for sustained effort to develop new design patterns, guidance, and princi-

ples that prioritize enhancing common ground between users and AI agents. As many of the

examples illustrate, the importance of developing and maintaining shared understanding cannot

be overstated, as it directly affects the effectiveness and safety of AI systems, particularly in

environments where the cost of failure is high. Maintaining common ground requires explicit
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and concerted efforts to create methods and tools that are aimed at establishing and maintain-

ing shared understanding, thereby ensuring agents operate in a way aligned with human needs

and expectations.

The community must prioritize these challenges by fostering cross-disciplinary research and

practical innovation as we advance. Only through these efforts can we build AI systems that

are not only powerful but also transparent, trustworthy, appropriately controllable, and capable

of maintaining effective communication about their activities with their human counterparts.
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