Foundations and Trends® in Databases
Extensible Query Optimizers in
Practice

Suggested Citation: Bailu Ding, Vivek Narasayya and Surajit Chaudhuri (2024), “Ex-
tensible Query Optimizers in Practice”, Foundations and Trends® in Databases: Vol. 14,
No. 3-4, pp 186—-402. DOI: 10.1561/1900000077.

Bailu Ding
Microsoft Corporation
badin@microsoft.com

Vivek Narasayya
Microsoft Corporation
viveknar@microsoft.com

Surajit Chaudhuri
Microsoft Corporation
surajitc@microsoft.com

This article may be used only for the purpose of research, teaching, n‘w

and/or private study. Commercial use or systematic downloading (by
robots or other automatic processes) is prohibited without explicit

Publisher approval. Boston — Delft

the essence of knowledge

Contents

1

Introduction

1.1
1.2
1.3
1.4
1.5

Key Challenges in Query Optimization
System R Query Optimizer
Need for Extensible Query Optimizer Architecture
Outline
Suggested Reading

Extensible Optimizers

2.1
2.2
2.3
2.4
25
2.6
2.7

Basic Concepts
Volcano
Cascades
Techniques to Improve Search Efficiency
Example of Extensibility in Microsoft SQL Server
Parallel and Distributed Query Processing
Suggested Reading

Other Extensible Optimizers in the Industry

3.1
3.2
3.3
3.4
3.5
3.6

Starburst
Orca
Calcite
Catalyst
PostgreSQL
Suggested Reading L.

187
190
192
195
197
198

199
200
204
216
229
232
234
245

4 Key Transformations

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Access Path Transformations
Inner Join Transformations
Outer Join Transformations
Group-by and Join
Decorrelation L
Other Important Transformation Rules
Suggested Reading

5 Cost Estimation

5.1
5.2
53
5.4
55
5.6

Cost Estimation Overview
Cost Model
Statistics
Cardinality Estimation
Case Study: Cost Estimation in Microsoft SQL Server . . .
Suggested Reading

6 Plan Management

6.1
6.2
6.3
6.4
6.5

Plan Caching and Invalidation
Improving Sub-optimal Plans with Execution Feedback
Influencing Plan Choice Using Hints
Optimizing Parameterized Queries
Suggested Reading

7 Open Problems

7.1
7.2
7.3
7.4
7.5
7.6

Robust Query Processing
Query Result Caching
Feedback-driven Statistics
Leveraging Machine Learning for Query Optimization . . .
Other Research Topics in Query Optimization
The Big Questions

Acknowledgements

Appendix

References

259
261
265
271
276
285
298
314

316
317
318
321
333
341
347

348
348

. 350

356
360
363

365
365
367
368
369
371
371

374

375

379

Extensible Query Optimizers in

Practice
Bailu Ding, Vivek Narasayya and Surajit Chaudhuri

Microsoft Corporation, USA; badin@microsoft.com,
viveknar@microsoft.com, surajitc@microsoft.com

ABSTRACT

The performance of a query crucially depends on the ability
of the query optimizer to choose a good execution plan from
a large space of alternatives. With the discovery of algebraic
transformation rules and the emergence of new application-
specific contexts, extensibility has become a key requirement
for query optimizers. This monograph describes extensible
query optimizers in detail, focusing on the Volcano/Cascades
framework used by several database systems including Mi-
crosoft SQL Server. We explain the need for extensible query
optimizer architectures and how the optimizer navigates the
search space efficiently. We then discuss several important
transformations that are commonly used in practice. We
describe cost estimation, an essential component that the
optimizer relies upon to quantitatively compare alternative
plans in the search space. We discuss how database systems
manage plans over their lifetime as data and workloads
change. We conclude with a few open challenges.

Bailu Ding, Vivek Narasayya and Surajit Chaudhuri (2024), “Extensible Query
Optimizers in Practice”, Foundations and Trends® in Databases: Vol. 14, No. 3-4,
pp 186-402. DOI: 10.1561/1900000077.

©2024 B. Ding et al.

1

Introduction

SQL [134] is a high-level declarative language for querying relational
data. It is the de-facto standard query language for relational data
and is supported by all major relational database management systems
(RDBMSs) and increasingly also by the Big Data Systems. SQL al-
lows declarative specification of queries over relational data involving
selections, joins, group-by, aggregation, and nested sub-queries, which
are important for a wide variety of decision support queries including
business intelligence scenarios in enterprises [31].

Consider the example Query 1 shown below.

Query 1

SELECT x*
FROM R, S, T
WHERE R.a = S.b AND S.c = T.d AND T.e = 10

Figure 1.1 shows the major steps in the workflow of processing a
SQL query in a RDBMS. The three stages of query processing are
explained below.

Parsing and validation The parsing and validation step converts the
input SQL query into an internal representation. This step ensures that

187

188 Introduction

Logical Query Tree Execution Plan

Nested Loops Join
S.b=R.a

Index Seek
(R.la)

Hash Join
Sc=Td

Table Scan Index Scan
() (T.lg)
Parsing and Query | Query
Validation Optimization | Execution Query Results

Figure 1.1: Workflow of query processing

the query adheres to the SQL syntax and only contains references to
existing database objects, e.g., tables and columns. The output of this
step is a logical query tree, an algebraic representation of the query
in the form of a tree of logical relational operators (e.g,. Select, Join).
For example, Figure 1.1 shows the output logical query tree of Query 1
after the parsing and validation step.

Query optimization The query optimizer takes a logical query tree
as the input, and is responsible for generating an efficient execution
plan that is either interpreted or compiled by the query execution
engine. An ezecution plan (also referred to as plan) is a tree of physical
operators, with edges representing the data flow between the operators.
For example, Figure 1.1 shows the output execution plan of Query 1
after the query optimization step. For a given query, the number of
different execution plans that may be used to answer the query may
grow exponentially with the number of tables referenced in the query,
and different execution plans can vary widely in terms of efficiency.
Therefore, the performance of a query crucially depends on the ability
of the optimizer to choose a good execution plan from a large space of
alternatives. An overview of query optimization in RDBMSs is available
in [28].

Query execution The query execution engine takes the plan from the
query optimizer and executes the plan to produce the query results. The
query execution engine implements a set of physical operators, which
are building blocks for executing SQL query plans. A physical operator

189

takes one or more sets of data records as its input, referred to as rows,
and outputs a set of rows. Examples of physical operators include Table
Scan, Index Scan, Index Seek (see Appendix), Hash Join, Nested Loops
Join, Merge Join, and Sort. For descriptions of algorithms used for
various physical operators, we refer the reader to [77].

Query execution in a majority of relational database systems follows
the iterator model, where each physical operator implements the Open,
GetNext, and Close methods. Every iterator contains record of its state
with information such as the size and the location of the hash table.
In Open, the operator initializes its state and prepares for processing.
When GetNext is called, the operator produces the next output row
or indicates that there are no more rows, i.e., end of processing. We
observe that to produce an output row a non-leaf operator in the plan
needs to call GetNexst on its child operator(s). For example, consider the
execution plan shown in Figure 1.1. The Nested Loops Join operator
calls GetNezt on the Hash Join operator, which in turn calls GetNext
on Table Scan(S) operator. When an operator completes producing its
output rows (i.e., indicates that there are no more rows), the parent
calls Close on it to allow the operator to clean up its state. The above
approach of specifying operators through the iterator model makes it
convenient to add new operators to the execution engine. Since each
operator is an iterator from which rows are ‘pulled’, this model of
execution is also referred to as a pull model. We refer the reader to [79]
for a complete description of the pull model of query execution.

The iterator model as described above incurs high overhead of
function invocations with each GetNext call processing a single row at
a time, resulting in poor performance on modern CPUs. Vectorization
enables batching so that a single GetNext call for a physical operator
produces results for a batch of rows and leverages the SIMD instructions
of modern CPUs [19]. Together with columnar representation [188],
vectorization sharply increases the efficiency of query execution engines
for decision support queries. In addition, code generation is a technique
that generates efficient code from the query execution plan in a language
such as C [152], which is then compiled and executed, or directly
generates efficient machine code using a compiler framework such as
LLVM [114]. The tradeoffs in vectorization and compilation are discussed
in [107].

190 Introduction

1.1 Key Challenges in Query Optimization

To choose an efficient plan among many alternative execution plans, a
query optimizer must determine the search space of plans it will explore,
compare the relative efficiency of the plans with cost estimation, and
navigate the search space with an efficient search algorithm to find an
execution plan that has very low (ideally lowest) cost of execution among
its choices. We now briefly describe these facets of a query optimizer.

Search space The search space consists of alternative equivalent execu-
tion plans of the query, which can be large for complex queries. First, a
given algebraic representation of a query can potentially be transformed
into many other equivalent representations. These equivalences arise
from properties of relational algebra, e.g., Join(Join(R,S),T) <=
Join(Join(S,T), R) since the Join operator is commutative and asso-
ciative [63]. Figure 1.2 shows four different but equivalent algebraic
representations of the same query.

Join
R.a=S.band
S.c=Td

Join
(Cartesian Product)

Select

[Select | [Select] [Select | [Select] [select | [Select] [Select | [Select]

(a) Logical plan L; (b) Logical plan Lo (c) Logical plan L3 (d) Logical plan Ly

Figure 1.2: Semantically equivalent logical query trees

Second, for a given logical operator there are many different imple-
mentations of that logical operator. Hence, for a given logical query
tree, there are potentially many different possible execution plans. For
example, in Figure 1.3, for the logical query tree in Figure 1.3a, we
show three out of many possible execution plans in Figure 1.3b-1.3d.
Although the three plans have the same order in which joins are eval-
uated, they vary in the specific physical operators used to implement
the logical operators. For example, the Select operator in Figure 1.3a
can be implemented using Table Scan, Index Scan, or Index Seek; and
the Join operator can be implemented using Nested Loops Join, Hash

1.1. Key Challenges in Query Optimization 191

Merge Join
S.b=R.a

Nested Loops Join

Hash Join
S.b=

Hash Join
Sc=Td

Hash Join
Sc=Td

| Table Scan ” Index Scan | | Index Scan || Index Seek | | Table Scan || Table Scan |
) (T.la) (S.1y) (T.la)) (U]

(a) Logical plan L (b) Execution plan P; (c) Execution plan P, (d) Execution plan Ps

Figure 1.3: Different execution plans for a given logical query tree

Join, or Merge Join. The Nested Loops Join in Figure 1.3b may be the
most efficient among the three when the join size (i.e., number of rows
produced by the join) of the join between S and T is small and an index
1, is available on the join column R.a. The plan in Figure 1.3c with the
Merge Join may be a good choice when an index [}, is available on S.b
and an index I, is available on R.a, i.e., the indexes provide the sort
order required by the Merge Join. In contrast, the plan in Figure 1.3d
with the two Hash Join operators may be the plan of choice when the
size of the join between S and T is large. Thus, unless the optimizer
considers each of these plans in its search space and compares their
resource usage and expected relative performance, it may not produce
a good plan.

Cost estimation The efficiency of different execution plans for the
same query, measured by their elapsed time or resources consumed
(e.g., CPU, memory, I/O), can vary significantly, as the example in
Figure 1.3 shows. The difference in elapsed time between a good and
a poor execution plan for complex queries on large databases can be
several orders of magnitudes. Therefore, to pick a good execution plan
for a query from the space of execution plans as noted above, most
query optimizers leverage a cost model that estimates the work done by
query execution plans with sufficient fidelity so that relative comparisons
of the execution plans are accurate. Specifically, a physical operator
must estimate the work done by the algorithm used to implement that
operator, and this estimation requires the sizes and other statistical
characteristics of the input relation(s) to that operator as well as those
of its output. Finally, even though the cost has at least three dimensions

192 Introduction

(CPU, memory, I/0O), the cost model combines these multi-dimensional
costs in a single number for the convenience of comparing any two plans.

Search algorithm In principle, one could exhaustively enumerate every
alternative execution plan in the search space and invoke cost estimation
to determine the cost of each plan in order to find the plan with the
lowest estimated cost. As some of the alternative execution plans
can share common logical or physical operator trees, e.g., Select(S) in
Li-Ly of Figure 1.2 or Table Scan(S) in P, and Ps of Figure 1.3, the
enumeration needs to be done carefully to avoid duplicate explorations.
Even so, the exhaustive enumeration can still be too costly in practice.
Thus, a good query optimizer will try to reduce the cost of enumeration
without compromising significantly the quality of the chosen execution
plan.

In summary, a good optimizer is one which: (a) considers a suffi-
ciently large search space of promising plans, (b) models the cost of
execution plans sufficiently accurately to distinguish between plans with
significantly different costs, and (c) provides a search algorithm that
efficiently finds a plan with low cost.

1.2 System R Query Optimizer

The System R project from IBM Research did pioneering work on
query optimization [178]. We briefly review how the System R query
optimizer addressed the key challenges mentioned in Section 1.1. The
techniques developed in this project have had significant impact on all
query optimizers that followed, including extensible query optimizers.

Search space The System R query optimizer’s cost-based plan selec-
tion technique focused on the Select-Project-Join (SPJ) class of queries.
The physical operators for implementing a Select operation included
Table Scan and Index Scan. For Join, System R provided two physical op-
erators, Nested Loops Join and Merge Join (which requires both inputs
to be sorted on the respective join columns). In the example of Query 1,
as Figure 1.2 and Figure 1.3 illustrate, there are several logical query

1.2. System R Query Optimizer 193

trees and execution plans for this SPJ queries. This arises because join is
associative and commutative, and there are multiple options of physical
operators for Scan and Join operations. The space of logical query trees
explored by System R for SPJ queries included the space of linear
sequence of binary Join operations, e.g., Join(Join(Join(R, S),T),U).
Figure 1.4a shows an example logical query tree of a linear sequence
of Join operations whereas the logical query tree in Figure 1.4b, i.e., a
bushy plan, is not in the search space of System R. The optimizer also
offered techniques to improve the efficiency of nested queries based on
program analysis but these optimizations were not cost-based.

Join
Te=Uf

Join Select Toin
S.c - T.d
Select Join Join
R.a=S.b Te=Uf

[Select] [Select] [Select][Select]

(a) Linear plan (b) Bushy plan

Figure 1.4: Linear sequence of joins vs. bushy join

Cost model The cost model of System R used formulas to estimate the
CPU and I/O costs for each operator in execution plans. Unlike today’s
optimizers, it did not incorporate the cost of memory. The System R
optimizer maintained a set of statistics on base tables and indexes, e.g.,
number of rows (cardinality) and data pages in the table, number of
pages in the index, number of distinct values in each column. System R
provided a set of formulas to compute the selectivity of a single selection
or join predicate. The selectivity of a WHERE clause containing a
conjunction of selection predicates was computed by multiplying the
selectivity of all predicates, i.e., assuming the predicates are independent.
Thus, the cardinality of the output size of a join was estimated by taking
the product of the cardinalities of the two input relations and multiplying
it with the selectivity of all predicates. The cost model formulas, together
with statistical information on base tables and indexes, enabled the

194 Introduction

System R optimizer to perform estimation of CPU and I/O costs of
execution plans.

Search algorithm The search algorithm of the System R optimizer
used dynamic programming to find the “best” join order, and is based on
the assumption that the cost model satisfies the principle of optimality.
In other words, it assumes that, in the search space of linear sequence
of joins, the optimal plan for a join of n relations can be found by
extending the optimal plan of a sub-expression of n — 1 joins with an
additional join. For example, the optimal plan Prgr of joining relations
R, S, and T can be found from joining R with Pg7, joining S with Pgr,
and joining T with Prg, where Psr, Prr, and Pgrg are the optimal plans
for joining S, T, joining R, T, and joining R, S respectively. In contrast
to the naive approach that enumerates O(n!) plans by enumerating all
permutations of the join ordering, the dynamic programming approach
enumerates O(n2" 1) plans, and is therefore significantly faster, even
though the time complexity is still exponential in the number of joins.

A second important aspect of System R’s search algorithm was
its consideration of interesting orders. Consider a query) that joins
three tables R, .S, and T, with join predicates R.a = S.a and S.a = T.a.
Suppose the cost of joining R and S with Nested Loops Join using an
Index Seek on S is smaller than the cost of using Merge Join. In this case,
when considering plans for joining R, S, and T, the optimizer would
prune out the plan where R and S are joined using Merge Join. However,
if Merge Join is used to join R and S, then the result of the join is sorted
on column a, which may significantly reduce the cost of the join with T
if Merge Join is used. Therefore, pruning a plan that joins R and S with
a Merge Join can result in a sub-optimal plan for the query. The fact
that the output rows of an operator are ordered, i.e., the operator has
an interesting order, may lower the cost of parent or ancestor operators
in the plan. To accommodate this violation of the principle of optimality
due to interesting orders while retaining the benefits of using dynamic
programming, the search algorithm considered the interesting order
for every expression it enumerates. For a join expression, plans were
compared in cost if and only if they had the same interesting order, and
an optimal plan was kept for each distinct interesting order.

1.3. Need for Extensible Query Optimizer Architecture 195

1.3 Need for Extensible Query Optimizer Architecture

The important concepts introduced by System R, including the use of
data statistics and a cost model to determine an execution plan, the
dynamic programming based search for join ordering, and the need to
consider interesting orders, have been adopted by virtually all widely
used query optimizers. However, the framework could not be flexibly
and efficiently extended to additional algebraic equivalences in relational
algebra and new constructs in database systems in a cost-based manner,
which can potentially miss out opportunities to find cheaper query
plans. As relational databases and SQL became important for decision
support queries, the transformations for these additional algebraic
equivalences became valuable for generating an efficient execution plan.
Examples of such transformations include pushing down a group-by
below a join to reduce the cost of the join, optimization of outer joins
that are not associative nor commutative, and decorrelation of nested
queries. In addition, new constructs were introduced to database systems
to improve query execution performance. For example, materialized
views [43, 84], which precompute and store the results of a query sub-
expression, and thereby could dramatically reduce the cost of executing
the query, became important for OLAP and other analytical workloads.
Furthermore, the optimizer also needed to support new logical and
physical operators that were introduced to efficiently execute SQL
queries, e.g., Apply [69].

Fortunately, as the practical needs of a SQL query optimizer ex-
panded, the research on extensible database systems that was ongoing
at that time yielded architectural alternatives to extending the archi-
tecture of System R. Extensible database systems were envisioned as
systems that can be used to customize a database system to the needs
of an application. Specifically, Exodus [26] and later Volcano [79], which
were designed to support user-specified operators for query execution,
emerged in that context. Given the need to support custom opera-
tors, providing a framework for extensible query optimization became
a necessity. Thus, extensibility of the optimizer was a design feature
in Volcano from the very beginning as it was initially envisioned as
an “experimental vehicle for multitude of purposes” [79]. They allowed

196 Introduction

system designers to “plug-in” new rules, drawing inspiration from rules
in expert systems (production systems), and thereby extend the capa-
bilities of the optimizer. Later, the extensible optimizer frameworks
of Volcano/Cascades [80, 82] and Starburst [123, 165] focused on SQL
query optimization as a key application, which fulfilled a pressing need
for a new architecture for SQL query optimization.

For most of this monograph, we will focus on extensible optimizers
based on Volcano/Cascades. These extensible optimization frameworks
center around the concept of rules. A logical transformation rule repre-
sents an equivalence in the SQL language (or its algebraic representa-
tion). For example, the equivalences implied by join commutativity and
associativity noted earlier can be expressed using rules. Similarly, a rule
may define the conditions under which pushing down a group-by opera-
tion below a join preserves equivalence. Applying logical transformation
rules to a query tree results in an equivalent alternative query tree.
An implementation rule defines the mapping from a logical operator
(e.g., Join) to a physical operator (e.g., Hash Join). Implementation
rules are needed to generate execution plans for the query. A judicious
choice of a sequence of applications of rules can potentially transform
the query tree into one that executes much faster. It should be noted
that in this architecture, new operators, logical transformations, and
implementation rules can be incorporated without having to modify the
search algorithm of the optimizer each time. Last but not the least, it is
important to note that transformations do not necessarily reduce cost,
and therefore the search algorithm must choose among the alternatives
in a cost-based manner.

SQL is a declarative query language. This allows the query optimizers
to create efficient execution plans for SQL queries that leverage logical
transformations that preserve semantic equivalence and also judiciously
choose the most efficient implementation for the logical operators. The
holy grail of query optimization is to produce the most efficient execution
plan that preserves semantic equivalence but is independent of how the
query is expressed syntactically by the users or the applications. The
extensible query optimizers make this goal achievable by applying rules,
chosen from a rich set of transformations, to the query tree successively
in a judicious sequence driven by a cost-based search algorithm.

1.4. Outline 197

1.4 Outline

In this monograph, we focus on the technology of extensible query
optimizers and use Microsoft SQL Server for illustration of the key
concepts. In comparison to the overview article on query optimization
by one of the authors [28], this monograph provides a detailed descrip-
tion of extensible optimizer frameworks as well as several additional
transformation rules that are commonly used in practice. The exten-
sibility framework and rules are explained in depth using pseduocode
and examples.

The rest of the monograph is organized as follows:

Section 2: We review the extensible optimizer frameworks of Vol-
cano [82] and its successor, the Cascades framework [80], that have been
influential. We describe the search algorithms and key data structures
needed in both frameworks, as well as additional techniques to improve
the efficiency of query optimization. We illustrate how Microsoft SQL
Server’s query optimizer leverages the Cascades framework with a few
examples. Finally, we describe how the optimizer handles parallel and
distributed query processing.

Section 3: We present a brief review of other extensible query
optimizers, including Starburst used in IBM DB2, Orca used in Green-
plum DB, Calcite used in Apache Hive, and Catalyst used in Spark
SQL. Although PostgreSQL’s query optimizer does not possess the
extensibility capabilities of frameworks such as Volcano and Cascades,
given its popularity, we include a short overview of its query optimizer.

Section 4: An extensible optimizer draws its effectiveness from the
rules it leverages. In this section, we review some of the key logical
transformations and implementation rules relevant for access paths to
base tables, inner and outer joins, group-by, aggregation, and decorrela-
tion of nested queries. We touch upon a few selected “advanced” rules,
e.g., for optimizing star and snowflake queries which are common in
data warehouses, sideways information passing, user-defined functions
(UDFs), and materialized views.

Section 5: An optimizer framework critically depends on the cost
model and cardinality estimation. In this section, we provide an overview
of cost modeling and cardinality estimation with a focus on industrial

198 Introduction

practices. We discuss the statistical summaries used by the optimizer
such as histograms and how they are used for complex queries. In addi-
tion, we discuss recent adoption of sampling and sketches in database
systems. Finally, we illustrate these concepts and techniques using
Microsoft SQL Server.

Section 6: Most articles on query optimization omit discussions
on managing plans generated by the optimizer over the lifetime of
the database. These aspects of plan management can critically impact
overall workload performance. We discuss a few important challenges
in this context: (a) plan caching and invalidation (b) improving sub-
optimal plans with execution feedback (c) query hints, which allow users
to influence the plan that is chosen by the optimizer (d) optimizing
parameterized queries.

Section 7: While this monograph is centered on extensible query
optimizers in practice, we use this section to mention some of the open
problems and a few of research directions that are being pursued.

Errata and updates: We will provide corrections and updates to
this monograph at the following URL [59]. We encourage readers who
discover errors in this monograph to report them to the authors via
email.

1.5 Suggested Reading

Clitation numbers below correspond to numbers in the References section.

[178] P. G. Selinger et al., “Access Path Selection in a Relational
Database Management System,” in Proceedings of the 1979 ACM SIG-
MOD International Conference on Management of Data, ser. SIGMOD
79, pp. 23-34, Boston, Massachusetts: Association for Computing Ma-
chinery, 1979. por1: 10.1145/582095.582099

[77] G. Graefe, “Query Evaluation Techniques for Large Databases,”
ACM Computing Surveys (CSUR), vol. 25, no. 2, 1993, pp. 73-169
[28] S. Chaudhuri, “An Overview of Query Optimization in Relational
Systems,” in Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pp. 34—43,
1998

https://doi.org/10.1145/582095.582099

2

Extensible Optimizers

One of the ways extensible query optimizers are built is by having an
extensible set of rules that defines the space of all equivalent plans.
As noted in Section 1, this approach centers around the concepts of
logical operators, physical operators, and a set of transformation and
implementation rules. The optimizer navigates the space of equivalent
plans by applying rules in an order guided by a search strategy, and
chooses an efficient plan from the space of alternative plans it explores.

In this section, we first introduce the basic concepts of extensi-
ble optimizers (Section 2.1). We then discuss two extensible optimizer
frameworks in depth: the Volcano and Cascades frameworks. We start
by describing Volcano and its search (Section 2.2). Next, we review
the limitations of Volcano, which motivated the development of its
successor, the Cascades framework (Section 2.3). We present additional
optimizations and heuristics used in practice for gaining efficiency in
Volcano and Cascades (Section 2.4). To illustrate how extensible query
optimizers ease the incorporation of new capabilities into query process-
ing, we describe how the optimizer of Microsoft SQL Server leverages
extensibility in Cascades to implement columnstores (Section 2.5). We
conclude this section by describing how extensible query optimizers gen-

199

200 Extensible Optimizers

erate plans that take advantage of multi-core parallelism and distributed
query processing (Section 2.6).

2.1 Basic Concepts

We introduce a few important concepts in rule-based extensible opti-
mizers such as Volcano and Cascades. Note that some of these concepts
such as operators and properties are not unique to Volcano/Cascades
and were used in query optimizers of systems such as System R [178],
Starburst [165] and EXODUS [26].

Consider the following example Query 2, where the corresponding
logical and physical plans are shown in Figure 2.1.

Query 2
SELECT *

FROM A, B
WHERE A.k = B.k

iy

AN

| A I | B Il B | | A | Table Scan(A) Table Scan(B)

(a) Logical plan L, (b) Logical plan Lo (c) Physical plan P;

| Nested Loops Join |

|Tab|e Scan(A)l | Index Seek(B) | ||ndexScan(A)| | Index Scan(B) |

(d) Physical plan P, (e) Physical plan Ps

Figure 2.1: Logical and physical plans of Query 2

Logical and physical operators A logical operator defines a relational
operation on one or multiple relations, such as the Join operator between
A and B in Figure 2.1a. Note that query optimizers may also introduce
non-relational logical operators such as Apply for handling sub-queries

2.1. Basic Concepts 201

(Section 4.5.3) and Exchange for handling parallelism (Section 2.6.1).
Thus, the set of logical operators used, and hence the search space of
the optimizer, goes beyond those present in the SQL query. A physical
operator is the implementation of an algorithm to perform an operation
required for executing a query. An example of a physical operator
is Hash Join (see Figure 2.1c). Note that a logical operator can be
implemented by different choices of physical operators and vice versa.
For example, the logical operator Join can be implemented by multiple
physical operators such as Hash Join and Nested Loops Join. Similarly,
the physical operator Hash Join can be used to implement multiple
logical operators such as Join, Left Outer Join, and Union. In addition,
a logical operator may require multiple physical operators to implement.
For example, as we will introduce in Section 4.2, a logical Inner Join
operator can be implemented using Sort and Merge Join operators.

Logical and physical expressions A logical expression is a tree of logical
operators, and represents a relational algebraic expression. For example,
the expression L1 : A <1 B of Query 2 is a logical expression as shown in
Figure 2.1a. A physical expression is a tree of physical operators, which
is also referred to as the physical plan or simply plan. For example, the
expression P; : HashJoin(TableScan(A), TableScan(B)) is a physical
expression that implements L as shown in Figure 2.1c.

Logical and physical properties Examples of logical properties of an
expression include its relational algebraic expression and the cardinality
of the expression. For example, A<t B and B <1 A both produce the
join result of A and B, and they have the same logical properties (e.g.,
cardinality). Examples of physical properties of an expression include
the sort order of the output of the expression and degree of parallelism,
i.e., the number of threads used to execute the expression. In Figure 2.1e,
the Merge Join introduces the physical property of the sort order, i.e.,
its output is sorted by column A.k.

The physical properties of an expression may be introduced due to
the requirements in the original SQL query or because of the physical
properties of one of its inputs. For example, consider Query 3 shown
below. The query requests the top 3 tuples from table T ordered by

202 Extensible Optimizers

column T.b, with the constraint that column T.a > 10. In this case, the
ORDER BY clause in the query introduces a required physical property
of the sort order on T'.b.

Query 3

SELECT TOP 3 *
FROM T

WHERE T.a > 10
ORDER BY T.b

Equivalence of expressions Two logical expressions are equivalent if
the logical properties of the two expressions are the same. For example,
the expression L1 : A< B in Figure 2.1a is equivalent to the expression
Lo : Bt A in Figure 2.1b. Two physical expressions are equivalent if
their logical and physical properties are the same. For example, the ex-
pression Py : HashJoin(TableScan(A), TableScan(B)) in Figure 2.1c is
equivalent to the expression of P, : NestedLoopsJoin(TableScan(A),
IndexSeek(B)) in Figure 2.1d. However, since the expression Pj :
MergeJoin(IndexScan(A), IndexScan(B)) shown in Figure 2.1e de-
livers a sort order on A.k, Ps is neither equivalent to P; nor P,. Similarly,
a logical expression with its required physical properties is equivalent
to a physical expression if the logical properties of the physical expres-
sion are equivalent to that of the logical expression and the physical
expression delivers the required physical properties.

Rules A rule rewrites an expression into another equivalent expression,
and thereby enables the optimizer to explore alternative plans for the
query. There are two kinds of equivalences that are of interest for the
optimizer’s exploration: the equivalence between two logical expressions
and the equivalence between a logical expression with its required
physical properties and a physical plan. A transformation rule rewrites
a logical expression to another equivalent logical expression. For example,
the join commutativity transforms L; : A<t B into Ly : Bt A. An
implementation rule transforms a part of a logical expression to an
equivalent physical expression with the associated physical properties.
For example, the Merge Join implementation rule can transform the
logical join operator in L; shown in Figure 2.1a into the Merge Join

2.1. Basic Concepts 203

Select T.a>10

Index Scan on Ib

Get(T.a>10)
ordered by T.b

Sort by T.b Select T.a > 10
| Get(T.a > 10) I—- | Range Index Scan on la |

Figure 2.2: Example of enforcer during plan search

operator in P53 shown in Figure 2.1e with the result sorted by the join
column. As we will see in Section 2.2.2; the search in Volcano will
apply the implementation rules recursively to transform an entire logical
expression into a physical plan.

A rule is defined by two methods: CheckPattern and Transform.
CheckPattern checks if the rule is applicable to the root node of the
given expression and returns T'rue if applicable or False otherwise. To
determine if the rule is applicable, CheckPattern may need to check
properties of other nodes in the input expression, e.g., parent or children.
If Check Pattern returns True, then the Trans form method is invoked.
Invoking Trans form produces a transformed expression as output that
is semantically equivalent to the input expression. In Section 4, we will
describe a selected subset of important rules that are widely used in
practice.

Enforcers Enforcers are a class of physical operators that only enforce
necessary physical properties of the output, such as sortedness or par-
allelism. The enforcer serves a similar purpose as interesting orders in
System R (as mentioned in Section 1.2), but generalizes it to other
physical properties beyond sortedness.

Consider the previous example Query 3. Assume the database has
two indexes on T: a B+-tree index I, with key column 7T.a, and a
B+-tree index I, with key column T.b. As shown in Figure 2.2, the
optimizer searches for the best plan of o7 4~10(7) with an interesting
order on T.b as the physical property. One possible implementation
rule rewrites the expression into an Index Scan on I,. Here, the index

204 Extensible Optimizers

provides the interesting order on T.b. A second transformation is via an
enforcer, which adds a Sort operator on T.b on top of o7 ,~10 to derive
the required interesting order. Because of the presence of the enforcer,
its input logical expression o7 ,-10 has no required physical property,
which can be then transformed into a range-based Index Scan on 1.

2.2 \Volcano

2.2.1 Overview

Volcano, as described in [79, 132], is an extensible rule-based optimizer
framework. It proposed several core concepts including the physical
properties of expressions and enforcers (which generalizes the notion
of interesting orders from System R), the memo, and the top-down
dynamic programming based search algorithm that uses the notion of
promise to determine the next move and guidance to control the search
space explored. Section 2.1 has already introduced the basic concepts
of extensible rule-based optimizers. Below, we describe the search and
memo of Volcano in detail.

Search strategy Volcano separates its search into two phases: the
generation phase and the cost analysis phase. In the generation phase,
the optimizer generates all alternative equivalent logical expressions in
the search space defined by the set of transformation rules. In the cost
analysis phase, it generates the physical plans for logical expressions
generated in the first phase, and returns the best plan for the original
query, i.e., among the plans enumerated, the one with the lowest cost.

In contrast to the bottom-up search in System R (see Section 1.2),
Volcano employs top-down dynamic programming, also known as mem-
oization, to ensure that the search is both exhaustive and efficient. In
the generation phase, the search recursively applies the set of trans-
formation rules on the logical expressions and their inputs to generate
alternative equivalent logical expressions. In the cost analysis phase,
the optimizer recursively applies implementation rules to the logical
expression and its inputs, and derives their cost in order to find the best
physical plan of the logical expression. Throughout the search process,
Volcano remembers the logical and physical expressions derived to avoid

2.2. Volcano 205

redundant computations by caching them in a data structure called
memo, which we describe next.

Memo The memo data structure compactly represents a large num-
ber of operator trees. It caches both logical and physical expressions
optimized during the search. To avoid storing duplicate expressions,
Volcano separates the logical expressions from the physical subplans,
storing equivalent logical expressions and plans in separate types of
objects. In the memo, each class of equivalent expressions is called
an equivalent class or a group, and all equivalent expressions within
the class are called group expressions or simply expressions. A group
represents all equivalent operator trees producing the same output. For
example, Figure 2.3 shows the memo for A <t B, which has three groups:
gl : Join(A,B),g2: A, and ¢3 : B. An expression is an operator that
has groups (rather than operators) as children. Each expression can
be either a logical or physical expression. A logical expression has a
logical operator as its root and groups as its inputs. For example, the
logical expression el : Join(g2, g3) in group gl of Figure 2.3 is a join
with group ¢2 and g3 as inputs. A physical expression has a physical
operator as its root and its inputs are groups. For example, as shown
in Figure 2.3, expression €6 : T'able Scan(A) is a physical expression of
group g2 and expression €3 : Hash Join(g2, g3) is a physical expression
of group g1.

Group gl: Join(A, B) el:Join(g2, g3) e2:Join(g3, g2) e3: Hash Join (g2, g3) e4: Hash Join (g3, g2)
best cost: 580 best cost: 1560 best cost: 580 best cost: 1560 best cost: 580

Group g2: A e5: Get(A) e6: Table Scan(A)
best cost: 500 best cost: 500 best cost: 500

Group g3: B e7: Get(B) e8: Index Scan(B) e9: Table Scan(B)
best cost: 10 best cost: 10 best cost: 10 best cost: 100

Figure 2.3: An example memo of A b1 B, where an index is available on table
B. Logical expressions are colored in blue. Physical expressions and groups are
annotated with the cost of the corresponding best plans.

As noted in Section 2.1, associated with each expression is a set, of
logical properties (e.g., cardinality) and physical properties (e.g., sort
order), which are stored in the memo. As we will discuss later, Microsoft

206 Extensible Optimizers

SQL Server associates additional physical properties which it uses to
enable optimization of parallel and distributed plans (Section 2.6) and
for optimizing plans containing row mode and batch mode operators
which are crucial for data organized as columnstores (Section 2.5).

In the search algorithm of Volcano, the memo serves multiple pur-
poses. During the generation phase, the memo caches all the alternative
logical expressions that have been generated. If a transformation leads
to a logical expression of a new equivalent class, a new group is added
to the memo. For example, group g2 : A and ¢3 : B in Figure 2.3 are
created as the search recursively transforms the inputs of the expression
A 1 B. If a transformation leads to a new expression of an already
existing equivalent class, a new group expression is added to the corre-
sponding group in the memo. For example, expression €2 : Join(g3, g2)
is created by transforming expression el : Join(g2,¢3) with the join
commutativity rule in Figure 2.3. During the cost analysis phase, the
memo caches the result of finding the best physical plan for an expres-
sion and its required physical properties to avoid duplicate computation.
For the example shown in Figure 2.3, the best cost for group g1 is
580, and the corresponding physical plan is Hash Join(Index Scan(B),
Table Scan(A)). We discuss the details of the search and memo in
Section 2.2.2.

2.2.2 Search

As described in Section 2.2.1, Volcano’s search is separated into the
generation phase and the cost analysis phase. In both phases, the
optimizer performs a top-down dynamic programming based, depth-first
search. We first describe the algorithm of each phase and then illustrate
the search with a concrete example.

Search algorithm Algorithm 1 shows the search algorithm of Volcano.
We have taken the pseudocode for the algorithm from [79, 132] and made
a few modifications for clarity. The search starts with the generation
phase (line 1-10 in Algorithm 1), where the goal is to generate all the
equivalent alternative logical expressions in the search space defined by
the transformation rules. The optimizer performs a depth-first search to

2.

2. Volcano 207

Algorithm 1 Search in the Volcano optimizer. The groups and expressions in Memo
are updated in GenerateLogical Expr, MatchTransRule, and UpdatePlan. The

CO:

st limit of an expression is updated as the search progresses. The cached result of

the search is added to the Memo at the end of FindBestPlan.

1

2
3
4:
5:
6
7
8
9

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:

26:
27:

28:
29:
30:
31:
32:
33:

34:
35:

36:

: function GENERATELOGICALEXPR(LogExpr, Rules) > Generation phase
for Child in inputs of LogExpr do
if Group(Child) ¢ Memo then

GenerateLogical Expr(Child) > Update memo

MatchTransRule(LogExpr, Rules)

: function MATCHTRANSRULE(LogExpr, Rules) 1> Apply transformation rules
for rule in Rules do
if rule matches LogExpr then
NewLogExpr < Transform(LogExpr,rule) 1> Update memo and
record the neighbors
GenerateLogical Expr(NewLogExpr) > Only invoke if
NewLogExpr is not previously in memo

function FINDBESTPLAN(LogExpr, PhyProp, Limit) > Cost analysis phase
if (LogExpr, PhyProp) in the Memo then > Check duplicate
Plan, Cost < LookUpBestPlan(LogExpr, PhyProp)
if Cost # null and Cost < Limit then
return Plan,Cost
else
return null,null > No such plan exists based on previous attempts
MarkInProgress(LogExpr, PhyProp) > Optimize a new expression
Moves + GetAllMoves(LogExpr, PhyProp) > Generate all applicable
transformations, potentially with heuristics or guidance
SortedM oves + SortMoves ByPromise(Moves) > Order by promise
BestPlan <+ null
BestCost + oo
for m € SortedMoves do > Apply each move
if m is a transformation rule then
for NewLogExpr in GetNeighbors(LogExpr,m) do > Retrieve
equivalent alternative logical expressions populated in the generation phase
if !InProgress(NewLogExpr, PhyProp) then
FindBestPlan(NewLogExpr, PhyProp, Limit) > Can fail if
such a plan is not found
else if m is a physical implementation rule then
TotalCost < DeriveCost(LogExpr, m) > Cost the root operator
Subplans < ||
for Child in inputs of LogExpr do
ChildProp < Derive PhyProp(LogExpr, PhyProp, Child)
Plan,Cost < FindBestPlan(Child, ChildProp, Limit — Total
Cost) > Can fail if such a plan is not found
TotalCost < TotalCost + Cost
Subplans.Add(Plan)

Plan < CreatePlan(m, SubPlans)

208 Extensible Optimizers

37: UpdatePlan(BestPlan, BestCost, Plan, TotalCost) > Update memo
38: else if m is an enforcer then > Special handling of enforcers
39: Cost < DeriveCost(LogExpr,m) > Cost the enforcer
40: NewProp < GetPhyProp(LogExpr, PhyProp,m)

41: if !InProgress(LogExzpr, NewProp) then

42: Plan, Cost < FindBestPlan(LogExpr, NewProp, Limit — Cost)

> Can fail if such a plan is not found

43: UpdatePlan(BestPlan, BestCost, Plan,Cost) 1> Update memo
44: Limit < min(Limit, BestCost) > Update the cost limit
45: Memo.Add(LogExpr, PhyProp, BestPlan, BestCost) > Cache result

46: return BestPlan, BestCost

generate all alternative logical expressions with GenerateLogical Expr
function (line 1). It begins by taking the logical tree expression parsed
from the original SQL query and a set of rules, and recursively generates
alternative logical expressions from its inputs (line 2-4). After the inputs
are explored, the optimizer then generates the alternative logical expres-
sions for the expression itself (line 5). The MatchTransRule function
(line 6) recursively invokes GenerateLogical Expr to further explore
the logical expression and the corresponding new groups (line 10). In
addition, the optimizer keeps track of the derivation of equivalent alter-
native logical expressions for each transformation rule and marks them
as neighbors of the input logical expression under the transformation
rule (line 9). This information is later used in the cost analysis phase.
During the generation phase, the logical expressions are cached in the
memo to avoid duplicate exploration (line 3 and 10). Throughout the
process, new expressions and groups will be generated and added to the
memo (line 4 and 9).

After all the alternative equivalent logical expressions are generated,
the search moves to the cost analysis phase, where the goal is to find the
best physical plans for the expressions (line 11-46 in Algorithm 1). The
optimizer performs a top-down dynamic programming based, depth-
first search to find the best physical plan with FindBestPlan function
(line 11). It begins by invoking F'indBestPlan with the initial logical
expression parsed from the original SQL query, the required physical
properties of the query result if any (such as sort orders), and an
unlimited cost. The algorithm first checks if the input logical expression

2.2. Volcano 209

with the required physical properties has been previously optimized (line
12). If the optimization has been performed before, and the cost of the
best physical plan for the expression is less than the cost limit, this plan
is returned; otherwise, the optimization has been previously attempted,
but such a plan cannot be found (lines 14-17). The attempt of searching
for a plan of an expression can fail if there does not exist such a plan
within the given cost limit (see line 27, 33, and 42). If the optimization
has not yet been performed, the expression is marked as in-progress
(line 18) to avoid duplicate invocation of optimizing the same expression
(see line 26). Then the algorithm proceeds to generate all possible
transformations or mowves for the expression (line 19). Alternatively,
developers can implement heuristics or guidance to select only a subset
of the moves to pursue (line 19), although this can result in suboptimal
output plan if the best plan falls outside of this reduced search space.
These moves are then evaluated based on how likely they are to lead
to a plan with low cost, measured by their promise function (line 20).
This function is provided by the developers of the optimizer and, by
default, the search is exhaustive and all moves are pursued. We will
describe promise and guidance in detail in Section 2.2.3.

There are three kinds of moves: transformation rules, implementation
rules, and enforcers. If the move is a transformation rule, the neighbors
of the logical expression under the rule, which are generated during the
generation phase, are explored unless being marked as in progress (line
24-27). If the move is an implementation rule, the physical operator
is costed (see Section 5 for more details on cost estimation), and the
search for the optimal plan is continued recursively through optimizing
the inputs of the logical expression with an updated cost limit (line
28-37). Lastly, if the move is an enforcer, a new physical property is
derived (line 40), and the search for the optimal plan proceeds on the
logical expression with the new physical property and an updated cost
limit (line 38-43). After performing each move, the cost limit is updated
with the cost of the best physical plan found so far (line 44). Once the
optimization of the logical expression is completed, the best plan and
its cost are cached to avoid duplicate optimization in the future (line
45). Finally, the function returns the best plan and its cost of the input
expression (line 46).

210 Extensible Optimizers

Algorithm 1 leverages cost-based pruning to improve the efficiency
of the search. The cost limit will be updated whenever a plan with
lower cost is found (line 44), and the search for such a plan can be
pruned if there does not exist a plan with the given cost limit based
on previous attempts. In addition, the search can also be pruned if the
cost limit becomes 0 or negative. This can happen when the cost of the
root physical operator of an expression (line 29), the cumulative cost of
optimized inputs of an expression (line 34), or the cost of the enforcer
(line 39) is higher than the cost limit. Note that the cost-based pruning
in Algorithm 1 is sound, i.e., it only prunes the search of suboptimal
plans.

When the initial invocation of the FindBestPlan on the original
query returns, the cost analysis phase finishes with the best physical
plan of the query and its estimated cost.

Example of Volcano search Consider optimizing the query A < B
> C' with the following transformation rules

o Join commutativity (R1): A B — B A

 Join right associativity (R2): Aa B C — A (B> C)
and two implementation rules

o Hash join (R3): At B — HashJoin(A, B)

o Table scan (R4): A — TableScan(A)

In the generation phase, the optimizer explores all alternative equiv-
alent logical expressions and caches them in the memo (Figure 2.4). New
groups and expressions are derived and added to the memo during the
exploration. It starts with the expression A <1 B < C' and updates the
memo with group ¢g; and logical expression e;. Then the optimizer recur-
sively calls the function Generate Logical Expr in Algorithm 1 to explore
the first input A >t B (step 1 in Figure 2.4). During the exploration of
A <1 B, the optimizer creates group go and logical expression ey and
recursively explores the inputs A and B (step 2 and 3). After exploring
the inputs of A <1 B, the optimizer calls the function MatchTransRule
in Algorithm 1 and applies the rule R1, resulting in B 1 A and a new
logical expression e5 (step 4). Correspondingly, the optimizer adds es to
the memo and indicates e5 is a neighbor of ey transformed from the rule
R1. Since the inputs of B <1 A have already been explored, the optimizer

2.2. Volcano 211

Step Memo

[g1:1a B, c}| AeL: (A, BIx{C |ﬂ>| e7: {Ch{A, B} |
R2
[g2:4a8) | | [e2: {a)miB) |ﬂ>| e5: {B}{A} |
[e3:tar | | et | e8:{A}M{B,C)’—1
[ea:8r | [eamr | 19
.
R1 C:e6 [et | | esifa | e15: {A, C}(8}]
"

Boa(AC): €9

[es:(80 | |e1o:{s}m{c}|ll-|e11:{c}m{s}|

Or1

{10]
S ez

(BxC)™A: e12

u
®
L>| ApaC: e13 | [[e7:tacr | [e1s: (A)N{C)Illblelllz {cya{ay |

R1—
CxA: eld

(AXC)xB: e15
Aa(CaB): e8
C(AB): e7

Figure 2.4: Example of the generation phase of Volcano for A tx B 1 C. The
left column shows the derivation of expressions. The depth-first search is annotated
by steps and rules, where an arrow without a rule number indicates the recursive
exploration of the inputs. The transformation that leads to a duplicate logical
expression is marked in gray. The right column shows the memo, with arrows
annotating the neighbors of logical expressions grouped by the rules. The dashed
line connects neighbors transformed from the same rule. The groups in the memo
are colored in blue.

212 Extensible Optimizers

backtracks and moves on to explore the second input of A <1 B < C
(step 5). After all the inputs are explored for ej, the optimizer now
calls MatchTransRule and applies the rules to transform A<t B < C
to equivalent logical expressions. Note that the application of rule R2
leads to two expressions A < (B >a C) and B 1 (A > C) (step 7).
This is the result of applying the right associativity to two possible
expressions of the logical expression {A, B} 1 {C}, i.e., Ara B C
and B > A< C. The optimizer adds the two resulting expressions to
the memo and marks eg and eg as the neighbors of e; transformed by
the rule R2. Because a new group is created with the inputs of eg, the
function MatchTransRule recursively invokes GenerateLogical Expr
to explore the inputs of eg (step 8). The exploration continues until the
optimizer generates all the equivalent logical expressions. Note that a
logical expression can be derived more than once during the process.
For example, applying R2 to expression ejs (step 11) will result in
two expressions that have already been explored before, i.e., eg and er
marked in gray. The memo will detect such cases to avoid duplicate
explorations.

In the cost analysis phase, the optimizer finds the best physical
plan for the query (Figure 2.5). The cardinality and the simplified cost
functions of the expressions are shown in Table 2.1 (see Section 5 for
more details on cost estimation). The optimizer starts by invoking the
FindBestPlan function in Algorithm 1 for the initial tree expression
A B < C with an unlimited cost (step 1). As this expression has
not been optimized, the optimizer enumerates all possible moves of the
expression and sort them by their promise (step 2). Here, the moves
from transformation rules are generated based on the neighbors of the
expressions in the memo, which are populated from the generation
phase. Assume the rules are prioritized as R4, R3, R1, R2. We prioritize
implementation rules over transformation rules in order to show the
effect of derivation of physical plans early in the search. Because R4 does
not apply to the expression {A, B} < {C'}, the optimizer first chooses
the move with R3 and derives the cost of the Hash Join operator between
{A, B} and {C}. It then recursively invokes the FindBestPlan on the
first input A < B (step 2). The optimizer again recursively searches the
best plan for the inputs of A >t B. When the input A is fully optimized

2.2. Volcano

Step

| AxBmCieliiee |
Ir)

R3: {A, B} HJ {C}. C: 3000. L: oo |-~

| R1: {C}{A, B} |

° |

R2: {A}({B, C} |
{B}>{A, C}

AxB:e2.C: 0. L: oo
10

----- >
! R3: {A} H) {B}. C: 2100. L: o= | ®

[Ru:BImiA) C0.1:3200 |
]

A:e3.C:0. L: oo |
irs)

R4: Scan(A). C: 100. L: e |

B:ed.C:0.L: oo |
ls) vO ©

-------- { Ra:scan(e). c: 1000. 1: = |

[Bmaies.cio:3200 e
10

| R3: B} HI {A}. C: 3900. L: 3200] -----

213

Memo

o1 (A, BJ(0) || e7: (A, BT
R2

| e2: {ayia) |ﬂ>| es: {Bjm{A} |

| e:iaBc |

|e2: (A, B). C: 3200 |

[(e(aLci00 |©@ [e | e&(A)m(a,c)}—W

| ea:(Br.cc2000 |@ [ed:(B) | 19
y

[g5: {C} | [[esiia | e15: {A, C}x{B}

| e | [e10- @i s e1t: 0eie]]

[ezaa] |e13:(A)m(c)}iluleu:(q»a(m

Figure 2.5: Example of the cost analysis phase of Volcano for A 01 B > C. The
left column shows the process to find the best physical plan. The top-down dynamic
programming is annotated by steps and sorted moves (in purple), where a dashed
arrow indicates backtracking in the search. Each expression is annotated with the
cost derived so far as well as the given cost limit. The expression that is pruned
by cost limit is marked in gray. The right column shows the memo, with arrows
annotating the neighbors of logical expressions grouped by the rules. The dashed
line connects neighbors transformed from the same rule. Some groups are annotated
with the corresponding step that derives the best cost. The groups in the memo are

colored in blue.

Table 2.1: Cardinality and simplified cost functions used for optimizing A <1 B 1 C'

in the example in Figure 2.5

(a) Cardinality

(b) Cost function

Logical Expression Cardinality Physical Operator | Cost Function

A 100 HashJoin(X,Y) 3- X[+ Y[+ [XY
B 1000 TableScan(X) | X|

C 200

A B 800

A1 B C 400

214 Extensible Optimizers

and costed (step 5), the best cost of the group {A} is updated to 100.
At this point, the optimizer backtracks to search the best plan for
the second input {B} of {A}HJ{B} (step 6 — 7). After both inputs
of {AYHJ{B} are optimized, the cost of the expression is derived.
The optimizer then backtracks and pursues the next move with R1
for A < B with the cost limit updated to 3200 (step 8 — 9). When
the optimizer tries to find the best physical plan for the expression
{B}HJ{A}, however, the cost of the Hash Join operator is already
higher than the cost limit (step 10). Thus, there is no need to continue
the search recursively to find the best plan of {B}HJ{A}. This is an
example of cost-based pruning, and the optimizer backtracks to A <1 B
(step 11). At this point, the group {A, B} is fully optimized, and its
best cost is updated to 3200. The search process continues until all the
groups are optimized. Finally, the best plan of the group {4, B,C'} is
returned as the plan with the least cost for the query.

Efficiency Volcano prevents repeated optimization of the same expres-
sion by using top-down dynamic programming to memoize expressions
that have already been optimized. In addition, one subplan can be
the child of multiple parent expressions and thus a logical or physical
expression can be a child expression of multiple parent expressions.
Volcano leverages the memo data structure to avoid storing redundant
copies of the same expression. Finally, the cost-based pruning during
the search, such as in the example shown in Figure 2.5, allows the
optimizer to potentially skip the optimization of some expressions that
do not lead the optimal plan.

2.2.3 Customization of the search strategy

While the dynamic-programming based search algorithm and the memo
in Volcano are effective in avoiding redundant computation, query op-
timization can still be expensive for complex queries. Thus, Volcano
provides additional mechanisms to customize the search by allowing
database engine developers to constrain the search space and to deter-
mine the order in which to explore the search space.

The search space can be controlled by providing heuristics to decide
which rules are applied to the expressions, referred to as guidance (line

2.2. Volcano 215

19 in Algorithm 1). Such guidance can improve the efficiency of the
search, sometimes at the cost of sacrificing the quality of the plan
returned. For example, heuristics can be used to activate only a subset
of the rules for a more focused search space, or to limit the depth of the
search by deactivating rules when the number of transformations from
the original query to the current expression reaches a threshold. Note
that the quality of the plan found when using the above heuristics can
be impacted compared to when the search space is not constrained.

The order in which the transformations are applied during the
search can also be customized by using the promise mechanism. Promise
can be implemented as a function that takes the expression and the
corresponding move as its input, and returns a number. In Algorithm 1,
the moves are ordered by their promise, which influences the order of
exploring the alternative plans (line 20). Since Volcano performs cost-
based pruning based on the best subplans found so far, where the pruning
is sensitive to the order of the exploration of the subplans, the promise
can impact the efficiency of the search. For example, in Figure 2.5,
the optimizer prunes the search of HashJoin(B, A) based on the cost
limit derived from the best subplan of HashJoin(A, B); however, if
the optimizer first explores the expression HashJoin(B, A), then the
search will not be able to prune the exploration of HashJoin(A, B).
The promise can be specified at the rule level as in the example of
Section 2.2.2, or it can be specified based on both the expression and
the move. For example, one heuristic is to give a lower promise for
applying join commutativity if the resulting expression will have a
larger outer side (or the build side) than the inner side (or the probe
side). For example, for the moves of {A} < {B} shown in Figure 2.5
(step 3), {B} 1 {A} will have a lower promise than that of {A}HJ{B}
based on the heuristic. Conversely, if the build side is larger than the
probe side, then prioritizing the optimization of a different join order
can be beneficial as this often leads to a cheaper plan. The use of
promise can benefit both exhaustive and non-exhaustive search. We
will revisit the customization of the search strategy in our discussion
of Cascades (Section 2.3) and techniques to improve search efficiency
(Section 2.4).

216 Extensible Optimizers

2.2.4 Adding new rules and operators

Volcano’s extensibility makes it easy to add a new transformation rule to
the query optimizer. To add a new rule, the code that checks for patterns
that triggers the rule, i.e., CheckPattern function, and the code that
generates the transformed expression, i.e., Transform function, need to
be implemented. In addition, the promise and guidance associated with
this rule also need to be set. Once a rule is added, no changes are needed
to the search algorithm to benefit from the expanded search space. We
provide examples of important rules used in practice in Section 4.

To add a new physical operator, the developer needs to implement
the operator including the Open, Get Next and Close methods of the
iterator model, add new implementation rules that transform existing
logical operators to the physical operator, and add derivations of the
physical properties and cost estimate for the operator. Adding a new
logical operator can be more involved. If the new logical operator is
added to support a new SQL construct (e.g., a window function), then
new logic is needed to derive the logical expression from the AST parsed
from the query text corresponding to the new logical operator. Adding
a new logical operator can also require adding new transformation
rules to transform the new logical operator to existing logical operators.
Optionally, new implementation rules can be added to directly transform
the new logical operator into existing physical operators. Adding a new
logical operator does not always require a new physical operator to be
added. For example, the logical operator Union can be implemented by
the previously existing Hash Join physical operator.

2.3 Cascades

Volcano introduced a framework for extensible optimizers, which con-
tained important concepts such as transformation rules that define the
search space, guidance and promise to limit and prioritize transforma-
tions, and a search algorithm that uses top-down dynamic programming
with memoization and cost-based pruning. The Cascades framework,
proposed in [80], retains these concepts while improving upon some of
the limitations in Volcano. In this section, we start by highlighting some

2.3. Cascades 217

of the key improvements of the Cascades framework compared to the
Volcano framework (Section 2.3.1). Then we provide an overview of the
search in Cascades (Section 2.3.2) followed by a detailed description of
the search algorithm with pseudocode (Section 2.3.3). We revisit the
same example join query from Section 2.2.2 that we used to highlight
Volcano search and use it to show the similarity and differences between
Cascades and Volcano (Section 2.3.4).

2.3.1 Key improvements in Cascades

Search efficiency One distinguishing feature of the search algorithm in
Volcano is the separation between the exploration of equivalent logical
expressions in the generation phase and the derivation of equivalent
physical plans in the cost analysis phase. As a consequence, the optimizer
needs to generate all the equivalent logical expressions in the generation
phase. For example, as shown in Figure 2.4, the optimization of A <
B 1 C needs to generate all 7 groups and 15 expressions before deriving
any physical subplan. This behavior is benign if the search is exhaustive,
i.e., all the equivalent logical expressions will be explored. Unfortunately,
the optimizer is often budgeted with limited resources (e.g., a timeout)
for finding a good plan, and its search can be non-exhaustive for complex
queries where the search space is large. In Volcano, if the optimizer
uses heuristics to limit the search space in the cost analysis phase, its
effort on exploring all equivalent logical expressions becomes wasteful
if only a subset of the logical expressions are considered in the cost
analysis phase. The Cascades framework improves the behavior of the
optimizer by removing the separation between the generation phase and
the cost analysis phase and deriving the logical expressions incrementally.
Therefore, compared to Volcano, the derivation of equivalent logical
expressions can be non-exhaustive depending on the heuristics used
by the optimizer. We will illustrate the difference with an example in
Section 2.3.4. In addition, Cascades also abstracts the ad-hoc heuristics
to scope the search space in Volcano into a first-class concept, i.e., the
guidance object, which specifies the set of activated rules applied to an
expression during the search.

218 Extensible Optimizers

Task-based search algorithm Volcano uses a depth-first algorithm for
the top-down dynamic programming based search (see Section 2.2.2).
Instead, the Cascades framework replaces the recursive, depth-first
search with a stack-based exploration using tasks, where the tasks
perform actions on groups and expressions. This is described in depth
in Section 2.3.3. The stack-based approach respects the dependency
among tasks from top-down dynamic programming. For example, the
best plan of a parent expression is derived after the best plans of its
inputs are derived. The task-based approach eliminates the constraint of
sequential optimization of independent expressions that arises due to the
recursive, dept-first search in Volcano. For example, in Volcano moves
of the same expression are optimized sequentially even when there is no
dependency among the derivations of these moves. The leading benefit
of the task-based approach is that it makes it easier to parallelize the
search by running independent tasks concurrently on different threads.
For large queries, such parallelization can lead to significantly faster
query optimization time. Indeed, the Orca query optimizer (described in
Section 3.2), which is built on the Cascades framework, has implemented
search parallelization. The task-based search strategy also has other
benefits, e.g., it allows a database developer to potentially reorder
tasks, which may come from different expressions, heuristically based
on promise.

Improved software design Cascades improves the abstraction of phys-
ical and logical operators by unifying them as one operator class. In
Volcano, an operator is either physical or logical, which requires a special
code path to handle the operators that are both physical and logical,
e.g., a sargable predicate [178]. In Cascades, an operator can be logical
or physical or both, which simplifies the handling of all the operators,
including predicates.

Cascades also unifies transformation and implementation rules as
one rule class, where each rule checks the pattern of an expression (i.e.,
CheckPattern function) and transforms the expression if the check passes
(i.e., Transform function). In addition to this unification, enforcers are
also modeled via a new type of rule: enforcer rules. An enforcer rule
inserts physical operators that change the physical properties of a plan.

2.3. Cascades 219

The invocation and the application of the enforcer rule are similar to
other rules. For example, an enforcer rule of adding a Sort operator can
be applied if a sort order is required by the physical properties of an
expression, which is tested in CheckPattern. The Transform function
generates the same expression but without the required physical property
of sort order since that property will be satisfied by the newly added
Sort operator. Compared with Volcano, where a code path exists to
add an enforcer in an ad-hoc manner as needed during the search (see
Algorithm 1), Cascades simplifies the search since no special casing is
required for enforcers in the search algorithm itself.

Furthermore, Cascades allows all possible transformations to be
applied using a function provided by the database developer, i.e., a
function rule. This can be convenient when multiple substitutes can be
derived by repeatedly applying a rule. One example of function rules is
the index strategies. Given a logical expression to retrieve the data from
a table, there can be potentially multiple options to access the table
with different indexes, including index intersections (see Section 4.1).
Instead of deriving one index strategy per application of a rule, it is
more convenient and efficient to derive all applicable index strategies
as the moves of the expression in a single invocation by leveraging a
function rule.

2.3.2 Search overview

We start with an overview of the search and tasks in Cascades opti-
mizer in this section, then explain the search algorithm in details in
Section 2.3.3, and finally walk through the search algorithm with an
example in Section 2.3.4.

The search in Cascades uses the same top-down dynamic program-
ming as in Volcano, where the derived expressions are stored in the
memo to avoid redundant optimization. However, compared to Volcano,
the search in Cascades is broken into more fine-grained pieces called
tasks, to enable the search to interleave the transformations of logical
and physical expressions. These tasks are queued in a stack, which
performs last-in-first-out (LIFO) by default. The optimizer can poten-
tially be customized to prioritize the tasks in alternative schedules, as

220 Extensible Optimizers

long as the dependency of the tasks specified by the top-down dynamic
programming is respected.

The six types of tasks in the Cascades optimizer are described in [80].
Figure 2.6 shows the overview of the workflow for the tasks. This work-
flow corresponds to the pseudocode presented in Algorithm 2, which is
based on one implementation of Cascades, specifically in Microsoft SQL
Server. Due to the specific implementation, there are a few differences
between this workflow and the workflow diagram in [80] in terms of the
invocations among the tasks.

Query

4

Optimize Group

(OptGrp)

I Optimize
Expression
(OptExpr)

-

Explore Group
(ExplGrp) j
Explore
Expression
(ExplExpr)

Optimize Inputs

(Optinputs)
Apply Rule

(ApplyRule)

e

Figure 2.6: Workflow of the tasks in the search of Cascades

At a high level, there are four tasks that optimize or explore a group
or an expression within a group (see Section 2.2 for the definition of
groups and expressions). The goal of optimizing a group (OptGrp) or an
expression (OptExpr) is to derive the best physical plan of the group or
the expression respectively. The goal of exploring a group (ExplGrp) or
an expression (ExplExpr) is to generate alternative equivalent logical
expressions for the group or the expression respectively. The entry point
of the search for the best physical plan of an expression is the task
OptGrp on that expression. We note that OptGrp is also the entry point
for finding the best physical plan of the original SQL query. OptGrp
first invokes FxplGrp to generate alternative logical expressions of the
input expression, and then it derives the best physical plan of the group

2.3. Cascades 221

by iteratively optimizing each expression in the group with OptExpr.
The task ExplGrp invokes ExplExpr iteratively for the expressions
that have not been explored in the group. In the task ExplExpr and
OptExpr, the rules are checked against the input expression, and the
fifth task type of applying a rule (ApplyRule) will be created for each
matched rule. In addition, because exploring an expression or optimizing
an expression can create new groups, both ExplExpr and OptExpr
will recursively invoke the exploration of their inputs (EzplGrp). The
task ApplyRule performs the actual transformation of the expression
by applying the matched rule. Depending on rules, new expressions can
be created and need to be explored (ExzplExpr) or the inputs of the
expression need to be optimized (OptInputs). The final task OptInputs
iteratively invokes the optimization on the inputs of an expression
(OptGrp), and it derives the best physical plan of the expression after
all its inputs are optimized.

Since the groups and expressions are explored incrementally during
the search, each expression needs to keep track of what rules have
already been tried on the expression to avoid the overhead of trying the
same rule more than once on that expression. Each expression has a
bitmap to remember the rules that have been applied to the expression,
which are deactivated from application using the guidance mechanism
(Section 2.3.1). While both OptEzpr and Expl Expr attempt to match
rules that have not been applied to the expression before, Expl Expr
only matches transformation rules and Opt Expr matches all other rules,
including implementation and enforcer rules.

The physical properties of the expressions are derived and passed
through various tasks. For example, when optimizing the inputs of an
expression, the required physical properties of the inputs are derived
from the expression and passed to the OptInputs tasks. Similarly, when
applying an enforcer rule to an expression in ApplyRule, one or more
expressions can be created with the corresponding required physical
properties introduced by the enforcer as the result of the transformation.

Throughout the search process, the memo is used to store new
groups and new expressions to avoid duplicate computation. The memo
structure is similar to the one shown in Volcano (Figure 2.3), except that
the groups and alternative logical expressions are derived incrementally

222 Extensible Optimizers

in the tasks instead of being pre-populated in the generation phase of
Volcano. Similar to Volcano, the Cascades optimizer also performs cost-
based pruning in the search. The best physical plans and the associated
cost are derived in OptInputs and stored in the memo. These costs are
used for deriving the cost limit and passed to the tasks for pruning the
search.

Similar to Volcano, Cascades provides the mechanism of promise
to customize search. For example, the promise can be used within
the ExplExpr to prioritize the matching rules or within ApplyRule to
order the newly generated expressions. Moreover, the task abstraction in
Cascades provides additional flexibility in customizing the search with
promise and guidance. For example, promise can be used to prioritize
across all the independent tasks, and the guidance can also be used
to implement heuristics to reduce the search space at the expression
level. As another example, the guidance uses a bitmap to keep track
the deactivation of rules for each expression across tasks as described
previously. This can also be used to reduce the overhead of deriving
duplicate expressions by deactivating certain rules as the tasks are
performed. For example, if join commutativity has been applied to an
expression, this rule can be deactivated to avoid unnecessary consecutive
application of join commutativity on the transformed expression.

2.3.3 Search algorithm

In this section, we describe the search of Cascades as well as the tasks
in details. Algorithm 2 shows the simplified pseudocode for the search
in Cascades with a LIFO stack.

The optimizer starts the search by invoking OptGrp with the logical
query tree corresponding to the original SQL query (obtained after
parsing and validation as described in Section 1), and an unlimited cost
limit. If the input to OptGrp has not been explored, the optimization
of the group is deferred and a new task ExplGrp is scheduled (line 4-5);
otherwise, all expressions in the group are scheduled to be optimized
(line 7-8). Note that the optimization of the group needs to wait for the
exploration of the group to complete. Such dependency is implemented
by pushing the OptGrp task back into the LIFO stack before pushing
the ExplGrp task (line 4-5).

2.3. Cascades 223

Algorithm 2 Tasks of the Cascades optimizer. The memo gets updated in GetGroup
and UpdateMemo if a new expression and/or a new group gets created. Each
expression keeps track of what rules have been tried with IsApplied.

1: function OPTGRP(expr, limit) > Find the best plan for a group
2 grp < GetGroup(expr)

3 if lgrp.Explored then > Explore the group first
4: tasks. Push(OptGrp(grp, limit))

5: tasks.Push(ExplGrp(grp, limit))

6 else

7 for expr € grp.Expressions do

8 tasks.Push(OptExpr(expr, limit))

9: function EXPLGRP(grp, limit) > Explore every expression in the group

10: grp.Explored < true

11: for expr € grp.Expressions do

12: tasks.Push(Expl Expr(expr, limit))

13: function EXPLEXPR(expr, limit) > Explore an expression and its inputs with
rules that matches the pattern of the expression

14: moves < ()

15: for rule € Transformation Rules do

16: if lexpr.IsApplied(rule) and rule.CheckPattern(expr) then > Can
optionally apply guidance

17: moves.Add(ApplyRule(expr, rule, promise, limit))

18: Sort the moves by promise in ascending order for the LIFO stack
19: for m € moves do

20: tasks.Push(m)

21: for childExpr in inputs of expr do

22: grp < GetGroup(childExpr)

23: if lgrp.Explored then

24: tasks.Push(ExplGrp(grp, limit))

25: function OPTEXPR(expr, limit) > Find the best plan for the expression

26: moves <+ ()

27: for rule € Rules do

28: if lexpr.IsApplied(rule) and rule.CheckPattern(expr) then > Can
optionally apply guidance

29: moves.Add(ApplyRule(expr, rule, promise, limit))

30: Sort the moves by promise in ascending order for the LIFO stack
31: for m € moves do

32: tasks.Push(m)

33: for child € inputs of expr do
34: grp + GetGroup(child)
35: if lgrp.Explored then

36: tasks.Push(ExplGrp(grp, limit))

224 Extensible Optimizers

37: function ApPLYRULE(expr, rule, promise, limit) > Apply the rule to the
expression and create additional tasks if needed

38: newExprs < Transform(expr, rule)

39: UpdateMemo(newExzprs)

40: Sort the new expressions by promise in ascending order for the LIFO stack

41: for newEzpr € newExprs do

42: if Rule is a transformation rule then

43: tasks.Push(Expl Expr(newExpr, limit))

44: else

45: limit < UpdateCost Limit(newExpr, limit) > Can fail if the cost
limit becomes 0 or negative

46: tasks.Push(OptInputs(newExpr, limit))

47: function OPTINPUTS(expr, limit) > Optimize the inputs of the expression

48: childExpr < expr.Get NextInput() > Check if all inputs have been
optimized

49: if childExpr is null then

50: memo.UpdateBestPlan(expr)

51: return

52: tasks.Push(OptInputs(expr, limit)) > Add a task to optimize the next
input

53: limit « UpdateCost Limit(expr, limit) > Update the cost limit for

remaining inputs based on the inputs that have been optimized. Can fail if the
cost limit becomes 0 or negative

54: tasks. Push(OptGrp(GetGroup(childExpr),limit)) > Optimize the current
input

The task ExplGrp explores all expressions in the group (line 9-12).
When exploring an expression, the optimizer checks all the transforma-
tion rules that have not been applied to the expression and matches each
rule’s pattern to the expression (line 15-16). Optionally, the guidance
associated with the expression can be used to constrain the search space
by skipping certain rules. Upon finding a matched pattern, the matched
rule is added as a mowve of this expression (line 17). The optimizer
sorts the moves by their promise, then it schedules tasks to apply these
rules (line 18-20). If the corresponding group of an input of the logical
expression has not been explored, a ExplGrp task will be scheduled for
the input if needed (line 21-24).

When optimizing an expression in OptExpr, the optimizer finds all
the rules that have not been applied to this expression and matches
each rule’s pattern to the expression (line 27-28). Here, the guidance
of the expression can be potentially used to scope the set of rules to

2.3. Cascades 225

match. The matched rules are added as the moves of this expression
(line 29), and the optimizer schedules these moves by their promise to
apply the rule (line 30-32). Since matching the pattern of a rule to an
expression can introduce inputs that belong to a new group, e.g., join
associativity, a task of FxplGrp will be scheduled for the inputs (line
33-36).

The task of ApplyRule applies the actual transformation of an
expression. This step can result in more than one new expression since
there may be multiple options to match the pattern, i.e., multiple
bindings (line 38). These new expressions are added to the memo (line
39). The optimizer sorts these expressions by their promise (line 40),
and then schedules additional tasks based on the type of the rule applied
(line 41-46). The cost limit can be updated if an implementation rule or
an enforcer is applied to the expression (line 45). If the expression is
transformed by an implementation rule or an enforcer rule, the required
physical properties of the new expressions need to be derived and passed
to the corresponding tasks.

Finally, the OptInputs task is invoked iteratively on the inputs of
an expression (line 47-55). Similar to OptGrp, the parent task needs
to wait for the completion of optimizing its inputs. This dependency is
implemented by keeping track of the progress in the parent task, i.e., the
next input to optimize, and pushing the parent task back into the LIFO
stack so that the optimizer can backtrack to the parent task (line 52).
Upon the invocation of OptInputs, it first checks if there is more input
to optimize (line 48-49). If not, the best subplan is cached in the memo
and returned (line 50-51); otherwise, the parent task pushes two tasks
into the stack. First, it will push itself back to the stack for optimizing
the next input (line 52). Then it schedules the task of OptGrp on the
current input with an updated cost limit, i.e., by reducing the cost limit
by the best cost of previous input (line 53-54).

Similar to Volcano, the search in Cascades can be pruned if the
cost limit becomes 0 or negative (line 45 and 53), which indicates that
the optimizer cannot find a plan with the given cost limit. When there
are no more tasks to perform and the stack becomes empty, the search
finishes with the best plan of the query along with its estimated cost.

226 Extensible Optimizers

2.3.4 Example of query optimization in Cascades

We now revisit the same example as described in the Volcano optimizer
(Section 2.2) to show how query optimization works in the Cascades
framework. To recap, our simple example optimizes the query A <1 B
C with two transformation rules and two implementation rules as shown
in Table 2.2a. We assign higher promise to the two implementation
rules so that we can illustrate the cost derivation and pruning for
physical plans early in the search. Our simple Cascades optimizer sets
the following two guidance for the search. First, if an expression is
transformed by join commutativity, the join commutativity rule is
deactivated in subsequent transformations. This guidance is triggered
when applying R1, and it avoids duplicate derivation without impacting
the quality of the output plan from the search. Second, the plan does
not contain cross product. This guidance is triggered when applying
R2, where a new join expression, potentially with cross products, can
be created after applying join associativity. Note that while it is often
desirable to avoid cross products, in general, this guidance is a heuristic,
and in some cases can compromise the optimality of the plan. Table 2.2
shows the details of the rules, cardinality, and simplified cost functions
of the example (see Section 5 for more details on cost estimation).

Table 2.2: Rules, cardinality, and simplified cost functions used in the example of
optimizing A <1 B 1 C' in Cascades.

(a) Rewriting rules, promise, and guidance

Rule ID Rule Promise Guidance
R1 Join Commutativity 1 No consecutive application
R2 Join Right Associativity 2 No cross product
R3 Join to Hash Join 3 N/A
R4 Get to Table Scan 4 N/A
(b) Cardinality

Expression Cardinality

A 100

B 1000

C 200

A B 800

A C 20000 (cross product)

At B C 400

(c) Cost function

Physical Operator Cost Function
HashJoin(X,Y) 3 X[+ YT+ [X <Y
TableScan(X) | X|

2.3. Cascades 227

Our simple Cascades optimizer uses a LIFO stack to schedule the
tasks. Figure 2.7 shows a simplified illustration of how the tasks are
pushed into and popped out of the stack during the query optimization.
When query optimization starts, a task of optimizing the corresponding
group (OptGrp) of the logical expression A <1 B <1 C' with unlimited
cost (Limit : oo) is scheduled to the stack (¢; in Figure 2.7), which
adds a new group ({A, B,C}) and a new expression ({A, B} < {C}) in
the group to the memo, where the expression is parsed from the AST
of the query. Next ¢ is popped out of the stack. Since the expression
has not been explored, the OptGrp is deferred (t2), i.e., by pushing
itself back into the stack, and the optimizer also pushes a new task to
explore the group (ExplGrp) to the stack (t3). Now t3 is popped, and
it creates the task ¢4 to explore the expression (ExplExpr). Next t4 is
popped, and it finds all the transformation rules that match the pattern
in the expression {4, B} < {C} (i.e., Ry, Rg), prioritizes the possible
moves by their promise (i.e., Ra, R1), and pushes corresponding tasks
to applying the rules to the stack (task t5-tg). In addition, Expl Expr
also creates tasks to explore its inputs (i.e., t7, tg), which results in new
groups (i.e., {A, B}, {C}) and new expressions (i.e., {A} > {B}, {C})
added to the memo. At this point, the tasks in the stack from bottom
to the top are to, ts5, tg, t7, ts.

The optimizer then takes tg from the top of the stack, and it tries to
explore the expression C (tg). Since no more transformation rules apply,
the optimizer backtracks to the task t7 to explore the group {4, B}.
t7 creates the task t19 to explore the expression A <1 B, which then
applies R1 and creates the task t1; as well as the tasks to explore its
inputs (task t12-t13). The optimizer continues to explore the expression
{A} and {B}, and then it backtracks to task t1; and applies the join
commutativity rule on A 1 B. With ¢11, a new expression B 1 A is
created, and consequently, the optimizer schedules a task t14 to explore
the expression. In the task t16, while the rule R1 is applicable, it will
lead to duplicate expressions. We observe however, that such a duplicate
transformation is avoided because of the guidance on no consecutive
application of R1 (t17).

Next, the optimizer backtracks to tg and applies join associativity
to the expression {A, B} > {C'}. Note that because of {A, B} has two

228 Extensible Optimizers

Task Memo
Qtl OptGrp: A B C. Limit: oo Grp: {A,B,C}
to OptGrp: A pa Bpa C. Limit: co > Expr: {A, B} e {C}
gtg ExplGrp: A>a B o< C. Limit: oo > Expr: {A} < {B,C}
[tq ExplExpr: A< B C. Limit: oo : > Expr: {B,C} = {A}
t5 ApplyRule R1: A< B < C. Limit: co > Expr: {C'} < {A, B}
te ApplyRule R2: A< B« C. Limit: co Grp: {A, B}
t7 ExplGrp: A a B. Limit: oo : > Expr: {A} > {B}
ts ExplGrp: C. Limit: co : » Expr: {B} 1 {A}
to ExplExpr: C. Limit: oo
t10 ExplExpr: A< B. Limit: oo
t11 ApplyRule R1: A< B. Limit: oo
t12 ExplGrp: A. Limit: oo

gtl;j ExplGrp: B. Limit: oo : Grp: {C}
t14 ExplExpr: B. Limit: co > Expr: {C}
t15 ExplExpr: A. Limit: co Expr: Scan(C)

g)‘,l@ ExplExpr: B < A. Limit: oo Grp: {A}
t17 ApplyRule R1: B <1 A. Limit: co. Pruned by guidance : > Expr: {A}
t1s ExplExpr: A< (B (). Limit: oo :
Qtw ExplExpr: B < (Apa (). Limit: oo Pruned by guidance Grp: {B}
ta0 ApplyRule R1: A< (B C). Limit: oo > Expr: {B}
gtgl ExplGrp: B < C. Limit: co
gtzg ExplExpr: B < C. Limit: co Grp: {B,C}
gtz;; ApplyRule R1: B C. Limit: co : : > Expr: {B} = {C}
gt24 ExplExpr: C < B. Limit: oo E : > Expr: {C'} i {B}
tos ApplyRule R1: C 1 B. Limit: oo Pruned by guidance
gt‘zﬁ ExplExpr: B Cpa A. Limit: oo.
|f,27 ApplyRule R1: B < C b A. Limit: oo Pruned by guidance
(tos ApplyRule R2: B < C' <1 A. Limit: oo
|f,29 ExplExpr: B (C < A). Limit: oo Pruned by guidance
g t30 ExplExpr: C > (B >1 A). Limit: oo

t31 ApplyRule R1: C > (B < A). Limit: co. Duplicate expression
t3o ExplExpr: C <1 (A1 B). Limit: oo. Duplicate expression
ts3 OptExpr: {4, B} < {C}. Limit:
tsq OptExpr: {4} < {B,C}. Limit:
ts5 OptExpr: {B,C} < {A}. Limit:
gt;;(, OptExpr: {C} < {A, B}. Limit: oco. Grp: {A,B,C}
(,tS? ApplyRule R3: {C}HJ{A, B}. Limit: co. OP cost: 1800. > Expr: {C}HJ{A, B}
tss OptInputs: {C'} of {C}HJ{A, B}. Limit: oo.
gtgg OptGrp: {C}. Limit: oo.
Qt‘“’ OptExpr: {C'}. Limit: oo. Grp: {C}
ts1 ApplyRule R4: Scan(C). Limit: co. Best cost: 200. » Expr: Scan(C)
t42 OptInputs: {A, B} of {C}H J{A, B}. Limit: oo.

228

Figure 2.7: Optimize A < B <1 C in Cascades with a LIFO stack. The Task column
shows how the tasks are pushed into and popped out of the stack. The arrow and the
blue line span the child task(s) created by a parent task, e.g., t5-ts are created by t4.
The Memo column shows how the groups and expressions are added to the memo.
The dotted arrow indicates the task that creates the group and/or the expression.

expressions created by t7 and t1g respectively, this rule has two bindings:
A (B> C) and B (A< C). The optimizer creates two new tasks
to explore the expression t1g and t1g9. In the task t1g, since the expression
A C'is a cross product, which is disabled by our guidance, this task is
discarded for further exploration. Note that this also shows an example
of using guidance to scope the search space at the expression level in
Cascades.

2.4. Techniques to Improve Search Efficiency 229

The optimizer continues the exploration of the expressions until
task t30, where all the alternative equivalent logical expressions defined
by the set of rules and guidance are explored. During the process,
there are several tasks where the transformed expression turns out to
be duplicated (task t3i, t32), which is detected by the memo. Note
that because of the guidance on the heuristics of no cross product,
the optimizer has only derived 6 groups and 11 logical expressions.
In contrast, in Volcano, where the generation phase is exhaustive, the
optimizer creates all 7 groups and 15 expressions, as shown in Figure 2.4.

After all the expressions are explored, the optimizer backtracks
to the very beginning of the stack to optimize the group (t2). For
each expression in the group {A, B,C'} from the memo, the optimizer
creates a corresponding task OptExpr to optimize the expression (task
tss-t36). To optimize the expression in t3g, the optimizer applies the
implementation rule R3 for the join operator at the root of the expression
and costs the operator (¢37), and then it schedules the task to optimize
the inputs of the expression. As shown in Algorithm 2, the optimization
of all the inputs is implemented by optimizing one input at a time. The
optimizer first schedules a task to optimize {C'} (task t37-t41). When
the input {C} is optimized, the optimizer backtracks and optimizes the
next input {4, B} in task t42.

The optimizer repeats this process until all expressions are optimized
and returns the best physical plan.

2.4 Techniques to Improve Search Efficiency

Despite the efficient dynamic-programming based search in Volcano
and Cascades frameworks, exhaustive search of the best physical plan
is still expensive for complex queries. Therefore, in practice, additional
heuristics are used to further reduce the cost of query optimization.
Here, we outline a few common optimizations.

Simplification rules FEmpirically, some rules simplify the logical tree
and almost always improve the cost. Such rules are referred to as sim-
plification rules. Examples of simplification rules include eliminating
duplicate predicate filters and pushing down simple predicate filters
below joins. Instead of creating alternative expressions from these rules,

230 Extensible Optimizers

it is more efficient to simply replace the input expression with the trans-
formed expression. Thus, the simplification rules can be implemented as
a pre-processing step before applying other rules, or they can be applied
to the logical expression tree of the original query (see Figure 1.1) before
the query optimization.

Macro rules A macro rule is used to transform the shape of an ex-
pression significantly in a single move, which otherwise would require
the application of many rules to achieve. Macro rules allow optimizer
developers to encode common patterns that are likely to generate plans
with low cost. Transformations with macro rules are typically assigned
with high promise (Section 2.2.3) so that they are performed at the
early stages of the search. An example of a macro rule is heuristic join
ordering for star and snowflake queries, which we will describe in detail
in Section 4.6.

While macro rules do not augment the search space of the optimizer,
they can improve the efficiency of the search and the quality of the
plans. First, macro rules perform multiple moves with one invocation,
which short-circuits the search and reduces the overhead to reach the
transformed expression. Second, if macro rules lead to the derivation
of physical plans with low cost early in the search, it can improve the
efficiency of the search with more effective cost-based pruning. Finally,
when the search is not exhaustive, as macro rules are often invoked at
early stages of the search, using these rules ensures the heuristic-based
plans are included in the search.

Parallelizing query optimization In Cascades, the search algorithm
is broken down into small tasks, and the tasks without dependencies
can be performed in parallel. For example, while a Optimize Inputs
task depends on the completion of the optimization task for each
input, the substitutes created from applying the rule with the same
pattern can be optimized in parallel. Prior work evaluates parallel query
optimization with Cascades [195]. In the initial phase, the tasks are
largely sequential. As more alternative transformations are explored
with dynamic programming, more tasks become independent. In general,

2.4. Techniques to Improve Search Efficiency 231

the more complex the query and the larger the number of tasks, the
more speed-up can be gained with parallel query optimization.

Multi-stage optimization Since exhaustive search can take too long,
query optimization is often time bounded. Thus, it is important for the
search of the plan to be any time, meaning that the optimizer finds
a good plan early in the search and improves the quality of the plan
over time. One approach to make the query optimization any time is to
break it down into multiple stages and progressively explore the search
space. As the search progresses, the improvement of the plan quality is
often diminishing as the best plan found so far typically gets closer to
the optimal plan. Thus, an ideal query optimizer should be cost-efficient:
the optimizer should find a good plan as quickly as possible and search
for a better plan if needed.

In multi-stage optimization, the optimizer may be invoked several
times. In each stage, a different set of rules are activated that gradually
increases the search space. Usually, the set of rules for each stage is
statically defined in the optimizer, and the sets are not mutually exclu-
sive, e.g., implementation rules of access methods (see Section 4.1) may
be included in the rule set of every stage. If the optimizer finds a good
plan quickly by using a restricted set of rules in a stage, optimization
can stop and the current best plan is returned. Staged optimization can
be implemented by using guidance to specify a different set of rules to
include at each stage. The alternative expressions explored in previous
stages can be cached in the memo for reuse in the next stage.

In particular, the query optimization has four stages in Microsoft
SQL Server. For simple queries where the optimal plan is more easily
determined, such as lookups on a single table, the optimizer can skip
the expensive optimization process and immediately generate a physical
plan. This is called a trivial plan [184]. For queries that do not qualify for
the trivial plan, the optimizer expands the search space progressively in
three stages: transaction processing, quick plan, and full optimization [53).
These stages increase the set of transformation rules enabled during the
plan search by leveraging the guidance mechanism (see Section 2.2.3).
For instance, in the transaction processing stage, a set of join orders
is initially generated without the use of sophisticated transformations.

232 Extensible Optimizers

For example, macro rules (e.g., transformations for join ordering for
star and snowflake queries in Section 4.6) and reordering of group-by
and joins (Section 4.4), are disabled. In the quick plan stage, additional
transformations are enabled, including most rules on join ordering,
group-by and aggregation. If the estimated cost of the best plan from
any of the two stages meets a cost threshold, the plan is selected for
execution; otherwise, the full optimization stage is invoked. This final
stage activates all the transformation rules to allow for a thorough
exploration of the search space with cost-based pruning, until the search
is exhausted or the timeout is reached. The timeout is set as the maximal
number of tasks performed during the search instead of the maximal
elapsed time. This design ensures the output plan of the query is stable
across different runs. The best plan produced by this stage is selected
for execution.

2.5 Example of Extensibility in Microsoft SQL Server

Microsoft SQL Server has exploited the extensibility of Cascades to
make several enhancements to its query processing capabilities over the
years. Below, we describe one such example, showing how Microsoft
SQL Server exercises multiple aspects of the extensibility in Cascades
to add support for column-oriented processing.

Column-oriented database systems (referred to as columnstore) have
been shown to accelerate the performance of analytic workloads due
to more efficient I/O that scans only the required columns, as well as
batch-oriented query processing that can leverage techniques such as vec-
torization [1, 19]. For mized workloads consisting of both transactional
and analytic queries, also referred to as Hybrid-Transactional-Analytical-
Processing (HTAP), it can be beneficial to have both row-oriented (row-
store) and column-oriented processing capabilities in the same database
engine. In fact, a given table can be stored as a B+-tree index (which is
row-oriented) and copy of the table can also be stored in a columnstore
format. Thus, a given execution plan can contain access to both row
store and columnstore indexes.

Microsoft SQL Server incorporated column-oriented storage and
batch-oriented query processing into its query optimization frame-

2.5. Example of Extensibility in Microsoft SQL Server 233

work [113] to support the above scenario by leveraging various aspects
of the extensibility of Cascades. Microsoft SQL Server introduced a
new index type, i.e., columnstore index, along with the corresponding
new physical operator Columnstore Index Scan. A columnstore index
provides the access to one or more columns of a table. Different from
B+-tree indexes, a columnstore index does not provide any sort order,
and it also does not support range queries or point accesses to the data.
Hence, additional predicate filters are needed to retrieve the selected
data.! Thus, new implementation rules were added to transform logical
expressions into a Columnstore Index Scan operator. To fully leverage
the efficient execution of plans involving columnstore indexes, Microsoft
SQL Server also introduced a new batch execution mode. In contrast
to row mode, where the physical operators process a row at a time, in
batch mode the physical operators process a batch of rows at a time.?

Since two versions of a physical operator, row mode and batch mode,
are available as options, it increases the search space that the optimizer
must consider. Microsoft SQL Server incorporated row mode and batch
mode as a new physical property of an expression which is stored in
the memo (Section 2.2.2). It also introduced a new Adaptor operator,
which takes as input rows from its child operator in one format, e.g., in
batches, and converts those rows to be ready for processing in the other
mode, e.g., into individual rows for processing by its parent operator.
This, along with the corresponding enforcer rules, enabled Microsoft
SQL Server to integrate the choice of row mode and batch mode in the
search space.

For example, Figure 2.8 shows a query plan with a Hash Join (batch
mode) involving table R and S which are stored as columnstore indexes,
followed by a (row mode) Nested Loops Join with an Index Seek on a B+4-
tree index I; on table T'. Note that the result of the Hash Join needs to
be converted from batches to individual rows with the Adaptor operator
before they can be consumed by the Nested Loops Join operator. We
note that the cost functions of the operators need to be extended to

Tt supports zone maps, which can discard segments of data that contain no
qualifying rows.

2Batch mode operators can sometimes be beneficial even for pure rowstores to
improve the efficiency of execution.

234 Extensible Optimizers

Nested Loops
Join (R.c=T.d)
(row mode)

AN

Adaptor
(convert from
batch to row
mode)

/

Hash Join
(R.a=S.b)
(batch mode)

N

Column Store Column Store
Index Scan Index Scan
(R) (S)
(batch mode) (batch mode)

Index Seek
(row mode)
B+-tree index Iy

Figure 2.8: A plan showing mixed mode execution containing operators in batch
mode and row mode in Microsoft SQL Server. Conversion from batch to row mode
is done by the Adaptor operator, which is added via enforcer rules.

reflect the cost of processing in batch mode. Similarly, the cost of the
Adaptor operator must capture the overhead of the conversion of its
input from one mode to another mode.

As shown above, by leveraging the extensibility of Cascades for
adding new operators, implementation rules, and enforcers, the Microsoft
SQL Server query optimizer fully integrated columnstore indexes as
well as new batch mode versions of physical operators, while requiring
no change to the search algorithm. As we will see in Section 2.6, the
extensibility of Cascades has been similarly leveraged to enable the
optimizer to consider plans where operators can exploit multi-core
parallelism, as well as to enable query optimization for distributed
query processing.

2.6 Parallel and Distributed Query Processing

In a DBMS that executes on a single server, the query optimizer needs
to be able to effectively exploit multi-core parallelism to speed up query
execution. We discuss how an extensible query optimizer can generate

2.6. Parallel and Distributed Query Processing 235

plans with operators that execute in parallel in Section 2.6.1. Second, in
analytic database engines, since query execution is done using multiple
compute nodes that need to communicate with each other over the
network, query optimizers must generate distributed query plans that
take into account the cost of data movement across compute nodes.
We show how an extensible query optimizer can handle the challenges
arising out of distributed query processing in Section 2.6.2.

2.6.1 Multi-core parallelism

Database servers often have access to 10s or even 100s of cores that they
can use to run their workload. Therefore, when a query needs to perform
operations such as scan, join, and aggregation on large amounts of data,
executing such expensive operators using multi-core parallelism (i.e.,
running them multi-threaded) can significantly reduce the elapsed time
of the query. However, parallel execution also introduces overheads, such
as CPU, memory, and the cost of synchronization across threads. Since
parallel execution may not always be appropriate for an operator due to
these overheads, the optimizer needs to make a cost-based decision on
the degree of parallelism (DOP), i.e., the number of threads to use, for
each operator in the plan. In this section, we describe how the Exchange
operator, which was first introduced in the context of Volcano [79],
supports parallelism as a general mechanism, and thereby simplifies the
incorporation of parallelism into a plan. Using Microsoft SQL Server as
an example, we also discuss how the optimizer expands its search space
to include plans containing a mix of single-threaded (serial mode) and
multi-threaded (parallel mode) operators by leveraging the extensibility
of Volcano/Cascades frameworks.

Parallelism using the Exchange operator Exchange [79], which is not
a relational operator,® was proposed to handle operations related to
parallelism such as synchronization and flow control, thereby enabling
parallel execution while allowing all other operators in the DBMS to be
designed and implemented single-threaded. Below, we use an example

31t is referred to as a meta-operator in [79], similar to Choose-Plan, which we
discuss in Section 6.2.

236 Extensible Optimizers

based on Microsoft SQL Server to illustrate how the Exchange operator
enables parallelism for single-threaded physical operators.

Figure 2.9a shows an example of a plan with three Exchange opera-
tors. In this plan, the build and probe side of the Hash Join execute
multi-threaded, whereas the Hash Aggregate executes in serial mode.
The mixed execution of parallel and serial mode in this plan can be de-
sirable when the base tables are large, i.e., benefit from multi-threaded
processing, while the join result is small, therefore making it more
efficient to be processed by a single thread. The plan shows two kinds
of Exchange operators: Repartition Streams and Gather Streams. All
Exchange operators follow a producer-consumer architecture. We illus-
trate the behavior of the Exchange (Repartition Streams) operator in
Figure 2.9b. With the Exchange operator, the Hash Join operator essen-
tially becomes a partitioned hash join. Assume there are n producers
and n consumers in the Exchange (Repartition Streams) R.a operator.
Each of the n producer threads scans a subset of the rows from table
R, and depending on the value of the partitioning column R.a, it writes
the row to the buffer of the appropriate consumer thread.

Consumer Consumer
Thread 1 Thread n

Hash
Aggregate

Exchange
(Gather
Streams)

Hash
Build
(R.a)

Exchange

Hash Join (Repartition

(R.a=S.b) I Streams)
. X R.a
| | |
Exchange Exchange | | | .
(Repartition (Repartition | | | |
Stream) Stream) | I i |
R.a S.b . . . I
| l Table Scan I I Table Scan | : Table
| R) | | R) | Scan (R)
Table Scan Table Scan - | [ppp——— |
(R) (s) Producer Producer
Thread 1 Thread n
(a) Example plan with Exchange (b) Illustration of the producer/consumer
operators model of Exchange (Repartition Streams)

for the pipeline of operators that builds the
hash table for the Hash Join

Figure 2.9: Parallelism using Exchange operators

2.6. Parallel and Distributed Query Processing 237

Each consumer thread, i.e,. a thread of the Hash Join operator
which builds the hash table, consumes rows from its respective buffer,
applies the hash function, and inserts the row into a bucket of the hash
table. After a consumer thread of the hash build completes processing
all the rows in its partition, it requests the input from the probe side to
perform the hash probe. Similarly, the Ezchange (Repartition Streams)
S.b operator enables parallelism for the hash probe of the Hash Join.
Note that the build and probe side use the same partitioning function,
and the consumer thread processes the rows from the probe side of
the corresponding partition of the build side. Since the necessary logic
of partitioning and flow control are encapsulated inside the Exchange
operator, the Hash Join operator itself is executed single-threaded by
each consumer thread. The Ezchange (Gather Streams) operator has n
producers and 1 consumer, and it gathers the output rows from the n
threads of the Hash Join probe into a single output stream. The output
rows are consumed by the single-threaded Hash Aggregate operator.

The Exchange operator follows the same iterative execution model
as described in Section 1 with Open, GetNext, Close methods [79]. In
the Open call, the Exchange operator allocates its buffers and initializes
threads for its child operators. In the GetNext call, the consumer thread
in the Exchange operator returns one row from the respective buffer
as described in the above example. When all the threads finish the
processing, the Exchange operator calls Close to clean up its state.

Finally, we note that while the Exchange operator can simplify
the implementation of parallelism, it can still be beneficial to design
and implement multi-threaded operators. For example, with Exchange
operator, each thread would build its own hash table in the Hash Join
operator, which could result in hash tables of variable sizes due to
data skew. In contrast, if the Hash Join operator is designed to be
multi-threaded, it is possible to build a single hash table that supports
concurrent operations, which avoids the above issue with data skew.

Extensions to the query optimizer The support of the mixed execution
modes requires the query optimizer to explore the search space with
serial and parallel mode for each operator in the plan and cost them
appropriately. Microsoft SQL Server integrates the serial and parallel

238 Extensible Optimizers

execution modes into the optimizer by extending the physical properties
(see Section 2.1) of an expression with the execution mode. Consequently,
the optimizer uses the Exchange operator as the enforcer to change
the physical property from serial to parallel or vice versa, and the
corresponding enforcer rules are added to support enforcing the required
physical property. For example, if the required physical property of a
parent expression (e.g., the Hash Aggregate in the example) is serial
mode, the optimizer can either request the input of the expression to
execute in serial mode, or it can require the input with the physical
property of parallel mode and insert an Exchange operator in-between
that changes the execution mode from parallel to serial. The extensibility
mechanisms in Cascades, including physical properties, enforcers, and
rules, enable parallelism to be supported without requiring any change
to the search algorithm. We note that new cost functions are needed to
reflect the cost of parallel processing for operators in parallel mode as
well as that of the Exchange operator.

2.6.2 Distributed query optimization

Data analytics in enterprises analyze large volumes of data, whose size
can range to petabytes or more. In the cloud, data used for analysis
is stored in a blob storage service and analyzed using a distributed
query processing engine [150]. A distributed query processing compute
engine consists of a set of compute nodes where each compute node is
a DBMS process. For a given a query plan, these compute nodes need
to work together to execute the operators in the plan and compute the
results of the query. There is also a control node that is responsible
for generating the plan for the SQL query, and collecting the (partial)
results produced by the compute nodes and returning the final results
of the query to the application.

An example of the architecture of a cloud data analytical engine for
Microsoft Fabric Synapse Data Warehouse (Fabric DW for short), is
shown in Figure 2.10. Each compute node is a Microsoft SQL Server
DBMS process. The "Frontend" SQL Server is the control node. This
node has the distributed query optimizer, referred to as the Unified
Query Optimizer (UQO), that generates the plan for the query. The

2.6. Parallel and Distributed Query Processing 239

Frontend SQL Server

Y
— Parser

: Execution
Algebrizer Wrappor
Shell DB P S
t
Query Optimizer Plan

Results l

[I 1

Distributed Compute Platform (DCP)

Y

Compute node Compute node Compute node
(sQL Server) (sQL Server) (SQL Server)

; ; :

‘ Data center network

Storage — — —

[— [S— [—]
service (Azure - - ces -
Blob Storage)

Figure 2.10: Architecture of Microsoft Fabric Synapse Data Warehouse

Distributed Compute Platform (DCP) is responsible for scheduling
the execution of operators on the compute nodes and for moving data
among compute nodes during execution. More details on Fabric DW
and its query optimizer may be found in [4, 24].

Challenges in distributed query optimization

Given the large amounts of data that need to be analyzed, a natural
approach is to take advantage of data parallel computation by having
multiple compute nodes, each executing the query plan on a subset
of the data, and thereby improving the response time of the query.
While such a strategy is possible for a plan containing only a simple
operator such as Scan, it is much more challenging for commonly used
operators in analytic queries such as Join and group-by. This is because
with distributed execution of queries, these operators may require data
movement between compute nodes over the data center network, which
can be expensive and may dominate the time to execute the query.
Consider Query 4 below:

Query 4

SELECT *
FROM R INNER JOIN S
ON R.a = S.a AND R.b = S.b

240 Extensible Optimizers

Suppose table R is retrieved from the storage service and is dis-
tributed, i.e., split into independent subsets by hashing each row in
R using a hash function on the columns {R.a, R.b}. We denote this
distribution as Hash ({a, b}). Consider the operator Hash Join (R, S).
Since the query is an equi-join involving columns R.a and R.b, each
compute node executing this operator can join a different subset of R,
corresponding to a distribution of R. However, to guarantee correctness,
we need to ensure that all rows of S that could potentially match rows
in that distribution of R being processed by that compute node are
available. There are different ways to guarantee the above property. For
example, we could Broadcast S, i.e., send a full replica of S, to each
compute node. Alternatively, we could first hash distribute S on Hash
(S.a, S.b) and send each distribution of S to the corresponding compute
node, referred to as Shuffle. The decision of which alternative is more
efficient depends on the cost of data movement required, as well as the
cost of computation on the compute nodes. For example, when R is a
large table distributed on non join key columns, if S is small, then the
option to Broadcast S can be more efficient compared to the alternative
which requires a Shuffle of R and S. However, when R and S are both
large, using Shuffle of both tables on the join keys can be more efficient.
Similar choices of Shuffle vs. Broadcast also arise with intermediate
results of the query.

It may appear that one could find the best serial plan, i.e., one that
ignores how the data is distributed and the cost of data movement, and
then use data parallelism to execute the best serial plan. However, it has
been shown that such an approach can lead to poor quality plans [181].
For example, a join order that is sub-optimal in a serial plan can become
the optimal join order with distributed query execution because it
performs much less data movement. Thus, the search space of alternative
plans that a distributed query optimizer must consider can become very
large due to alternatives arising from choices in distributions.

Extensions to the query optimizer We use the Unified Query Opti-
mizer (UQO) [24] to describe how an extensible optimizer built using
the Cascades framework handles distributed query optimization. Later
in this section, we briefly discuss distributed query optimizers in other

2.6. Parallel and Distributed Query Processing 241

cloud analytic engines. UQO consists of a set of extensions to Microsoft
SQL Server’s query optimizer that enables it to generate distributed
query execution plans in a cost-based manner. To derive the cost of a
plan, the optimizer uses statistics on the data stored in a shell database
on the frontend SQL node, i.e., control node. A shell database consists of
all metadata of the database (but not the actual data) required for plan
generation and costing, including information about tables, columns,
indexes, materialized views, and statistics.

The key changes for enabling distributed query optimization include
introducing: (1) New physical properties for capturing information re-
lated to the distribution for an expression in the memo (see Section 2.2.1)
(2) Implementation rules for operators such as Join, Group-by, and
Union, that leverage distribution information of its inputs, as well as
create requests for the required distribution property of its inputs. (3)
An enforcer rule that guarantees that the required distribution prop-
erties are satisfied by an expression. Below, we briefly describe each
of these key changes. We use the example Query 4 introduced earlier
to illustrate the concepts. The table R(a, b, ¢) is distributed using
Hash({a,b}), whereas table S(a, b, d) is distributed on Hash({a}).

Distribution properties

The output of any expression, whether the Scan of a table from the
storage service, or an intermediate expression of the query, has Distri-
bution properties that capture how that expression is distributed. Here,
we discuss a subset of the ways an expression may be distributed: (1)
Serial: the expression is not distributed, e.g., this is what would be
expected for the final query result. (2) Replicated: data is replicated on
all compute nodes. This is useful for a broadcast join. (3) Hash(cols):
Data is hash-distributed on cols. This is important for a distributed
Hash Join. (4) Any(cols): Data is distributed on cols with an unknown
distribution function. This is useful for a group-by (cols) which can
take advantage of any distribution on its grouping columns and thus,
it may require its child satisfies Any (cols). Finally, we note that if an
expression is distributed on a set of columns C, e.g., Hash (C) or Any
(C), then any two rows that agree on C are part of the same distribution.

242 Extensible Optimizers

UQO uses distributions as derived properties to determine how an
expression is distributed. It also uses distributions as required property
to request during the optimize group (OptGrp) task of the Cascades
search algorithm (see Section 2.3.3).

As explained in the context of Algorithm 2, an optimization task of
a group with a required physical property (e.g., sort order) may result
in tasks with requirements of specific physical properties propagated.
The distribution physical property behaves similarly. Assume that a
group (e.g, Join (R,S) in Query 4) has the required distribution as
Hash distribution on the column {R.a, R.b}. It can generate tasks for
optimizing Scan(R) with a required hash distribution on either {a,b}, or
{a}, or {b}. The above constraint on hash distribution is expressed in
UQO as Any({a,b}). To facilitate the alternative of broadcast join, an
optimization task for Scan(R) is also created with a required distribution
for Replicated. Given the equi-join constraint, tasks for Scan(S) with
the required distribution constraint Any({a,b}) as well as Replicated
are created.

Implementation rules

Once the optimization tasks for Scan(R) and Scan(S) are completed,
we must consider implementation rules for Join(R,S). Specifically, let
us consider distributed hash join. For this join implementation to be
correct, it is crucial that both R and S are hash distributed on an
identical set of columns. Thus, if Scan(R) were hash distributed on
{a} and Scan(S) is hash distributed on {a,b} (i.e., two sides of the
Join with different distributions), then the propagation of the required
distribution property will be incorrect. For broadcast join, one of R or
S must have the distribution property of Replicated.

In addition to ensuring correctness, another important consideration
is pruning the many alternatives for distribution. As implied by the
example above, all identical subsets of columns of equi-join columns of
the two relations would result in a correct implementation of distributed
hash join. However, in a distributed join scenario, alternatives that
avoid data movement are the alternatives that need to be considered.
For example, we leverage the distributions of the base tables when

2.6. Parallel and Distributed Query Processing 243

appropriate to reduce data movement. This is analogous to what was
done for handling interesting physical orders. For example, if the result
of Scan(R) was hash distributed on {a}, of special interest are cases
where Scan(S) is distributed on {a} (and vice versa). If neither Scan(R)
nor Scan(S) was hash distributed on {b}, then that alternative for
partitioned hash join of Join (R,S) on {b} is unattractive as that
alternative requires data movement for both R and S. Thus, {a} will be
considered as an example of an interesting distribution for Scan(R) and
{b} will not be considered an interesting distribution. The intuition is
similar to that for Merge Join with a sorted relation on join column
for one of the relations. For more information on how interesting
distributions are leveraged to reduce the space of alternatives considered
by the optimizer for Join, group-by and Union, we refer the readers to
[24].

Enforcer for redistribution

To ensure that the constraints of required distribution property for the
optimization tasks are satisfied, the query optimizer for the distributed
queries needed to introduce a new enforcer. This enforcer inserts a
physical Redistribute operator, which performs data movement and
guarantees that the required distribution properties are satisfied. Ex-
amples of redistribute operations include Merge Move that coalesces all
data that resides in multiple distributions into a single node (e.g., to
prepare the final output of the distributed query at the frontend SQL
node), Broadcast Move to transfer data from each source distribution
into all the target nodes to support the Replication distribution require-
ment, and Hash Mowve that hashes all data in the source distributions
and sends them to the appropriate target distributions. In our example
Query 4, if the required distribution for the second input of Hash Join(R,
S) is Hash({a,b}), then a Hash Move Redistribute operator may need to
be applied to the result of Scan(S) to ensure this property. Figure 2.11
illustrates different plans for our example Query 4, for the join between
R and S and illustrates the roles the Redistribute operator plays.

244 Extensible Optimizers

Hash Join Hash Join Hash Join
(R.a=S.a AND (R.a=S.a AND (R.a=S.a AND
R.b=S.b) R.b=S.b) R.b=S.b)

Redistribute Redistribute

(Hash {S.a,S.b}) (Broadcast(S))

1 l l

Table Scan Table Scan Table Scan Table Scan Table Scan Table Scan
(R) (s) (R) (s) (R) (s)

Redistribute
(Hash {R.a})

(a) Redistribute R (shuffle to (b) Redistribute S (shuffle to (c) Redistribute S (broadcast
compute nodes) compute nodes) to all compute nodes)

Figure 2.11: Examples of distributed plans for Query 4. R is distributed using
Hash({a, b}), S is distributed using Hash({a}).

Distributed query optimization in other engines

As we have explained, the distributed query optimizer in Fabric DW
treats the distribution of data and their movement like other aspects
of search space during query optimization. This is why they needed to
introduce the new physical property of distribution. Like interesting
orders, the distribution property can have impact on the choice of the
plan. AWS Redshift [10] too uses cost-based optimization that accounts
for the cost of data movement. For example, if a join key matches the
underlying distribution of both participating tables, the optimizer picks
a plan where each compute node processes the join locally and therefore
avoids unnecessary data movement. Other alternatives explored in
the industry have opted for staged query optimization and use of
runtime adaption instead of holistically considering the impact of data
distribution. For example, Snowflake [50] postpones distribution related
decisions until execution time, e.g., the type of data distribution for joins.
This may be viewed as an example of two-stage query optimization with
the second phase related to distribution and data movement deferred
to execution time when accurate statistics are available. BigQuery [133]
uses an adaptive approach, reminiscent of plan competition [7] (see
Section 6.2). It uses the default operator of distributed hash join where
both the relations execute a shuffle. However, if the data movement
for one of the relations in the join finishes within a pre-determined
threshold due to its small size, the join implementation is switched
to a broadcast join. Thus, BigQuery cancels the second shuffle and

2.7. Suggested Reading 245

replicates the first relation, thus enabling a broadcast join. Although
both Snowflake and BigQuery do not consider as many alternatives
as Fabric DW, the dynamic schemes of the above systems avoids the
potential bad plans chosen by the optimizer due to errors in cost and
cardinality estimations.

2.7 Suggested Reading

Clitation numbers below correspond to numbers in the References section.

[83] G. Graefe et al., “The Volcano Optimizer Generator: Extensibil-
ity and Efficient Search,” in Proceedings of IEEE 9th international
conference on data engineering, pp. 209-218, 1993

[79] G. Graefe, “Volcano - An Extensible and Parallel Query Evaluation
System,” IEEFE Transactions on Knowledge and Data Engineering,
vol. 6, no. 1, 1994, pp. 120-135

[80] G. Graefe, “The Cascades Framework for Query Optimization,”
IEEFE Data Eng. Bull., vol. 18, no. 3, 1995, pp. 1929

3

Other Extensible Optimizers in the Industry

When describing Volcano and Cascades in Section 2, we use Microsoft
SQL Server’s query optimizer to illustrate how it implements the ab-
stractions of Cascades and how it leverages extensibility in Cascades to
simplify incorporation of new functionality into the query optimizer. In
this section, we briefly review a few other extensible query optimizers
used in the industry: Starburst (Section 3.1), Orca (Section 3.2), Apache
Calcite (Section 3.3), and Catalyst (Section 3.4). While Orca and Calcite
are based on Cascades and Volcano respectively, Starburst and Catalyst
use different extensibility frameworks. Therefore, for Starburst and Cat-
alyst, we draw comparisons with Volcano/Cascades, whereas for Orca
and Calcite we compare with Microsoft SQL Server’s implementation of
Cascades. Finally, while PostgreSQL’s query optimizer does not possess
the extensibility capabilities' of the other query optimizers discussed in
this section, due to its popularity in the industry, we include a short
review of its query optimizer in Section 3.5.

!The PostgreSQL database is known for its extensibility with respect to data
types, indexing, functions, etc. but its query optimizer is not built using an extensible
framework.

246

3.1. Starburst 247

3.1 Starburst

Starburst is an extensible query optimizer designed for IBM DB2 as
described in [86, 166]. Query optimization in Starburst is done in
distinct phases: parsing and semantic checking, query rewriting and
plan optimization. A key data structure used in Starburst is the Query
Graph Model (QGM), which represents a SQL query. We begin with a
brief description of the QGM.

Query Graph Model The QGM representation is used through all the
phases of query optimization. In the QGM, a box represents a query
block and labeled arcs between boxes represent predicates across blocks.
Each box contains information about predicates and properties such as
orderedness of the results of that query block. To illustrate the QGM,
consider Query 5 shown below that finds all parts from the category
’SSD’ in the orders, where there is insufficient quantity of the part in
the inventory to meet the order.

Query 5

SELECT partkey, qty
FROM orders Q1
WHERE Q1.partkey IN (
SELECT partkey
FROM inventory Q3
WHERE Q3.category = ’SSD’
AND Q3.availqty < Ql.qty)

Figure 3.1a shows the QGM for the above query. Each SELECT
block in the query appears as a boz in the QGM. The head of the box
describes the output relation produced by the operations represented
by the box. For example, in the top box, T'1, with columns partkey
and gty is the relation generated by the box OP1. The body of the box
represents the operations. Each vertex represents an iterator, which
may be a stored relation (annotated as F) or a quantifier (annotated as
3 or V). For example, in box OP1, the vertex Q)1 represents access to
the stored table orders, and ()2 represents access to the intermediate
relation T2 generated by O P2 and has the 3 quantifier corresponding to
the IN predicate. Each conjunct of a predicate is represented by a line

248 Other Extensible Optimizers in the Industry

head —| partkey, qty | T1 OP1 partkey, gty | T1 OP1
o Q1(F) Q2(3) 5 Q1(F) Q3(F
ody —»| -
v Q1-partkey = Q2. partkey] Ql.partkey = Q3.partkey o]
B -
&
QLLaty > Q3.availqty Q3.category = ‘SSD’
partkey | T2 oP2
Q3(F
5
—]
Q1.qty > Q3.availgty w
Q3.category = ‘S50’
orders inventory orders inventory
(a) Original QGM (b) QGM after applying rewrite rules

Figure 3.1: Example of Query Graph Model (QGM) in Starburst

connecting the vertices, and a loop represents a single table predicate,
e.g., for predicate Q3.category = ’SSD’.

Rule rewrite phase In the query rewrite phase, rules are applied
to transform a QGM into another logically equivalent QGM. A rule
is defined by a pair of functions: a condition function and an action
function. Each function is passed a context, which corresponds to
either a box in the QGM (i.e., a SELECT block) or a quantifier. The
condition function performs a check and returns True/False. If the
condition function evaluates to True, the action function performs the
transformation. The outer loop of the query rewrite phase is driven
by a search strategy that traverses the QGM (both depth-first and
breadth-first strategies are supported), and provides the context (box or
quantifier) for the rules to work on. The rule engine decides which rules
to apply and in what order. The control strategies for rule application
include: sequential, priority, and statistical, where the next rule is chosen
randomly based on a user defined probability distribution.

Figure 3.1b shows the QGM for the above query after applying the
rewrite rule that replaces a nested subquery with a join. Note that the
modified QGM is a single block query. In general, when an alternative
QGM is generated, it may not be possible to determine if it will be more
efficient without using cost estimation, which is not available during

3.1. Starburst 249

the query rewrite phase. Hence, in such cases, Starburst maintains both
(in general multiple) alternatives as children of a CHOOSE operator.
During the plan optimization phase described below, each QGM is
optimized and the one with lowest cost is selected. The CHOOSE
operator is similar to Choose-Plan operator of Volcano/Cascades [45]
discussed in Section 6.2.

Plan optimization phase In the plan optimization phase, an execution
plan is chosen for a QGM. In Starburst an execution plan is constructed
bottom-up using a set of grammar-like production rules [123]. The
“terminals” of these rules are physical operators, referred to as LOw-
LEvel Plan OPerator (LOLEPOP). They include ACCESS (access
methods such as indexes and heaps), GET (for each row retrieves a set
of columns from a table), JOIN (Hash, Nested Loops and Sort-Merge),
SORT. Rules are named, parameterized objects referred to as STrategy
Alternative Rules (STARs for short). STARs are the “non-terminals”
in the grammar, and each STAR defines an execution plan or sub-plan.
A STAR can reference other STARs or LOLEPOPs.

Every table, either a base table or the result of a sub-plan, has
three types of properties: a relational description, a set of physical
properties such as the order of rows, and a set of estimated properties
such as cardinality and cost. The properties required for a relation are
ensured using a special Glue mechanism. The Glue mechanism can add
an operator that guarantees the required property, e.g., if one of the
inputs to a Merge Join is not ordered appropriately, Glue introduces a
SORT operator on the result of the input. It returns the lowest cost
alternative among all alternatives that meet the required property.

An example STAR called JoinMethod that defines three kinds
of join methods is shown in Figure 3.2. JOIN is a LOLEPOP and
JoinMethod is a STAR. A JOIN takes the following parameters: the
join type (Nested Loops, Sort-Merge, Hash Join), outer input (T1),
inner input(T2), join predicates, and residual predicates.

The relational description of a plan, its estimated cost, and physical
properties (e.g., order) are propagated as plans are built bottom-up.
When a STAR rule is derived, comparable plans that represent the
same logical and physical properties but have a higher cost are pruned.

250 Other Extensible Optimizers in the Industry

JoinMethod(T1, T2, P) =
— |JOIN (NL, Glue(T1, ¢), Glue(T2, JP U IP), JP, P — (JPU IP))
JOIN (MG, Glue(T1[order = Cols(SP) M Cols(T1)], ¢),

Glue(T2[order = Cols(SP) m Cols(T2)], IP),
SP, P — (IPU SP)) IF SP£¢

— JOIN (HA, Glue(T1, @), Glue(T2, IP), HP, P — IP) IF HPzop

Where

P = all eligible predicates

JP = join predicates

SP = sortable join predicates (p € JP of the form ‘coll op col2’, where
coll € Cols(T1) and col2 € Cols(T2) or vice versa)

IP = predicates eligible on the inner only

HP = all hashable predicates (p € JP of the form expr(Cols(T1)) =
expr(cols(T2))

Figure 3.2: Example STrategy Alternative Rule (STAR) that can generate a plan
with one of the three different join methods.

Join enumeration in Starburst is similar to System R’s bottom-up
algorithm [117, 178] with some differences. For example, when a STAR
corresponding to a join is applied, what constitutes a joinable pair
of relations is expanded to also allow cross-products when the input
relations are small. Another example is to allow composite inners, i.e.,
where the inner side is a join, thereby allow bushy plans.

Comparison with Volcano/Cascades There are several similarities
and differences between Starburst and Volcano/Cascades. We note
that Starburst uses two distinct rule engines, one per phase, whereas
in Volcano/Cascades there is a single rule engine that supports both
transformation and implementation rules.

The mechanism of specifying a query rewrite rule in Starburst and
a transformation rule in Volcano/Cascades share similarities: the (con-
dition, action) function pair and (CheckPattern, Transform) functions
respectively serve the same purposes. Therefore, in both cases arbitrary
checks and transformations can be encoded. Further, both allow control

3.2. Orca 251

for the order in which rules are applied: using promise in Cascades and
rule priority in Starburst. However, unlike the Volcano/Cascades frame-
work which does goal-driven application of rules, Starburst’s rewrite
phase applies rules in a forward chaining manner. Since the query rewrite
phase in Starburst is not cost-based, this module must either retain
all QGM alternatives generated via rule applications or heuristically
prune rule applications and thereby potentially compromise plan quality.
However, it is worth noting that since the condition function’s code of
a rewrite rule can include arbitrary checks, in principle it can leverage
information about cardinality and cost for heuristic pruning.

The separation into two distinct phases is common to Starburst and
Volcano, but is different from Cascades where the generation of physical
plans is interleaved with the application of logical transformation rules
in a single phase. Physical plan generation in Starburst is quite different
compared to both Volcano and Cascades. It constructs physical plans in
a bottom-up manner by combining physical operators into trees using
dynamic programming, whereas Volcano and Cascades both use top-
down dynamic programming with memoization. Finally, the satisfaction
of required properties is guaranteed via the Glue mechanism in Starburst,
whereas enforcers provides this capability in Volcano and Cascades.

3.2 Orca

Orca is an extensible cost-based query optimizer for distributed database
systems developed by Pivotal [183]. It serves as the optimizer for two
different analytic database systems: Greenplum Database, a shared-
nothing massively parallel processing (MPP) data warehouse engine,
and HAWQ), a distributed, SQL-compliant query engine on top of
HDFS. Similar to Microsoft SQL Server, Orca is also based on the
Cascades framework, and it uses the same concepts of the memo, logical
transformation rules and implementation rules, property enforcement
using enforcer rules, etc. Below we focus on two main differences between

Orca and Microsoft SQL Server.

Comparison with Microsoft SQL Server’s optimizer First, unlike
Microsoft SQL Server, where the query optimizer is tightly coupled with

252 Other Extensible Optimizers in the Industry

the database server, Orca is designed to work with multiple DBMSs,
including Greenplum Database and HAWQ, and therefore runs as a
standalone process. In order to support such decoupling from the DBMS,
Orca proposes the Data eXchange Language (DXL), a framework for
exchanging information between the DBMS and Orca. This framework
uses an XML-based language to encode the information such as the input
query, database metadata (e.g., tables and columns), and the output
plan. The database system needs to include translators that consume
and emit information in DXL format, e.g., to convert a query parse
tree into a DXL query, to convert a DXL plan into an executable plan
in the corresponding database system, and to provide metadata. Orca
runs outside the DBMS as a standalone process, and this architecture
provides it the flexibility to be used with any DBMS with the necessary
translators.

Second, as noted in Section 2.3, the Cascades framework is designed
to allow parallelization of query optimization. Orca leverages this ca-
pability and uses multiple CPU cores to parallelize query optimization
to enhance its efficiency [195]. The optimization process is broken into
small work units called jobs. These jobs correspond to different types of
actions, e.g., generating a logically equivalent group expression, gener-
ating an implementation of an expression, finding the lowest cost plan
for a group, etc. Jobs in Orca correspond to the concept of tasks in
Cascades (Section 2.3). Orca tracks the dependency graph of these jobs
and implements a specialized job scheduler to maximize the fan-out of
the jobs for parallel query optimization. An example of a dependency
is that a group expression cannot be optimized until its child groups
are optimized. During parallel query optimization, different concurrent
tasks may issue concurrent requests to modify a group in the memo.
To minimize synchronization overheads, when a task with a goal, e.g,.
exploring the same group, is executing, and a new task with the same
goal arrives, the new task is queued until the current task completes.

3.3 Calcite

In the past couple of decades, there has been a proliferation of spe-
cialized database engines, such as NoSQL engines, column stores, and

3.3. Calcite 253

stream processing engines, that are often used within a single enter-
prise. Hence querying data across these database engines has gained
importance. Apache Calcite [15] provides query optimization and query
execution capabilities over multiple data processing systems such as
Apache Cassandra [93], Apache Hive [97], and Apache Flink [25]. Thus,
Calcite can be used as a standalone database engine that federates
multiple storage and query processing backends. Therefore, with regard
to federated query optimization, it shares similar goals as Orca (see
Section 3.2).

Calcite relies on adapters to access data from a source DBMS.
The adapter allows Calcite to access the metadata information of the
database and allows it to define how data should be retrieved from
the source DBMS (i.e., “access methods”) for a given Calcite query.
Note that an access method in this context corresponds to a relational
expression on the source database. A simple example is that a Table
Scan (T) operator which returns columns A and B in the Calcite query
may get converted to a query “SELECT A, B FROM T” on a relational
engine such a Apache Hive. Observe that the execution of this query
on the relational engine might itself rely on access paths supported by
that engine.

Comparison with Microsoft SQL Server’s optimizer Calcite has an
extensible query optimizer that is based on the Volcano framework. Its
extensibility with respect to transformation rules is therefore similar
to Orca and Microsoft SQL Server. Calcite’s query optimizer takes
advantage of the extensibility of Volcano to generate plans for federated
queries, e.g., a query that references one table residing in a Flink
database and a second table residing in Hive. Calcite’s rules, e.g., its
CheckPattern function for a rule pertaining to access methods, must be
aware of the source DBMS’s capabilities and restrictions. For example,
Apache Cassandra partitions data by a subset of columns in a table, and
within each partition, sorts the rows based on another set of columns.
Hence, a rule that pushes a Sort in the query into a Sort in Apache
Cassandra must be aware of the above properties of partitions, and
add appropriate checks before transforming the expression. The Calcite
query optimizer provides a cost-based, top-down dynamic programming

254 Other Extensible Optimizers in the Industry

algorithm similar to Volcano’s cost analysis phase. Calcite also provides
the capability of multi-stage optimization, similar to that described in
Section 2.4.

Finally, we briefly mention Substrait [190], a format for describing
compute operations on structured data. It consists of a formal specifica-
tion and a cross-language binary representation. Substrait can be used
for scenarios where the specification of a computation on structured data
must be communicated across different systems. For example, in the
context of query optimizers for federated and distributed databases such
as Calcite and Orca, Substrait can be used to serialize and communicate
a plan between the optimizer and the execution engine.

3.4 Catalyst

Spark SQL is a module in Apache Spark [9] that integrates relational
processing with Spark’s Scala based functional programming API. Cata-
lyst is an extensible optimizer for Spark SQL and has been open-sourced
as part of Apache Spark. Catalyst is built using Scala, a functional
programming language also used for developing Spark SQL. The input
query is represented as a Scala tree object where the nodes are operators.
Catalyst contains a library for representing and manipulating trees.

Comparison with Volcano/Cascades Similar to Volcano and Cascades,
Catalyst allows database engine developers to add a set of transforma-
tion and implementation rules. A rule in Catalyst is a function that
transforms one tree into another. Although, in general, a rule may re-
quire expressing arbitrary code on the input tree to check applicability
of the rule (similar to the CheckPattern function in Volcano/Cascades),
for many rules the built-in pattern matching functions of Scala can
be used to find and manipulate sub-trees, thereby making such rules
concise to express.

However, in contrast to Volcano and Cascades, there are key dif-
ferences in the search algorithm. In Catalyst, the search algorithm
is broken down into a sequence of phases shown in Figure 3.3. The
analysis phase resolves tables and columns referenced in the query by
consulting the database catalog, determining types of expressions, etc.

3.4. Catalyst 255

Parse Tree Logical Plan OpFlmIZEd Physical Plan
ogical Pla

) Logical Physical Code
] > > -
Analysis Optimization Planning Generation

Data Frame

i

Figure 3.3: Phases of query planning in Catalyst. The shaded ovals are Catalyst
trees.

The logical optimization phase applies a set of transformation rules,
such as predicate push down, null propagation, and constant folding,
to the input tree, resulting in a modified tree. These rules are applied
iteratively until no more rules can be applied. Since the application of
transformation rules in this phase are not cost based, rules in this phase
are limited to those that are almost always beneficial in practice, similar
to simplification rules in Volcano/Cascades described in Section 2.4.
The physical planning phase takes a logical tree and generates one or
more physical plans. This phase uses a combination of cost-based search
as well as heuristics. Some implementation rules such as pushing opera-
tions from the logical plan into data sources that support predicate or
projection push down (similar to Orca and Calcite), that are considered
always beneficial to apply are also applied during the physical planning
phase. Due to the separation of search into phases described above,
the space of plans that are explored in a cost-based manner can be
significantly smaller compared to Volcano and Cascades, potentially
leading to loss in plan quality.

The final step of code generation is orthogonal to how a query
optimizer generates the plan (as noted in Section 1), and in principle,
could be applied to the physical plan generated by any query optimizer.
In Catalyst, the code generation phase is performed at query execution
time. It generates Java bytecode corresponding to the physical plan.
For this purpose, Catalyst relies on a feature of the Scala language,
quasiquotes, using which it programmatically constructs an abstract
syntax tree (AST) in Scala. The Scala compiler then generates bytecode
from the AST.

256 Other Extensible Optimizers in the Industry

3.5 PostgreSQL

PostgreSQL is a widely used open-source database system. It is recog-
nized for its extensibility with respect to user-defined types, user-defined
functions, and indexing capabilities [8, 187]. This has enabled database
engine developers to build extensions for richer data types beyond the
native data types, such as spatial data, full text, and arrays. Developers
have also leveraged extensibility to build new kinds of indexes for native
data types, e.g., bitmap indexes, partial indexes. However, with respect
to query optimization, unlike other query optimizers described in this
section, PostgreSQL’s query optimizer is not designed for extensibility
with respect to transformation rules. Rather, the query optimizer follows
an approach similar to System R’s query optimizer described in Sec-
tion 1.2. For completeness, we will briefly discuss the broad architecture
of the PostgreSQL’s optimizer.

Query optimization in PostgreSQL is split into three main stages:
(1) query flattening, (2)scan/join planning, and (3)post scan/join plan-
ning [169]. We review each of these steps below, followed by a comparison
with Volcano/Cascades.

Query flattening In this step, the optimizer performs a series of
transformations to the parsed query tree such as replacing a reference to
a view with the view’s definition, eliminating an uncorrelated subquery
by “pulling up” the relations referenced in subquery into the outer
block of the query, simplifying constant expressions, representing a
WHERE clause in a canonical form, etc. Similar to simplification rules
in Volcano/Cascades (Section 2.4), these transformations are expected,
but not guaranteed, to improve the quality of the final plan found by
the optimizer. The following Query 6 illustrates an example rewriting
performed by the optimizer.

For Query 6, the optimizer eliminates the subquery in the FROM
clause. For the rewritten query, the optimizer has an opportunity to
find an efficient plan joining the orders and lineitem tables. We note
that such rewrites are only attempted when the subquery does not use
aggregates, GROUP BY, or DISTINCT.?

2In Section 4.5, we discuss transformation rules for eliminating subqueries.

3.5. PostgreSQL 257

Query 6
SELECT o_orderkey, L.1_orderkey, L.1_linenumber

FROM orders,
(SELECT 1_orderkey, 1_linenumber
FROM lineitem
WHERE 1_shipmode = ’AIR’) as L
WHERE orders.o_orderkey = L.1_orderkey

-- Query after rewriting

SELECT o_orderkey, 1_orderkey, 1_linenumber
FROM orders, lineitem
WHERE o_orderkey = 1_orderkey AND 1_shipmode = ’AIR’

Although flattening can help significantly in the above cases, its
scope is limited. For example, flattening is not performed when the
subquery is correlated, the query contains outer joins, or when the
number of relations in the subquery exceeds a threshold. In these cases,
the subquery must be optimized independently. This is achieved by
recursively invoking query optimization on the subquery.

Scan/join planning In the scan/join planning phase, when the number
of relations referenced in the query is below a predefined threshold,
the optimizer uses bottom-up dynamic programming to produce the
optimal join order similar to the approach in System R [178] (described
in Section 1.2). When the number of relations in the query is above the
threshold, the optimizer switches to genetic optimization (geqo) search
strategy [171] for efficiency.

Post scan/join planning In the post scan/join planning phase, the
optimizer determines the physical operators to use for any remaining
logical operators in the query and produces the final plan. The operators
handled in this phase include GROUP BY and aggregation, window
functions, DISTINCT, ORDER BY, and LIMIT. Each logical operator
is optimized in a cost-based manner by considering alternative physical
operators and choosing the alternative with the lowest cost.

Comparison with Volcano/Cascades In PostgreSQL the separation
of scan/join planning from query flattening and post scan/join phase

258 Other Extensible Optimizers in the Industry

prevents the exploitation of important transformations such as the
reordering of GROUP BY and joins, and decorrelation of correlated
subqueries (see Sections 4.4 and 4.5). This results in a reduced search
space of plans and therefore can result in missing out plans with lower
cost. Furthermore, in PostgreSQL the transformations are applied in
a fixed order. This can also result in missed opportunities for better
plans. For example, in the post scan/join planning phase, the choice of
physical operator for GROUP BY is determined before ORDER BY.
However, if the ORDER BY delivers the ordering of rows required by the
GROUP BY, then a potentially lower cost and lower memory footprint
alternative (e.g., using Stream Aggregate rather than Hash Aggregate)
might be missed. In contrast, the Volcano/Cascades frameworks apply
rules (including enforcers) in a goal-driven manner so that many more
potential alternatives can be considered.

3.6 Suggested Reading

Clitation numbers below correspond to numbers in the References section.

[123] G. M. Lohman, “Grammar-like Functional Rules for Representing
Query Optimization Alternatives,” ACM SIGMOD Record, vol. 17,
no. 3, 1988, pp. 1827

[166] H. Pirahesh et al., “Extensible/Rule based Query Rewrite Op-
timization in Starburst,” ACM Sigmod Record, vol. 21, no. 2, 1992,
pp. 3948

[183] M. A. Soliman et al., “Orca: a Modular Query Optimizer Ar-
chitecture for Big Data,” in Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pp. 337-348, 2014
[9] M. Armbrust et al., “Spark SQL: Relational Data Processing in
Spark,” in Proceedings of the 2015 ACM SIGMOD international con-
ference on management of data, pp. 1383-1394, 2015

[15] E. Begoli et al., “Apache Calcite: A Foundational Framework for
Optimized Query Processing over Heterogeneous Data Sources,” in
Proceedings of the 2018 International Conference on Management of
Data, pp. 221230, 2018

4

Key Transformations

In Section 2 we described a framework for an extensible query optimizer.
However, an extensible query optimizer framework only gets its power
when equipped with the right set of rules. While the application of
a single rule can result in an expression with lower cost, it is the
successive application of multiple rules driven by the search algorithm
(Section 2) that realizes the full power of an extensible optimizer. In
this section, we review a sample of the key logical transformation
rules and implementation rules. We focus on a relatively small set of
rules that are commonly used in practice. We discuss rules related to
access path selection (Section 4.1), inner joins (Section 4.2) and outer
joins (Section 4.3), group-by (Section 4.4), subqueries (Section 4.5),
and a few advanced rules (Section 4.6) related to star and snowflake
queries, sideways information passing, user-defined functions (UDFs),
and materialized views. We also provide references to a few other
important transformations not covered in this work.

As noted in Section 2.1, a rule is defined by the Check Pattern and
Transform methods. C'heckPattern checks if the rule is applicable
to the given expression. If it returns True, the Transform method
is called on the expression, which performs the actual transformation.

259

260

Key Transformations

When describing the rules in this section, we use pseudocode for the
CheckPattern and Transform methods as well as examples.

Table 4.1 summarizes the notations used in this section.

Table 4.1: Notation used in figures and pseudocode of rules

Nested Loop Join
Index Scan

Notation [Definition
Notations in figures

Join Inner join

LOJ Left outer join

ROJ Right outer join

FOJ Full outer join

LogOpAnd Logical operator AND

Filter Filter operator

Select Project operator

Agg, GroupBy(Cols) Group by Cols columns with aggregate function Agg

Get Logical operator to access a table

Index(Colsy, Colsa) Index access with key columns Cols; and included
columns (Colssz)

Key Lookup Phyiscal operator to retrieve the row by the key of a
table

Hash Join Physical operator Hash Join

Physical operator Nested Loop Join
Physical operator Index Scan

LogOpJoin(left, right, joinCond)
LogOpSemiJoin(left, right, join-
Cond)

LogOpGroupBy (expr, cols, aggs)
LogOpLOJ(left, right, joinCond)
LogOpROJ(left, right, joinCond)
LogOpFOJ(left, right, joinCond)
LogOpApply(left, right, joinCond)
LogOpGet(expr)
LogOpSelect(expr, pred)
LogOpFilter(left, right, pred)
LogOpProject(expr, columns)
LogOpAnd(left, right)
LogOpOr(left, right)
LogOpSubquery(expr)
PhyOplIndexSeek(index)
PhyOplIndexScan(index)
PhyOpHashJoin(left, right, pred)
PhyOpStreamAggregate(expr,
groupByCols, agg)

Index Seek Physical operator Index Seek

Notations in pseudocode
expr expression with logical and/or physical operators
expr.root root operator of expr
expr.left left child of expr, e.g., used in join, predicate filter
expr.right right child of ezpr, e.g., used in join, predicate filter
expr.child(i) it" child of expr, e.g., used in predicate filter, aggregate
expr.pred predicate filter(s) on expr, which is also an expression
expr.quantifier quantifier on expr if any, e.g., used in predicate filter
expr.cols set of columns in expr
expr.aggs set of aggregates in expr

Logical operator Inner Join
Logical operator Semi-join

Logical operator Group By with groupby columns
Logical operator Left Outer Join

Logical operator Right Outer Join

Logical operator Full Outer Join

Logical operator Apply

Logical operator Get

Logical operator Select with predicate filters
Logical operator Filter with a single predicate
Logical operator Project

Logical operator AND, e.g., used in predicate filter
Logical operator OR, e.g., used in predicate filter
Logical operator for a subquery

Physical operator Index seek

Physical operator Index Scan

Physical operator Hash Join

Physical operator Stream Aggregate

4.1. Access Path Transformations 261

4.1 Access Path Transformations

A SQL query expresses a logical relational expression over a set of
base relations. Typically, these base relations are tables stored in the
database.! Access methods, such as indexes and heaps, which are per-
sistent data structures, provide a mechanism for the database engine
to access the data stored in base relations. In the discussion below
we focus on B+4-trees which are commonly used in most DBMSs. The
physical operator used to access a heap is called Table Scan, whereas
the Index Scan, Index Seek and Key Lookup operators are used to scan
an index, seek an index, and perform a key lookup on a primary key
index respectively. For a brief overview on access methods, we refer the
readers to the Appendix. A more complete discussion is available in
[120].

Access path selection focuses on choosing the access method(s)
that minimize the cost of retrieving the requested data from the base
relations [178]. Since the cost of accessing data using different access
methods can vary widely, it is important that the transformation rules
are able to generate multiple alternatives for retrieving data from the
base relations for a given expression.

We illustrate some alternatives for access path selection using an
example of a single-table query. Consider a table S(id, a,b, ¢) with four
columns, where id is the primary key of table S, and suppose the
following B+-tree indexes exist on the table:

e Index I,4 is a primary key clustered index where the key column

of the index is the id column.

e I, and I are single-column non-clustered indexes where the key

columns are a and b respectively.

o I,(c,b) is a non-clustered index where the key column is a and

the include columns are ¢ and b.
o Iy(c,a) is a non-clustered index where the key column is b and
the include columns are ¢ and a.

In data lakes, base relations are stored as files in a format optimized for analytics,
e.g, Parquet. In a federated database, a base relation may correspond to a SQL query
against data stored in a DBMS.

262 Key Transformations

An include column of an index cannot be used to seek values,
however, the value of each include column is available in the index, and
hence can be used for projecting and filtering once the rows have been
retrieved from the index.

Now, consider the following Query 7:

Query 7
SELECT S.a, S.b

FROM S
WHERE S.a > 10 AND S.b = 20

Query 7 retrieves the rows from table S that must satisfy the predi-
cates on both S.a and S.b specified in the WHERE clause. Furthermore,
each row returned must include the columns S.a and S.b. Figure 4.1
illustrates how different access methods can be used to answer Query 7.
The logical query tree corresponding to Query 7 is shown in Figure 4.1a.

e]

|Get($.a, S.b)l | LogOpAnd | |Table Scan | | LogOpAnd | I Index Scan I I S.b=20 I
s | [sa>10] [sb=20] [s] [sa>10] [sb=20] [index(s.a,s.c,5.b)] [5.a>10]
(a) Logical expression of (b) Plan using Table Scan (c) Plan using Index Scan with
Query 7 key column S.a and include
columns {S.c, S.b}
| Filter | INested LoopJoinI I S.b=20 I
I Index Seek I I S.a>10 I I Index Scan I IKey Lookupl Index Seek Index Scan

[Index(s.b, S.c, 5.a)| | s.b=20 | [Index(s.a)] [s:2>10] [Clustered Index (5)] [index(s.b)] [s.b=20] Ilnm

(d) Plan using Index Seek (e) Plan using Index Scan with (f) Plan using index intersection
with key column S.b and in- key column S.a followed by Key of two indexes with key columns
clude columns {S.c, S.a} Lookup of the clustered index on S.a and S.b respectively

Figure 4.1: Plans using different access methods to execute Query 7

Plans using a single access method The query can be answered by
using a Table Scan on table S followed by a Filter where the predicates
in the WHERE clause are applied as shown in Figure 4.1b. Alternatively,

4.1. Access Path Transformations 263

using an Index Scan on the index I,(c, b), we can retrieve the rows where
S.a > 10. Since the column b is an include column, we can then apply
a Filter operator with the predicate S.b = 20 on the retrieved rows to
return the result of Query 7 (Figure 4.1c). Similarly, using an Index Seek
on the index I;(c,a), we can retrieve the rows with S.b = 20 and then
apply the Filter operator with the predicate S.a > 10 on the retrieved
rows as column a is an include column of the index (Figure 4.1d).

Plans combining multiple access methods In some cases, we can
retrieve rows from a single table by combining multiple access methods
on the table. Consider the plan shown in Figure 4.1e. Here, we can
use the index I, to identify the rows satisfying the predicate S.a > 10.
Then for each such row, we use a Key Lookup on the clustered index
I;q to lookup the value of S.b for that row and then apply the Filter
operator with the predicate S.b = 20. Finally, a plan using index
intersection is also possible as shown in Figure 4.1f. Here, we first
retrieve the qualifying rows from I, satisfying the predicate S.a > 10
and the qualifying rows from [satisfying the predicate S.b = 20. We
then intersect these two row sets by performing a Hash Join on the id
column. The index intersection plan can be particularly beneficial when
both predicates individually are not very selective, but their conjunction
is selective, i.e., the predicates are anti-correlated.

The pseudocode and figure of the rule for index intersection are
shown in Transformation 1 and Figure 4.2 respectively.? Since there
can be multiple ways to intersect indexes for a given expression in the
CheckPattern function in Transformation 1. For each such way, the
transformation, i.e., Transform function in Transformation 1, will be
invoked.

Note that index intersection and key lookup can also be used to-
gether resulting in even more complex access path strategies. Since the
effectiveness of these access strategies depends on the selectivity of the
predicates and the cost of retrieval, the optimizer needs to choose the
best index strategy in a cost-based manner.

2We omit the details of this multi-step transformation here. In general, the index
strategy of index intersection can introduce additional logical expressions, including
projections and filters, because suitable post-processing is often required to deliver

264 Key Transformations

Transformation 1 Intersect two indexes to access the required columns
from a table. The outer side index is accessed using Index Scan, and
the inner side index is accessed by Index Seek.

1: function CHECKPATTERN(expr)

2 result < null
3 if expr.root = LogOpGet then
4 cols < ExtractColumns(expr)
5 indexes < GetIndexes(expr.root.table)
6: for index, € indexes do
7 cols1 + GetColumns(index) > outer side
8 for indexs € indexes,indexs # index1 do > inner side
9 colsy + GetColumns(indexs)
10: if cols C cols1 U colsz then
11: if dseekCols C colsy and seekCols is a prefix of
GetKeyColumns(indexz) then
12: result < result U {(index, index2, seekCols)}
13: return True, result
14: else
15: return False, result
16: function TRANSFORM (expr,index1,indexs, seekCols)
17: cols < ExtractColumns(expr)
18: cols1 « cols N GetColumns(index1) U seekCols
19: colsy < ((cols \ cols1) N GetColumns(indexz)) U seekCols

20: left < LogOpProject(LogOpGet(index1), cols1)
21: right < LogOpProject(LogOpGet(indexz), cols2)
22: joinCond < ExztractJoinCond(left, right, expr)
23: return LogOpJoin(left, right, joinCond)

I Join E> | Nested Loops Join |
T ﬂ I Get | I Get | Ilndex Scanl Ilndex Seekl
Figure 4.2: Index intersection Figure 4.3: Join with Index Seek

Using indexes for joins So far our discussion has focused on using
indexes for accessing data from a single table. Indexes can also be used
in joins for seeking the data of the inner side based on the values from

the rows and columns of the requested data.

4.2. Inner Join Transformations 265

the outer side, i.e., an outer reference. In this case, the Join operator
may be implemented using Nested Loops Join. The transformation is
illustrated in Figure 4.3.3 Note that the example of access methods with
Key Lookup shown in Figure 4.1e can be considered as a special case of
using indexes for joins, where the join is a self join. Here, for each row
from the outer side I,, the equi-join on S.id is implicitly applied to the
rows from the inner side by using the Key Lookup operator with the
clustered index on S.

4.2 Inner Join Transformations

The join operator combines rows from two relations and outputs a new
relation, and is widely used in practice. Depending on how the relations
are joined together, ANSI-standard SQL:2003 specifies five types of
logical join operators: inner join, left outer join, right outer join, full
outer join, and cross join. Given a set of relations to join, one of the
most important decisions that the query optimizer needs to make is
join ordering, i.e., determining the cheapest join order from the space
of all join orders (e.g., [178, 185]). Figure 1.4 in Section 1 shows two
different join orders for the same query, one a linear sequence of joins,
and the second a bushy plan. In Section 4.2 and 4.3 we focus mainly on
transformation rules that allow the optimizer to enumerate the space
of join orders for inner joins and outer joins respectively.

Inner join is the most commonly used join type, which outputs a
tuple corresponding to a pair of rows from the joined relations if and
only if that pair satisfies the join condition. Query 8 shows an example
of inner join with the join condition specified in the WHERE clause.
When the join condition is an equality condition, e.g., A.z = B.z in the
example Query 8, the join is referred to as an equi-join.

3We omit the details of this multi-step transformation here. A more accurate
description will require the introduction of the Apply operator (see Section 4.5),
which is a logical operator that invokes the inner side with parameterized input
values, i.e., the values of the join columns of the rows from the outer side. Thus, the
Join operator is first transformed into the Apply operator, and then the expression
and its inputs are further transformed by the implementation rules in the search.

266 Key Transformations

Query 8

SELETC A.x, B.y
FROM A INNER JOIN B
WHERE A.z = B.z

4.2.1 Join commutativity and associativity

We start with the logical transformation rules of join ordering for
equi-joins [63], including:

e Commutativity: A< B = B A

» Right associativity: (Aa B) < C = A (B C)

o Left associativity: A<t (B<C) = (A< B) = C

Transformation 2 shows the pseudocode for the join commutativity
transformation rule and Figure 4.4 shows how the rule transforms
the input expression (expr). To illustrate why join commutativity is
useful, consider the transformed expression B <1 A. If there is an
index on column A.z, then the plan where a Nested Loops Join is used
with an Index Seek on A.z becomes possible, but only after the join
commutativity rule is invoked on the original expression.

Transformation 2 Join commutativity

1: function CHECKPATTERN(expr)
2: if expr.root = LogOpJoin then
return True
else
return False
: function TRANSFORM (expr)
return LogOpJoin(expr.right, expr.left, expr.joinCond)

o] = [

Figure 4.4: Join commutativity

The pseudocode for Join Right Associativity is shown in Transfor-
mation 3. To see why the Join Right Associativity rule can be useful,

4.2. Inner Join Transformations 267

Transformation 3 Join right associativity

1: function CHECKPATTERN(expr)
2: if expr.root = LogOpJoin and expr.left = LogOpJoin then

3: return True
4: else
5: return False
6: function TRANSFORM(expr)
7 newlLeft < expr.left.left
8: joinCond < EztractJoinCond(expr.left.right, expr.right, expr)
9: newRight < LogOpJoin(expr.left.right, expr.right, joinCond)
10: joinCond < EztractJoinCond(newLeft, newRight, expr)
11: newExpr < LogOpJoin(newLeft, newRight, joinCond)
12: return newExpr

Figure 4.5: Join right associativity

consider the example plan on the right shown in Figure 4.5 after the
rule is applied. Suppose C' is a large table, e.g., a fact table in a data
warehouse, and A and B are smaller tables, e.g., dimension tables. In
this case, if both join operators are Hash Joins with table A and B on
the build side respectively, then using a single scan of table C', we can
probe the hash table for B and the resulting output rows can be used
to probe the hash table for A. Such a plan can be efficient when there
is sufficient memory to hold hash tables of A and B.

Enumerating join orders using commutativity and associativity rules
in Volcano/Cascades Join orders of bushy trees can be enumerated by
using right (or left) associativity and commutativity [100]. Consider enu-
merating the join orders of table R, S, T'. Starting from the expression
R ST, Figure 4.6 shows how all the 12 join orders are enumerated
from top left to down right using right associativity and commutativity.

268 Key Transformations

|(R,S),TC T, (R,S) C RS),TI (S,R), T S(R,T)I S,(T,R)l
C

‘ (S, R), T T, (S, R) T, (R,S) (T R), S ->|(R T)Sl
RA C

;blR,(S,T)l T,(S,R)I R T),S R(TS)IkblT(RS)l
C

RS)TI S, (T, R) (T,R),SI

RA

C
5,(8,7) R 51| S5 &7
C

C C
;4 (s,T), R C->| (T, S), R R, (T,) |
A C

(5,), R |

Figure 4.6: Explore join ordering with commutativity (C') and right associativity
(RA). Duplicate expressions derived are marked in gray.

We also observe from the figure that many expressions are derived more
than once. While these duplicate expressions are detected by the search
algorithm in Volcano/Cascades due to memoization (as described in
Section 2) and therefore will not be further transformed, even deriving
these expressions incurs significant overhead in the search, especially
when joining a large number of relations. We note that duplicated
derivation can be avoided in some cases by applying the rules in a
specific sequence [163]. This can be implemented in Volcano/Cascades
by using the guidance mechanism as described in Section 2.

4.2.2 Push-down (pull-up) of filters below (above) join

Selection conditions, also referred to as filters, are common in SQL
queries. Since a filter can reduce the number of rows to be processed by
the operators above the filter, it is often beneficial to evaluate the filter
early in a query plan, especially when the filter is selective. Consider
the following example Query 9:

4.2. Inner Join Transformations 269

Query 9

SELECT COUNT (%)

FROM partsupp, part

WHERE ps_partkey = p_partkey

AND p_size > 10

AND ps_comment LIKE ’%complaintsy’
AND p_retailprice > 2 * ps_supplycost

Because the predicate p__size > 10 only involves the column of part
table, we can filter the rows from the part table with the predicate before
joining them with partsupp. On the contrary, because p_ retailprice >
2 % ps__supplycost involves columns from both part and partsupp table,
this predicate can only be evaluated after the join.

In general, if a filter only involves columns from one child expression
of the join, then the filter can be pushed down to the child expression
while preserving logical equivalence. Observe that after the push-down,
it may be possible to use available access methods on the base table,
e.g., an index, to efficiently retrieve the qualifying rows using a physical
operator such as Index Scan or Index Seek. Since not all filters can be
pushed down, the filters that are not pushed down need to be evaluated
after the join. Note that it is possible that part of the filters are pushed
down to the left child of the join, part of the filters are pushed to the
right child, and the remaining filters are evaluated after the join. The
transformation rule that pushes a predicate filter to the left child of the
join is shown in Transformation 4 and illustrated in Figure 4.7.

Transformation 4 Push down the i*" predicate filter to the left child
of the join

1: function CHECKPATTERN (expr, 1)

2: if expr.root = LogOpJoin and expr.pred(i).cols C expr.left.cols then
return True

else
return False

: function TRANSFORM(expr,i)

expr.left.pred.add(expr.pred(i))

expr.pred.remove(i)

It is not always beneficial to push down a predicate filter below a
join. For example, in Query 9, the evaluation of the LI K F predicate,

270 Key Transformations

| Select | | Select |

Jom I LogOpAnd I [:>

Figure 4.7: Push down the i** predicate filter to the left child of the join.

i.e., ps_comment LIKE '"%complaints%', can be expensive. If the join
of part and partsupp is selective, i.e., it produces only a few rows, then
it can be more efficient to evaluate the LI K E predicate after the join.
Therefore, the push-down of the predicate filter needs to be cost-based.
Conversely, a filter on a base table or a child expression of a join can
be also pulled up above the join if the filter is expensive and the join is
selective.

4.2.3 Physical transformation rules of inner join

Inner joins can be implemented with a variety of join methods, the most
common of which are Nested Loops Join, Hash Join, and Merge Join.
Nested Loops Join is the only join method that applies to arbitrary inner
joins, e.g., if the join predicate is a user-defined function. In contrast,
Hash Join can be used only for equi-joins. Since Merge Join requires its
inputs to be sorted on the join column(s), it can be effective when an
explicit sort operation is not required on the results of one or both of
its inputs. This can happen, for example, if the input is an Index Scan,
where the index’s key column is the join column.

Transformation 5 shows the pseudocode for the implementation
rule of transforming a join into a Hash Join. Note that if the join
predicate has non-equi join predicates, Hash Join can evaluate them
as residual predicates after the join (line 9-10). However it must have
at least one equi-join predicate to be applicable. For example, if the
join predicate is R.a = S.b AND R.c=S5.d AND R.e > R.f, the
function ExtractEquiJoinCond extracts the predicate R.a = S.b AND
R.c = S.d and the residual predicate (in line 9) is R.e > R.f.

4.3. Outer Join Transformations 271

Transformation 5 Transform Join to Hash Join

1: function CHECKPATTERN(ezxpr)
2: if expr.root = LogOpJoin and ExtractEquiJoinCond(expr) # () then
return True
else
return False
function TRANSFORM(expr)
joinPred < ExtractJoinCond(expr)
equiJoinPred < EztractEquiJoinCond(expr)
resPred < SubtractPred(joinPred, equiJoinPred)
return PhyOpHashJoin(expr.left, expr.right, equiJoinPred, resPred)

—_

Finally, we note that prior work has also proposed more specialized
join algorithms that can more effectively exploit the properties of the
join predicates. For example, consider an inner join of relations R and
S that is a band join, i.e., where the join attribute of R falls within a
specified range of the value in the join attribute of S. For example, the
join predicate is of the form R.a —c; < S.b < R.a+ ¢o. Such joins occur
in real-world queries when R.a and S.b represent event timestamps, and
the query is to find all pairs of events that occurred within a specified
interval from each other. Then, a new operator called the partitioned
band join [56] can be used to implement the join efficiently. To add an
implementation rule for the partitioned band join, the CheckPattern
would need to include a check that the expression is a join, and that
the join predicate conforms to the requirements of a band join.

4.3 Outer Join Transformations

Unlike an inner join, where the join result has only matching rows from
the two joined relations, an outer join also preserves the non-matching
rows from one or both of the relations in the join result depending
on the choice of the specific outer join operator. Depending on which
relation the rows are retained from, i.e., left, right, or both, there are
three types of outer joins: left outer join (+), right outer join (—), and
full outer join (+). If a row from a relation is preserved in the outer
join without a match, the NULL value is padded to the join result for
each column from the other relation. Table 4.2 shows two tables Student

272

Key Transformations

Table 4.2: Example of outer joins.

(a) Student table

Student Name Department ID
Alice 1

Bob 2

James 3

Mary -1

(b) Department table

Department ID

Department Name

1

Computer Science

Social Science

Mathematics

2
3
4

Business

(c) Left outer join of Student and De- (d) Right outer join of Student and De-

partment partment
Student Depart- Department Student Depart- Department
Name ment ID Name Name ment ID Name
Alice 1 Computer Alice 1 Computer

Science Science

Bob 2 Social Science Bob 2 Social Science
James 3 Mathematics James 3 Mathematics
Mary -1 NULL NULL 4 Business

(e) Full outer join of Student and De- (f) Left outer join of Department and

partment Student
Student Depart- Department Student Depart- Department
Name ment ID Name Name ment ID Name
Alice 1 Cgmputer Alice 1 Cqmputer

Science Science

Bob 2 Social Science Bob 2 Social Science
James 3 Mathematics James 3 Mathematics
NULL 4 Business NULL 4 Business
Mary -1 NULL

and Department and four examples of outer joins between these two
tables.

As with inner joins, different join orders for outer joins can result
in widely varying costs. Unfortunately, the transformation rules for
join reordering of inner joins do not hold for outer joins in many cases.
Intuitively, different outer join orders can retain different non-matching
rows and the corresponding padded NULLs in the join result. For
example, while an inner join is commutative, an outer join is not. The
left outer join of Student and Department is not equivalent to the left
outer join of Department and Student (Table 4.2c and Table 4.2f). In
the former case, all rows from Student are preserved in the output
whereas in the latter that is not the case.

4.3. Outer Join Transformations 273

4.3.1 Commutativity and associativity

Even though, unlike inner joins, commutativity and associativity prop-
erties do not hold for outer joins, certain forms of these transformations
still apply. Intuitively, if the reordering of the outer joins preserves the
same set of non-matching rows and the corresponding padded NULLs,
the result of the outer joins stays the same. For example, it is possible to
commute a left outer join into a right outer join as shown in Table 4.2d
and Table 4.2f. The corresponding transformation rule is shown in
Transformation 6 and illustrated in Figure 4.8.

Transformation 6 Join commutativity for left outer join

1: function CHECKPATTERN(expr)
2: if expr.root = LogOpLOJ then
return True
else
return False
: function TRANSFORM (expr)
return LogOpROJ (expr.right,expr.left, expr.joinCond)

LOJ — ROJ

Figure 4.8: Join commutativity for left outer join

Similarly, associativity also holds in some cases. One example with
Join Right Associativity for left outer joins is shown in Transformation 7
and Figure 4.9. Similar to inner join (as discussed in Section 4.2), the
transformed expressions can lead to more efficient plans depending on
factors such as cardinality of relations, availability of relevant indexes,
and selectivity of join predicates.

Finally, we list a few examples of the commutativity and associativity
rules for outer joins using the outer join notation presented earlier:

e Commutativity: A« B B—> A A+ Bs B+ A

o Associativity: (A<~ B)« C=A« (B« (),(A+< B)«+< (C<%

A+ (B« O)

274 Key Transformations

Transformation 7 Join right associativity for left outer joins

1: function CHECKPATTERN(expr)
2: if expr.root = LogOpLOJ and expr.left = LogOpLOJ then

3: return True
4: else
5: return False
6: function TRANSFORM(expr)
7 newlLeft < expr.left.left
8: joinCond < EztractJoinCond(expr.left.right, expr.right, expr)
9: newRight < LogOpLOJ (expr.left.right, expr.right, joinCond)
10: joinCond < EztractJoinCond(newLeft, newRight, expr)
11: newExpr < LogOpLOJ(newLeft, newRight, joinCond)
12: return newExpr

LOJ LOJ
() = (&

Figure 4.9: Join right associativity for left outer joins

For details on additional transformations for outer joins, we refer the
readers to [70].

4.3.2 Redundancy rule

An important class of transformations for outer joins aims at identifying
conditions where outer joins can be replaced by inner joins, which
enables additional join orders that can be potentially more efficient.
The redundancy rule, introduced in [68], is an example of such a rule. It
uses the property of null-rejecting predicates. If a predicate p evaluates
to false or undefined for NULL values, then p is said to be null-rejecting.
For example, consider the predicate S.a > 10. Since it evaluates to false
when S.a is NULL, the predicate is null-rejecting. Intuitively, if the
ancestor operator of an outer join contains a null-rejecting predicate
on a column with padded NULLs introduced by the outer join, then

4.3. Outer Join Transformations 275

the outer join can be rewritten as an inner join without changing
the result. For example, 0g4>10(R < R,=s, S) can be rewritten as
05.a>10(R Xp,=s, S) because the predicate S.a > 10 is null-rejecting
on S, i.e., the outer join result with non-matching rows from R and the
corresponding padded NULL values in S.a will be filtered out by this
predicate. This rule is shown in Transformation 8, and an example of
transforming an expression using this rule is shown in Figure 4.10.

Transformation 8 Redundancy rule for outer joins

1: function CHECKPATTERN(expr)

2: if expr.root = LogOpLOJ or expr.root = LogOpROJ or expr.root =
LogOpFOJ then

3: if expr.parent.root = LogOpSelect and IsNullReject(expr.parent)
then > Check if there exists null-rejecting predicates on the columns with
padded NULL values introduced by the outer join

4 return True

5 return False

6: function TRANSFORM(expr)

7 return LogOpJoin(expr.left, expr.right, expr.joinCond)

Figure 4.10: An example of transforming an expression using the redundancy rule
for outer joins when the filter is null-rejecting.

For implementation rules, similar to inner joins, Hash Join, Merge
Join, and Nested Loops Join can be used to implement outer joins if
the join predicate only has equality predicates, whereas non-equi outer
joins are implemented using Nested Loops Join.

276 Key Transformations

4.4 Group-by and Join

The specification of a group-by operator has a set of grouping columns
and a set of aggregation functions on one or more columns of its input
relation. The group-by operator partitions the rows into groups of rows,
one for each distinct combination of values of the grouping columns, and
it invokes each of the aggregate functions specified in the operator for
the rows in each group. Common aggregate functions include COUNT,
SUM, AVG, MIN, MAX, and DISTINCT, and the SQL language has
added many more analytic functions over the years. Table 4.3 shows
two tables representing information of students and class schedules,
and Query 10 below computes the total time of courses taken by each
student.

Query 10
SELECT student, SUM(end - start) AS TotalCourseTime

FROM StudentClass AS S INNER JOIN ClassSchedule AS C
ON S.class = C.class
GROUP BY student

Table 4.3: Tables in the example of the group-by query

(a) StudentClass table (1000 rows) (b) ClassSchedule table (500 rows)
student class class start end
. Linear Al- . . Monday Monday
Alice gebra Database 0AM 10AM
Alice Database Operating Tuesday Tuesday
Bob Operating System 1PM 2PM
© System Database Wednesday ‘Wednesday
Bob Database 9AM 10AM
Operating Thursday Thursday
System 1PM 2PM

One option to evaluate the above query is to first join the table
StudentClass and ClassSchedule and then execute the group-by opera-
tor (Figure 4.11a). However, this plan has a many-to-many join between
StudentClass and ClassSchedule, which outputs 5000 rows. On the
other hand, as shown in Figure 4.11b, if we first apply the group-by
operator on the ClassSchedule table (and sum up the total course
hours per week for each course) before joining it with the StudentClass
table, we can avoid the expensive many-to-many join, which can lead
to a more efficient plan.

4.4. Group-by and Join 277

Group By(student),

200 200
Group By(student), SUM(hours)/SUM(cnt)

200
Group By(student),
SUM(end-start) Sum(hours)

1000
5000 1000 100
Join 1000 100 Group By(class),

StudentClass Group By(class), StudentClass SUM(start-end) as

SUM(start-end) as hours hours, COUNT(*) as cnt

500
ClassSchedule ClassSchedule

(a) Plan P; joining the tables (b) Plan P, with partial aggre- (c) Plan P; with partial ag-
before group-by for calculating gates for calculating the total gregates for calculating average
the total course hours taken by course hours taken by each stu- hours per course taken by each
each student in Query 10 dent in Query 10 student in Query 13

1000, 500

I StudentClass I ICIassScheduIeI

Figure 4.11: The plans for executing the group-by query. The number on the edge
shows the output size for the corresponding operator.

As illustrated in the above example, because the result of a group-
by operator only contains one row per group, evaluating a group-by
operator can reduce the number of rows significantly when the number
of distinct values in the group-by column(s) is much smaller than the
number of rows in the relation. Therefore, in some cases, it is desirable
to evaluate the group-by early in the plan to take advantage of data
reduction. Such data reduction before evaluating expensive joins can
lead to significant cost savings. Additionally, such transformation may
potentially result in a different join order with lower cost.

In some cases, we can eliminate the group-by operator on top of the
join and replace that with a group-by on either the right or left operand
of the join. We refer to such transformations as complete group-by
push-down. In other cases, as shown in Figure 4.11b, the plan benefits
from partial data reduction by retaining a group-by operator on top of
the join and adding another group-by operator atop one of the operands
of the join, which is referred to as partial group-by push-down. Ensuring
correctness of such transformations require careful thought. Below, we
discuss each of these two classes of group-by push-down below joins.

4.4.1 Complete group-by push-down

The necessary and sufficient conditions for a group-by operator GBY
on top of Ry <1 Ry to be eligible for a complete one-sided group-by

278 Key Transformations

push-down to Ry with a group-by operator GBY” atop Ry are presented
in [38, 69]:

1. All aggregate functions specified in the group-by operator GBY

only uses columns from Rp

2. A primary key of Rj is a subset of the grouping columns of GBY .

3. The grouping columns of the group-by operator GBY” is the union

of grouping columns of GBY and the equi-join columns of Ry
in Ry <1 Ry. The specification of the aggregations in GBY” is
identical to those in GBY.

Without the first condition, no one-sided push-down of the group-by
with elimination of the group-by above join is possible as columns of
R; are not available to GBY’. Without the second condition, it will
be possible for a single tuple of R; to be part of two or more different
groups in the final output (and thus contribute to aggregated values in
multiple distinct groups). If that were the case, multiple groups in GBY”
will need to be coalesced and thus GBY cannot be eliminated. The last
condition ensures that no tuples that would have been eliminated during
the join Ry <1 Ry are used in producing aggregate results. As we will see
later, the strategy of fattening the set of grouping columns leveraged in
the third condition will be essential when we discuss partial group-by
push-down later in this section. The complete group-by push-down
transformation applies to all aggregate functions, including user defined
functions. The pseudocode for the complete group-by push-down rule is
shown in Transformation 9.

The opportunity for complete group-by push-down often occurs in
the context of primary-key-foreign-key joins. Interestingly, a special
case of complete group-by push-down is when the grouping columns of
GBY contain the foreign key of R, where the third condition becomes
redundant. In such cases, the specifications of GBY and GBY' are
identical. This special case is referred to as invariant grouping [38]. For
example, in the following Query 11:

Query 11

SELECT SUM(R.a)
FROM R INNER JOIN S
ON R.fk = S.k
GROUP BY S.k, R.fk

4.4. Group-by and Join 279

Transformation 9 Complete group-by push down. Push down a group-
by operator below the right child of a join operator, where the join
operator is the first child of the group-by operator.

1: function CHECKCOLUMNCONDITION(expr) > Check the first two conditions of
a complete group-by push-down
join <+ expr.child(0)
cols + GetGroupByColumns(expr)
keyCols + GetKeyColumns(join.left)
rightCols < GetColumns(join.right)
joinCols + ExtractJoinColumns(join.left, join.right, join)
aggCols + GetColumns(expr.aggs)
if keyCols C cols and aggCols C rightCols then
9: return True
10: return False
11: function CHECKPATTERN (expr)
12: if expr.root = LogOpGroupBy and expr.child(0) = LogOpJoin then

13: if CheckColumnCondition(expr) then
14: return True
15: return False

16: function TRANSFORM(expr)

17: join < expr.child(0)

18: joinPred + ExtractJoinCond(join.left, join.right, join)

19: rightCols < GetColumns(join.right)

20: joinCols « ExtractJoinColumns(join.left, join.right, join)

21: cols < GetGroupByColumns(expr) U (joinCols N rightCols) > Fatten the
group-by columns

22: newGbExpr < LogOpGroupBy(join.right, cols, expr.aggs)

23: return LogOpJoin(join.left, newGbExpr, joinPred)

When R. fk is a foreign key of R and S.k is the primary key of S, the
group-by operator can be pushed down to R and the aggregate SUM
on R.a is computed for each group prior to joining with S. Figure 4.12
shows the plan before and after the group-by push-down.

4.4.2 Partial group-by push-down

When all aggregate functions specified in the group-by operator GBY
over R; 1 R still only use columns from one of the operands Ry of the
join (i.e., the first condition for complete group-by push-down is satisfied
but not the second), there may still be opportunities to add a group-by
operator before the join to reduce the cardinality of the input of the join.

280 Key Transformations

[Group By(S.k, R.fk), SUM(R.a) | [woin]

Join = [Group By(R.f), SUM(R.a) |

Figure 4.12: Push down group-by below join for Query 11.

The partial aggregates (also referred to as local aggregates) from the
added group-by operator before the join are combined to calculate the
final global aggregates. However, for this to be possible, each aggregate
function agg specified in GBY over R; i<t Ry must satisfy distributive
properties. Specifically, we say that the aggregation function agg satisfies
the simple distributive property if the following holds: agg(S U S’) =
agg(agg(S),agg(S’)). Examples of aggregate functions that satisfy this
property include MIN, MAX, DISTINCT, and SUM. In such cases,
the partial group-by push-down transformation is referred to as simple
coalescing grouping. The transformation leaves GBY over Ry <1 Ry
unchanged. The additional group-by operator GBY” introduced atop
Ry has the same specification for the aggregates but its grouping columns
will be the union of the join columns of Ry in R; &1 Ro and the subset of
grouping columns of GBY that are from Rs. The last condition ensures,
as in condition (3) of complete group-by push-down that aggregations
computed in GBY’ do not erroneously include contributions from Ry
tuples that would be eliminated in the output of Ry bt Re. Our earlier
group-by query shown in Figure 4.11b is an example of simple coalescing
grouping. We now discuss another example of partial push-down of
group-by below join using simple coalescing grouping illustrated by
Query 12:

Query 12

SELECT SUM(R.a)
FROM R INNER JOIN S
ON R.fk = S.k
GROUP BY S.b

4.4. Group-by and Join 281

Note that because the key of S is not part of the group-by columns,
we cannot apply the complete group-by push-down as it violates the
conditions described in Section 4.4.1. Instead, we can use the partial
push-down of group-by (simple coalescing grouping) by computing a
partial aggregate of SUM (R.a) on R and then aggregate on the result
of the join as shown in Figure 4.13. The pseudocode for the rule is
shown in Transformation 10.

Transformation 10 Push down partial aggregates below the right
child of a join for SUM aggregate function, where the join is the first
child of the partial aggregates.

1: function CHECKPATTERN(ezpr)
2: if expr.root = LogOpGroupBy and expr.child(0) = LogOpJoin then

3: aggCols + GetColumns(expr.aggs)
4: cols < GetColumns(expr.child(0).right)
5: if aggCols C cols then
6: for agg € expr.aggs do
7 if agg is not SUM then
8: return False
9: else
10: return False
11: return True
12: return False

13: function TRANSFORM (expr)

14: gbCols + GetGroupByColumns(expr)

15: join < expr.child(0)

16: joinCols + ExtractJoinColumns(join.left, join.right, join)

17: partial GbCols < gbCols U (joinCols N GetColumns(join.right))
18: globalAggs <+ expr.aggs

19: for agg € expr.aggs do

20: newAggCol + GetNewColumnName(agg)
21: global Aggs. Remove(agg)
22: global Aggs.Add(SUM (newAggCol))

23: newPartial Gb < LogOpGroupBy(join.right, partial GbCols, expr.aggs)
24: joinPred « ExtractJoinCond(join.left, join.right, join)

25: newJoin < LogOpJoin(join.left,newPartialGb, joinPred)

26: newGlobalGb < LogOpGroupBy(newJoin, gbCols, global Aggs)

27: return newGlobalGb

A more general version of the distributive property for an aggre-
gate function agg opens the door for more opportunities for par-
tial group-by push-down. The required property may be stated as:

282 Key Transformations

| Group By(s.b), SUM(R.a) | | Group By(s.b), suM(e) |

T P —

G ° I Group By(R.fk), SUM(R.a) as e |

Figure 4.13: Push down partial aggregates below join.

agg(SUS") = f(agg'(S),agq'(S"), count(S), count(S")), where agg’ is
an auxiliary aggregate function that is not necessarily the given aggre-
gate function in the query, and f combines the partial aggregates into
the final aggregate while leveraging the additional aggregate count. For
example, the function AVG satisfies this property, where:

AVG(SUS') = SUM(S) + SUM(S")
COUNT(S)+ COUNT(S")

We refer to the above case of group-by push-down as generalized coa-
lescing grouping. For this partial group-by push-down transformation,
the additional local group-by operator GBY” introduced above Rs (but
prior to the join) has the same set of group-by columns as in the case
of simple coalescing grouping, but each aggregation function agg is
replaced by agg’. In addition, an extra aggregation function count is

added to the list of aggregation functions agg’. As in the case of simple
coalescing grouping, the grouping columns of GBY”’ will be the union of
the join columns of Ry in R i<t Ry and the subset of grouping columns
of GBY that are from Ro. Unlike simple coalescing grouping where the
specification of the GBY operator after R; <t Ry was unchanged, in
the case of generalized coalescing grouping, the aggregation functions
agg are changed to agg’ corresponding to the computation needs of the
global aggregate (see the example of AV G above).

To illustrate the generalized coalescing grouping, we modify Query 10
to aggregate the average hours per course taken by each student instead
of the total hours as the following Query 13:

4.4. Group-by and Join 283

Query 13
SELECT student, AVG(end - start) AS AvgCourseTime

FROM StudentClass AS S INNER JOIN ClassSchedule AS C
ON S.class = C.class
GROUP BY student

In this case, as shown in Figure 4.11c, we can first calculate the
total number of hours (hours) and the number of counts (ent) per
course when aggregating on the ClassSchedule table, and then join
with the StudentClass table to produce the final global aggregate.
Observe how the aggregation functions have been modified to support
the computation of the local and global aggregates.

Further generalization of the class of permissible aggregate functions
are possible, e.g., multiple auxiliary aggregate functions that are not part
of the original aggregate may be used to compute global aggregates, e.g.,
agg(SUS’) = f(aggi(S),aggi(5),...,aggn(S),aggn(S’)). An example
of this is the standard deviation function:

SUM(S?) + SUM(S?) _ SUM(S) + SUM(S')

STD(SU S') :\/ ~ -)2

where N = COUNT(S) + COUNT(S").

As an interesting observation, we discuss how generalized coalescing
grouping can be modified for partial group-by push-down for arbitrary
aggregate function that may not satisfy any of the distributive properties
above. In such cases, data reduction is still possible through the use of
generalized coalescing grouping. Specifically, we add all columns over
which such arbitrary aggregate functions are defined and treat them as
additional grouping columns for the query. We then compute the only
local aggregate of count for the additional group-by operator that is
introduced below the join and thus still constitutes data reduction. As
a result of this approach, all columns that these aggregate functions are
defined are preserved and available to the global aggregate. The global
aggregate computation takes into account the local count to reconstruct
the accurate value of the final aggregate.

The complete and partial push-down of group-by operators below
join can be integrated into an extensible optimizer similar to other

284 Key Transformations

Transformation 11 Transform Group-by Aggregate to Stream Aggre-
gate

1: function CHECKPATTERN(expr)
2: if expr.root = LogOpGroupBy then
groupByCols < ExtractGroupByColumns(expr)
sortCols < ExtractSortColumns(expr)
> Check if the prefix of the sort order is the set of group-by columns
if |groupByCols| > |sortCols| then
return False
prefizCols < GetPrefizCols(sortCols, |groupByCols|)
9: if prefizCols C groupByCols then
10: return True
11: return False
12: function TRANSFORM (expr)
13: groupByCols <+ ExtractGroupByCols(expr)
14: agg + ExtractAgg(expr)
15: return PhyOpStreamAggregate(expr.child(0), groupByCols, agg)

transformation rules. It is also possible to push-down group-by below an
outer-join [69]. Note that the transformations of group-by push-down
below joins and outer-joins may not always be beneficial. If the join is
very selective and the aggregate function is expensive, then it may be
preferable to first perform the join before calculating the aggregates.
Indeed, the “reverse” transformation of pulling up the group-by above
joins has also been studied [198].

4.4.3 Physical transformation rules of group-by

A Group-By operator is implemented either by a Stream Aggregate
or a Hash Aggregate operator. We observe that the Stream Aggregate
operator requires that its input is sorted, and that the group-by columns
are a prefix of the columns on which the input is sorted. The pseudocode
of the implementation rule that transforms a Group-By to a Stream
Aggregate is shown in Transformation 11. The FExtractSortColumns
retrieves the sort columns from the physical property associated with
the expression in the memo. The Stream Aggregate operator has O(1)
space complexity, since it only needs to incrementally maintain the
aggregates associated with the current group. It can output the result
once all rows of the current group have been consumed, and free up

4.5. Decorrelation 285

the memory used for computing the aggregates. In contrast to Stream
Aggregate, the Hash Aggregate operator cannot take advantage of the
sortedness property of its input. Therefore, its memory consumption
is proportional to the number of groups, i.e., the number of distinct
values in its input. Furthermore, it is a blocking operator since it can
only produce the output after it has consumed all input rows. However,
unlike Stream Aggregate, Hash Aggregate is applicable in all cases, even
when the input is not sorted.

4.5 Decorrelation

A subquery is a query that appears inside another query statement.
Subqueries are also referred to as nested subqueries. Microsoft SQL
Server allows up to 32 levels of nesting. Below, we provide two examples
of nested subqueries.

If the nested subquery shares a variable with the outer query block,
then it is called a correlated subquery. For example, Query 14 is not a
correlated subquery as the inner subquery shares no variable with the
outer query block. In contrast, Query 15 is a correlated subquery as
subquery shares the variable p_ partkey with the outer query block.

Query 14

SELECT o_orderkey
FROM orders, lineitem
WHERE o_orderkey = 1_orderkey AND 1_quantity > 10
AND 1_suppkey IN (
SELECT s_suppkey
FROM supplier
WHERE s_name IN (’Alice’, ’Bob’))

Query 15
SELECT p_partkey

FROM part

WHERE p_size < 10 AND 100 > (
SELECT SUM(1_quantity)
FROM lineitem
WHERE 1_partkey = p_partkey)

Nested subqueries add to programming convenience even though
they do not endow SQL with any more expressive power. However,

286 Key Transformations

nested subqueries present new challenges for efficient query execution.
This is because for correlated subqueries, the subquery may need to be
executed for every tuple in the outer relation. For example, for Query 15,
the inner subquery needs to be executed for each value of p_ partkey
from the outer query block. Such nested loop style of execution is
expensive, and prohibitively so for distributed data platforms as noted
in the System R* project [126]. Fortunately, modern query optimizers
are able to flatten (or unnest) such queries while preserving semantic
equivalence. This process of flattening nested subqueries is referred to
as decorrelation. Decorrelation makes it possible for a large class of
complex queries to be executed efficiently, including on distributed data
platforms.

For simplicity of exposition, we will discuss decorrelation for queries
where the subquery occurs in the WHERE clause of the outer query.
For this class of queries, several variants are possible:

1. WHERE scalar _expression [NOT] IN (subquery)

2. WHERE scalar__expression comparison_ operator [ANY | ALL]

(subquery)

3. WHERE [NOT] EXISTS (subquery)

The result of the subquery may be a scalar value or a single column
relation (e.g., if the comparison operator is IN and the subquery returns
a set of rows). In case neither ANY nor ALL is used in (2), then the
subquery must produce a single-column table with either zero or one
row — a runtime error occurs if the subquery returns more than one row.
Query 14 is an example of (1), with the scalar expression |__suppkey.
Query 15 is an example of (2), where the result of the subquery is a
scalar value SUM (I__quantity), the scalar__expression is 100 and the
comparison__operator is >.

Prior work has identified several important cases where the query can
be decorrelated [16, 52, 62, 153, 180]. We begin by presenting examples of
a few transformations that remove nested subqueries. Next, we discuss
what extensions to our algebraic framework for query optimization
are needed to represent subqueries. We end with an example of a
transformation that does not directly decorrelate the queries but helps
reduce the cost of executing the nested subqueries.

4.5. Decorrelation 287

4.5.1 Nested subqueries without correlated variables

The simplest case for a nested subquery is one where the subquery
has no reference to the tuple variables from the outer block, i.e., the
subquery has no correlated variables. A straightforward strategy to
execute such a query is to generate a query plan by optimizing each
block of the query separately. For example, Query 14 finds the orders in
a TPC-H database that purchase more than 10 of the same item from
a given set of suppliers (i.e., {’Alice’, 'Bob’}). In this query, we have a
predicate that for each supplier key in the join of orders and lineitem
tables, checks if that supplier key belongs to the set of supplier keys
of {"Alice’, 'Bob’}. The main block of the query is a join query on the
orders and lineitem tables. The subquery is a selection on the supplier
table without correlated variables.

For such queries, we can optimize the outer query block indepen-
dently from the inner query block. Moreover, the inner subquery needs
to be executed only once [178]. Once the inner subquery is executed, its
results (ideally an in-memory list) are used for evaluating the predicate
of the outer block, e.g., [_suppkey IN <list>.

Despite the ease of executing nested queries without correlated
variables, the potential benefit of unnesting such queries remains com-
pelling. We now describe a logical transformation that is possible for
queries with the IN predicate between the outer query block and the
subquery. As an example, Query 14 can be transformed in the following
unnested form without changing its semantics as s_suppkey is a key of
the supplier table [109] as shown in Query 16:

Query 16

SELECT o_orderkey

FROM orders, lineitem, supplier

WHERE o_orderkey = 1_orderkey AND 1_quantity > 10

AND 1_suppkey = s_suppkey AND s_name IN (’Alice’, ’Bob’)

In the above query, we have transformed the lookup in the list (I__suppkey
IN <list>) with an inner join (see Section 4.6.2) between lineitem and
supplier using the predicate I__suppkey = s_ suppkey. Note that this
is effectively a semi-join (a special case of inner join) as the rest of the
query only needs attributes from lineitem and none from supplier, and

288 Key Transformations

s suppkey is a key of the supplier table. Moreover, such a transformation
potentially unlocks the ability to reorder the semi-join with other joins
in the query and compare the relative costs of these plans.

4.5.2 Nested subqueries with correlated variables

For correlated subqueries, flattening while preserving semantic equiva-
lence needs more care. For a comprehensive discussion of transformations
that benefit correlated subqueries, we refer the reader to [153, 180]. In
this subsection, we discuss the widely used decorrelation transformation
applicable to queries with scalar aggregates that was originally proposed
in [52].

Subqueries returning a scalar aggregate occur commonly in practice.
A query that exemplifies occurrence of such subqueries is Query 15: It
finds the parts whose size is below 10 and whose total quantity ordered
is less than 100. In this query, the subquery on lineitem refers to the
value of p_ partkey from the outer block. The nested subquery in the
above example returns a scalar aggregate as it is not accompanied with
a GROUP BY clause. The SQL semantics of scalar aggregates over a
relation without GROUP BY (such as the subquery in the example)
is that the aggregate always returns ezxactly one row. If the number
of rows on which the scalar aggregate is computed is zero (i.e., if a
relation is empty), then the value of the scalar is 0 for COUNT, and
NULL for aggregates such as SUM or AVG [134]. In addition to the the
subquery in Query 15 returning a scalar aggregate SU M (I__quantity),
the outer reference in the nested subquery, p_ partkey, is a key of the
outer relation.

In the tuple substitution (or nested loop) method of execution, for
each tuple from part, we will calculate the aggregate on [_quantity for
the tuples that match p _partkey in the lineitem table. If the lineitem
table does not provide an efficient way to access the data by [partkey,
e.g., via an index, each invocation can require scanning all the rows in
the lineitem table, thereby making the query expensive. Even if the
lineitem table contains a suitable index but if there are many parts
qualifying the restriction on p_size, then repeatedly looking up the
index for each qualifying part could be expensive as we will be doing

4.5. Decorrelation 289

too many index seeks. Therefore we ask ourselves what other execution
plans are semantically equivalent to the above tuple substitution model
of execution for the inner subquery that the optimizer should consider.

An alternative way to execute the query will be to convert this
to a join query with GROUP BY as shown in Query 17. Intuitively,
the transformed query collects for each p_partkey all matching rows
in lineitem through the equi-join, aggregates the matching rows by
grouping on p_ partkey to compute SUM(1__quantity), and finally filters
rows based on the value returned by the aggregation. Once the aggregate
SUM(1__quantity) is available for each group, we select groups with
SUM(1_quantity) < 100 using the HAVING clause. A corner case that
we must also consider is when for a given p_ partkey there is no matching
tuple in lineitem, i.e., the equi-join condition in Query 17 fails. In such
cases, there will be no rows for that p_ partkey in the modified query.
In the original Query 15, when p_ partkey does not match any tuple in
lineitem table, per the SQL semantics, the result of the inner subquery
will be a single row with the value of SUM aggregate as NULL. In
such a case, the WHERE clause fails and the original query with the
"tuple substitution" mode of execution also will not output any tuple
corresponding to that value of p_ partkey.

Query 17

SELECT p_partkey

FROM part INNER JOIN lineitem on p_partkey = 1_partkey
WHERE p_size < 10

GROUP BY p_partkey

HAVING 100 > SUM(1_quantity)

Let us now consider another query that is identical to the previous
query except that we replace the aggregate function SUM with COUNT
as shown in Query 18:

Query 18

SELECT p_partkey
FROM part
WHERE p_size < 10 AND 100 >
(SELECT COUNT (*)
FROM lineitem
WHERE 1_partkey = p_partkey)

290 Key Transformations

However, that makes a significant difference! This is because when
a relation is empty (i.e., has no tuples), the scalar aggregate COUNT
emits the value 0 instead of NULL unlike the cases for SUM and AVG.
Thus, for Query 18 when for a specific p_ partkey, there are no matching
I_partkey, COUNT returns zero and thus satisfies the predicate that
connects the subquery to the outer block. However, if we were to
generate a transformation similar to what was used in Query 17, we
will miss in its output tuples from part for which the subquery yielded
empty results as they would fail the INNER JOIN condition. However,
if we were to replace the INNER JOIN with the LEFT OUTER. JOIN,
all such missing tuples from part will be retained in the output. Thus,
Query 19 is the correctly rewritten query with LEFT OUTER JOIN:

Query 19

SELECT p_partkey

FROM part LEFT OUTER JOIN lineitem ON p_partkey = 1_partkey
WHERE p_size < 10

GROUP BY p_partkey

HAVING 100 > COUNT (%)

In our example Query 18, the logical expressions before and after
applying this transformation are shown in Figure 4.14a and Figure 4.14b
respectively. Note that the Boolean-valued subqueries, e.g., those with
EXISTS, NOT EXISTS, can be rewritten as a subquery with a scalar
COUNT aggregate [69]. Once such a rewrite is performed, the decorre-
lation transformation discussed above for scalar aggregate subqueries
can be applied to them as well.

Our discussion of Query 18 illustrates a logical transformation that
is widely used for decorrelation when the correlated subquery returns
a scalar aggregate and the reference to the outer query block in the
subquery is a key of the outer relation. This transformation results in a
single block query with a left outer join (LOJ) [52]. Transformation 12
sketches the pseudocode of the corresponding transformation. The
pseudocode is presented for the simplifying case when there is a single
predicate in the outer block.

Finally, note that after decorrelation, the optimizer can subsequently
apply other transformation rules for outer join and group-by as described
in Section 4.3 and Section 4.4, which can potentially result in even more

4.5. Decorrelation 201

Filt Filter
fer 100 > Exprl

| part | | And | Group By (p_partkey),
Exprl = COUNT(*)

< | > | Left Outer Join
p_partkey = |_partkey

| p_size | 10 | | 100 | Aggregate sFiIzI;e:lo lineitem |
COUNT(*) =

(a) Original logical expression with the correlated (b) Transformed single block logi-

subquery cal expression with Left Outer Join

Figure 4.14: Transform Query 18 by replacing the subquery with Left Outer Join
followed by Group By and Filter.

Transformation 12 Transform query with a single predicate filter
containing a subquery that returns a scalar aggregate

1: function CHECKPATTERN(ezxpr)

2: cols <— ExtractOuter Reference(expr.pred.right)

3: if expr.root = LogOpFilter and expr.pred.right = LogOpSubquery and
IsScalarAggregate(expr.pred.right) and IsKey(cols) then > The subquery
must return a scalar aggregate

4 return True

5: else

6: return False

7: function TRANSFORM (expr)

8 joinCols < ExtractColumns(expr.pred)

9: groupByCols < ExtractOuter Re ference(expr.pred.right)
10: agg <+ Extract Aggregate(expr.right)
11: joinPred < ExtractJoinPred(expr.left, expr.right.child(0), expr)
12: newJoin < LogOpLOJ(expr.left, expr.right.child(0), joinPred)
13: newGroupBy < LogOpGroupBy(newJoin, groupByCols, agg)
14: return LogOpFilter(expr.pred.left, newGroupBy, expr.pred.root)

efficient plans. For instance, direct application of the transformation
above rewrites Query 15 using the left outer join (LOJ). However, as
noted above, the SUM scalar aggregate function returns NULL when
there are no matching rows in the subquery. For example, the predicate
100 > SUM (I__quantity) returns FALSE. Therefore, for the scalar

292 Key Transformations

aggregate function SUM, the LOJ can be further transformed into an
inner join (see Section 4.3.2), resulting in Query 17. Once the LOJ is
transformed into an inner join, additional transformations such as join
reordering among relations in the query would be possible.

4.5.3 Representing subqueries algebraically using Apply

The Apply meta-operator [69] provides an algebraic approach to repre-
sent computation of correlated subqueries. A different algebraic frame-
work for decorrelation was proposed in [153] through the use of Depen-
dent Joins. These two frameworks share significant conceptual similarity
and allow us to reason about decorrelation transformations. A com-
prehensive exposition of these algebraic frameworks and the set of
logical transformation rules that enable decorrelation are beyond the
scope of this subsection. Instead, we provide a brief introduction to the
Apply meta-operator and a few examples of transformation rules for
decorrelation.

A correlated subquery may be viewed algebraically as a parameter-
ized relational expression (PRE) where the parameters (i.e., correlated
variables) are provided through the binding from the outer query block.
For example, in Query 15, the inner subquery is a PRFE, parameterized
by p_partkey. A degenerate case of a subquery is Query 14 where the
inner subquery is not dependent on any parameter binding from the
outer block.

We now consider how we can algebraize the evaluation of queries
involving a subquery such as PRE(p_partkey). One way to represent
the evaluation of queries with nested subqueries is to create a new
(derived) column that collects together the results of evaluating the
subquery for every possible binding of the outer query block. In our
example Query 15, this means we create a new column Sum_ of Parts
of values that for every binding for p_ partkey from the outer query
records the result of the subquery (the aggregated total quantity of the
parts ordered). Once we have defined this new column Sum_of _Parts,
the outer query can complete its evaluation by joining with the relation
so produced consisting of columns (I_partkey, Sum_of_ Parts) on
p_partkey = l__partkey. Thus, the predicate between the correlated

4.5. Decorrelation 293

variable p_ partkey and the subquery in the given query is now turned
into a selection on the column (100 > Sum_of__Parts). Therefore, the
outer query no longer requires correlated subqueries to be executed
tuple at a time.

The Apply meta-operator algebraically represents the computation
outlined above. Formally, it takes an outer relation R and a PRE(Y)
with the variables Y as its parameters for which bindings are provided
by the outer relation R. It takes a relational operator (Op) as part of
its specification as well. We denote the Apply construct compactly as
AOP_ Tt iterates over every tuple ¢ in R, binding the parameter variables
Y in PRE using t. It then produces tuples that result from applying
the relational operator Op for every binding of the outer to the output
of PRE(Y). As an example, when Op is the Cartesian Product x, then

RA* PRE(Y) = ({t} x PRE(LY))
teER

If instead of the cross product, the left outer-join (LOJ) variant of
Apply (AY97) is used, then the above expression changes to:

R AY7 PRE(Y) = | ({t} LOJ PRE(t.Y))
teR

In this case, any non-matching tuple from R is passed to the output,
padded with NULLSs. Note that AP directly maps to the tuple substi-
tution semantics of correlated subqueries mentioned in Section 4.5. As
an example, Figure 4.15a shows the representation of Query 18 using
Apply.

Given a query with the nested subquery, the following steps need to
be taken:

1. Represent the subquery evaluation using Apply AX with cross
product on the PRE corresponding to the subquery.

2. Use one of the transformation rules for Apply. A few examples of
such transformations are described below.

3. Iterate on (2). If at any point, as a result of application of trans-
formation rules, the PRE operand of Apply has no correlated
variables from the outer relation of Apply, then the the instance
of Apply may be removed and decorrelation is achieved.

294 Key Transformations

Filter Filter Filter
100>z 100 >z 100 >z

Group By (p_partkey), | Group By (p_partkey), |
2= COUNT(Y) 7 = COUNT(Y)
Apply® Left Outer Join
Aggregate (p_partkey = |_partkey) (p_partkey = |_partkey)
Filter 2=COUNT(*)

p_size<10

| Filter Filter .
. inei lineitem
Filter | p_size < 10 | | lineitem I | p_size < 10 |

(p_partkey = I_partkey)

(a) Plan P; with Apply™ (b) Transformed plan P, with (c) Transformed plan P; with
ApplyLOJ operator. Y is the Left Outer Join removing
derived column created by Ap- Apply. Y is the column output
ply. by Left Outer Join.

Figure 4.15: Transform Query 18 by successively applying the transformation rules
shown in Eq. 4.2 and Eq. 4.1.

We present a few of the transformation rules for Apply below. We
use Fxp, Expl, and Exp2 to denote PRFEs. In the following, Op refers
to a relational operator although for the rest of this subsection we
limit ourselves to the operator being either a cross product (x) or
left outer join (LO.J). Selections and join conditions are denoted by
s. A Scalar Aggregate is denoted by SAgg. Its single parameter is the
aggregation function with the specification of the column expressions.
For simplicity, we assume that the column expression is a single column.
The attributes that form a key of a relation S is denoted by Key(S). A
group-by operator has two parameters. The first is the set of group-by
columns, and the second parameter consists of aggregation functions
along with the specification of columns over which the aggregation
functions are defined.

We have the following transformation rule

R A°P(0,Exp) = R Ops Exp (4.1)

if Fxp has no correlated parameters that derive its binding from R.
We have the following transformation rule

R A~ (SAggw Exp) = GroupBy(key(R),sAgge) (R AY°7 Exp) (4.2)

4.5. Decorrelation 295

if R has its key columns included. In other words, R has no duplicates.
An exception to the above rule is for the case when w is COUNT ().
In that case, Rule 4.2 still applies with the modification that we will
need to replace w with w’ on the right side of the equation where
w' = Count(Y), i.e., Y is the derived column that results from the
application of AX.

Similarly, we have the following transformation rule

R AX (Expl U Exp2) = R AX Expl U R AX Exp2 (4.3)

if R as its key column included. In other words, R has no duplicates.

The above transformation rules follow from the semantics of Apply
as defined earlier in the section. The first transformation allows us to re-
move Apply, and its application results in a decorrelated expression. The
second transformation addresses the case corresponding to subqueries
with scalar aggregates. It allows the computation of scalar aggregates to
be deferred and replaced by computation of the group-by after Apply.
Note that when for a tuple of the outer relation, the inner subquery is
empty, the Scalar Aggregate w is still computed (returns NULL or zero
depending on the aggregate function). However, in contrast, group-by
does not output a tuple if a partition is empty. To accommodate this
difference, AX is replaced with AL97 to preserve the semantics of scalar
aggregates. Since R includes its key columns, by doing a group-by on
the key columns of R, we ensure that no spurious duplicate tuples are
produced in the output.

We now revisit the decorrelation of Query 18. We note the outer
relation contains its key p_ partkey and in fact the same key attribute
is also the parameter of the PRE for the subquery. The first step is rep-
resenting the correlated subquery algebraically using Apply with cross
product, i.e. AX (or Apply™X). This step of algebraization is represented
in Figure 4.15a. Subsequently, since the conditions for Rule 4.2 are satis-
fied, we apply that rule to obtain the query tree shown in Figure 4.15b.
In this figure, the aggregation function COUNT(Y') is over the derived
column created by Apply. We note that there are no occurrences of
correlated variables below A7 and we can therefore use the Rule 4.1
that results in the removal of Apply as shown in Figure 4.15c. Thus,
the final step of decorrelation is achieved and the resulting query tree is

296 Key Transformations

equivalent to Query 19, which has its nesting removed. The same steps
apply for Query 15 as well. However, given the semantics of SUM, at
the end, LOJ may be replaced by equi-join resulting in a query tree
equivalent to the unnested query Query 17.

Note that unlike the other two transformations for Apply, Rule 4.3
results in duplication of expressions as the outer relation occurs in
both the subexpressions on the right side of the transformation rules.
The duplication raises the possibility of increased work. Therefore,
application of this transformation must be strictly cost-based. These, as
well as additional transformation rules for Apply are described in [69],
which are able to decorrelate a large class of queries.

Many decorrelations are performed as a normalization step. Example
queries discussed in this section all fall in that category. Such normal-
ization is especially important for many distributed data platforms
where decorrelation is a necessary condition to execute SQL queries in
a distributed manner. However, as the discussion on Rule 4.3 notes, not
all the decorrelations necessarily result in reduced cost. Certain corner
cases, such as use of subqueries in contexts where they are required to
have a single row only but are not guaranteed to comply with that at
query optimization time, or where there is interaction between decor-
relation and short-circuiting in conditional scalar evaluation, add to
complications with decorrelation. When there are user-defined-functions
in the subqueries, decorrelations through removal of Apply are inhibited.
However, even in such cases where Apply cannot be removed, techniques
such as caching of results of Apply, partially sorting the parameters
with which Apply is invoked, and prefetching are useful in reducing cost
of evaluating subqueries [62]. Additional opportunities for optimizations
of nested subqueries are also discussed in the rest of this section.

4.5.4 Additional optimizations for queries with nested subqueries

Even though decorrelation is the most important class of optimizing
transformations for complex queries with nested subqueries, there are
other transformations that can contribute to more efficient computation
of queries with nested subqueries even though they do not contribute to
decorrelation. Specifically, when two subqueries of the same query have

4.5. Decorrelation 297

shared common expressions, opportunities to simplify the structure of
the subquery arise. Let us consider the example Query 20 below which
has two EXISTS clauses on the same table, i.e., the orders table.

Query 20

SELECT 1_suppkey, COUNT (*)
FROM lineitem
WHERE 1_quantity > 10 AND
EXISTS (SELECT *
FROM orders
WHERE o_orderkey = 1_orderkey
AND o_orderstatus = ’P’)
OR
EXISTS (SELECT *
FROM orders
WHERE o_orderkey = 1_orderkey
AND o_orderpriority = ’1-URGENT’)
GROUP BY 1_suppkey

For each row r from the lineitem table in the outer block, both
EXISTS clauses check if there exists a row from orders table that joins
with r on o_ orderkey and satisfies a predicate, i.e., o_ orderstatus =
P’ in the first subquery, and o_ orderpriority = '1-URGENT’ in the
second. Since the two subqueries in the EXISTS clause only differ in the
predicate filter, we can combine the two subqueries with a disjunction
of their predicate filters as shown in Query 21:

Query 21

SELECT 1_suppkey, COUNT (*)

FROM lineitem

WHERE 1_quantity > 10 AND

EXISTS (SELECT *

FROM orders
WHERE o_orderkey = 1_orderkey AND
(o_orderstatus = P’ OR
o_orderpriority = ’1-URGENT’))

GROUP BY 1_suppkey

Figure 4.16b shows the logical expression before and after the trans-
formation. Note that the EXISTS clause is expressed as subquery with a
scalar aggregate predicate COUNT(*) > 0. Formally, if a query contains
a disjunction of two EXISTS subqueries, and the subqueries differ only
in their filter predicates, then the two subqueries can be coalesced into a

298 Key Transformations

Group By
(I_suppkey),
COUNT(*)

Group By
(I_suppkey),
COUNT(*)

Filter

(o_orderstatus = ‘P") OR

(o_orderpriotity = ‘1-
Filter Filter URGENT')
o_orderstatus = o_orderpriotity =

‘P ‘1-URGENT"
(=]
(a) Original logical expression with two corre- (b) Transformed logical expression with single
lated subqueries subquery

Figure 4.16: Transform a query with two EXISTS subqueries into a query with a
single EXISTS subquery.

single subquery with a disjunction of the original filter predicates. A dual
of this transformation can also be applied for the case of conjunction of
multiple NOT EXISTS subqueries with a common core. This as well
as other rules related to combining subqueries that take advantage of
common subexpressions among nested subqueries may be found in [16],
and they help avoid paying the cost of unnecessary computation of
similar subexpressions. Later in this section, we will discuss magic sets
that too benefit evaluation of nested subqueries (Section 4.6.2).

4.6 Other Important Transformation Rules

We discuss four important classes of transformation rules that are com-
monly used in practice and are more complex than the rules we have
presented thus far: (1) Join ordering for star and snowflake queries
(Section 4.6.1), (2) Sideways information passing (Section 4.6.2), (3)
User-defined functions (Section 4.6.3), and (4) Materialized views (Sec-
tion 4.6.4). We illustrate the transformations using rules from Microsoft
SQL Server.

4.6. Other Important Transformation Rules 299

4.6.1 Star and snowflake

Many data warehouses are designed using a star or snowflake schema,
which are optimized for efficiency in querying and in loading data [31]. In
a star schema, the database consists of a single fact table, e.g., an Orders
table that stores a row for each order, and one table for each dimension
such as Products, Customers, Country, Time. Each row in the fact
table consists of a foreign key to each of the dimensions, and stores
the numeric measures for that particular combination of dimensional
values. In our example, the numeric measures corresponding for a given
Product, Customer, Country, and Time value might include quantity
of the item sold and unit price of the item sold. Each dimension table
consists of columns that correspond to attributes of the dimension, e.g.,
the customer name, address, phone number for the Customer dimension
table. Snowflake schemas provide a refinement of star schemas where
the dimensional hierarchy is explicitly represented by normalizing the
dimension tables, e.g., the Country dimension might be represented as
a hierarchy of tables, one each for Country and Region.

Queries over star and snowflake schemas typically follow canonical
patterns. A star query joins the fact table with one or more dimension
tables using primary-key foreign-key joins. They use filter predicates on
the dimension tables to restrict the data that needs to be accessed from
the fact table, and the result of the joins is aggregated using measures
from the fact table. The results are optionally grouped using columns
from the dimension tables. A simple example of such a query might be:
for each (Product, Country) find the total Sales (which is an attribute
in the fact table Orders) for Year = 2024 (which is a predicate on the
Time dimension table).

Microsoft SQL Server has several rules in place for leveraging
the above query patterns by identifying promising plans for star and
snowflake queries [72]. They heuristically detect if the query should be
classified as a star or snowflake join, and if so, they generate new logi-
cally equivalent join orders, which are added to the memo. An example
of such a rule is one that generates a right deep tree that joins the fact
table with the dimension tables, where the dimension tables are ordered
from the most selective to the least selective, based on the estimated

300 Key Transformations

selectivity. Selectivity for a dimension table is defined as the fraction
of rows of the fact table that join with the filtered dimension table.
The pseudocode for this transformation is shown in Transformation 13
and the logical expression generated by this transformation is shown in
Figure 4.17. The ExtractStarJoin function attempts to identify if the
join graph of the query meets the conditions of a star join, and if so,
extracts the fact and dimension tables. Besides the check for primary-
key foreign-key joins, additional checks are used, such as a minimum
absolute size of the fact table, since the benefits of this optimization
are significant only for large fact tables.

Figure 4.17: Example of transforming a star query with fact table ' and dimension
table D1, D2, D3, where D1 is the most selective and D3 is the least selective.

Key Lookup
(F)

Hash
Join
D Ha.sh
Join Nested Nested
/\ Loops Join Loops Join
Hash /\ /\
D, Join | D, | Index Seek Hash Index Seek
/\ (F.la) Join (F.12)
D, F | D; D,
(a) Right deep plan with Hash Joins (b) Index Intersection plan

Figure 4.18: Examples of plans generated for the star query shown in Figure 4.17

4.6. Other Important Transformation Rules 301

Transformation 13 Transform a star query into a right deep tree,
where the fact table joins with the dimension tables from the most
selective to the least selective.

1: function EXTRACTJOINTABLES(expr)

2 if expr.root = LogOpJoin then
3 tablesO < ExtractJoinTables(expr.left)
4: tablesl < ExtractJoinTables(expr.right)
5: if table0 = null or tablel = null then
6: return null
7 else
8: return tablesO U tablesl
9: else if expr.root = LogOpGet then

10: return {expr.table}

11: else

12: return null

13: function EXTRACTSTARJOIN(expr, tables)
14: fact < null

15: dims < null

16: for ¢ € tables do > Check if ¢ is a fact table
17: flag < True

18: for s € tables, s #t do

19: cols < EztractJoinColumns(t, s, expr)
20: if [IsManyToOneJoin(s,t, cols) then
21: flag + False

22: break

23: if flag = True then

24: fact +—t

25: dims < tables \ {t}

26: break

27: return fact, dims

28: function CHECKPATTERN (ezpr)

29: tables < ExtractJoinTables(expr)

30: if tables = null then return False

31: fact, dims < ExtractStarJoin(expr, tables)
32: if fact = null then

33: return False, fact,dims
34: else
35: return True, fact,dims

36: function TRANSFORM (expr, fact, dims)

37: sortedDims = SortBySelectivity(fact, dims)
38: newExpr + LogOpGet(fact)

39: for d € sortedDims do

40: left < LogOpGet(d)
41: joinCond < ExtractJoinCond(left, newExpr, expr)
42: newExpr < LogOpJoin(left, newExpr, joinCond)

return newExpr

302 Key Transformations

In addition to the logical expressions generated by these transfor-
mation rules, specific star join implementation rules are also applied
to generate physical plans corresponding to the generated logical ex-
pressions. For example, one implementation rule generates the right
deep tree containing Hash Join, shown in Figure 4.18a, from the logical
expression shown in Figure 4.17. In this plan, the build phase of each
Hash Join accesses the respective dimension tables, and each of these
builds are completed prior to the probe phase where the fact table is
scanned. Therefore, one additional benefit of this plan is that it enables
the use of bitmap filters created during the build phase of each Hash
Join to filter out rows during the Scan of the fact table during the probe
phase (see Section 4.6.2 for more details).

Query optimizer developers can also generate other promising plans
for star and snowflake queries. Another example of such a plan is shown
in Figure 4.18b. This plan aims to reduce the cost of accessing the fact
table by using indexes on the join columns of the fact table, if available.
Such a plan may be suitable when the selectivity of the dimension tables
is high, since it allows the qualifying row IDs of the fact table to be
retrieved using the Index Seek operator. The two sets of row IDs are
then intersected using a Hash Join, and the rows corresponding to the
matched row IDs are retrieved from the fact table using the Key Lookup
operator. Other examples of plans generated for star and snowflake
queries are described in [72]. The plans thus generated are added to
the memo, and the choice of the final plan for the query is done in a
cost-based manner as part of the search as described in Section 2.3.3.

Finally, we note that these rules are invoked on the expression of
the query at the beginning of the query optimization to seed the search
space with promising logical and physical expression, and the rules can
be disabled for the rest of the search with the guidance mechanism (see
discussion in Section 2.4 on macro rules).

4.6.2 Sideways information passing

Execution of subexpressions of a query may induce constraints on the
remainder of the queries due to predicates in the query. Such constraints
help reduce the amount of data that needs to be processed for that

4.6. Other Important Transformation Rules 303

subexpression. Optimization techniques that take advantage of the
above insight are referred to as sideways information passing (SIP). In
this subsection, we review a few examples of optimization based on
SIPs. We start with semi-join, a technique that is widely applicable in
many facets of query processing. Next, we discuss bitvector filtering, a
technique related to semi-join that is widely used in query processing
in most database engines, including in Microsoft SQL Server. Finally,
we describe magic sets, a technique that complements decorrelation
optimization we have discussed previously. Although not presented in
this subsection, interested readers may want to learn about the use of
SIPs to enable data skipping in big data systems [106].

Semi-join The semi-join operator (xp) takes two relations R and S,
and a join condition #, and it returns the rows in R that join with
at least one qualifying row in S [17]. In other words, the semi-join
operator filters out the rows in R that do not have any matching row
in S. Table 4.4 shows two examples of semi-joins between tables R and
S, where the tables are joined on column b, specifically, R X gpp—gp S
and S X S b=R.b R.

Table 4.4: Examples of semi-joins on R and S.

(a) Table R (b) Table S (c) RXRrb=5pS (d) S Xsp=rob» R
R.a| R.b S.b| S.c R.a| R.b S.b | S.c
1 4 4 1 1 4 4 1
2 5 6 3 3 6 6 3
3 6 8 5

The semi-join operator can be helpful in reducing the cost of a join.
By applying the semi-join operator on R to filter out irrelevant rows in
R before joining it with S, the cost of the actual join can be reduced.
For example, in Table 4.4, if we first execute R’ = R x S, then when
joining S with R’ instead of joining three rows from R, we only need
to join two rows from R’. In particular, in the distributed setting where
R and S are at two different sites, semi-join is able to reduce the cost
of data transfer. Thus, we are using the following transformation rule:

e Rixp S < (RxpS) <xp S, where 0 is the join predicate

between R and S.

304 Key Transformations

Note that the introduction of semi-join based filtering may not always

reduce the query plan cost because the overhead of creating and applying

the filter can outweigh its benefit if the filter is not selective enough.

Thus, the introduction of a semi-join based filtering needs to be a

cost-based decision.

All implementation methods for join can be used for semi-join. Since
semi-join does not need to find all matching rows but need only verify
at least one match, early termination could be used to speed up the
execution of the join methods [62]. However, the decision on what join
method should be used needs to be cost-based. For example, depending
on the selectivity and availability of the access methods, Nested Loops
Join with Index Seek or Hash Join may be the preferred implementation.

The following two equivalent transformations are important for
semi-joins [62]:

1. (Group By(g,A)R) xy S = Group By(g, A)(R xg S), where g are
the group-by columns and A is the set of aggregates, as long as 6 is
over a subset of g of the relation R.

2. R x9S = Group By(R.key, Any)(R <9 S), where Any denotes the
columns of any row in the group, i.e., there is exactly one row in
each group as R.key is the primary key of R.

The first equivalence shows how the semi-join behaves much like
filter expressions. The second equivalence shows how a semi-join may be
converted to an inner join. The significance of the second transformation
above is that by converting a semi-join to a join, we may be able to
expand alternatives for the optimization, e.g., enable reordering with
other joins.

Bitvector filters Semi-join performs membership testing for values of
the join columns from each row in R with the set of join column values
in S. Such exact membership testing can be implemented efficiently
with a bitmap filter when the domain of the join column values is small
by assigning one bit from the bitmap for each value in the domain.
However, when the domain of the join column values is large or the
values of the join column populate sparsely in the domain, bitmap filters
can consume too much memory. Fortunately, for the purpose of reducing
the cost of joins, the membership testing does not need to be exact as

4.6. Other Important Transformation Rules 305

long as it has no false negatives, i.e., no matching rows are incorrectly
eliminated. Therefore, approximate membership testing, i.e., one that
allows false positives, is acceptable as such false positives will not impact
the result of the join. Probabilistic data structures such as Bloom filters
provide an efficient way to perform approximate membership testing,
allowing a trade-off between space efficiency and false positive rate. For
example, instead of performing R x S to filter out the rows from R as
shown in Table 4.4c, we create a Bloom filter B on S.b and then perform
membership testing on R.b against B for each row in R. Only the rows
that pass the membership test need to perform the actual join with S.
We use the term bitvector filtering to denote both exact, i.e., bitmap
filters, and approximate filters, i.e., Bloom filters. Bitvector filtering
becomes even more powerful when the filter is pushed multiple levels
down the query operator tree [78]. Consider the following Query 22:

Query 22
SELECT *

FROM R, S, T
WHERE R.a = T.a AND S.b = T.b

Figure 4.19 shows three plans for Query 22 with no bitvector filter
push-down, one-level bitvector filter push-down, and multi-level bitvec-
tor filter push-down. If there is no bitvector filtering, the join of S and T’
takes 10000 rows from 7" and outputs 5000 rows for its parent Hash Join
operator (Figure 4.19a). If we create a bitvector filter B from the build
side of each Hash Join operator and apply to the probe side, assuming
B has no false positives, then the join of S and T takes 5000 rows from
T and outputs 1000 rows (Figure 4.19b), which reduces the cost of both
the join of R and S as well as its parent join. Finally, because the filter
Br created from R.a actually applies on the column 7T.a, instead of
applying Bz on the output of joining R and T', we can push down Br
to T'. As shown in Figure 4.19c¢, this further reduces the cost of joining
S and T by eliminating additional rows from T

The decision of pushing down filters is based on the column(s) used
for the membership testing. If all the columns used for membership
testing are from a single child operator of the parent operator, the filter
can be pushed down to the child operator. Otherwise, the filter can be

306 Key Transformations

1000

Hash Join

(a) Plan P; without bitvector (b) Plan P, with one-level (c) Plan P3 with multi-level
filter push-down bitvector filter push-down bitvector filter push-down

Figure 4.19: The plans for query S i (R < T') with and without bitvector filters.
The arrow shows the creation and the application of bitvector filters. The number
on the edge shows the output cardinality of the operator.

pushed down either to all the child operators with the relevant columns,
or the filter can be applied only to the parent operator if the filtering is
only effective at the parent operator.

To enable bitvector filtering, query execution engines implement
a physical operator to create a bitvector (Bitvector Create) and a
physical operator to evaluate the bitvector filter (Bitvector Filter).
The decision of where to place these operators in the plan is done
by most query optimizers in a post-processing step after the query
optimizer has found the best plan for the query. While such a posteriori
placement of bitvector filters can improve the efficiency of joins for
a given plan, there is an opportunity to influence the plan generated
by the optimizer by considering placement of bitvector filters during
search. This is because the placement of bitvector filters can change
the cardinality of an expression. Integrating such filtering into the
query optimization introduces new challenges in search due to the
increased search space of query optimization [58]. Finally, we note
that for distributed query execution, constructing bitvector filters may
become a scheduling barrier [106], and therefore the use of bitvector
filtering should be a cost-based decision.

Magic sets Magic sets generalize the idea of semi-joins of imposing
restriction on relations involved in joins to subqueries [148]. Consider
Query 23 that finds each product whose color is Blue and weight is less

4.6. Other Important Transformation Rules 307

than 1 Ib, and whose price is higher than the average price of products
in its category:

Query 23

SELECT name
FROM products AS pil
WHERE color = ’Blue’ AND weight < 1 AND price >
(SELECT AVG(p2.price) FROM products AS p2
WHERE p2.category = pl.category)

The above query contains a correlated subquery, where the subquery
that computes AVG(price) is invoked with the value p1.category from
the outer block. For this query, there are two opportunities to save
computation. First, we only need to compute the average price for
product categories that qualify after applying the filter color =" Blue'
and wetght < 1. Second, we can compute the average price for these
categories only once so that we do not need to compute them repeatedly
with every choice of the product from the outer relation.

Based on these observations, we can execute the query in four steps:
1. Find all the products with color =" Blue' and weight < 1 (view T}).
2. Find distinct categories in T (view T3).

3. Find the average price of products for each product category that is
among the product categories in T (view T3). For this step, T acts
as the magic set and it helps limit the number of subqueries that are
computed.

4. Find the products with color =’ Blue' and weight < 1 whose price
is higher than the average price by joining 77 with 73 on the product
category attribute. For this step, T3 is a magic set that restricts 77.
As with semi-joins, the creation of magic sets introduces additional

overhead, which may not always pay off. For example, in the extreme

case, all the categories have blue products with weight > 1 1b in Query 23,

then the auxiliary table T5 will not reduce any rows from products.

Thus, the application of magic sets need to be cost-based.

In Section 4.5, we have discussed how the algebraic framework of
Apply may be used for decorrelation. We now discuss how the magic sets
technique may be cast in that framework for decorrelation. If we review
the steps outlined in the example above, we note that we first executed
the outer query block in Query 23 without considering the effect of the

308 Key Transformations

correlated subquery. Thus, T7 is a superset of the qualifying tuples of
the outer relation. In the second step, we identified all distinct categories
in T7. These are the parameters with which the nested subquery will
need to be evaluated. This is the set T5. In the third step, we evaluated
the nested subquery for every value of the product category in 7T5. In
other words, T5 is the “outer” in Apply using which we evaluated the
following expression to obtain T5:

T3 =T ApplyX (UTZ.category:pQ.category AVG(p2-p7“iC€) products as p2)

Once we have obtained T3, we joined T3 with the outer relation(77) on
product category to produce the final result. Thus, instead of invoking
the PRE with the set of parameter values P from the outer relation
R, the PRE is pre-computed with a set of parameter values P’, where
P C P'. Here, P’ is the magic set. A common choice of P’ is the set of
all possible distinct parameter values, e.g., all distinct category values
in the products table. In the example above, P’ is the set Ty. Once this
step is completed and a relation is obtained (73 in the example), a
traditional equi-join completes the query. In the example above, this
is the join between T} and T3. As the example illustrates, magic sets
in itself does not directly do decorrelation but it leverages semi-join
techniques to reduce the cost of evaluating the nested subqueries [62].

4.6.3 User-defined functions (UDFs)

User defined functions (UDFs) allow users to add customized functions
which can be invoked through the SQL language interface. Many SQL
queries used for data analytics contain user-defined functions written in
languages such as Python, Java, C#, etc. Such user defined functions
could occur as tables, aggregate functions, or filters in a SQL state-
ment. There are many unique challenges for optimizing queries with
user-defined tables, aggregate functions, and filters, e.g., the costing
information for UDFs have to be provided to the optimizer. Although
we do not offer a full discussion of how UDFs are handled by the query
optimizer and the query execution engine, we discuss two important
optimization opportunities.

Let us consider the case of optimizing SQL queries with one or
more UDF filters. For user-defined filters, there is a need to trade-off

4.6. Other Important Transformation Rules 309

selectivity and the cost of evaluating the filter. Therefore, the rules for
push-down and pull-up that we discussed in Section 4.2.2 are important
for user-defined filters as well. Using the above rules, query optimizers
can generate alternative plans with different placement of UDF filters
in the plan, including placing them above a join expression, and such
choices should be made in a cost-based manner. We refer the readers
to [39, 91] for details of how UDF filters may be evaluated in a cost-based
manner.

In the rest of this section, we address a sound way UDFs may be
transformed into an equivalent SQL statement without any UDFs. Such
transformations are especially significant as after the transformation,
the optimizer is able to use its full repertoire of query optimization
techniques, and it also does not require any information on UDF costing.

Rewriting UDFs to SQL The techniques that consider UDFs as a black
box during query optimization can lose opportunities for improving
plan quality. In contrast, rules that rewrite a UDF to an equivalent
sequence of SQL statements can enable the optimizer to apply other
transformation rules, such as those described in this section, and thereby
lead to the generation of a more efficient plan.

Consider the following example UDF Query 24, which finds the name
and product classification for each product based on the amount of
sales. The use of the UDF conveniently separates the main query and the
logic of determining the classification of a given product. However, the
query invokes the UDF with p_ productkey for every row in product.
Observe that the UDF can be expensive since for each pkey value
the orders table needs to be accessed. While rewriting techniques are
available for this query if we embed the UDF as a subquery in the main
query (see Section 4.5), the query optimizer will not be able to exploit
these techniques if it treats the UDF product_ classification as a black
box. Moreover, compared to nested evaluation of subqueries, executing
the query with a UDF can be even slower because of the overheads of
serialization/deserialization and function invocation for each row.

310 Key Transformations

Query 24
SELECT p_name, product_classification (p_productkey)

FROM product

-— UDF definition
CREATE FUNCTION product_classification(@pkey int)
RETURNS char(10) AS
BEGIN
DECLARE @total float;
DECLARE @class char(10);
SELECT @total = SUM(o_totalprice)
FROM orders WHERE o_productkey = Q@pkey;
IF (@total > 5000000) SET @class = ’High’;
ELSE IF(@total > 25000) SET @class = ’Medium’;
ELSE SET @class = ’Low’;
RETURN @class;
END

Given that UDFs are expressive, it is challenging to design techniques
to allow the query optimizers to reason about the semantics of UDFs in
general. Below, we discuss one technique that opportunistically “opens
up” a certain class of UDFs by converting them to equivalent SQL.

The work by FROID [172], which is used by Microsoft SQL Server,
proposes a technique to automatically inline scalar UDFs i.e., UDFs that
return a scalar value as shown in the example Query 24 with imperative
constructs including DECLARE, SET, SELECT, IF/ELSE, RETURN,
and UDF (i.e., nested UDFs). The key insight is to derive an equivalent
transformation from imperative statements to SQL statements so that
the UDF is replaced by an equivalent nested subquery. For example,
the IF /ELSE statement can be transformed to CASE WHEN; the SET
statement can be transformed into SELECT AS. FROID combines
individual statements into a single expression, potentially with nesting
and derived tables, and rewrites the original query with UDFs to SQL
query without UDFs. Thus, the optimizer can leverage transformation
rules such as decorrelation (Section 4.5) to optimize the query. For the
UDF shown in Query 24, FROID produces an equivalent SQL query as
shown in Query 25 where DT1 and DT2 are derived tables:*

4OUTER APPLY is the Microsoft SQL Server syntax for the Apply=®” operator
discussed in Section 4.5.

4.6. Other Important Transformation Rules 311

Query 25

SELECT DT2.class FROM
(SELECT
(SELECT SUM(o_totalprice) FROM orders
WHERE o_productkey = @pkey) AS total) DT1
OUTER APPLY
(SELECT
CASE WHEN DT1.total > 5000000 THEN ’High’
WHEN DT1.total > 250000 THEN ’Medium’
ELSE ’Low’
END
AS class) DT2

In FROID the above transformation from a UDF in an imperative
language to SQL is done prior to query optimization, and this decision is
not cost-based. While this is the right decision for most queries (due to
overheads of UDF execution), in general this transformation can be done
during query optimization in a cost-based manner in Volcano/Cascades.
Finally, we note that it is also important to enable transformation of
UDFs in imperative languages such as Python, Java or C#, which are
used widely in practice, to SQL, e.g., as in [42].

4.6.4 Materialized views

A materialized view is defined by a SQL SELECT statement. In contrast
to a view, when a materialized view is created, the view definition, i.e.,
the SELECT statement corresponding to its definition is executed, and
its results are materialized — i.e., persisted in the database similar to a
base table. Thus, a materialized view is a precomputation of the results
of a SQL query. Since the expression corresponding to the materialized
view may consist of expensive operations such as join and aggregation,
there is an opportunity to potentially speed up the execution of any
query Q for which the query optimizer is able to use the materialized
view to answer a subexpression of Q. Materialized views are especially
important for speeding up the execution of analytic queries which
perform expensive operations on large amounts of data. We illustrate
the use of a materialized view with an example. Consider the following
Query 26:

312 Key Transformations

Query 26

SELECT p_size, SUM(1_quantity)
FROM lineitem, part

WHERE p_partkey = 1_partkey
GROUP BY p_size

Suppose we have created a materialized view mv that aggregates
l_quantity by |__partkey (as defined in Query 27). Then, it is possible
to equivalently rewrite the query to join part with the materialized view
muo as shown below in Query 27:

Query 27

---- define materialized view ---
CREATE MATERIALIZED VIEW mv AS
SELECT 1_partkey, SUM(1_quantity)
FROM lineitem
GROUP BY 1_partkey

---- query with materialized view --——-
SELECT p_size, SUM(1_quantity)

FROM mv, part

WHERE p_partkey = 1_partkey

GROUP BY p_size

The rewritten query may execute much faster, e.g., when muv happens
to be much smaller than the base table lineitem. This may happen
when there are many fewer distinct values of I_ partkey compared to
the number of rows in linietem. In general, using a materialized view
to answer a query may not always result in a faster execution plan, and
the decision must be done in a cost-based manner.

To take advantage of materialized views, the query optimizer needs
to: (1) Determine which materialized views can be used to answer a
given expression. This problem is referred to as view matching. View
matching can be applied for any sub-expression of the query. The
problem of answering queries using views has been studied extensively
(e.g., see [87] for a survey). (2) When a view can be used to answer the
query, but does not exactly match the expression, derive the residual
expression to apply to the view to ensure that the results exactly match
the expression, and (3) Estimate the cost of the physical plan that uses

4.6. Other Important Transformation Rules 313

the materialized view. Below, we describe how each of these steps are
accomplished in an extensible optimizer.

View matching In Volcano/Cascades, view matching is achieved us-
ing transformation rules. The transformation of a logical expression
to use materialized views is integrated into the optimizer as a rule,
where the CheckPattern function contains the view matching logic and
the Transform function derives the new logical expression with the
view and the residual, if any. This rule can be triggered for each log-
ical expression in the memo during the search, or applied selectively
with heuristics, e.g., only on expressions referencing large tables, by
using the guidance mechanism (Section 2.3). For example, in Query 26,
when the optimizer searches the best plan for LogOpGroupBy(part >
lineitem, p__size, SUM (I__quantity)), by pushing down the group-by
(see Section 4.4), the logical expression can be transformed into
part <1 LogOpGroupBy(lineitem, l__partkey, SUM (I__quantity)). The
optimizer finds that the view muv defined in Query 27 is an exact match
for LogOpGroupBy(lineitem,l__partkey, SUM (I__quantity)), which it
then transforms into an equivalent logical expression LogOpGet(muv).
Finally, we note that view matching is an expensive step, and there-
fore techniques for efficiently filtering out views that cannot match an
expression can significantly speed up this step (e.g., [76]).

Residuals When the materialized view contains the rows needed to
compute the expression, but is not an exact match for the expression, a
residual expression is needed as post-processing. Consider the following
example Query 28. While the materialized view muv is not an exact
match of the logical expression of the original query in Query 28, it
contains the result of the expression. Thus, mv can still be used for the
original query with a residual predicate filter as shown in Query 28.

Implementation rules and costing As far as access methods are
considered, a materialized view behaves like a base table, and can
have clustered and non-clustered indexes on it. In the above example,
implementation rules that convert LogOpGet(mv) to use access methods
(e.g., Clustered Index Scan) can therefore be applied similar to any

314 Key Transformations

base table as discussed in Section 4.1. Costing of a physical plan that
references a materialized view is also done in the same manner as any
other physical plan as described in Section 5.

Query 28

---- original query ----

SELECT 1_partkey, SUM(1_quantity)
FROM lineitem

WHERE 1_partkey > 10

GROUP BY 1_partkey

---- query with materialized view ----
SELECT *

FROM mv

WHERE 1_partkey > 10

Other aspects There are several other important aspects of materi-
alized views that are beyond the scope of this monograph. We briefly
mention some of these aspects and point to relevant references. (1)
View maintenance: When data in the base tables is updated, a mate-
rialized view needs to be updated to prevent it from becoming stale.
Therefore, techniques for incrementally updating the materialized view,
i.e., without having to recompute it from scratch, become crucial for
scalability e.g., see [85] for a detailed description of the problems and
solutions. (2) Ezpressiveness: The class of materialized views that can
be supported by a DBMS is influenced by whether or not there are
efficient algorithms for incrementally maintaining the view. Algorithms
for rewriting queries to use Select-Project-Join views with group-by and
aggregation are widely supported in DBMSs. (3) View selection: There
has been a large body of work on deciding which materialized views to
create for a given database workload. We refer readers to [43, 84] for
more details on the above aspects.

4.7 Suggested Reading

Clitation numbers below correspond to numbers in the References section.

[52] U. Dayal, “Of Nests and Trees: A Unified Approach to Processing
Queries That Contain Nested Subqueries, Aggregates, and Quantifiers,”
in Proceedings of the 13th International Conference on Very Large

4.7. Suggested Reading 315

Data Bases, ser. VLDB ’87, pp. 197-208, San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1987

[38] S. Chaudhuri et al., “Including Group-By in Query Optimization,”
in Proceedings of the 20th International Conference on Very Large
Data Bases, ser. VLDB ’94, pp. 354-366, San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1994

[70] C. Galindo-Legaria et al., “Outerjoin Simplification and Reordering
for Query Optimization,” ACM Trans. Database Syst., vol. 22, no. 1,
Mar. 1997, pp. 43-74. DOI: 10.1145/244810.244812

[69] C. Galindo-Legaria et al., “Orthogonal Optimization of Subqueries
and Aggregation,” SIGMOD 01, 2001, pp. 571-581. por: 10.1145/
375663.375748

[62] M. Elhemali et al., “Execution Strategies for SQL Subqueries,” in
Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’07, pp. 993-1004, Beijing, China:
Association for Computing Machinery, 2007. DOI: 10.1145/1247480.
1247598

[153] T. Neumann et al., Unnesting Arbitrary Queries, 2015

https://doi.org/10.1145/244810.244812
https://doi.org/10.1145/375663.375748
https://doi.org/10.1145/375663.375748
https://doi.org/10.1145/1247480.1247598
https://doi.org/10.1145/1247480.1247598

5

Cost Estimation

Cost estimation, i.e., the task of estimating the cost of executing a
plan, is not unique to extensible optimizers. In fact, the cost estimation
framework in most modern cost-based optimizers follows the approach
of System R, which we outlined briefly in Section 1.2. In this section,
we start with an overview of how cost estimation is used in an exten-
sible query optimizer (Section 5.1). We then describe techniques for
modeling the cost of an execution plan (Section 5.2). We next briefly
review statistical summaries (aka statistics) used by the optimizer for
cardinality estimation, focusing on histograms, one of the most widely
used summaries in practice (Section 5.3). We also describe sketches, a
newer class of statistical summaries, which have been gaining adoption
in databases recently. We further give an overview of how DBMSs
manage statistics over the lifetime of a database. We follow this with a
description of techniques for cardinality estimation (Section 5.4). We
conclude this section with a case study of how cost estimation works in
Microsoft SQL Server (Section 5.5). In this section we do not discuss
recent machine learning based techniques for cardinality estimation and
cost estimation, which is an active area of exploration. We defer the
discussion of those techniques to Section 7.

316

5.1. Cost Estimation Overview 317

5.1 Cost Estimation Overview

The search algorithm of the optimizer uses cost estimation to provide
an estimate of the efficiency of a given physical plan, which is used to
compare the plan against other alternative plans for the same logical
expression. Figure 5.1 shows the search and cost estimation modules
in a query optimizer and their interaction. During the search for the
best plan for a logical expression, the optimizer uses the cost estimation
module to derive the cost of the plans and chooses the best one. The cost
of a plan is estimated by combining the costs of individual operators in
the plan. The cost of an operator is estimated using a cost model. The
cost model for an operator (e.g., Hash Join) uses formulas to estimate
the resources (e.g., CPU, I/O, memory) consumed by that operator.
The cost model is operator specific. For example, the cost model for
a Hash Join must capture (1) the cost of building the hash table, (2)
the cost of probing the hash table, and (3) the cost of constructing the
join result for matching rows. The most important parameters of the
cost model of an operator include the number of rows or cardinality of
its input relations and its output relation. Observe that the number
of rows of an input relation of an operator is also the number of rows
output by its child operator. Hence, the ability to accurately estimate
the number of rows output by each operator, referred to as cardinality
estimation, is crucial to ensure good accuracy of the cost estimation.

Cardinality estimation takes a logical query expression as input and
uses statistical summaries of the data of the relations referenced by the
logical expression. For example, the expression Join(Join(R, S),T) with
R.a = S.b and R.d = T.c references three relations, and information
about the distribution of values in the columns R.a, S.b, R.d, and T.c
can be useful for estimating its cardinality. Hence database systems must
collect and maintain these statistics over the lifetime of the database (see
the Data Statistics module in Figure 5.1). The major kinds of statistical
summaries, also referred to as synopses, that have been proposed for
cardinality estimation include! histograms [111], sketches [192], and
samples.

"Wavelets [131] have also been considered for cardinality estimation but they
have not been adopted in practice by database systems.

318 Cost Estimation

Data Statistics

Cardinality

| estimation
Estimate T

Cardinality Estimate Cardinality
(Logical Expr) (Logical Expr)

Derive Cost Cost model

(Physical Expr)

Search Cost Estimation

Query Optimizer

Figure 5.1: Search and cost estimation modules in a query optimizer. Cost estimation
uses a cost model, which in turn uses a cardinality estimation module.

Finally, we note that the search algorithm may directly call the
cardinality estimation module for a logical query expression to make
decisions during its plan search as shown in Figure 5.1. For example,
in Volcano/Cascades, the promise of a join transformation (see Sec-
tion 2.2.3) may be based on whether the outer side has a larger (or
smaller) estimated cardinality than the inner side.

5.2 Cost Model

The cost model estimates the cost of an individual physical operator in
a plan, and then it combines the costs of all the operators in the plan
to produce the total cost of the plan. There are several factors that
determine the cost of executing a particular operator: (1) The amount
of data it processes, i.e., data consumed from each of the operator’s
inputs. (2) The cost incurred by that operator for processing each unit
of data and producing the output. (3) Runtime factors that can affect
the cost of executing the operator. The amount of data processed by the
operator is based on the number of rows from its inputs, i.e., cardinality,
and the size of these rows. The cost of processing a unit of data includes
I/O and CPU cost. The runtime factors may include the degree of
parallelism (i.e., number of concurrent threads used to execute that

5.2. Cost Model 319

operator), the amount of memory available for an operator such as Hash
Join or Sort, and the contents of the buffer pool.

Figure 5.2 shows an example query and its plan with a simplified
cost model. Each operator in the plan is annotated with the size of
intermediate result, i.e., cardinality, and its cost. Consider, for example,
the Hash Join operator. It builds the hash table over 100 rows output
by the Table Scan operator over the store table. It then probes the
hash table with 1000 rows output by the Index Scan operator over
the store_sales table. It outputs 250 rows, which are consumed by its
parent Hash Aggregate operator. In our simplified cost model, inserting
a row into the hash table costs 3, probing the hash table costs 1, and
producing an output row costs 1. Therefore, the estimated cost of the
Hash Join operator is 1550.

Card: 100
Cost: 300
| Hash Aggregate I
Card: 250
SELECT s_city, COUNT(*) Cost: 1550
FROM store, store_sales Hash Join
WHERE s_store_sk = ss_store_sk Card: 100 Card: 1000
AND s_state = ’CA’ AND ss_year = 2000 Cost: 500 Cost: 1000
AND ss_sales_price > 10 Table Scan Index Scan
GROUP BY s_city (store) (store_sales)

Figure 5.2: Query plan with cardinality and cost estimate

Finally, we note that the factors which impact the cost of an operator
can be complex. For example, caching can significantly impact the CPU
time of scan operators, such as Table Scan and Index Scan, because
scanning the data is faster if the data or a part of the data is cached
in the buffer pool memory compared to scanning all the data from the
storage subsystem. The work by [55] proposes a technique to model the
impact of caching on the cost of Index Scan by maintaining a random
sample of rows from each table, which is used during query optimization
time to obtain a list of record IDs (RIDs) of rows that qualify the
selection conditions on that table. These RIDs are then used to probe
the index at query execution time to estimate what fraction of data is
cached. While modeling the effects of caching on the CPU time of a scan
operator can improve accuracy of cost estimation, they are typically

320 Cost Estimation

not implemented in database systems due to several reasons. First,
the contents of the buffer pool are difficult to predict when there are
concurrent queries running in the database system. Second, the content
of the buffer pool estimated at query optimization time may be different
from that at query execution time. Finally, the overheads of the above
estimation are non-trivial and can increase optimization time. Thus,
modeling system-wide effects such as caching is an open problem in
cost estimation, and most DBMSs do not model the effects of caching.

5.2.1 Cost model calibration

The cost of a physical operator depends on both the statistics of the
operator, e.g., number and size of the rows for its input relations and
output, as well as a cost formula with cost parameters, i.e., the cost
model. For example, the CPU time estimate of the Table Scan operator
needs to take into account the number of sequential I/Os performed by
the operator, the CPU time cost of each sequential I/0, as well as other
overhead of the operator, e.g., startup cost. A simple cost model might
be Copy = Cio - Nio + Cp, where Cio, Cy are the cost parameters
and Njo is the number of sequential I/Os. While the statistics of
an operator is specific to the logical and physical properties of the
operator, the cost model can generalize beyond a specific operator.
Often, the cost formula itself is fixed for a type of physical operators,
e.g., Copu = Cro - Nio + Cy for Table Scan, while the cost parameters
can change based on the specific hardware, e.g., hard disk vs. SSD.
Thus, the cost parameters need to be properly calibrated to accurately
model the specific hardware where the database system runs.

One approach for calibrating cost model parameters, which is used in
System R [178], is to execute a set of hand-crafted synthetic queries on
the specific hardware and measure the resources consumed by operators
in the plan. For example, assume we want to calibrate the parameters
of our simple cost model for estimating the CPU time of sequential
I/0s, i.e., Copu = Cro - Nio + Cp. By executing a number of Table
Scan operators, potentially on tables of different sizes, and measuring
their actual execution statistics, i.e., the number of sequential I/Os
performed (Njo) and the CPU time (Ccopy), the cost parameters Cro

5.3. Statistics 321

and Cy can be derived. Since the cost parameters are hardware specific,
some commercial database systems will re-calibrate the cost parameters
when running on a machine with a specification different from the one
used to calibrate the parameters.

Finally, we note that there has been extensive research on cost model
design and calibration over the years. The approaches vary, including
developing more fine-grained cost models [125], using synthetically
created databases and queries to improve the accuracy of calibration [60],
automatically designing experiments to calibrate model parameters [197],
and using machine learning for cost model calibration [199].

5.3 Statistics

The major kinds of statistical summaries, also referred to as synopses,
that have been proposed for use in cardinality estimation (CE) include
histograms [111], sketches [192], and samples. The key requirements
for these statistical summaries with respect to their use in CE are:
(1) accuracy (2) efficiency (3) memory consumption (4) coverage i.e.,
applicability for different types of query expressions, and (5) cost of
creation and maintenance. We refer the reader to [46] for a detailed
survey on these techniques and their trade-offs in terms of the above
requirements. In practice, by far the most popular techniques used
for CE of selections and joins in commercial DBMSs are histograms,
described in more details in Section 5.3.1. For distinct value estimation,
the sketching technique of HyperLogLog [64, 92] is gaining traction in
practice. Sampling is also used for cardinality estimation in some DBMSs,
although its usage is much more limited compared to histograms. A
survey and empirical comparison of various techniques for estimating
the number of distinct values is presented in [90].

5.3.1 Histograms

Despite being error-prone, histograms are by far the most widely used
techniques for cardinality estimation in practice because of their simplic-
ity and efficiency [101]. A histogram is defined on a set of columns. The
idea is to use a number of buckets and to store an aggregated summary

322 Cost Estimation

of the rows of that column set which fall into the corresponding bucket.
These aggregates are then used for cardinality estimation of predicates
involving that column set. The number of buckets to use in the his-
togram is an input parameter to histogram construction. Depending
on how the buckets are defined and what aggregate summary is stored
in each bucket, different kinds of histograms are possible. Below, we
illustrate three kinds of commonly used histograms using an example.

Consider a column whose data distribution is shown in Figure 5.3a.
In each case, we limit the the number of buckets in the histogram to 5.

15 14 13 30
310 10 20 20
2 =
5 s 6 2 10 13
= o
o 5 H 3 H O 10 5 3
- 00 0 0
0 m 0
0123456789 [0,2) [2,4) [4,6) I6,8) [8,10)
Value Bucket
(a) Data distribution (b) Equi-width histogram
14
15 13 14 13 B 13
10 10
§10 6 € 6
s |2 S s
1.33
0 0
[0,3) [3,6) [6,7) [7,8) [8,10) 6 8 3 7 R
Bucket Bucket
(c) Equi-depth histogram (d) End-biased histogram

Figure 5.3: Data distribution and histograms

Equi-width histogram Figure 5.3b shows an example of an equi-width
histogram. Each bucket represents a range of contiguous values of equal
width, and the aggregate summary stored in the bucket is the number
of rows whose value lies within that range. This histogram can be used
to estimate the selectivity on the table with range and equality filters.
For example, with the histogram in Figure 5.3b, we can estimate the
number of rows with value 1 to be 5/2 = 2.5 making the uniformity
assumption (see Section 5.4.2). Although equi-width histograms are
simple, they can suffer from poor accuracy of selectivity estimation when
the data distribution across values is non-uniform, e.g., the number of

5.3. Statistics 323

rows for each value within a bucket is very different and deviates from
the uniformity assumption [164].

Equi-depth histogram Figure 5.3c shows an equi-depth (also called
equi-height) histogram for the same data distribution, which tries to
ensure that the height, i.e., the number of rows falling into each bucket,
is the same. In our example, since there are 51 rows and 5 buckets, the
buckets are chosen such that each bucket has approximately 10 rows.
Thus, the bucket boundaries can be viewed as quantiles of the distribu-
tion. Unlike an equi-width histogram, the worst-case errors in selectivity
estimates are much lower compared to equi-width histograms [164]. For
example, with the equi-width histogram in Figure 5.3b, the error in
estimating the cardinality of value 6 is (20 — 14)/2 = 4, while that with
the equi-depth histogram in Figure 5.3c is 0.

End-biased histogram In an end-biased histogram with N buckets,
N — 1 buckets are used to store the frequency of the values with
the highest frequencies, and the remaining bucket stores the average
frequency of all remaining values [103]. When estimating the selectivity
of an equality predicate, the estimation is accurate if the value referenced
in the predicate is one of the NV — 1 values with the highest frequencies,
whereas for other values the uniformity assumption must be made.
End-biased histograms are also effective for estimating selectivity of
equi-joins since the join size is often dominated by frequent values from
one or both relations being joined. Figure 5.3d shows an end-biased
histogram for the data distribution in our example, where the values
with the 4 highest frequencies are stored in the first 4 buckets, and
the 5! bucket, labeled R in the figure, stores the average frequency
of all remaining values. We observe that unlike equi-width and equi-
depth histograms where buckets store value ranges in the sorted order
of the column’s domain, in end-biased histograms, column values of
adjacent buckets are based on the frequencies of the corresponding
values. End-biased histograms have been shown to perform well when
the data distribution is skewed, e.g., there are a few high frequency
values and many infrequent values [103]. In our example, the end-biased
histogram has the lowest aggregated errors in cardinality estimation

324 Cost Estimation

for each value among the three histograms. We note that equi-depth
histograms and end-biased histograms have been used in commercial
DBMSs such as Oracle [159], IBM DB2 [99], Microsoft SQL Server
7.0 [34], and PostgreSQL [170]. More recent versions of Microsoft SQL
Server use Maz-Diff histograms, which we describe in Section 5.5.2.
Finally, there has been a large body of work on histograms for
cardinality estimation [101]. A taxonomy for histograms is proposed in
[168] to characterize the properties of different kinds of histograms.

Statistics on views Traditionally, optimizers restrict the statistics such
as histograms to those built on base tables and derive the cardinality
of an expression (e.g., one with joins) bottom-up. However, the errors
due to such estimation can be large particularly when the expression is
more complex, e.g., containing multiple joins. Statistics on views (SOVs)
allow a user or DBA to create a histogram on the result of a relational
expression [21, 71]. In the presence of SOVs, the optimizer is not limited
to estimating cardinality using only histograms on base tables, but also
has access to accurate pre-derived statistics on intermediate relations of
the query, which can significantly improve accuracy of CE. The optimizer
requires view matching technology (briefly described in Section 4.6.4)
to identify relevant SOVs when trying to estimate the cardinality of a
particular logical expression.

5.3.2 Sketches

A sketch [46] is a summary of the rows of a relation belonging to a domain
D = {1,2,...M}, stored as a set of values of a much smaller domain
S ={1,2,...w} called sketch counters. Sketches are typically constructed
in a single pass over streaming data, i.e., they need to examine each
row exactly once. Hence, they can also be used in databases on stored
(or intermediate) relations by streaming the data one row at a time.
Sketches can be used to estimate properties of the data distribution of
the input relation such as: (a) frequency of any given item, (b) heavy
hitters, i.e., given a parameter k, finding all items that occur at least
N/k times where N is the total number of rows, or (c¢) the number of
distinct values in the relation. For example, the Count-Min sketch [47]

5.3. Statistics 325

can be used for (a) and (b), and the Hyperloglog sketch [64] can be
used for (c).

Since sketches can be used to efficiently estimate frequencies of values
and number of distinct values, they are relevant to cardinality estimation.
Specifically, they can be used for constructing histograms since they
support the required operations such as computing the frequency of
values in a range, the number of distinct values over a data distribution,
or determining a heavy hitter in an efficient manner. Sketches have also
been used for cardinality estimation involving joins (e.g., [104]).

One attractive property of sketches is that they can be configured
to use only a small amount of memory (e.g., a few Kilobytes) even for
summarizing large relations, while providing good accuracy. During
sketch construction, a hash function is applied to each row, and the
corresponding hash value is used to update sketch counter(s). The
number of counters used can be increased to improve accuracy of
estimation by repeating the above step with multiple independent hash
functions. Estimating the property of interest (e.g., frequency of an
item or number of distinct values) involves simple arithmetic operations
on the sketch. Both the update and estimation cost are typically no
worse than linear in the number of sketch counters used.

Another attractive property of most sketches is mergeability: For a
dataset with multiple partitions, a sketch can be constructed for every
partition independently, and the individual sketches computed can be
combined without incurring loss in accuracy compared to building the
sketch of the same size on the entire data [3]. This property makes
parallel and distributed sketch computation practical, and sketches are
therefore well-suited for data analytic scenarios where data partitioning
is crucial to achieve scalability. For example, a common scenario in data
analytics is when a new batch of data is loaded into a new partition,
which is then added to the table. In such cases, the need to only compute
the sketch on the data in the new partition saves significant computation
and I/O since data in the existing partitions do not need to be accessed.

We now briefly review Count-Min and Hyperloglog sketches, which
are widely used in database systems.

326 Cost Estimation

Count-Min sketch The Count-Min sketch is a space-efficient data
structure for estimating the frequency of a given item (i.e., value) in
a relation [47]. It has two parameters (¢,0). The guarantee provided
by the algorithm on the accuracy of the estimate is that the error is
within a factor of € with a probability (1 —J). The algorithm uses these
parameters to set w = [¢] and d = [In3], where d is the number
of independent hash functions used by the algorithm, and each hash
function h; : {1..n} — {1...w}. The data structure used for Count-Min
sketch is a two-dimensional array C', shown in Figure 5.4. In each cell
the algorithm stores a counter (initialized to 0).

halx) =2 1)
s T
|
I
_ drows.
x hzlp{)'_—s"________________"’ 2 One per
1 > hash
',______________> ' function
! ’ h;j 1<jsd
|
e El S S e A e d
halx) =6 %
1 2 w

~

w columns. Each hash
function h;: {1..n} >{1...w}

Figure 5.4: Count-Min sketch. Each item is mapped to one cell in the two-
dimensional array of counters.

The sketch supports two methods: increment(x), which is called
when building the sketch on a column of the row with item z, and
estimate(z), which estimates the frequency of item z. In the increment
method, Vj € [1..d], the algorithm increments the array entry C|j, h;(z)].
To find the estimated frequency of an element z, the algorithm returns
fo = minjen..qClJj, hj(x)]. The intuition for using the smallest (i.e.,
min) value as the estimate of frequency is that it has the least "noise" due
to collisions from other items in the data. Thus, the error is the smallest
error among all the counters. The formal analysis of the accuracy of

Count-Min sketch can be found in [48].

5.3. Statistics 327

Hyperloglog The Hyperloglog (HLL) sketch is used to estimate the
number of distinct values in a relation [64]. HLL uses a hash function that
hashes a value in a domain D to the binary domain, h: D — {0, 1}%,
where L is the number of bits. The intuition behind HLL is that if the
bit pattern 0”1 is observed at the beginning of a hash value, then a
good estimate of the number of distinct values is 2°, assuming the hash
function produces uniform hash values. This is because, if the bits are
generated uniformly at random, then the probability that the number
will start with 0 is %, the probability that it will start with 00 is i, and
so on. Therefore, if we encounter a value starting with p 0Os, then 2°
is a good estimate of the number of distinct values encountered in the
data stream. However, this estimate has high variance, since a single
value that happens to have a large number of leading 0s can lead to an
erroneous estimate.

To reduce the large variance that such a single estimate has, a
technique known as stochastic averaging [65] is used. Specifically, the
input rows are logically divided into m partitions of roughly equal
size, using the first p bits of the hash values, where m = 2P. In each
partition, the maximum number of leading zeros, after the initial p bits
that are used to determine the partition, is measured independently.
These numbers are kept in an array M, where M[i] stores the maximum
number of leading zeros plus one for the i*" partition. The above
approach emulates the effect of m experiments and thereby significantly
improves accuracy, while using only a single hash function and therefore
does not increase the cost of hashing.

The algorithm (illustrated in Figure 5.5) initializes a collection of
m counters, M|[1],..., M[m], to —oo. As the data from the relation is
streamed by, for each value z, it computes y = h(x). The figure shows
four different values of h(x) on the left hand side, each corresponding to
a different combination of the first p bits. The first p bits (p = 2 in our
example) of the hash value (say j) are used as an index into the array
M. From the rest of the bits (say k), it computes p(k) = the position of
the leftmost 1-bit in k. The algorithm updates M [j] = max(M[j], p(k)).
To compute the estimate of the number of distinct values, the algorithm
takes the harmonic mean of the m estimations on the partitions as

328 Cost Estimation

p=2 2 leading zeros M: array of

e counters
[ofofofo]sfofas] of%>
Lofzfofr]z]afofo] 1] 1 m=20-4
Gello o elo] 2| o | (=
[lalolo o] 1[0] «*| :

Max number of

Index of array leading zeros

Figure 5.5: Illustration of HyperLogLog algorithm. h(z) produces an 8-bit value.
The first p = 2 bits of h(z) are used to identify which counter to update. The counter
records the maximum number of leading zeros in the remaining 6 bits of h(x).

2 . . .
follows: Zﬁimiml, where «, is introduced to correct a bias present in

=1 M)
the estimation. The details of the algorithm and analysis of its properties

are found in [64].

As noted earlier, most sketches are mergeable, provided the hash
functions used for all sketches are the same. For the Count-Min sketch,
each cell C[j, hj(x)] of the merged Count-Min sketch is set to the sum of
the counters of the corresponding cell C[j, hj(x)] of each of the sketches
being merged. For a merged HLL sketch, its M[j] value is set as the
mazimum value of the corresponding M[j] counter across individual
sketches.

We note that sketches such as Count-Min sketch and HLL discussed
above can produce estimates of distinct values for frequency of values
over the entire input. However, they do not have the ability to produce
estimates conditioned on an arbitrary selection predicate (i.e., filter) over

the same input. Developing sketches that can support selections is an
active area of research, e.g., [67]. Finally, in database systems, sketches
are also used in query execution. For example, DBMSs have recently
added new built-in aggregate functions that return the approximate
distinct count of an expression implemented using HLL e.g., [6, 143].

5.3. Statistics 329

5.3.3 Sampling

There are two ways samples are used in query optimization. First,
it is used for cardinality estimation. Second, samples are used for
constructing histograms. We describes both use cases below.

Use of sampling for CE Unlike statistical summaries such as his-
tograms, wavelets, and sketches, one of the key advantages of using
the sample of a table for CE is its broad coverage of multiple kinds of
predicates. Indeed, cardinality estimates for arbitrary predicates can
be derived using a sample by evaluating the predicate on each row in
the sample, and scaling the resulting count of qualified rows by a factor
equal to the inverse sampling fraction. Thus, sampling can be used to
estimate the cardinality of the predicates that can be difficult or impossi-
ble to estimate using histograms and sketches, such as LIKE predicates,
predicates on user-defined functions (UDFs), and inequality predicates.
Some DBMSs support sampling as a method for CE. However, sampling
poses significant challenges as well. First, for large tables, samples can
consume significantly more memory than histograms. Second, using
uniform random samples of base tables for join size estimation can
result in large error as shown in [35]. Intuitively, the problem arises from
values that are very frequent in one relation but not the other. Thus,
sampling from one relation without information about the frequency
distribution of values in the other relation can result in large error.
Generating a random sample of the join result can be expensive; see [35,
155] for such techniques and their limitations. Finally, CE using samples
incurs a relatively high latency when compared to histograms since the
predicate(s) need to be evaluated on each row in the sample. For these
reasons, some commercial DBMSs provide the option of using samples
on base tables for CE in limited cases, and it is not used by default.
For example, Oracle’s Dynamic Sampling feature [156] uses sampling
to estimate cardinality when a table referenced in the query has no
statistics. SAP Hana [176] supports user-specified hints (see Section
6.3) that direct the optimizer to use sampling for CE.

330 Cost Estimation

Use of sampling for histogram construction Sampling can be used for
histogram construction, which is supported by all commercial DBMSs
today. By using only a sample of the rows in the table, the cost of
constructing the histogram can be sharply reduced at the expense of
accuracy. One challenge with the use of sampling is that obtaining a
uniform random sample of rows from a table requires a full scan of all
rows in the table, thereby incurring a high I/O cost for large tables.
Therefore, most DBMSs obtain a random sample of blocks (i.e., pages)
of the table from the storage subsystem, and use all rows from that
page as part of the sample. While this significantly reduces the I/O cost
of sampling, block sampling does not yield a uniform random sample of
the rows in the table. This is because rows within a single page may be
correlated. For example, all the rows in a page may be from the records
of one state because they were bulk inserted into the table. Techniques
for mitigating the loss in accuracy while retaining most of the efficiency
of block sampling are presented in [30, 34]. Finally, we note that efficient
techniques for incrementally maintaining a uniform random sample of
the rows in a table as the data changes due to updates are described in
[74].

5.3.4 Statistics management

Thus far, we have introduced statistics on tables and views and discussed
how they are used for cardinality estimation of a query. Two major
challenges appear in managing statistics over the lifetime of the database.
First, the DBMS needs to decide which statistics to create. Second,
when the data changes, statistics need to be maintained (i.e., updated)
to ensure that accuracy of CE does not degrade. Thus, in order to
keep the cost of creating and maintaining statistics acceptable, it is
important to be judicious in deciding which statistics to create.

Deciding which statistics to create Given a database, the space
of single and multi-column statistics that are potentially relevant is
large. Thus, it can be prohibitively expensive to create and maintain
all potentially relevant statistics. By default, most commercial DBMSs
create single-column statistics on each column referenced in the query

5.3. Statistics 331

occurring in a selection or join predicate, GROUP BY clause, ORDER
BY clause, etc. Furthermore, for efficiency of creation, particularly
on large tables, they create statistics using a sample of rows in the
table (e.g., Microsoft [146] and Oracle [160]). While this approach is
efficient, a key limitation is that it fails to consider the space of multi-
column statistics and statistics on views (see Section 5.3.1). Below
we briefly describe two techniques proposed in the research literature
for deciding which statistics to create in the presence of multi-column
statistics and statistics on views. Intuitively, these techniques identify
unimportant statistics from the large space of potentially relevant
statistics by leveraging the fact that not all statistics are equally useful
for a query. Consider the following Query 29:

Query 29

SELECT i_color, COUNT(x*)
FROM item

WHERE i_category = ’Dress’
GROUP BY i_color

First, statistics creation can be limited to columns referenced in
the query. In our example query, only statistics created on item table
involving ¢ _category and 4 color columns can be used for CE, and
therefore affect the cost of plans. Second, some statistics are equiva-
lent with respect to a query. For example, if we create a single col-
umn statistics on ¢_ category and another multi-column statistics on
(i__category, i__color), these two statistics will derive the same selectivity
for i__category = Dress’ on the item table since the histograms on
i__category would be the same.? Therefore, creating both statistics
would be redundant for this query. Finally, while some statistics are
syntactically relevant to a query, their impact on the plan quality for
the query can be limited. Our example query involves accessing the
item table followed by a group-by aggregate. If the cost of accessing
the item table dominates the cost of the query plan, different choices of
the physical operator for the group-by expression based on the distinct
value estimate will have limited impact on the cost of the plan.

2If the statistics are created using a full scan of the data.

332 Cost Estimation

Prior work by Chaudhuri et al. [36] formulates the problem of
statistics selection for a workload and proposes techniques to identify
the set of essential statistics that will significantly impact the quality
of the plans of the workload. The challenge is to quantify the impact of
the statistics on the cost of a plan without creating the statistics. This
work has two key ideas. First, they prioritize the statistics that will
syntactically impact the expensive operators in a query plan. Second,
they develop a technique called Magic Number Sensitivity Analysis
(MNSA) to quantify the impact of a statistics on the plan cost without
actually creating the statistics. Specifically, MNSA injects extreme
selectivity values, close to 0 and 1, for predicates that use a statistic
being considered for creation, and compares the two plans thus generated
by the optimizer. If the plans are same, then the statistic is considered
not important, and its creation can be avoided. For example, in the
above query if injecting extreme selectivity values for the predicate
i__category =' Dress’ does not affect the plan chosen by the optimizer,
then creating statistics on the column ¢_ category can be skipped.

The problem of deciding which statistics on views (see Section 5.3)
to create was studied in Bruno et al. [21]. They present a non-trivial
generalization of the MNSA technique by identifying distributions of
the join column on a table after selections are applied that can lead to
“extreme” (i.e., smallest or largest) joins sizes. For example, consider
the following Query 30:

Query 30

SELECT =
FROM store, store_sales
WHERE s_store_sk = ss_store_sk AND ss_price < 100

By default, when estimating cardinality of the above query, opti-
mizers use the independence assumption and scale down each bucket
of the histogram on the column ss_ store_ sk by the selectivity of the
predicate ss_price < 100. This modified histogram, along with the
histogram on the column s__store_ sk is used to estimate the join size
as described in Section 5.4.2. However, instead of uniformly reducing
the frequency of all tuples in the histogram ss_ store_ sk, the above
technique adjusts the number of rows in each bucket such that the join

5.4. Cardinality Estimation 333

size is either the smallest or largest possible under the containment
assumption (see Section 5.4.2). The difference in cost between these
extreme cardinalities forms the basis for scoring the importance of a
statistic on view, and this score is used to rank the candidate statistics
on views to create.

Maintaining statistics Another challenge in statistics management
is how to maintain existing statistics. When a table is updated, the
underlying data distribution can change, and the statistics can become
obsolete over time. Despite prior work on maintaining histograms upon
data updates [75], in most commercial database systems, statistics on
a column are reconstructed when a significant fraction of the rows in
that column have been updated since the last time the statistics on
that column were created. They maintain counters that accumulate the
number of rows updated for each column. To keep the I/O overheads of
such counting low, most DBMSs accumulate these counters in memory
and only persist them when the database is checkpointed.

5.4 Cardinality Estimation

The cardinality estimation (CE) module in the query optimizer takes
a logical query expression as input and returns an estimate of the
number of rows output by that expression. In this section, we first
describe the requirements and key challenges in CE and then describe
the corresponding techniques.

5.4.1 Requirements and challenges

Efficiency The search algorithm of the query optimizer makes repeated
calls to the cardinality estimation module during query optimization.
As described in Section 2, in a query optimizer based on the Vol-
cano/Cascades framework, for each group in the memo, the search
algorithm calls the CE module to estimate the cardinality for that
group. It is common for the CE module to be called 100s or 1000s of
times during query optimization of a single query, particularly for large
and complex queries. Therefore, CE needs to be efficient to limit the

334 Cost Estimation

total time and resources incurred by query optimization. To keep the
CPU and memory cost of CE acceptable, the statistical information
used for CE needs to be compact and the estimation techniques need
to be computationally efficient.

Handling correlation and skew The cardinality of an expression de-
pends on the data distribution, which can be skewed and correlated.
For example, in Figure 5.2, the number of rows satisfying the predi-
cate s_state = C'A’ from the store table can be very different than
a predicate s state =' VA’ due to the data skew that occurs com-
monly in real-world data sets. Hence CE must be able to adequately
capture the effects of data skew. Moreover, if the expression requires
satisfying a conjunction of two conditions, e.g., ss_year = 2000 AND
ss__sales__price > 10, then the effects of correlation between the data
in the two columns may need to be captured to provide accurate CE.
In this example, if most items sold in the year 2000 are priced less
than 10, i.e., there is a strong negative correlation between the year and
the specific price range of the items, then ignoring the correlation, i.e.,
assuming independence, may result in a significant overestimation of
cardinality even if the CE of the individual predicates is accurate.

Handling complexity of SQL Even when the logical query expression
for which we are estimating selectivity contains only join operators,
the errors in join CE can propagate exponentially with the number of
joins in the expression [102]. Furthermore, operators such as group-by,
DISTINCT, and UNION require the optimizer to estimate the number
of distinct values in a relation (either on base tables or intermediate
relations). Accurately estimating cardinality of an expression with the
constraints of limited statistical information and fast estimation makes
CE challenging.

5.4.2 Key techniques

While the optimizer needs to estimate the cardinality for a variety of
logical expressions, most prior work as well as emphasis in commercial
DBMSs focuses on CE for three classes of logical expressions: selection

5.4. Cardinality Estimation 335

conditions (i.e., filters) on a single table, join size estimation, and
distinct value estimation. These classes are important because they
appear frequently in real-world queries. Moreover, these techniques can
also be used as building blocks to estimate the cardinality of more
complex expressions involving multiple joins, filters, group-bys, etc.

There is a rich body of literature on cardinality estimation techniques,
which can be categorized by the kind of statistical summaries used on
the base tables. In describing the techniques below we will assume the
use of histograms and HyperLogLog sketches.

It is important to mention that due to the constraints noted earlier:
limited statistical information about the data, need for fast estimation
with limited resources, and complexity of the SQL language, CE tech-
niques resort to various simplifying assumptions. Here, we discuss these
assumptions and the implied limitations of CE techniques.

Selection conditions on a single table

The most common classes of selection conditions or filters are point pred-
icates (e.g., s_state = C'A’), IN clauses (e.g., s_state IN '{CA’/VA")),
one-sided and two-sided range predicates (e.g., ss_sales_price > 10,
ss__sales_price BETWEEN 5 AND 10), and predicates on string data
with filters by prefix (e.g., s_ manager LIKE 'ste%’) and substrings
(e.g., s__manager LIKE "%ste%'). For cardinality estimation of selection
conditions on a single table, the commonly used simplifying assumptions
include uniformity and independence. We will explain these assumptions
and how to use them in the presence of single selection condition and
complex selection conditions as below.

Single selection condition Consider a single equality selection condi-
tion, e.g., s_ state =" C'A’. In the absence of any statistical information
about the data values in the column s state, the CE module would need
to make an assumption of how the values in the column are distributed.
In such cases, query optimizers often make the uniformity assumption,
i.e., they assume the data is uniformly distributed across all the values.
For example, if the size of a table is |T'|, and the number of distinct
values in the column is n, then by uniformity, each value occurs in |T'|/n

336 Cost Estimation

rows, i.e., the selectivity is estimated as 1/n. Unfortunately, this could
incur large errors in the presence of non-uniform data distribution in
the column, e.g., CA could have many more stores than the average
value across all states. When a histogram on the s_ state column is
available, depending on the type of histogram used, more accurate CE
is generally possible (see Section 5.3.1), although within a bucket the
uniformity assumption is still used across all distinct values that fall
into that bucket.

Finally, we observe that for predicates on string columns that require
estimating the number of matching substrings (e.g., s_manager LIKE
"%ste%'), traditional histograms are insufficient. In this case, different
data structures such as suffix trees [112] or tries are typically used for
CE.

Conjunction of two or more selection conditions Consider the con-
junction of two predicates ss_year = 2000 AND ss_ sales_ price > 10.
While the selectivities of the individual predicates can be estimated
using the techniques described above, estimating the selectivity of the
conjunction of two predicates is more challenging since the data in the
two columns may be correlated. Thus, in the absence of data statistics
beyond those available with single-column histograms, i.e., ss_ year and
ss__sales_price, the optimizer needs to make an assumption of how
the data is correlated. In practice, multi-dimensional histograms are
not commonly used due to the high costs of creation and maintenance.
Therefore, a common assumption made by optimizers in such cases is
independence. This implies that the selectivity of the conjunction of
the two predicates is estimated as the product of the selectivity of the
individual predicates as follows:

Sel(p1 A p2) = Sel(p1) x Sel(p2) (5.1)

For example, in the store_sales table, if the selectivity ss_ year = 2000
is 0.1, and selectivity of ss_sales_price > 10 is 0.2, then using the
independence assumption, the selectivity of their conjunction, i.e., items
sold in year 2000 with a price more than 10, is estimated as 0.02.

5.4. Cardinality Estimation 337

Join size estimation

Join size estimation, especially for equi-joins and semi-joins, is another
crucial task for query optimizers.

Estimating the cardinality of a join using histograms on the join
columns involves three steps. First, the buckets of the histogram are
aligned so that their boundaries agree, which might require splitting
some buckets. Second, there is a per bucket estimation of join sizes.
A common assumption made in the context of estimating join size is
containment [178]. Let R and S be two relations, where each of them is
grouped by the values of the join column(s) respectively, and R has a
smaller number of groups than that of S. Then the containment assumes
that for each group ggr of rows in R, it has a corresponding group gg in
S, where each row from gpr joins with the rows from gg in S. Thus, the
groups in S contain those from R.

Consider the example Query 31:

Query 31
SELECT s_store_sk

FROM store, store_sales
WHERE s_store_sk = ss_store_sk

Suppose a bucket in the histogram of store has 10 rows with 5
distinct values, and the corresponding bucket from store_sales has
200 rows with 2 distinct values. Then, each group of the bucket in
store__sales (with 200/2 = 100 rows each) is assumed to join with a
group of rows from store (with 10/5 = 2 rows each). Hence, the total
number of rows joining between these buckets would be 2 x 100 x 2 = 400
rows. More generally, if n; and ng are the frequencies of the two buckets,

and dy and dy are the number of distinct values in each bucket, then
X

m:xl(d?,gdg)

containment assumption. We observe that the output of joining two

buckets can be viewed as a new bucket of the histogram of the resulting
join, i.e., a histogram of an expression can be constructed from the
histogram(s) of its input(s) for CE. In our example, the output bucket

the formula: can be used to calculate the join size under the

would contain 2 distinct values each occurring 200 = 100 x 2 times. The
last step consists of aggregating the partial frequencies from joining
each pair of buckets to get the estimated cardinality for the whole join.

338 Cost Estimation

Figure 5.6 illustrates the bottom-up propagation of histograms for the
cardinality estimation of a join query with selections.

I .

ss_store_sk Card: 250

Join
s_store_sk = ss_store_sk

—manlEn. Cord: Gl e ___
s_store_sk 100 1000 ss_store_sk
Get (store_sales)
Get (store) ss_year = 2000 AND
s_state = ‘CA .

— ss_sales_price > 10
AL ol _ | el
s_state s_year s_sales_price

Card: 1000 Card: 5000

Figure 5.6: Example of join size estimation. To estimate the cardinality of the
Join operator shown in the figure, the histograms of join columns s_ store_ sk
and ss_ store_ sk are modified to reflect the impact of selection conditions. The
CE module estimates the selectivity of the Join and also constructs a propagated
histogram for the column ss_ store_ sk of the join expression.

In the presence of selection predicates, (e.g., suppose there is also
a selection predicate ss_price < 100 in Query 31), two variants for
the above technique are possible. One approach is to estimate the
selectivity of the other selection predicate (e.g., say it is 0.1), and scale
down the frequency of each bucket in the histogram of the join column
ss__store__sk by that selectivity. Then, the same procedure as above is
performed but with the scaled-down histogram of ss_ store_ sk. The
second approach is to first join the two histograms on s_ store_ sk
and ss_ store_ sk as described above, and then apply the selectivity of
the selection condition to the propagated histogram to scale down its
frequency. We observe that these two methods can result in different
cardinality estimates.

Distinct value estimation

When a logical query expression contains GROUP BY, DISTINCT,
or UNION operators, estimating the number of distinct values in the
column (or set of columns) of the expression becomes necessary. For

5.4. Cardinality Estimation 339

example, consider the following Query 32, where the cardinality of the
logical expression of the query is the distinct number of values of the
ss__year column:

Query 32

SELECT ss_year, count (*)
FROM store_sales
GROUP BY ss_year

One approach used by query optimizers for distinct value estimation
is to track the number of distinct values in a column as part of the
histogram, and use that information for CE of a group-by expression.
Since computing the exact number of distinct values requires a full
scan of the data and therefore can be expensive, DBMSs provide the
option to use random sampling to estimate the number of distinct
values. While sampling can substantially reduce the cost of histogram
construction, it has been shown that any estimator that examines
at most n rows of a table of size N must incur an expected ratio
error of O(y/N/n) on some input [27]. Finally, we note that when
the GROUP BY contains multiple columns, query optimizers leverage
multi-column statistics stored in the histogram, i.e., number of distinct
values for the combination of columns, for estimation. When such multi-
column statistics are unavailable, they resort to assumptions on how
the set of columns are correlated. For example, if the optimizer assumes
independence among the columns, then it may estimate the total number
of distinct values as min(N,d; % ...dy), where N is the total number of
rows in the relation, and d; is the estimated number of distinct values
in the i*" column of the group-by.

More recently, as discussed in Section 5.3.2, techniques based on
sketches, specifically HyperLogLog (HLL) are gaining traction for their
use in estimating the number of distinct values. HLL requires a full scan
over each row in the relation. However, unlike sampling, they use only
a small amount of memory (usually measured in KBs), and they are
accurate, i.e., their relative accuracy (technically the standard error) is
% where m is the memory used [64], computationally efficient, and
mergeable, i.e., HLLs computed on each partition of the data can be
combined easily to estimate the number of distinct values for the entire

340 Cost Estimation

relation. One drawback of HLLs with respect to CE is that the accuracy
of estimation of number of distinct values can degrade in the presence
of arbitrary selection conditions on the relation.

5.4.3 Status and limitations

Given the fundamental nature of the challenges in CE as noted earlier,
it is not surprising that CE remains one of the biggest sources of error
in cost estimation [29, 122]. Despite extensive research over the past
few decades, the state-of-the-art in cardinality estimation in commercial
database systems has not changed significantly over this period.

There have been empirical studies that attempt to quantify the
impact of CE errors on plan quality, i.e., elapsed time and resource
consumption of executing the plan. An empirical study [118, 119]
of industrial-strength cardinality estimation techniques on syntheti-
cally generated select-project-join (SPJ) queries on the Internet Movie
DataBase (IMDB) demonstrated that all estimators routinely produce
large errors that lead to significantly sub-optimal ordering of joins. A
more recent empirical study [116] quantifies the impact of cardinality
estimation on plan quality in Microsoft SQL Server, an optimizer based
on the Cascades framework. This study focuses not only on synthetic
queries used in prior research, but also includes industry benchmarks
such as TPC-H [167], TPC-DS [149], and DSB [57], as well as complex
real-world queries with join, group-by, aggregation, and nested sub-
queries. The study shows that significant improvements in plan quality
are possible across workloads if cardinality errors can be fixed. They
find that these improvements hold even in the presence of query runtime
techniques such as bitvector filtering [136] and adaptive joins [135] that
are designed to mitigate the negative impact of CE errors on query
performance.

The above studies suggest that despite advances in runtime query
execution, techniques in DBMSs cardinality estimation remains an
important problem that is worthy of attention.

5.5. Case Study: Cost Estimation in Microsoft SQL Server 341

5.5 Case Study: Cost Estimation in Microsoft SQL Server

5.5.1 Cost model

In Microsoft SQL Server, the cost of a query plan is a scalar that captures
the estimated resource consumption such as CPU time, memory and
disk I/O [145]. The cost refers to the estimated elapsed time, in seconds,
that would be required to complete a query on a specific hardware
configuration for which it was calibrated.

1/0 and CPU cost The Microsoft SQL Server optimizer’s cost model
is a combination of the estimated CPU cost and estimated I/O cost.
The I/O cost for an operator when reading (or writing) to a disk (or
SSD) takes into consideration the number of pages that need to be read
or written and whether the I/Os are sequential, e.g., for an Index Scan
operator, or random, e.g., for Index Seek operator, as random 1/Os can
be slower than sequential I/Os. The CPU cost of an operator takes into
account several factors such as: (a) the number of rows (both input
and output) to be processed, (b) the columns used and their sizes (c)
the kind of predicates used in a Filter or Join operator, e.g., equality
predicate vs. range predicate vs. LIKE predicates. Different constants
are used to model the cost of each kind of CPU operation on a row,
which are then scaled by the number of rows to obtain the total cost.

Impact of memory and parallelism We observe that the CPU and
I/O costs of an operator also depend on the resources available such as
memory and the number of CPU threads used to execute the operator.
The latter is also referred to as the degree of parallelism (DOP) (see
Section 2.6.1). For example, for a Hash Aggregate operator, if the
estimated number of entries in the hash table does not fit into the
memory that is available to the operator, then the optimizer’s cost
model adds I/O cost for spilling rows to disk and reading them back to
execute the operator. In Microsoft SQL Server, the cost of exchanging
data across threads in a parallel plan is modeled by an Exchange
operator which models different kinds of producer-consumer settings (see
Section 2.6.1). Consider a serial, i.e., single threaded, Hash Aggregate

342 Cost Estimation

operator whose input is a parallel Table Scan operator. In this case,
there are multiple producer threads and a single consumer thread.
The Exchange operator gathers input rows into a buffer, which is
then consumed by the single thread performing the aggregation. This
additional cost incurred by the plan due to the overheads of parallelism
is captured by the cost model of the Exchange operator. Other cases
covered by the Exchange operator include single-producer multiple-
consumers and multiple-producers multiple-consumers. We observe that
while the total CPU cost of a plan with parallelism is higher than the
CPU cost of the serial plan due to the above overheads, the elapsed
time of the query plan could be lower since the work is done in parallel.

Tracking multiple costs Microsoft SQL Server estimates multiple
different costs for each operator. For example, besides the total cost
of the operator, i.e., cost to return all output rows, it also estimates
the cost to return the first row. The latter is important for costing
operators such as Nested Loops Join (NLJ). For example, consider when
the inner side of the NLJ operator is an Index Seek operator. Each
distinct value of the join column of the outer input to the NLJ operator
is a new binding (i.e., argument) to the Index Seek operator, and hence
the results need to be computed for each binding. However, if there is a
duplicate value of the binding, then the results of the inner side can be
reused by caching the result, and simply rewinding to the start of the
result of the inner. The first row cost estimates the cost of performing
the Index Seek for a new binding value, which can be different than the
cost of returning the cached rows. Such first row cost tracking is also
used for operators such as Spool and Table Valued Function.

Costing with row goals Microsoft SQL Server also takes into account
row goals which can affect the total cost of an operator (and hence query
plan). This is important for queries with a TOP K clause. Consider
a query that requires TOP 1 row from a table that satisfies a given
predicate. If a suitable index exists, a single matching row can be
retrieved with a single I/O using an Index Seek operator. In contrast,
using a Table Scan on the same table, many more pages may need to
be scanned before the first matching row is found. However, when K

5.5. Case Study: Cost Estimation in Microsoft SQL Server 343

is large, using a Table Scan may be cheaper than using an Index Seek
due to significantly higher cost of random seeks compared to a scan.
When computing cost for an operator, the row goal is passed in as a
parameter, and the total cost of the plan reflects the cheapest cost of
obtaining the given row goal target.

5.5.2 Statistics

We give a brief overview of statistics used by Microsoft SQL Server
for cardinality estimation. The application or the DBA can create a
statistics object on one or more columns of a table. A statistics object
consists of a histogram on the leading column of the statistics and a
density vector (explained below). For example, the following command
creates a multi-column statistics on columns (A, B) of table T

CREATE STATISTICS statAB on T (A, B)

We explain the statistical information stored by Microsoft SQL
Server using the example shown in Table 5.1.

Table 5.1: Frequency of each value in column

Value | Frequency
AL 7
AZ 8
CA 40
DE 12
MA 18
NY 33

RI 4
X 37
VT 2
WA 15

Histogram Microsoft SQL Server creates a MaxDiff histogram on the
leading column of the statistics. We illustrate this using data shown
in Table 5.1. The corresponding MaxDiff histogram with 4 buckets is
shown in Figure 5.7. The values shown in bold in the figure are actually
stored in the histogram. Microsoft SQL Server associates with each
bucket: (1) a value corresponding to the upper bound column value

344 Cost Estimation

40 , 40 37
33
n 30
@
Q
c
0]
5 20
(2,15); 15
|
! |
01 2,75 o
o L1 | | | (1,2) .
AL AZ CA DE MA NY RI TX VT WA

Column values sorted in ascending order

Figure 5.7: Example histogram for column shown in Table 5.1

represented by that bucket and its frequency. For example, in the first
bucket, the upper bound column value is CA, with a frequency of 40.
(2) The number of distinct values in the bucket, not including the upper
bound column value, and the average number of rows per distinct value
in that bucket. In the example, the first bucket has two values AL,
A7 with a total frequency of 15, hence the values (2, 7.5) are stored.
Observe that the column values AL and AZ are not stored, nor are
their individual frequencies. The MaxDiff histogram creation algorithm
chooses bucket boundaries where the difference in frequencies of adjacent
values is maximized, while ensuring that the number of buckets does
not exceed the given limit of buckets. Histograms in Microsoft SQL
Server use a maximum of 200 buckets. This value is chosen to keep the
cost of statistics loading as well as the cost of cardinality estimation
using histograms acceptable.

Density The density for a set of columns is a single number %, where d
is the number of distinct values in that set of columns. For the sequence
of columns specified in a CREATE STATISTICS command, Microsoft
SQL Server computes the density for each of the leading prefixes of
the columns. For example, when creating a statistics object on columns
(A, B) of table T', Microsoft SQL Server computes density information
on (A) and (A, B). Density is used for estimating the number of distinct

5.5. Case Study: Cost Estimation in Microsoft SQL Server 345

values, which is necessary for CE of different types of logical expressions,
e.g., group-by, DISTINCT, UNION.

Statistics management Microsoft SQL Server automatically creates
and maintains statistics as data changes [146]. When a query exe-
cutes and the statistics needed by the optimizer is not available, the
database engine automatically creates statistics. Specifically, Microsoft
SQL Server automatically creates a single-column statistics on any
column referenced in the query for which statistics are not already avail-
able. For large tables, the statistics are created on a sample of the data
from the table for efficiency, whereas small tables are inspected in their
entirety. Additionally, statistics creation is performed asynchronously
in a background thread so as to not delay the execution of the query
that triggers the statistics creation. Once a statistics is created on a
table, it bumps up the metadata version of the table. Hence, the next
execution of the query triggers an invocation of the query optimizer
which generates a plan using the newly created statistics. Statistics are
updated as described in Section 5.3.4 by tracking the number of rows
updated for the column(s) of the statistics, and refreshing when either
the absolute number or fraction of rows exceeds certain thresholds.

5.56.3 Cardinality estimation

Microsoft SQL Server follows the techniques described in Section 5.4
for cardinality estimation. Starting with Microsoft SQL Server 7.0, the
optimizer uses assumptions such as: (1) Independence: Data distribu-
tions on different columns are assumed to be independent of each other,
unless correlation information (e.g., density) is available. (2) Uniformity:
Within each histogram step, distinct values are evenly spread and every
value has the same frequency. (3) Simple containment: For example,
for an equality join between two tables, it factors in the predicates
selectivity in each input histogram by scaling down each bucket, before
joining the scaled-down histograms to estimate the join selectivity. For
more details on CE in Microsoft SQL Server, we refer the reader to
Microsoft [139].

346 Cost Estimation

Microsoft SQL Server made a major update to its cardinality es-
timator in 2014 [137] based on the aggregated benefit observed over
several OLTP and data warehousing workloads. In particular, it made
two major changes to the assumptions. First, instead of assuming inde-
pendence, it assumes that data distributions on different columns are
positively correlated. However, instead of assuming perfect correlation,
it assumes a so-called “exponential back-off” model of correlation, which
strikes a middle-ground while still keeping the overheads of statistics
low. Specifically, when estimating the selectivity of a conjunction of
predicates, the most selective predicate’s selectivity is multiplied by the
square root of the selectivity of the second most selective predicate,
which is multiplied by the square root of the square root of the selec-
tivity of the third most selective predicate, and so on, as shown in the
formula below:

Sel(pi A p2 A p3) = Sel(pr) x Sel(p2)*/? x Sel(pz)'/* (5.2)

Second, the simple containment assumption is modified to assume
that the filter predicates on two tables being joined are not correlated
with one another. With the new assumption, called base containment,
the join selectivity is estimated with the original histograms, i.e., they
are not scaled down as in simple containment.

While the new cardinality estimator in Microsoft SQL Server is more
accurate in many cases, the earlier assumptions of independence and
simple containment may work better for a specific query. Thus, Microsoft
SQL Server provides a query hint for users to choose between the new
cardinality estimator or the legacy estimator. We refer the reader to
Section 6.3 for a broader discussion on query hints. They also provide
more fine-grained hints that allow users to choose specific assumptions
used for a query, e.g., use independence for filter predicates, use simple
containment for join selectivity estimation. This allows users to mix
and match the assumptions to improve plan quality in cases where the
default assumptions of the optimizer do not produce sufficiently good
plans.

5.6. Suggested Reading 347

5.6 Suggested Reading

Clitation numbers below correspond to numbers in the References section.

[101] Y. Ioannidis, “The History of Histograms (abridged),” in Pro-
ceedings 2003 VLDB Conference, Elsevier, pp. 19-30, 2003

[46] G. Cormode et al., “Synopses for Massive Data: Samples, His-
tograms, Wavelets, Sketches,” Foundations and Trends® in Databases,
vol. 4, no. 1-3, 2011, pp. 1-294

[92] S. Heule et al., “Hyperloglog in Practice: Algorithmic Engineering
of a state of the art Cardinality Estimation Algorithm,” in Proceedings
of the 16th International Conference on Extending Database Technology,
pp. 683-692, 2013

[119] V. Leis et al., “Query Optimization Through the Looking Glass,
and What We Found Running the Join Order Benchmark,” The VLDB
Journal, vol. 27, 2018, pp. 643—668

[116] K. Lee et al., “Analyzing the Impact of Cardinality Estimation on
Execution Plans in Microsoft SQL Server,” Proceedings of the VLDB
Endowment, vol. 16, no. 11, 2023, pp. 2871-2883

6

Plan Management

In previous sections, we have focused on how the query optimizer
generates a plan for a given query. Since query optimization can be
computationally expensive, the generated plans are cached for efficiency.
In this section, we first discuss plan caching and their validation. We
then describe different approaches to overcome the disadvantages of
optimizer generated plans that are not performant. We next discuss
query hints, which can influence the query optimizer in its plan choice.
Finally, we cover the techniques used to optimize parameterized queries
that are widely used in practice but for whom generating a plan for
every query instance can be costly.

6.1 Plan Caching and Invalidation

The computational cost of generating a plan by the query optimizer can
be significant. Since DBMSs need to support high query throughput,
they need to manage the caching and reuse of plans while ensuring
that the plan quality does not degrade when data gets updated. The
overall workflow of plan caching and reuse within a DBMS is shown in
Figure 6.1. Below, we briefly outline how DBMSs address two important
challenges that arise due to the caching of plans.

348

6.1. Plan Caching and Invalidation 349

8

Executor

I

1

1

I

|

I

1

1

I

|

| |
Parser | Alegbrizer [—® Optimizer Y

Figure 6.1: Plan caching and reuse

First, for applications that issue many different queries, the plan
cache can consume a large amount of memory. Parameterized queries,
where multiple query plans may be generated, further exacerbate the
situation (see Section 6.4). Thus, the plan cache needs to be managed
to handle memory pressure similar to other caches in the database
systems such as the buffer pool. The eviction policy of the plans from
the plan cache can take the following information into consideration:
(1) The cost of re-generating the plan if it were to be evicted from the
cache. The proxy used to approximate this cost is the CPU time taken
to generate the plan. (2) Usage information of the plan, including the
number of times the plan has been executed since it was generated.

Second, when the data is modified due to INSERT, UPDATE, or
DELETE statements in the workload, the changes in data distribution
may make the cached plan for the query to become sub-optimal. In
general, efficiently identifying such cached sub-optimal plans is challeng-
ing. In practice, most DBMSs resort to simple heuristics to address this
challenge. For example, for each table, they track the fraction of rows
that have been updated since the last time statistics on that table were
computed (see Section 5.3.4). If the fraction of rows updated exceeds
a threshold (e.g., 0.1), the database system can rebuild the statistics
on that table, and invalidate all cached plans that reference that table.
Subsequently, when a query which references that table is processed,
a plan is generated using the new statistics, and the newly generated
plan is then cached. We note that a cached plan may also need to be
invalidated due to DDL statements that change a table’s metadata,
such as the creation of a new index or the removal of a column.

350 Plan Management

6.2 Improving Sub-optimal Plans with Execution Feedback

The query optimizer chooses a plan based on a model of the cost of
executing a plan. The cost model only approximately captures the
actual cost of executing the plan, and the inputs to the cost model
such as cardinality estimates may be inaccurate as well (see Section 5).
The optimizer may also use heuristics, such as timeouts, during plan
search for efficiency (see Section 2). Finally, at execution time, due
to resource demands of other concurrently executing queries, the plan
may not receive all the resources that the optimizer had assumed when
generating the plan, e.g., insufficient memory for a Sort operator can
lead to spill, which can increase execution time. Therefore, in practice,
the optimizer sometimes may choose a plan that is sub-optimal, i.e., the
elapsed time taken to execute the plan is too long. To deal with the issue
of the optimizer picking a sub-optimal plan in terms of actual execution
cost, database systems have developed a variety of mitigation techniques.
We briefly review these techniques, ranging from simple heuristics that
are relatively easy to implement to more involved solutions that require
changes to the query execution engine.

Handling regressions due to plan change A special case of sub-
optimality occurs when a plan is changed, and it executes much more
inefficiently than in the past. Such a change in query plan can happen
due to several reasons. One of the most common reasons is due to the
update of statistics triggered by changes to the data (see Section 5.3).
Other reasons include DDL statements on the table, e.g., creation of an
index on columns referenced by the query. Such changes cause the DBMS
to generate a new plan for the query. Whenever a new plan is used to
execute the query, it is possible that the actual query performance can
become worse after the plan change. In such cases, a simple strategy
to remedy the regression is to revert to a previously used plan that is
historically known to have better performance than the new plan, if
that historical plan continues to be valid.

Microsoft SQL Server has developed such a technique called Au-
tomatic Plan Correction (APRC) [147]. The database system uses a
persistent repository called Query Store [142] to cache historical plans

6.2. Improving Sub-optimal Plans with Execution Feedback 351

of a query and monitors the performance of the query to detect plan
changes and regressions. Specifically, for each plan, it stores aggregate
historical usage and performance counters such as number of executions,
average/min/max/standard deviation of elapsed time and CPU time.
Regression in a plan’s performance is detected by running a statistical
test on the plan’s performance metrics in comparison to those of the
last known plan for that query. If a plan regresses in performance,
the database falls back to the last known plan that is still valid for
the query.! After reverting to the fallback plan, APRC monitors the
performance of the fallback plan. If it is no better than the plan that
was deemed to have regressed, APRC forces the optimizer to generate
a new plan again. Otherwise, the fallback plan is used to execute the
query until the next time a new plan is generated, e.g., due to changes in
statistics or database schema. Finally, we note that the above approach
of using Query Store to collect historical information of actual resource
usage of a plan can be used to also automatically mitigate other issues
with plan quality. For example, when the amount of working memory to
grant for operators such as Hash and Sort is insufficient, it can lead to
spills, thereby increasing the cost of executing the query. Microsoft SQL
Server’s memory grant feedback feature [144] can automatically adjust
memory grants to use for a query plan based on analyzing the estimated
and actual memory usage in historical executions of the query.

Oracle database has a technique called SQL Plan Management
(SPM) that aims to avoid query regressions [162]. It maintains a set of
valid plans that the optimizer is allowed to use for a SQL statement,
referred to as baseline plans. Whenever the optimizer generates a new
plan for the query that is not in the baseline, SPM only adds the new
plan to the existing set of baseline plans if the performance of the new
plan is verified through execution to be comparable or better than the
baselines. Thus, SPM ensures that only a plan whose performance is
verified can be used to execute a query. For each query, the database
selects a plan from the set of baseline plans to use for executing the
query, usually the one with the lowest cost.

A previously executed plan may no longer be valid if the database schema has
changed, e.g., an index used in that plan was subsequently dropped.

352 Plan Management

Change of physical operators at runtime The Adaptive Join feature
in Microsoft SQL Server [135] and Oracle DB [161] can switch from a
Hash Join to Nested Loops Join at runtime. Specifically, Adaptive Join
reads the input rows for the build side of the Hash Join. If the first input
is fully consumed, and the number of rows is below a predetermined
value chosen by the query optimizer, the Adaptive Join switches to using
a Nested Loops Join operator. This strategy prevents a bad choice of
the join operator by the optimizer by deferring the choice of Hash Join
or Nested Loop Join until the first input is consumed. The overhead
of this approach includes the extra memory and computational cost of
buffering input rows.

Competition for access path selection One of the early work was the
technique of plan competition, which was implemented in Oracle Rdb [7].
Plan competition consists of two phases. In the first phase, one or more
index-based access paths are executed given a small, predetermined
amount of time. If one of the access paths completes within the time,
the corresponding plan is picked for execution; otherwise, we enter the
second phase, where one among all available access methods (including
Table Scan) is selected to execute the query. For example, if one of the
access methods available is an Index Seek that retrieves rows matching
the equality predicate Country=@p1, where the distribution of the
Country column is skewed. For most countries, the Index Seek plan
would complete within the first phase because it needs to retrieve only
a few rows. If the Index Seek completes in the first phase, then the
Table Scan access method does not need to be used. However, for those
countries with large number of rows, the Index Seek plan may not
complete within the predetermined amount of time. In such cases, in
the second phase, one of the two plans is picked and executed. Observe
that if the Table Scan operator is picked to run in the second phase,
then the Index Seek operator would need to be canceled, and any rows
it may have retrieved are discarded. Therefore, although redundant
work may be incurred for the query, it can prevent the scenario where
a poor plan executes for too long. In general, in the first phase, more
than one access method may be executed concurrently. For example,
a second Index Seek on a different index, or an Index Intersection of

6.2. Improving Sub-optimal Plans with Execution Feedback 353

two indexes may be executed. Finally, although we have introduced
competition in the context of choosing between access paths, in principle,
the idea of competition can be extended to sub-plans. However, this
can substantially increase the overheads incurred due to wasted work,
and hence is more challenging for adoption in practice.

Choose-Plan operator with runtime costing As the name suggests,
the idea is to choose at runtime among a pre-determined set of plans
and execute one of them. Choose-Plan, introduced in [45], is a “meta-
operator” that contains the decision procedure to evaluate the cost of
multiple children plans and pick the one with the lower cost at execution
time, i.e., the plans are costed at runtime. Figure 6.2 shows an example
plan with a Choose-Plan operator. Such an approach is beneficial when
the costs of the children plans cannot be compared at query optimization
time, e.g., because the parameter bindings are only known at runtime
or the available memory at runtime is different than the optimizer had
assumed. The concept of Choose-Plan was introduced in the context of
the Volcano optimizer framework, and we refer the readers to [45] for
more details on how to modify the dynamic programming based search
algorithm to integrate the Choose-Plan meta-operator. We note that
the decision of where to place the Choose-Plan operator(s) in a plan is
important, and this problem requires further investigation.

Re-optimizing the query at runtime Another approach to improve
sub-optimal plans is to re-optimize the query based on feedback obtained
from partial execution of the query. A desirable goal in this approach is
to not lose the work already done, which impacts the decision of when
to re-optimize. The work by [105] only considers re-optimization in
blocking operators, e.g., after the build of a Hash Join or after a Sort,
where the results are already materialized. Therefore, no additional
overheads of result materialization are incurred if a re-optimization
were to be triggered. They also adopt a conservative strategy and only
re-optimize the “remainder” of the query, i.e., the query optimizer
must use the partial results obtained from execution so that the work
done so far will not be wasted. Furthermore, since re-optimization can
add significant overheads, they put in guard conditions for triggering

354 Plan Management

Hash Join
Choose-Plan Table Scan (S)
Index Scan

Filter

Table Scan (R)

Figure 6.2: The Choose-Plan operator picks between Table Scan and Filter vs.
Index Scan. At runtime, before query execution begins, one of the two children of
Choose-Plan is picked, based on which one has a lower estimated cost.

re-optimization, including: (a) the difference between estimated and
actual cardinality of the operator’s inputs to exceed a pre-determined
threshold, and (b) the estimated time taken to re-optimize the query is
significantly smaller than the estimated time to run the remainder of
the query using the current plan.

The adaptive query execution (AQE) feature in Databricks [5] col-
lects statistics from completed pipelines to potentially change decisions
such as which physical join operator to use, e.g., shuffle vs. broadcast
join, or the degree of parallelism to use. They also consider the option
of canceling a currently executing pipeline, and restarting it with a
modified plan. For example, consider the case when there are two Table
Scan operators that are the children of a join operator, and one Table
Scan operator completes but the other is early in its execution, e.g.,
only 5% complete. In this case, AQE will cancel the ongoing Table Scan
of the second table, and restart it with a newly added Bloom filter
(see Section 4.6.2) that was computed during the processing of the first
Table Scan, thereby potentially reducing the number of rows that need
to be joined significantly.

The progressive optimization work [130], which was explored in IBM
DB2, identifies a validity range for one or more operators in the plan

6.2. Improving Sub-optimal Plans with Execution Feedback 355

during query optimization. A validity range is a conservative range
of cardinality values outside of which the operator is known to be
sub-optimal in terms of the optimizer’s estimated cost. During query
optimization, each time an operator o is found to have lower cost than
an alternative, the optimizer attempts to update the upper and lower
values of the validity range of o. Specifically, they calculate cardinality
values of the input(s) that could make the alternative cheaper than o,
and use those cardinality values to update the bounds. Once validity
ranges are computed, they introduce one or more CHECK operators
into the plan. During query execution, the CHECK operator buffers
rows of its child and counts the number of rows output by the child
thus far. If the actual cardinality falls outside of the validity range of a
CHECK operator, re-optimization is triggered. During re-optimization,
the partial results from executing the original plan, which are buffered
in the CHECK operator, are persisted into a temporary table and
exposed to the query optimizer as a materialized view. During query re-
optimization, the optimizer has additional cardinality information about
operators that were executed. When the optimizer generates a new plan,
it has the option to reuse the partial results of prior execution(s), but is
not required to do so. For instance, if the materialized results are large,
the optimizer may now find a lower cost plan, e.g., with a different join
order, that does not use the partial results.

Fine-grained adaptive query processing This category of techniques
executes different plans over fine-grained partitions of the data, and
adapts the plan depending on feedback from execution. Due to the
significant changes needed to the query execution engine to incorporate
these techniques, we have not yet seen their adoption by database
systems so far. Below, we discuss two example approaches from the
literature. For a survey of adaptive query processing techniques we refer
readers to [54].

Eddies [12] enables fine-grained run-time control over the plans
executed for a query, using the eddy operator. They treat query execution
as a process of routing rows through operators. The eddy operator
consumes rows from the input relations, and routes rows to physical
operators. The rows output from the physical operator are routed back

356 Plan Management

to the eddy. Changing the order in which a tuple is routed through
the operators in effect changes the query plan used for that tuple.
For example, for a join query, different join orders can be executed
by changing the sequence in which a tuple is routed through the join
operators. The eddy operator monitors the execution and makes the
routing decisions for the tuples based on feedback about selectivity and
execution cost obtained from execution so far. One requirement of the
Eddies approach is that the physical operators need to be non-blocking
and therefore they use operators such as symmetric hash join.

SkinnerDB [193] focuses on the problem of join ordering of plans.
They divide query execution into fine-grained time slices, e.g., on the
order of milliseconds or smaller. In each time slice, they execute a
different join order on a batch of rows from the tables referenced in
the query. The results from different executions are merged until the
full result of the query is obtained. The execution progress of each join
order is measured, which is an indicator of the efficiency of that join
order. At the start of each time slice, the decision of which join order to
pick is based on reinforcement learning [110], which balances between
the goals of exploiting join orders that have worked well so far and
exploring new join orders.

6.3 Influencing Plan Choice Using Hints

The DBA or the application developer may want to influence the query
optimizer to select a different plan based on their knowledge of the
application or the database. Such intervention is enabled in database
systems by the mechanism of hints, which are directives available in the
query language itself to enable the user to override the default behavior
of the optimizer.

Although hints provide an important lever to influence plan quality,
their usage is challenging. The impact of specifying a hint on query
performance may only be determined by executing the query, making it
a process of trial and error to select good hints. Furthermore, since the
hints can become outdated as the data changes, new physical design
structures are added, or the application characteristics evolve, query

6.3. Influencing Plan Choice Using Hints 357

hints also need to be managed over the lifetime of the query, e.g., with
mechanisms such as APRC (see Section 6.2).

We now describe examples of query hints in Microsoft SQL Server
(Section 6.3.1) and how hints can be implemented in a query optimizer
based on the Volcano/Cascades framework (Section 6.3.2).

6.3.1 Hints in Microsoft SQL Server

Microsoft SQL Server provides a wide range of hints [140]. Below we
sample a few classes of hints and provide illustrative examples.

Physical operator hints A common class of hints is to specify a
physical operator for implementation of logical operators, such as Join,
group-by, and Union, in the query. For example, a HASH JOIN hint
specifies that only the Hash Join operator must be considered for any
logical join operator in the query, unless Nested Loops Join is the only
possible alternative, e.g., for non equi-join predicates. The user typically
relies on their domain knowledge of the database, e.g., primary key -
foreign key relationships that may exist among tables, data size and
distribution information, to decide what hints to use. For instance,
an experienced DBA may know that the original plan chosen by the
optimizer is slow because of too many rows being sought by an Index
Seek operator on the inner side of a Nested Loops Join operator, and
hence may wish to use Hash Join instead. Hints can be specified by
modifying the SQL query using the OPTION keyword as shown in
example Query 33 below:

Query 33
SELECT c_name, SUM(o_price * o_qty)

FROM customer INNER JOIN orders ON c_id = o_cid

WHERE o_salesdate BETWEEN ’2024-01-01’ AND ’2024-01-31°
GROUP BY c_name

OPTION (HASH JOIN)

Join order hints The FORCE ORDER hint tells the optimizer to use
the join order specified in the query text. For example, Query 34 below
will result in a plan which joins the customer and orders tables first
and joins the resulting relation with the lineitem table:

358 Plan Management

Query 34
SELECT c_name, SUM(o_price * o_qty)

FROM customer INNER JOIN orders ON c_id = o_cid

INNER JOIN lineitem ON o_oid = 1_oid

WHERE o_salesdate BETWEEN ’2024-03-01’ AND ’2024-06-30°
AND 1_shipdate BETWEEN ’2024-03-01’ AND ’2024-06-30°
AND 1_shipdate + 10 < 1_receiptdate

GROUP BY c_name

OPTION (FORCE ORDER, HASH JOIN)

If the estimates of the cardinality of rows qualifying the selection
predicates on the lineitem are significantly underestimated, the opti-
mizer can pick a plan which joins the orders and lineitem table first,
resulting in a sub-optimal plan that executes too long. In this case, the
user can override the optimizer’s choice and force a better join order as
well as join method (HASH JOIN).

Runtime environment hints These hints allow the user to control
resources consumed by the plan during execution. Commonly used exam-
ples include maximum degree of parallelism to use (MAXDOP <value>)
and maximum memory grant (MAX_ GRANT_PERCENT=<value>).
Such hints can be valuable in practice since limiting the resource con-
sumption of a plan helps control its performance impact on other
concurrently executing queries.

Cardinality hints As noted in Section 5.4, the optimizer makes as-
sumptions when estimating cardinality of expressions in the search.
However, the specific assumption that works best for a given
query depends on the query and the data distribution. Microsoft
SQL Server supports hints that allow users to specify which as-
sumption to use in cardinality estimation. For example, consider
a query with two predicates, i.e., o_orderdate>’2024-01-01" AND
o__shipdate>’2024-01-31". Recall that by default the optimizer uses
the independence assumption to estimate the cardinality for conjunc-
tions of selection predicates. If the DBA knows that o orderdate and
o__shipdate columns are highly correlated, they can use the hint AS-
SUME_MIN_SELECTIVITY_FOR_FILTER_ESTIMATES, which
tells the optimizer to estimate the selectivity of a conjunction of two

6.3. Influencing Plan Choice Using Hints 359

or more predicates as the selectivity of the most selective predicate. In
effect, this hint forces the optimizer to assume full correlation between
individual predicates. Note that cardinality hints apply to all predicates
in the query.

USE PLAN hint The USE PLAN hint allows the user to specify a
complete execution plan to be used for the query. The plan provided
in the hint must be fully specified (in a pre-specified XML format
supported by Microsoft SQL Server) including the join order, physical
operators, and access methods to use. This hint provides the maximum
degree of control since the user can specify all aspects of the physical
plan. When a USE PLAN hint is provided, the query optimizer first
validates the specified plan to ensure it is semantically equivalent to the
query and that the access paths used are still valid (see Section 6.3.2).
The DBMS executes the plan only if it passes the above validation.

6.3.2 Implementing hints

The implementation of hints vary depending on the type of hints. Some
hints, such as runtime environment hints (e.g., degree of parallelism to
use) or cardinality hints can be implemented by setting the correspond-
ing configuration option in the optimizer. Physical operator hints and
join order hints can be supported by disabling specific transformation
rules (see Section 4). For example, the HASH JOIN hint is supported by
disabling implementation rules that transform a Join to Nested Loops
Join and Join to Merge Join. Similarly, a FORCE ORDER hint can be
achieved by disabling rules that can change the join order, e.g., join
commutativity and join associativity rules, thereby ensuring that the
initial join order provided in the original query text is preserved in the
final plan.

The USE PLAN hint needs to ensure that the plan specified in the
hint (say P) is valid for the query. In Volcano/Cascades framework, it
can be implemented by leveraging the optimizer’s search algorithm to
find a plan that satisfies the hint. Unfortunately, the original cost-based
search algorithm, as described in Section 2, is no longer suitable for
checking validity of a given plan, since that may incorrectly prune out

360 Plan Management

the required plan. Therefore, to check the validity, the optimizer disables
cost-based pruning. It checks if any plan it has generated so far matches
P. If so, the search terminates since it can be sure P is valid, as P was
reached via a set of transformations from the input query. Although
cost-based pruning is no longer available, the optimizer can leverage
properties of P to eliminate certain transformations from consideration,
thereby speeding up validation. For example, if the table R is accessed
by an Index Scan in the plan specified by the hint, when validating
the plan the optimizer will only consider the implementation rule that
transforms the logical expression of Get(R) to Index Scan.

6.4 Optimizing Parameterized Queries

Parameterized queries are used extensively by applications. Parameter-
ized queries are specified via a stored procedure or a prepare statement,
and executed multiple times, with different parameter binding values.
Consider the following Query 35 that defines a stored procedure named
custinfo that returns customers below a given age and from a given
state:

Query 35
CREATE PROCEDURE custinfo int @pl, nvarchar(32) Op2

AS

SELECT name, age, state

FROM customer

WHERE age < @pl AND state = @p2

To execute the stored procedure, the application calls the EXECUTE
statement with a binding for each parameter as the input. The code
below shows two different invocations (also referred to as instances) of
custinfo with different parameter binding combinations:

EXECUTE custinfo Q@pl = 20, @p2 = ’Vermont’;
EXECUTE custinfo @pl = 50, @p2 = ’California’;

6.4.1 Challenges in parametric query optimization

The straightforward approach of generating a plan for each instance of
the parameterized query would achieve the best plan quality since the

6.4. Optimizing Parameterized Queries 361

optimizer can choose the plan that is best suited for the selectivity of the
parameterized predicate(s) in the instance. However, this approach has
two drawbacks. First, generating a plan for a query is computationally
intensive as described in Section 6.1, and doing so for each instance
of a parameterized query instance will be expensive and add latency
to query execution. Second, it can be wasteful to generate a plan for
each query instance because the optimizer’s choice of plans for different
parameter bindings may not change. In practice, the number of distinct
plans generated by the optimizer is typically much fewer compared to
the number of distinct parameter binding combinations.

Therefore, parametric query optimization (PQO) must strike a bal-
ance between optimizing query instances to generate new plans and
providing good performance across different instances of the param-
eterized query using the generated plans. This leads to the following
framework for PQO: (a) Identify a small set of plans to use for a pa-
rameterized query that could be cached and reused across multiple
instances of the parameterized query. (b) For each incoming query
instance, determine which plan among the set of cached plans is best
suited for executing that instance.

6.4.2 Identifying a set of plans to cache

One line of work approaches the challenge of identifying a set of plans
to cache by assuming that every point in the selectivity space is equally
likely to be queried [49, 73, 98]. These techniques rely on assumptions
of the optimizer’s cost model, such as the cost is linear [73] or piece-wise
linear [98] in the selectivities, or the cost is monotonic with selectivi-
ties [49]. One example of such an approach is the work on anorezic plan
diagrams [49]. It aims to find the smallest subset of plans from the plan
diagram [173] such that the sub-optimality between the optimal plan
from the subset and the original optimal plan for every point in the se-
lectivity space is bounded by a given factor. While the above guarantee
on sub-optimality is desirable, this approach can incur prohibitive cost
in identifying such plans. This is because generating a plan diagram
requires creating a grid of points in the selectivity space and making
one optimizer call for each grid point, which grows exponentially with
the number of parameterized predicates in the query.

362 Plan Management

Another line of work only considers a portion of the selectivity space
in the neighborhood of query instances that have executed historically.
Based on the costs of plans generated for these queries, and the plan
cost monotonicity assumption, they construct regions in the selectivity
space where different plans are optimal. The shapes of such the regions
constructed vary, e.g., one technique assumes the shape of the region to
be a rectangle in the 2-d selectivity space [115] (or a hyper-rectangle in
general), whereas another technique assumes the shape of the region to
be an ellipse [18].

Microsoft SQL Server approaches the problem by partitioning the
entire selectivity space into a grid, where each dimension corresponds
to the selectivity of a parameterized predicate [138]. The creation of
such a grid is done when the first query instance for that parameterized
query is executed, and the boundary values are chosen based on the
data distribution of the column corresponding to the parameterized
predicate. When a query instance falling into a region (i.e., grid cell) is
executed, if no plan already exists for that region, the DBMS generates
a plan for that instance and caches it. Subsequent instances that fall
into the same region reuse the cached plan. Oracle’s approach also
uses rectangular regions, however, they generate and expand these
regions dynamically [115]. Their dynamic adjustment of plans is based
on an assumption of the cost function. Specifically, if the same plan
is generated for two points in the selectivity space, then they assume
that the plan is optimal in all points in the rectangle in 2-d (or hyper-
rectangle in higher dimensions) with those two points being on opposite
corners. They use this assumption to generate such hyper-rectangular
regions and associate one plan with it. Subsequently, any query instance
falling within this hyper-rectangle reuses the same plan.

More recently, [194] proposed a workload-driven technique that
leverages query logs, i.e., a set of instances of the parameterized query
that has executed in the past, for deciding which set of plans to cache.
In Microsoft SQL Server, such a query log can be obtained via the
Query Store [141]. Specifically, from the set of plans that are picked by
the query optimizer for query instances in the workload, they choose a
subset of plans up to a pre-specified limit, which if cached would reduce
the cost of the entire workload the most. This approach uses the ability

6.5. Suggested Reading 363

of the query optimizer to efficiently re-cost a plan P for a different
selectivity [61]. An important characteristic of this approach is that it
does not need to rely on simplifying assumptions of the optimizer’s cost
model.

6.4.3 Selecting the plan to execute for a query instance

Given a set of cached plans for a parameterized query, when a new query
instance ¢ is executed, the DBMS needs to select one of the cached plan
to execute ¢q. The straightforward approach of re-costing each cached
plan for ¢ and choosing the plan with the lowest cost is simply too
expensive. This is because plan selection is on the critical path of query
execution and therefore its latency must be low.

In Microsoft SQL Server [138] and Oracle [115], the cached plan
corresponding to the rectangular region that the query instance ¢ falls
into is used to execute g. In [18], a distance function over the selectivities
is defined between the query point ¢ and each cached plan. The closest
such plan or one whose distance is within a predefined threshold is
selected.

Recently, the technique proposed in [194] uses a different approach
where a classification model learned based on query logs (e.g., available
for Microsoft SQL Server via the Query Store [141]) is used to find
the cached plan most appropriate for an incoming query instance. This
model uses features of a query that are inexpensive to compute, e.g.,
predicate selectivities. They use a decision tree based machine learning
model [41] that has low overhead of inference with a tail latency less
than 300 microseconds. The use of decision trees leads to rectangular
partitioning of the selectivity space, but the partitioning is data-driven
based on query logs rather than based on assumptions of the properties
of the cost model.

6.5 Suggested Reading

Clitation numbers below correspond to numbers in the References section.

[7] G. Antoshenkov, “Dynamic Query Optimization in Rdb/VMS,” in
Proceedings of IEEFE 9th International Conference on Data Engineering,
IEEE, pp. 538-547, 1993

364 Plan Management

[45] R. L. Cole et al., “Optimization of Dynamic Query Evaluation
Plans,” in Proceedings of the 1994 ACM SIGMOD International Con-
ference on Management of Data, ser. SIGMOD ’94, pp. 150-160,
Minneapolis, Minnesota, USA: Association for Computing Machinery,
1994. por: 10.1145/191839.191872

[130] V. Markl et al., “Robust Query Processing through Progressive
Optimization,” in Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pp. 659-670, 2004

[135] Microsoft, Adaptive Joins in Microsoft SQL Server, 2017. URL:
https: / /learn . microsoft . com / en- us / sql / relational - databases /
performance /intelligent- query- processing- details? view =sql-server-
verl6

[161] Oracle, The Optimizer In Oracle Database 19c, 2024. URL: https:
/ /www.oracle.com/technetwork /database/bi-datawarehousing /twp-
optimizer-with-oracledb-19¢c-5324206.pdf

https://doi.org/10.1145/191839.191872
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-details?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-details?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-details?view=sql-server-ver16
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-19c-5324206.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-19c-5324206.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-19c-5324206.pdf

7

Open Problems

In this monograph, we have discussed many research ideas that have
already influenced query optimizers of today’s database systems. Despite
decades of work, interest in query optimization research remains very
strong. Given the breadth of query optimization topics and the large
number of research papers, we are unable to summarize all relevant
research. Instead, in this section we focus on a few selected topics and
give a glimpse of some of the approaches that have been proposed.

7.1 Robust Query Processing

Query optimization suffers from inaccuracies in cardinality and cost
estimations. Moreover, incrementally more accurate cardinality and cost
estimations may not necessarily improve the quality of the plans. Robust
query processing instead focuses on developing query optimization and
query execution techniques to avoid poor query performance even in
the presence of errors in cardinality and cost estimation. Leveraging
runtime techniques to mitigate the inefficiency of query plans that we
discussed in the previous section is one way to ensure robust behavior.
In this section, we will mention a few other approaches that have been
pursued. We recommend [88, 89] for additional details on this topic.

365

366 Open Problems

The least expected cost (LEC) optimization [44] takes the distribution
of selectivities as input to capture cardinality errors and aims to choose
a plan that minimizes the expected cost of the query. In contrast, the
work in [13] proposes that the user, such as the application programmer
or the query writer, should make explicit the extent to which they want
to guard against uncertainty in selectivity estimations. For example,
given a distribution of estimated costs for the plans as selectivities
change, the user could specify that they prefer the plan that has a
lowest median cost, or a more conservative user could specify the 90th
percentile cost instead. In general, the user can specify what percentile
value of the query cost distribution to look at in comparing costs of
plan alternatives. The challenge in these approaches is to generate a
distribution of selectivities and the corresponding cost in an efficient
way that applies for the entire surface of SQL.

The Lookahead Information Passing (LIP) [205] technique focuses
on reducing the variability in the performance of plans with sub-optimal
join orders, induced by errors in cardinality estimations. Their approach
is applicable for in-memory star schema databases and for the space of
left-deep query plan trees, consisting of scan of the fact table followed by
Hash Joins with dimension tables. As in many other database systems,
they generate Bloom filters (see Section 4.6.2) for each dimension table
containing selection predicates and push these Bloom filters to the
scan of the fact table, thereby reducing the impact of sub-optimal join
ordering. Their technique adaptively reorders the evaluation of the
Bloom filters based on the execution feedback at runtime. One of the
novel aspects of the LIP paper is their formalization of the notion of
robustness as the difference in cost between the best and worst join
orders normalized by the size of the fact table. Another example of robust
query optimization is in the context of parametric query optimization,
discussed in Section 6.4, that picks a single plan that minimizes the
variance of costs over possible values of the parameters [33].

Research ideas have been developed to make key physical operators
resilient to errors in cardinality and cost estimations. SmoothScan [20]
adaptively switches between sequential Table Scan and Index Scan.
Likewise, G-Join [81] unifies and thus generalizes the design of Nested
Loops Join, Sort-Merge Join, and Hash Join.

7.2. Query Result Caching 367

A different approach to robustness is through algorithms for an-
swering relational queries that are able to avoid generation of large
intermediate relations that the execution plans generated by System-R
or Volcano/Cascades style optimizers may be susceptible to. For acyclic
project-join queries, Yannakakis’s algorithm [203] ensures this goal by
careful use of semi-join reduction and the algorithm has a running time
polynomial in the size of input relations and the output size. However,
for project-join queries that are not necessarily acyclic in structure,
Yannakakis’s algorithm does not apply. For a general project-join query,
a tight worst-case bound on the size of the output (AGM bound) is
proposed by [11]. The worst-case optimal join (WCOJ) [154] proposes
an algorithm which has a running time polynomial in the size of the
AGM bound. Like Yannakakis’s algorithm, the above algorithm avoids
generation of large intermediate relations. Since the publication of that
paper, many algorithmic variants have been published and there has
been work in adapting the algorithm to reduce the dependence of these
algorithms on building many precomputed structures. An example of
the latter line of work is [66]. We have only seen limited adoption of
these algorithms as despite attractive theoretical properties, in many
situations they perform worse than traditional execution plans.

7.2 Query Result Caching

Reusing results of previous queries to improve performance of subsequent
queries has been extensively studied. Such repeated queries frequently
arise, e.g., when a report is published, it may be pulled by many
applications, including business intelligent dashboards. Recent papers
(AWS Redshift [174, 177]) reported significant repetitiveness at the level
of table scans, as well as at the overall query level, including parametric
queries with exactly the same parameter bindings.

We now discuss a couple of examples of how result caching can be
used. In the Oracle database system, the results of executing the query
are stored in a result set cache [158]. If the exact same query repeats,
and the underlying data in the tables referenced by the query have
not been modified, then the query is answered using the cached results.
Another technique (used in AWS Redshift [177]) is predicate caching.

368 Open Problems

When a query plan executes a Scan operator on a table containing
a predicate (e.g., the predicate I__discount = 0.1), the DBMS caches
the predicate as well as a compact representation of the row ranges
that qualify the predicate. During scan, if the predicate in the scan
matches one of the predicates in the cache, the Scan operator uses the
row ranges to retrieve the qualifying rows. In their system, all modified
rows are inserted into a new buffer and given higher row numbers and
hence the cached row ranges do not need to be invalidated when data
is inserted, deleted, or updated. Finally, we note that there is a large
body of work on semantic caching. Some references on this topic include
[32, 51, 87]. However, some of the techniques proposed in the literature
incur significant overhead in leveraging cached data.

7.3 Feedback-driven Statistics

There have been several research papers that aim to exploit execution
feedback by incorporating it into the statistics used by the query opti-
mizers with the goal of improving the accuracy of statistics as well as
to reduce the cost of building and maintaining statistics. Earliest work
in this direction [40] proposes modeling the cardinality estimates by
curve-fitting functions with actual cardinality from query execution. In
contrast, [2] proposes building a histogram with minimal upfront costs
by initializing it from a uniform distribution. Then, they continuously
refine the histogram with query execution feedback. The work by [22]
develops a multi-dimensional histogram structure that is amenable to
incorporating cardinality feedback to model non-uniform data distribu-
tions while leveraging efficient data structures. LEO [186] corrects the
errors in cardinality estimates with adjustments derived from execution
feedback.

It is important to note that the availability of actual cardinality from
execution feedback is limited to those expressions that occur in the plan.
However, cardinality of expressions that are not part of the plan may be
crucial as well in finding a higher quality plan. Consider a simple example
of a Table Scan operator containing the conjunction of two predicates
(I_tax = 0.04 AND [_discount = 0.08). The cardinality obtained
from executing this operator is the cardinality of the conjunction of

7.4. Leveraging Machine Learning for Query Optimization 369

predicates. However, if actual cardinality could additionally be obtained
for the individual predicates | tax = 0.04, I_discount = 0.08, it could
potentially lead to a better plan containing an Index Scan using an
index on column [_taz (or |_discount) or an index intersection involving
both indexes. Techniques have been proposed for collecting cardinality
of expressions that are not part of the plan with low overhead by
introducing small changes to the query execution plan [37].

7.4 Leveraging Machine Learning for Query Optimization

The topic of leveraging machine learning (ML) for query optimization
has experienced an explosive growth of interest with many research
papers in recent conferences.

Since cardinality and cost estimation are prediction problems, they
are natural candidates for application of ML techniques. Models are
built to learn the joint data distribution across columns and tables
in the database, which are then used to estimate the cardinality of
any query expressions [95, 201, 202, 207]. A comparative and empirical
study of some of the ML-based CE techniques can be found in [108,
196]. Techniques such as [121, 151] aim to make ML models for cardi-
nality estimation resilient to errors when the workload or data changes.
Application of ML to improve cost estimation has been studied as
well [129, 191, 204]. The work by [182] compares the use of different ML
approaches to cost estimation, and considers how a learned cost model
can be integrated into a Cascades based query optimizer. There has
been recent work on pre-trained cost models that may be adapted with
little or no training for unseen databases [94, 124]. The traditional query
optimization framework discussed in this monograph can directly make
use of cardinality and cost estimators improved through ML techniques.

We now discuss ML inspired techniques that influence the search
component of the optimizer. Bao [127] is a learning component that is
used as a “value-add” layer on top of the traditional query optimizer. It
leverages query hints (Section 6.3) to guide the optimizer to generate
alternatives to the default plan. The set of hints considered consists of
only plan-level Boolean hints (e.g., Hash Join hint). Bao uses reinforce-
ment learning and learns a model to choose the best hint from the set

370 Open Problems

of hints for a given query. Bao generates a modified query decorated
with its selection of hints, executes the plan generated by the optimizer
for that modified query, and observes the execution time (reward). Over
time, Bao improves the plan quality with its learning and outperforms
the traditional query optimizer it uses. Bao has the benefit of easy inte-
gration with the traditional optimization framework but its ability to
steer the optimizer is limited by the set of hints. Furthermore, hints are
global for the query and thus lacks fine-grained influence on altering the
query plans. Like Bao, Lero [206] leverages a traditional query optimizer
and uses an approach based on pairwise learning-to-rank paradigm.
Lero has two components. The first component (Plan Explorer) uses the
cardinality injection API to alter cardinality of subexpressions for the
query, which leads the optimizer to generate plans potentially distinct
from its default choice. The second component (Plan Comparator) is
a binary classifier that identifies the better plan from a pair of plans.
An advantage of this approach is that since the task of comparing two
plans is simpler than predicting the execution cost of a plan, the model
can be trained at lower cost and achieve higher accuracy.

In contrast to Bao and Lero, Neo [128] and Balsa [200] take respon-
sibilities of generating the query plans for the scope of single block
Select Project Join queries with aggregates. They use reinforcement
learning to learn a cost function and use that to guide its search for a
plan. Neo bootstraps its repertoire of plans and their costs by leveraging
a traditional query optimizer. In contrast, Balsa bootstraps using a
rudimentary cost model and does not use the search component of an
existing optimizer. This is because Balsa targets scenarios where there
may not be an existing query optimizer, e.g., for a new execution engine.
The rudimentary cost model steers Balsa away from very expensive
plans as candidates. In addition, Balsa uses timeout to ensure that the
plans it picks for execution do not run for too long.

Despite much research, the efficacy of the proposed ML based opti-
mization techniques are yet to be fully understood. While the proposed
models are generally more accurate for cardinality estimation as well as
cost estimation and generates better query plans, the techniques suffer
from high overheads of training and inference, generation of surprisingly

7.5. Other Research Topics in Query Optimization 371

poor query plans from time to time, high cost of updating models as
data changes, and difficulties in interpretability and debuggability [196].

7.5 Other Research Topics in Query Optimization

There are many topics in query optimization that we did not cover in
this monograph and in this section, we reference some of these areas.
Multi-query optimization [175, 179] takes advantage of commonality
across queries. In this scenario, the input is a set of queries and the
output is a DAG, i.e., a set of plans that share physical operators.
Thus, the goal is to generate such a DAG that can answer multiple
queries by taking advantage of common subexpressions. In data-analytic
queries, aggregate functions that are window functions, i.e., generating
aggregation on a sliding window of ordered data, are important for
dashboards, and ensuring that computation is reused across sliding
windows is important. Streaming systems bring their unique challenges
in query planning. For example, while streaming queries may share a
number of common subexpressions, their data may change at different
paces. Changing plans for such streaming queries has the added challenge
that queries are stateful. Some of the techniques for optimizing streaming
queries leverage operator reordering like selection push-down or pull-up,
as discussed in Section 4. We refer interested readers to the survey
article by [96] on this topic.

7.6 The Big Questions

As we end with this monograph, we want to leave the readers with our
thoughts on some of the key opportunities to significantly improve the
state-of-the-art in query optimization.

Most query engines today use variants of the query optimization
framework described in this monograph. At the same time, these engines
complement query optimization with runtime decisions to improve the
performance of execution. However, we do not have a deeper understand-
ing of what decisions are best deferred to runtime and what decisions
should be made during the query optimization phase.

372 Open Problems

On a related note, leveraging execution feedback has been researched
extensively. Some of the learning could be applied during the execution
of the current query (e.g., adaptive operators) but perhaps some of the
feedback is best aggregated offline to further fine tune the optimizer,
potentially with the aid of advanced analytic models. So far, we have
only early work on the latter but a breakthrough in this area could
have broad impact.

Despite all the successes query optimizers have experienced, we still
do not know how to appropriately tune the resources devoted by the
query optimizer to match the impact of potential improvements on
the execution costs of the queries. Ideally, the optimizer should invest
substantial time only if the payoffs in plan quality will be large.

A broad area that has been largely ignored is the development of
realistic benchmarks for query optimizers. We have benchmarks to stress
test join orders but we need benchmarks with realistic data as well
as complex queries that exercise the richness of transformation rules.
Even though commercial database systems differ in their execution
engines and two query optimizers on two different engines cannot be
compared, a common set of queries and data sets will allow each engine
to test regression and measure improvement. In case of Open Source
database systems such as PostgreSQL, such benchmarks can accelerate
improvement in its optimizer technology. On a related note, technology
for testing and debugging the optimizers have seen little evolution over
the years, and this should be a priority as well.

Two frameworks in query optimization have so far stood the test of
time. One of them is the framework of System R with search, cardinality
estimation, and cost estimation as three key components. The extensible
query optimizer search framework pioneered by Volcano/Cascades has
also enjoyed broad adoption. It may be worthwhile to revisit both
these frameworks. Combinatorial search as well as ML, especially any
foundation model like technology that can be universally applied may
lead to new directions.

Finally, query optimizers traditionally have been stand-alone systems
that take into account characteristics of data through statistics as the
only additional information beyond the submitted query. We should
ask ourselves what could be gained by offering applications a direct

7.6. The Big Questions 373

way to interact with and influence the optimizer [29]. Specifically, the
optimizer could offer APIs to the application to inject cardinalities
for selected expressions as well as specification of correlation between
filter expressions, thereby overriding default selectivity estimation. On
the search side, plan directives provide more fine-grained and powerful
constraints (e.g., [23]) on the structure and operators in the final plan
than what is possible with query hints in today’s optimizers (Section 6.3).
For example, one may wish to constrain that the final plan must include
a join between customer and orders table as the lowest-level join, but
impose no constraints on the join order of the remaining relations
in the query. The directives may also include operator preference to
guard against erroneous cardinality estimation, e.g., prefer Table Scan
unless the estimated cost of Index Seek is at least 50% lower. This may
favor more robust plans at the cost of sacrificing performance. It is not
necessary that the application builder explicitly provides such directives.
It is far more likely that the application programmer writes code to
leverage these interfaces that also takes into account execution feedback
from historical information, e.g., Query Store in SQL Server [141],
Automatic Workload Repository in Oracle DB [157].

Acknowledgements

We thank Anshuman Dutt, Wentao Wu, and Christian Konig, our col-
leagues at the Data Systems Group at Microsoft Research, who carefully
read several parts of this monograph, and gave us detailed feedback.
Our sincere thanks to the anonymous reviewers whose feedback greatly
helped improve this monograph. Joe Hellerstein provided thoughtful
suggestions and detailed comments on an early draft, and also shared
with us feedback from students in his graduate class at UC Berkeley.
We are grateful to Jignesh Patel for his comments on a draft of the
monograph, and for sharing feedback from students in his graduate
class at Carnegie Mellon University. We are also highly appreciative of
Nicolas Bruno, Cesar Galindo Legaria, and Vassilis Papadimos from the
Azure Data team at Microsoft for sharing with us their knowledge and
insights on the Volcano/Cascades frameworks, as well as the Microsoft
SQL Server and Fabric Data Warehouse query optimizers. Finally, we
sincerely thank our spouses for their patience and support.

374

Appendix

A

Access Methods

We provide a brief overview of how the query execution engine in
relational databases can access data stored in the base tables. The data
in base tables can be physically organized using different persistent (i.e.,
on-disk) data structures. Some of the most commonly used structures
are heaps, B-trees indexes [14], and columnstore indexes [189]. We use
the examples of heaps and B+-tree indexes to introduce the important
physical operators.! We note that there are other aspects of access
methods on base tables that are not discussed below, e.g., partitioning,
but are also relevant for query optimization.

Heap and B+-tree index A heap is an unordered collection of all
records in the table. Each record (row) has a DBMS generated row id,
and stores values for each column in the table. Rows are organized into
pages and stored on disk. B+-trees are n-ary tree based data structures
that organize the data ordered by the key columns of the index. Further,
a B+-tree index can either be a clustered index or non-clustered index.
In a clustered index, the leaf pages of the index contain the entire record

'In contrast to a B-tree, in a B+-tree, leaf pages contain a pointer to the next
leaf page in index order, thereby enabling more efficient scans of a range of values.

376

377

(i.e., values of all columns of the table), whereas in a non-clustered index,
the leaf pages only contain the key columns and the record id. Besides
key columns, a non-clustered index may optionally contain additional
include columns. In this case, each row in the leaf page of the index
contains the key columns as well as the include columns. Observe that
the B+-tree supports search (i.e., lookups or range scans) only over the
key columns, and not the include columns. In contrast to heaps, B-+-
Tree indexes can greatly speed up the retrieval of the data, especially
when only a selective subset of the data is needed to answer the query.

We use the same example table and query from Section 4.1 to
describe the physical operators for accessing data in heaps and B+-tree
indexes. Consider a table S(id, a,b, c) with four columns, where id is
the primary key of table S. Consider the following query (::

SELECT S.a, S.b
FROM S
WHERE S.a > 10 AND S.b = 20

Table Scan Since the rows of a heap are unordered, a heap provides no
ability to lookup any individual record. Thus, the only physical operator
allowed on a heap is the Table Scan operator. Table Scan takes a table
as an argument and returns all rows from the table. In our example,
Table Scan of S returns all rows in S. Observe that when the table is
large, the Table Scan operator can be expensive since it needs to fetch
all pages of S from storage, including rows and columns that are not
needed to answer the query.

Index Seek and Key Lookup When the query contains an equality
predicate on any prefix of the key columns in the index, the Index Seek
operator can be used to retrieve all rows satisfying the predicate. For
example, consider a B+-tree index I built on table S with b as the
key column. Then for ()1, instead of scanning the full table, invoking
Index Seek (I, S.b = 20) will find and retrieve row ids of all rows in
the table satisfying the predicate. A special case of Index Seek is a
Key Lookup operator which is used when the index is defined on a
primary key or unique column of the table. In a Key Lookup, either
0 or 1 record is returned, whereas in an Index Seek, 0 or more rows

378 Access Methods

can be returned. Note that an invocation of the Index Seek operator
performs a random I/O to access the data page containing the matching
records. While an Index Seek is often used for identifying rows satisfying
a selection predicates (e.g., S.b = 10), it can also be combined with a
Nested Loops Join operator to efficiently support a join between two
relations. Specifically, for each row from the outer relation, a Nested
Loops Join operator can use an Index Seek on the inner side relation of
the join if the key column of the index is the join column.

Index Scan When the query contains a range predicate, a B4-tree in-
dex enables efficient range scans using the Index Scan operator. Consider
a B+-tree index I, built on table S with a as the key column. Since the
predicate S.a > 10 needs to retrieve a range of values, invoking Index
Scan (I, S.a > 10) will retrieve row ids of all rows satisfying the range
predicate on column a. We observe that for the Index Scan operators
the predicate is an optional argument. If no predicate is specified, Index
Scan returns all rows from the leaf pages of the index. Unlike Table
Scan where the rows returned are unordered, these rows from Index
Scan will appear in the order of the key columns of the index. Thus,
the usefulness of Index Scan goes beyond its ability to retrieve rows
since it can benefit other operators such as Merge Join and Stream
Aggregate, which require their inputs to be sorted. B+-tree indexes
containing include columns can be very effective in answering a query
when all columns required to answer the query are available in the
index, whether as part of key or include columns. For example, consider
an index I,(b) where the key column is a, and the include column is
b. Observe that the query Q1 can be answered using an Index Scan
1,(b) with S.a > 10 followed by a Filter operator that can apply the
predicate S.b = 20. Since the column b is available in the index, we can
avoid a Key Lookup into the clustered index to obtain column b.

References

1]

D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores
vs. Row-stores: How Different are They Really?” In Proceed-
ings of the 2008 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’08, pp. 967-980, Vancou-
ver, Canada: Association for Computing Machinery, 2008. DOI:
10.1145/1376616.1376712.

A. Aboulnaga and S. Chaudhuri, “Self-Tuning Histograms: Build-
ing Histograms without Looking at Data,” in Proceedings of the
1999 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’99, pp. 181-192, Philadelphia, Pennsyl-
vania, USA: Association for Computing Machinery, 1999. DOTI:
10.1145/304182.304198.

P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei, and
K. Yi, “Mergeable Summaries,” ACM Transactions on Database
Systems (TODS), vol. 38, no. 4, 2013, pp. 1-28.

J. Aguilar-Saborit, R. Ramakrishnan, K. Srinivasan, K. Bock-
srocker, I. Alagiannis, M. Sankara, M. Shafiei, J. Blakeley, G.
Dasarathy, S. Dash, et al., “POLARIS: the Distributed SQL
Engine in Azure Synapse,” Proceedings of the VLDB Endowment,
vol. 13, no. 12, 2020, pp. 3204-3216.

379

https://doi.org/10.1145/1376616.1376712
https://doi.org/10.1145/304182.304198

380

[5]

[10]

[12]

[13]

References

M. X. et al., “Adaptive and Robust Query Execution for Lake-
houses at Scale,” Proceedings of the VLDB Endowment, vol. 17,
2024.

Amazon, AWS: COUNT function, 2024. URL: https://docs.aws.
amazon.com/redshift /latest /dg/r COUNT.html.

G. Antoshenkov, “Dynamic Query Optimization in Rdb/VMS,”
in Proceedings of IEEE 9th International Conference on Data
Engineering, IEEE, pp. 538-547, 1993.

P. M. Aoki, “Implementation of Extended Indexes in POST-
GRES,” in ACM SIGIR Forum, ACM New York, NY, USA,
vol. 25, pp. 2-9, 1991.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, et al., “Spark
SQL: Relational Data Processing in Spark,” in Proceedings of the
2015 ACM SIGMOD international conference on management
of data, pp. 1383-1394, 2015.

N. Armenatzoglou, S. Basu, N. Bhanoori, M. Cai, N. Chainani,
K. Chinta, V. Govindaraju, T. J. Green, M. Gupta, S. Hillig, et
al., “Amazon Redshift Re-invented,” in Proceedings of the 2022
International Conference on Management of Data, pp. 2205—
2217, 2022.

A. Atserias, M. Grohe, and D. Marx, “Size Bounds and Query
Plans for Relational Joins,” in Proceedings of the 2008 49th
Annual IEEE Symposium on Foundations of Computer Science,
pp. 739-748, 2008.

R. Avnur and J. M. Hellerstein, “Eddies: Continuously Adaptive
Query Processing,” in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, pp. 261-272,
2000.

B. Babcock and S. Chaudhuri, “Towards a Robust Query Op-
timizer: A Principled and Practical Approach,” in Proceedings
of the 2005 ACM SIGMOD International Conference on Man-
agement of Data, ser. SIGMOD ’05, pp. 119-130, Baltimore,
Maryland: Association for Computing Machinery, 2005. DOI:
10.1145/1066157.1066172.

https://docs.aws.amazon.com/redshift/latest/dg/r_COUNT.html
https://docs.aws.amazon.com/redshift/latest/dg/r_COUNT.html
https://doi.org/10.1145/1066157.1066172

References 381

[14]

[15]

21]

[22]

R. Bayer and E. McCreight, “Organization and Maintenance
of Large Ordered Indices,” in Proceedings of the 1970 ACM
SIGFIDET (Now SIGMOD) Workshop on Data Description,
Access and Control, pp. 107-141, 1970.

E. Begoli, J. Camacho-Rodriguez, J. Hyde, M. J. Mior, and D.
Lemire, “Apache Calcite: A Foundational Framework for Opti-
mized Query Processing over Heterogeneous Data Sources,” in
Proceedings of the 2018 International Conference on Management
of Data, pp. 221-230, 2018.

S. Bellamkonda, R. Ahmed, A. Witkowski, A. Amor, M. Zait,
and C.-C. Lin, “Enhanced Subquery Optimizations in Oracle,”
Proc. VLDB Endow., vol. 2, no. 2, Aug. 2009, pp. 1366-1377.
DOI: 10.14778/1687553.1687563.

P. A. Bernstein and D.-M. W. Chiu, “Using Semi-Joins to Solve
Relational Queries,” J. ACM, vol. 28, no. 1, Jan. 1981, pp. 25—40.
DOI: 10.1145/322234.322238.

P. Bizarro, N. Bruno, and D. J. DeWitt, “Progressive Parametric
Query Optimization,” IEEE Transactions on Knowledge and
Data Engineering, vol. 21, no. 4, 2009, pp. 582-594. port: 10.
1109/TKDE.2008.160.

P. A. Boncz, M. Zukowski, and N. Nes, “MonetDB/X100: Hyper-
Pipelining Query Execution.,” in Cidr, vol. 5, pp. 225-237, 2005.
R. Borovica-Gajic, S. Idreos, A. Ailamaki, M. Zukowski, and
C. Fraser, “Smooth Scan: Statistics-oblivious Access Paths,” in
2015 IEEE 31st International Conference on Data Engineering,
IEEE, pp. 315-326, 2015.

N. Bruno and S. Chaudhuri, “Exploiting Statistics on Query Ex-
pressions for Optimization,” in Proceedings of the 2002 ACM SIG-
MOD international conference on Management of data, pp. 263
274, 2002.

N. Bruno, S. Chaudhuri, and L. Gravano, “STHoles: A Multi-
dimensional Workload-Aware Histogram,” in Proceedings of the
2001 ACM SIGMOD international conference on Management
of data, pp. 211-222, 2001.

https://doi.org/10.14778/1687553.1687563
https://doi.org/10.1145/322234.322238
https://doi.org/10.1109/TKDE.2008.160
https://doi.org/10.1109/TKDE.2008.160

[24]

References

N. Bruno, S. Chaudhuri, and R. Ramamurthy, “Power Hints
for Query Optimization,” in 2009 IEEE 25th International Con-
ference on Data Engineering, pp. 469480, 2009. por: 10.1109/
ICDE.2009.68.

N. Bruno, C. Galindo-Legaria, M. Joshi, E. Calvo Vargas, K.
Mahapatra, S. Ravindran, G. Chen, E. Cervantes Juarez, and
B. Sezgin, “Unified Query Optimization in the Fabric Data
Warehouse,” in Companion of the 2024 International Conference
on Management of Data, pp. 18-30, 2024.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache Flink: Stream and Batch Processing in
a Single Engine,” The Bulletin of the Technical Committee on
Data Engineering, vol. 38, no. 4, 2015.

M. J. Carey, D. J. DeWitt, G. Graefe, D. M. Haight, J. E.
Richardson, D. T. Schuh, E. J. Shekita, and S. L. Vandenberg,
“The EXODUS Extensible DBMS project: An Overview,” 1988.
M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya,
“Towards Estimation Error Guarantees for Distinct Values,” in
Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pp. 268-279, 2000.
S. Chaudhuri, “An Overview of Query Optimization in Relational
Systems,” in Proceedings of the seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems,
pp. 34-43, 1998.

S. Chaudhuri, “Query Optimizers: Time to Rethink the Con-
tract?” In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pp. 961-968, 2009.

S. Chaudhuri, G. Das, and U. Srivastava, “Effective use of Block-
level Sampling in Statistics Estimation,” in Proceedings of the
2004 ACM SIGMOD international conference on Management
of data, pp. 287-298, 2004.

S. Chaudhuri, U. Dayal, and V. Narasayya, “An Overview of
Business Intelligence Technology,” Communications of the ACM,
vol. 54, no. 8, 2011, pp. 83-98.

https://doi.org/10.1109/ICDE.2009.68
https://doi.org/10.1109/ICDE.2009.68

References 383

32]

[33]

[39]

[40]

S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim,

)

“Optimizing Queries with Materialized Views,” in Proceedings
of the Eleventh International Conference on Data Engineering,
IEEE, pp. 190-200, 1995.

S. Chaudhuri, H. Lee, and V. R. Narasayya, “Variance aware
Optimization of Parameterized Queries,” in Proceedings of the
2010 ACM SIGMOD International Conference on Management
of data, pp. 531-542, 2010.

S. Chaudhuri, R. Motwani, and V. Narasayya, “Random Sam-
pling for Histogram Construction: How Much is Enough?” ACM
SIGMOD Record, vol. 27, no. 2, 1998, pp. 436—447.

S. Chaudhuri, R. Motwani, and V. Narasayya, “On Random
Sampling over Joins,” ACM SIGMOD Record, vol. 28, no. 2,
1999, pp. 263-274.

S. Chaudhuri and V. Narasayya, “Automating Statistics Manage-
ment for Query Optimizers,” IEEE Transactions on Knowledge
and Data Engineering, vol. 13, no. 1, 2001, pp. 7-20.

S. Chaudhuri, V. Narasayya, and R. Ramamurthy, “A Pay-
as-You-Go Framework for Query Execution Feedback,” Proc.
VLDB Endow., vol. 1, no. 1, Aug. 2008, pp. 1141-1152. pDOTI:
10.14778/1453856.1453977.

S. Chaudhuri and K. Shim, “Including Group-By in Query Opti-
mization,” in Proceedings of the 20th International Conference
on Very Large Data Bases, ser. VLDB 94, pp. 354-366, San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1994.
S. Chaudhuri and K. Shim, “Optimization of Queries with User-
defined Predicates,” ACM Transactions on Database Systems
(TODS), vol. 24, no. 2, 1999, pp. 177-228.

C. M. Chen and N. Roussopoulos, “Adaptive Selectivity HEs-
timation using Query Feedback,” in Proceedings of the 199/
ACM SIGMOD international conference on Management of data,
pp. 161-172, 1994.

T. Chen and C. Guestrin, “Xgboost: A Scalable Tree Boosting
System,” in Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining, pp. 785-794,

2016.

https://doi.org/10.14778/1453856.1453977

384

[42]

[46]

[50]

References

A. Cheung, A. Solar-Lezama, and S. Madden, “Optimizing
database-backed applications with query synthesis,” ACM SIG-
PLAN Notices, vol. 48, no. 6, 2013, pp. 3—14.

R. Chirkova, J. Yang, et al., “Materialized Views,” Foundations
and Trends® in Databases, vol. 4, no. 4, 2011, pp. 295-405.

F. Chu, J. Y. Halpern, and P. Seshadri, “Least Expected Cost
Query Optimization: An Exercise in Utility,” in Proceedings of
the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pp. 138-147, 1999.

R. L. Cole and G. Graefe, “Optimization of Dynamic Query
Evaluation Plans,” in Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD
94, pp. 150-160, Minneapolis, Minnesota, USA: Association for
Computing Machinery, 1994. po1: 10.1145/191839.191872.

G. Cormode, M. Garofalakis, P. J. Haas, C. Jermaine, et al.,
“Synopses for Massive Data: Samples, Histograms, Wavelets,
Sketches,” Foundations and Trends® in Databases, vol. 4, no. 1—
3, 2011, pp. 1-294.

G. Cormode and S. Muthukrishnan, “An Improved Data Stream
Summary: the Count-Min Sketch and its Applications,” Journal
of Algorithms, vol. 55, no. 1, 2005, pp. 58-75.

G. Cormode and S. Muthukrishnan, “An Improved Data Stream
Summary: the Count-Min Sketch and its Applications,” Journal
of Algorithms, vol. 55, no. 1, 2005, pp. 58-75.

H. D., P. N. Darera, and J. R. Haritsa, “On the Production of
Anorexic Plan Diagrams,” in Proceedings of the 33rd Interna-
tional Conference on Very Large Data Bases, ser. VLDB ’07,
pp. 1081-1092, Vienna, Austria: VLDB Endowment, 2007.

B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,
J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang,
et al., “The Snowflake Elastic Data Warehouse,” in Proceedings
of the 2016 International Conference on Management of Data,
pp. 215-226, 2016.

S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, M. Tan,
et al., “Semantic Data Caching and Replacement,” in VLDB,
vol. 96, pp. 330-341, 1996.

https://doi.org/10.1145/191839.191872

References 385

[52]

[59]

U. Dayal, “Of Nests and Trees: A Unified Approach to Process-
ing Queries That Contain Nested Subqueries, Aggregates, and
Quantifiers,” in Proceedings of the 13th International Conference
on Very Large Data Bases, ser. VLDB 87, pp. 197-208, San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1987.
K. Delaney, Inside Microsoft SQL Server 2005: Query Tuning
and Optimization. Microsoft Press, 2007.

A. Deshpande, Z. Ives, and V. Raman, “Adaptive Query Pro-
cessing,” Foundations and Trends® in Databases, vol. 1, no. 1,
2007, pp. 1-140. por: 10.1561/1900000001.

D. J. DeWitt and R. Ramamurthy, “Buffer Pool Aware Query
Optimization,” in Proceedings of the 2005 CIDR Conference,
pp.- 961-968, 2009.

D. J. DeWitt, J. F. Naughton, and D. A. Schneider, “An Evalu-
ation of Non-Equijoin Algorithms,” in Proceedings of the 17th
International Conference on Very Large Data Bases, ser. VLDB
‘91, pp. 443-452, San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1991.

B. Ding, S. Chaudhuri, J. Gehrke, and V. Narasayya, “DSB: A
Decision Support Benchmark for Workload-Driven and Tradi-
tional Database Systems,” Proc. VLDB Endow., vol. 14, no. 13,
Sep. 2021, pp. 3376-3388. DOL: 10.14778,/3484224.3484234.

B. Ding, S. Chaudhuri, and V. Narasayya, “Bitvector-Aware
Query Optimization for Decision Support Queries,” in Proceed-
ings of the 2020 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD 20, pp. 2011-2026, Port-
land, OR, USA: Association for Computing Machinery, 2020.
DOI: 10.1145/3318464.3389769.

B. Ding, V. Narasayya, and C. Surajit, Errata and Updates
to the Foundations and Trends in Databases article: Fxtensible
Query Optimizers in Practice, 2024. URL: https://www.microsoft.
com /en-us/research /project /extensible- query-optimizers-in-
practice-errata-and-updates//.

W. Du, R. Krishnamurthy, and M.-C. Shan, “Query Optimiza-
tion in a Heterogeneous DBMS,” in VLDB, vol. 92, pp. 277-291,
1992.

https://doi.org/10.1561/1900000001
https://doi.org/10.14778/3484224.3484234
https://doi.org/10.1145/3318464.3389769
https://www.rarnonalumber.com/en-us/research/project/extensible-query-optimizers-in-practice-errata-and-updates/
https://www.rarnonalumber.com/en-us/research/project/extensible-query-optimizers-in-practice-errata-and-updates/
https://www.rarnonalumber.com/en-us/research/project/extensible-query-optimizers-in-practice-errata-and-updates/

386

[61]

[63]

[64]

References

A. Dutt, V. Narasayya, and S. Chaudhuri, “Leveraging Re-
Costing for Online Optimization of Parameterized Queries with
Guarantees,” in Proceedings of the 2017 ACM International Con-
ference on Management of Data, ser. SIGMOD 17, pp. 1539—
1554, Chicago, Illinois, USA: Association for Computing Machin-
ery, 2017. por: 10.1145/3035918.3064040.

M. Elhemali, C. A. Galindo-Legaria, T. Grabs, and M. M. Joshi,
“Execution Strategies for SQL Subqueries,” in Proceedings of the
2007 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’07, pp. 993-1004, Beijing, China: Asso-
ciation for Computing Machinery, 2007. por: 10.1145/1247480.
1247598.

R. Fagin, “Normal Forms and Relational Database Operators,” in
Proceedings of the 1979 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’79, pp. 153-160, Boston,
Massachusetts: Association for Computing Machinery, 1979. DOT:
10.1145/582095.582120.

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyper-
loglog: the Analysis of a Near-Optimal Cardinality Estimation
Algorithm,” in Discrete Mathematics and Theoretical Computer
Science, Discrete Mathematics and Theoretical Computer Sci-
ence, pp. 137-156, 2007.

P. Flajolet and G. N. Martin, “Probabilistic Counting Algorithms
for Data Base Applications,” Journal of computer and system
sciences, vol. 31, no. 2, 1985, pp. 182-209.

M. Freitag, M. Bandle, T. Schmidt, A. Kemper, and T. Neumann,
“Adopting Worst-case Optimal Joins in Relational Database
Systems,” Proceedings of the VLDB Endowment, vol. 13, no. 12,
2020, pp. 1891-1904.

M. Freitag and T. Neumann, “Every Row Counts: Combining
Sketches and Sampling for Accurate Group-by Result Estimates,”
ratio, vol. 1, 2019, pp. 1-39.

C. Galindo-Legaria and A. Rosenthal, “How to Extend a Con-
ventional Optimizer to Handle One- and Two-sided Outerjoin,”
in [1992] Eighth International Conference on Data Engineering,
pp. 402409, 1992. por1: 10.1109/ICDE.1992.2131609.

https://doi.org/10.1145/3035918.3064040
https://doi.org/10.1145/1247480.1247598
https://doi.org/10.1145/1247480.1247598
https://doi.org/10.1145/582095.582120
https://doi.org/10.1109/ICDE.1992.213169

References 387

[69]

[70]

73]

[74]

[75]

[76]

C. Galindo-Legaria and M. Joshi, “Orthogonal Optimization of
Subqueries and Aggregation,” SIGMOD ’01, 2001, pp. 571-581.
DOI: 10.1145/375663.375748.

C. Galindo-Legaria and A. Rosenthal, “Outerjoin Simplification
and Reordering for Query Optimization,” ACM Trans. Database
Syst., vol. 22, no. 1, Mar. 1997, pp. 43-74. por: 10.1145,/244810.
244812.

C. A. Galindo-Legaria, M. M. Joshi, F. Waas, and M.-C. Wu,
“Statistics on Views,” in Proceedings 2003 VLDB Conference,
Elsevier, pp. 952-962, 2003.

C. A. Galindo-Legaria, T. Grabs, S. Gukal, S. Herbert, A. Surna,
S. Wang, W. Yu, P. Zabback, and S. Zhang, “Optimizing Star
Join Queries for Data Warehousing in Microsoft SQL Server,” in
2008 IEEE 24th International Conference on Data Engineering,
pp. 1190-1199, 2008. por: 10.1109/ICDE.2008.4497528.

S. Ganguly, “Design and Analysis of Parametric Query Opti-
mization Algorithms,” in VLDB, vol. 98, pp. 228-238, 1998.

P. B. Gibbons, Y. Matias, and V. Poosala, “Fast Incremental
Maintenance of Approximate Histograms,” in VLDB, vol. 97,
pp. 466-475, 1997.

P. B. Gibbons, Y. Matias, and V. Poosala, “Fast Incremental
Maintenance of Approximate Histograms,” ACM Transactions
on Database Systems (TODS), vol. 27, no. 3, 2002, pp. 261-298.
J. Goldstein and P.-A. Larson, “Optimizing Queries using Mate-
rialized Views: a Practical, Scalable Solution,” ACM SIGMOD
Record, vol. 30, no. 2, 2001, pp. 331-342.

G. Graefe, “Query Evaluation Techniques for Large Databases,”
ACM Computing Surveys (CSUR), vol. 25, no. 2, 1993, pp. 73—
169.

G. Graefe, “Query Evaluation Techniques for Large Databases,”
ACM Comput. Surv., vol. 25, no. 2, Jun. 1993, pp. 73-169. DOI:
10.1145/152610.152611.

G. Graefe, “Volcano - An Extensible and Parallel Query Eval-
uation System,” IEEE Transactions on Knowledge and Data
Engineering, vol. 6, no. 1, 1994, pp. 120-135.

https://doi.org/10.1145/375663.375748
https://doi.org/10.1145/244810.244812
https://doi.org/10.1145/244810.244812
https://doi.org/10.1109/ICDE.2008.4497528
https://doi.org/10.1145/152610.152611

388

[80]

[81]

[84]

[85]

[86]

[87]

[88]

References

G. Graefe, “The Cascades Framework for Query Optimization,”
IEEFE Data Eng. Bull., vol. 18, no. 3, 1995, pp. 19-29.

G. Graefe, “New Algorithms for Join and Grouping Opera-
tions,” Computer Science-Research and Development, vol. 27,
2012, pp. 3-27.

G. Graefe and W. McKenna, “The Volcano Optimizer Genera-
tor,” Colorado Univ at Boulder Dept of Computer Science, Tech.
Rep., 1991.

G. Graefe and W. J. McKenna, “The Volcano Optimizer Gener-
ator: Extensibility and Efficient Search,” in Proceedings of IEEE
9th international conference on data engineering, pp. 209-218,
1993.

A. Gupta and I. S. Mumick, Materialized Views: Techniques,
Implementations, and Applications. MIT press, 1999.

A. Gupta, I. S. Mumick, et al., “Maintenance of Materialized
Views: Problems, Techniques, and Applications,” IFEE Data
Eng. Bull., vol. 18, no. 2, 1995, pp. 3-18.

L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh,
“Extensible Query Processing in Starburst,” in Proceedings of the
1989 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’89, pp. 377-388, Portland, Oregon, USA:
Association for Computing Machinery, 1989. po1: 10.1145/67544.
66962.

A. Y. Halevy, “Answering Queries using Views: A Survey,” The
VLDB Journal, vol. 10, 2001, pp. 270-294.

J. Haritsa, “Robust query processing: A survey,” Foundations
and Trends® in Databases, vol. 15, no. 1, 2024, pp. 1-114. URL:
https://nowpublishers.com/article/Details/DBS-089.

J. R. Haritsa, “Robust Query Processing: Mission Possible,” in
2019 IEEE 35th International Conference on Data Engineering
(ICDE), IEEE, pp. 2072-2075, 2019.

H. Harmouch and F. Naumann, “Cardinality Estimation: An
Experimental Survey,” Proceedings of the VLDB Endowment,
vol. 11, no. 4, 2017, pp. 499-512.

https://doi.org/10.1145/67544.66962
https://doi.org/10.1145/67544.66962
https://nowpublishers.com/article/Details/DBS-089

References 389

[91]

[92]

(93]

[94]

[99]

J. M. Hellerstein and M. Stonebraker, “Predicate Migration:
Optimizing Queries with Expensive Predicates,” in Proceedings
of the 1998 ACM SIGMOD international conference on Manage-
ment of data, pp. 267-276, 1993.

S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in Practice: Al-
gorithmic Engineering of a state of the art Cardinality Estimation
Algorithm,” in Proceedings of the 16th International Conference
on Fxtending Database Technology, pp. 683-692, 2013.

E. Hewitt, Cassandra: the Definitive Guide. O’Reilly Media, Inc.,
2010.

B. Hilprecht and C. Binnig, “Zero-shot Cost Models for
Out-of-the-box Learned Cost Prediction,” arXiv preprint
arXiw:2201.00561, 2022.

B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting,
and C. Binnig, “Deepdb: Learn from Data, not from Queries!”
arXiv preprint arXiv:1909.00607, 2019.

M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A
Catalog of Stream Processing Optimizations,” ACM Computing
Surveys (CSUR), vol. 46, no. 4, 2014, pp. 1-34.

Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson,
O. O’Malley, J. Pandey, Y. Yuan, R. Lee, and X. Zhang, “Major
Technical Advancements in Apache Hive,” in Proceedings of the
2014 ACM SIGMOD international conference on Management
of data, pp. 1235-1246, 2014.

A. Hulgeri and S. Sudarshan, “Parametric Query Optimization
for Linear and Piecewise Linear Cost Functions,” in VLDB’02:
Proceedings of the 28th International Conference on Very Large
Databases, Elsevier, pp. 167-178, 2002.

IBM, DB2 for z/0S: Histogram statistics, 2024. URL: https:
//www.ibm.com /docs/en/db2-for-zos /127 topic=statistics-
histogram.

https://www.ibm.com/docs/en/db2-for-zos/12?topic=statistics-histogram
https://www.ibm.com/docs/en/db2-for-zos/12?topic=statistics-histogram
https://www.ibm.com/docs/en/db2-for-zos/12?topic=statistics-histogram

390

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

[108]

References

Y. E. Ioannidis and Y. Kang, “Randomized Algorithms for
Optimizing Large Join Queries,” in Proceedings of the 1990
ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD 90, pp. 312-321, Atlantic City, New Jer-
sey, USA: Association for Computing Machinery, 1990. DOTI:
10.1145/93597.98740.

Y. Toannidis, “The History of Histograms (abridged),” in Pro-
ceedings 2003 VLDB Conference, Elsevier, pp. 19-30, 2003.

Y. E. Ioannidis and S. Christodoulakis, “On the Propagation of
Errors in the Size of Join Results,” in Proceedings of the 1991
ACM SIGMOD International Conference on Management of
data, pp. 268-277, 1991.

Y. E. Ioannidis and V. Poosala, “Balancing Histogram Optimality
and Practicality for Query Result Size Estimation,” Acm Sigmod
Record, vol. 24, no. 2, 1995, pp. 233-244.

Y. Izenov, A. Datta, F. Rusu, and J. H. Shin, “COMPASS: Online
Sketch-based Query Optimization for In-memory Databases,” in
Proceedings of the 2021 International Conference on Management
of Data, pp. 804-816, 2021.

N. Kabra and D. J. DeWitt, “Efficient Mid-query Re-
optimization of Sub-optimal Query Execution Plans,” in Pro-
ceedings of the 1998 ACM SIGMOD international conference on
Management of data, pp. 106—117, 1998.

S. Kandula, L. Orr, and S. Chaudhuri, “Pushing data-induced
predicates through joins in big-data clusters,” Proceedings of the
VLDB Endowment, vol. 13, no. 3, 2019, pp. 252-265.

T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P.
Boncz, “Everything you always wanted to know about Compiled
and Vectorized Queries but were afraid to ask,” Proceedings of
the VLDB Endowment, vol. 11, no. 13, 2018, pp. 2209-2222.

K. Kim, J. Jung, I. Seo, W.-S. Han, K. Choi, and J. Chong,
“Learned Cardinality Estimation: An In-Depth Study,” in Pro-
ceedings of the 2022 International Conference on Management
of Data, ser. SIGMOD 22, pp. 1214-1227, Philadelphia, PA,
USA: Association for Computing Machinery, 2022. por: 10.1145/
3514221.3526154.

https://doi.org/10.1145/93597.98740
https://doi.org/10.1145/3514221.3526154
https://doi.org/10.1145/3514221.3526154

References 391

109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

W. Kim, “On Optimizing an SQL-like Nested Query,” ACM
Trans. Database Syst., vol. 7, no. 3, Sep. 1982, pp. 443—-469. DOI:
10.1145/319732.319745.

L. Kocsis and C. Szepesvari, “Bandit based Monte-Carlo Plan-
ning,” in Furopean conference on machine learning, Springer,
pp. 282-293, 2006.

R. P. Kooi, The Optimization of Queries in Relational Databases.
Case Western Reserve University, 1980.

P. Krishnan, J. S. Vitter, and B. Iyer, “Estimating Alphanumeric
Selectivity in the Presence of Wildcards,” in Proceedings of the
1996 ACM SIGMOD international conference on Management
of data, pp. 282-293, 1996.

P.-A. Larson, C. Clinciu, E. N. Hanson, A. Oks, S. L. Price,
S. Rangarajan, A. Surna, and Q. Zhou, “SQL Server Column
Store Indexes,” in Proceedings of the 2011 ACM SIGMOD In-
ternational Conference on Management of Data, ser. SIGMOD
11, pp. 1177-1184, Athens, Greece: Association for Computing
Machinery, 2011. por1: 10.1145/1989323.1989448.

C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in International
symposium on code generation and optimization, 2004. CGO
2004., IEEE, pp. 75-86, 2004.

A. W. Lee and M. Zait, “Closing the Query Processing Loop in
Oracle 11g,” Proceedings of the VLDB Endowment, vol. 1, no. 2,
2008, pp. 1368-1378.

K. Lee, A. Dutt, V. Narasayya, and S. Chaudhuri, “Analyzing
the Impact of Cardinality Estimation on Execution Plans in
Microsoft SQL Server,” Proceedings of the VLDB Endowment,
vol. 16, no. 11, 2023, pp. 2871-2883.

M. K. Lee, J. C. Freytag, and G. M. Lohman, “Implementing
an Interpreter for Functional Rules in a Query Optimizer.,” in
VLDB, pp. 218-229, 1988.

V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and
T. Neumann, “How Good Are Query Optimizers, Really?” Proc.
VLDB Endow., vol. 9, no. 3, Nov. 2015, pp. 204-215. port: 10.
14778/2850583.2850594.

https://doi.org/10.1145/319732.319745
https://doi.org/10.1145/1989323.1989448
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594

392

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

References

V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. Boncz, A. Kem-
per, and T. Neumann, “Query Optimization Through the Look-
ing Glass, and What We Found Running the Join Order Bench-
mark,” The VLDB Journal, vol. 27, 2018, pp. 643—668.

W. Lemahieu, S. vanden Broucke, and B. Baesens, Principles of
Database Management: the Practical Guide to Storing, Managing
and Analyzing Big and Small Data. Cambridge University Press,
2018.

B. Li, Y. Lu, and S. Kandula, “Warper: Efficiently Adapting
Learned Cardinality Estimators to Data and Workload Drifts,” in
Proceedings of the 2022 International Conference on Management
of Data, pp. 1920-1933, 2022.

G. Lohman, Is Query Optimization a "Solved" Problem? 2014.
URL: https://wp.sigmod.org/?p=1075.

G. M. Lohman, “Grammar-like Functional Rules for Represent-
ing Query Optimization Alternatives,” ACM SIGMOD Record,
vol. 17, no. 3, 1988, pp. 18-27.

Y. Lu, S. Kandula, A. C. Kénig, and S. Chaudhuri, “Pre-training
Summarization Models of Structured Datasets for Cardinality
Estimation,” Proceedings of the VLDB Endowment, vol. 15, no. 3,
2021, pp. 414-426.

L. F. Mackert and G. M. Lohman, “R* Optimizer Validation and
Performance Evaluation for Local Queries,” in Proceedings of the
1986 ACM SIGMOD international conference on Management
of data, pp. 84-95, 1986.

L. F. Mackert and G. M. Lohman, “R* optimizer validation and
performance evaluation for local queries,” in Proceedings of the
1986 ACM SIGMOD international conference on Management
of data, pp. 84-95, 1986.

R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T.
Kraska, “Bao: Making Learned Query Optimization Practical,”
in Proceedings of the 2021 International Conference on Man-
agement of Data, ser. SIGMOD ’21, pp. 1275-1288, Virtual
Event, China: Association for Computing Machinery, 2021. DOT:
10.1145/3448016.3452838.

https://wp.sigmod.org/?p=1075
https://doi.org/10.1145/3448016.3452838

References 393

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,
O. Papaemmanouil, and N. Tatbul, “Neo: A Learned Query
Optimizer,” arXiv preprint arXiv:1904.03711, 2019.

R. Marcus and O. Papaemmanouil, “Plan-structured Deep Neu-
ral Network Models for Query Performance Prediction,”
preprint arXiv:1902.00152, 2019.

V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh,
and M. Cilimdzic, “Robust Query Processing through Progres-
sive Optimization,” in Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pp. 659670,
2004.

Y. Matias, J. S. Vitter, and M. Wang, “Wavelet-based His-
tograms for Selectivity Estimation,” in Proceedings of the 1998
ACM SIGMOD international conference on Management of data,
pp. 448-459, 1998.

W. J. McKenna, Efficient Search in Fxtensible Database Query
Optimization: The Volcano Optimizer Generator. University of
Colorado at Boulder, 1993.

S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, T. Vassilakis, H. Ahmadi, D. Delorey, S. Min, et
al., “Dremel: A Decade of Interactive SQL Analysis at Web
Scale,” Proceedings of the VLDB Endowment, vol. 13, no. 12,
2020, pp. 3461-3472.

J. Melton and A. R. Simon, SQL: 1999: Understanding Relational
Language Components. Elsevier, 2001.

Microsoft, Adaptive Joins in Microsoft SQL Server, 2017. URL:
https://learn.microsoft.com /en-us/sql /relational- databases /
performance /intelligent- query - processing- details ? view =sql-
server-verl6.

Microsoft, Intro to Query Fxecution Bitmap Filters, 2019. URL:
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-
to-query-execution-bitmap-filters/ba-p/383175.

Microsoft, Optimizing Your Query Plans with the SQL Server
2014 Cardinality Estimator, 2021. URL: https://learn.microsoft.
com / en - us / previous - versions / dn673537(v = msdn . 10)
?redirectedfrom=MSDN.

arXiv

https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-details?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-details?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-details?view=sql-server-ver16
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-to-query-execution-bitmap-filters/ba-p/383175
https://techcommunity.microsoft.com/t5/sql-server-blog/intro-to-query-execution-bitmap-filters/ba-p/383175
https://learn.microsoft.com/en-us/previous-versions/dn673537(v=msdn.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/dn673537(v=msdn.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/dn673537(v=msdn.10)?redirectedfrom=MSDN

394

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

References

Microsoft, Parameter Sensitive Plan optimization in Microsoft
SQL Server, 2022. URL: https://learn.microsoft.com/en-us/sql/
relational- databases / performance / parameter- sensitive- plan-
optimization?view=sql-server-ver16.

Microsoft, Cardinality Estimation (SQL Server), 2023. URL:
https://learn.microsoft.com /en-us/sql /relational-databases /
performance / cardinality - estimation - sql - server 7 view = sql -
server-verl6.

Microsoft, Hints (Transact-SQL) - Query, 2023. URL: https:
//learn.microsoft.com/en-us/sql/t-sql/queries /hints-transact-
sql-query?view=sql-server-verl6.

Microsoft, Microsoft SQL Server Query Store, 2023. URL: https:
/ /learn . microsoft . com / en - us / sql / relational - databases /
performance / monitoring - performance - by - using - the - query -
store?view=sql-server-verl6.

Microsoft, Microsoft SQL Server Query Store, 2024. URL: https:
/ / learn . microsoft . com / en - us / sql / relational - databases /
performance / monitoring - performance - by - using - the - query -
store?view=sql-server-verl6.

Microsoft, Microsoft SQL server: Approzimate Count Distinct,
2024. URL: https://learn.microsoft.com /en-us/sql/t-sql/
functions/approx-count-distinct-transact-sql?view=sql-server-
verl6.

Microsoft, Microsoft SQL Server: Memory grant feedback, 2024.
URL: https:/ /learn . microsoft . com /en- us /sql / relational -
databases/performance /intelligent-query-processing-memory-
grant-feedback?view=sql-server-ver16.

Microsoft, Microsoft SQL Server: Query Processing Architec-
ture Guide, 2024. URL: https://learn.microsoft.com /en-us/
sql/relational-databases/query-processing-architecture-guide?
view=sql-server-verl6.

Microsoft, Statistics: Microsoft SQL Server, 2024. URL: https://
learn.microsoft.com /en-us/sql/relational-databases/statistics/
statistics?view=sql-server-verl6.

https://learn.microsoft.com/en-us/sql/relational-databases/performance/parameter-sensitive-plan-optimization?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/parameter-sensitive-plan-optimization?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/parameter-sensitive-plan-optimization?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/cardinality-estimation-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/cardinality-estimation-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/cardinality-estimation-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/functions/approx-count-distinct-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/functions/approx-count-distinct-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/functions/approx-count-distinct-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-memory-grant-feedback?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-memory-grant-feedback?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing-memory-grant-feedback?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/query-processing-architecture-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/query-processing-architecture-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/query-processing-architecture-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-ver16

References 395

[147]

[148]

[149]

[150]

[151]

[152]

153
[154]

[155]

[156]

Microsoft, Automatic Plan Correction in Microsoft SQL Server.
URL: https:/ /learn . microsoft . com /en- us / sql / relational -
databases / automatic - tuning / automatic - tuning ? view =sql -
server-verlG.

I. S. Mumick, S. J. Finkelstein, H. Pirahesh, and R. Ramakr-
ishnan, “Magic is Relevant,” in Proceedings of the 1990 ACM
SIGMOD International Conference on Management of Data,
ser. SIGMOD ’90, pp. 247-258, Atlantic City, New Jersey, USA:
Association for Computing Machinery, 1990. por: 10.1145/93597.
98734.

R. O. Nambiar and M. Poess, “The Making of TPC-DS,” in
Proceedings of the 32nd International Conference on Very Large
Data Bases, ser. VLDB 06, pp. 1049-1058, Seoul, Korea: VLDB
Endowment, 2006.

V. Narasayya and S. Chaudhuri, “Cloud Data Services: Work-
loads, Architectures and Multi-Tenancy,” Foundations and
Trends® in Databases, vol. 10, no. 1, 2021, pp. 1-107. DOI:
10.1561/1900000060.

P. Negi, Z. Wu, A. Kipf, N. Tatbul, R. Marcus, S. Madden, T.
Kraska, and M. Alizadeh, “Robust Query Driven Cardinality Es-
timation under Changing Workloads,” Proceedings of the VLDB
Endowment, vol. 16, no. 6, 2023, pp. 1520-1533.

T. Neumann, “Efficiently Compiling Efficient Query Plans for
Modern Hardware,” Proceedings of the VLDB Endowment, vol. 4,
no. 9, 2011, pp. 539-550.

T. Neumann and A. Kemper, Unnesting Arbitrary Queries, 2015.
H. Q. Ngo, E. Porat, C. Ré, and A. Rudra, “Worst-case Optimal
Join Algorithms,” Journal of the ACM (JACM), vol. 65, no. 3,
2018, pp. 1-40.

F. Olken, “Random Sampling from Databases,” Ph.D. disserta-
tion, Citeseer, 1993.

Oracle, Oracle Dynamic Sampling, 2020. URL: https://blogs.
oracle.com/optimizer/post/dynamic-sampling-and-its-impact-
on-the-optimizer.

https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver16
https://doi.org/10.1145/93597.98734
https://doi.org/10.1145/93597.98734
https://doi.org/10.1561/1900000060
https://blogs.oracle.com/optimizer/post/dynamic-sampling-and-its-impact-on-the-optimizer
https://blogs.oracle.com/optimizer/post/dynamic-sampling-and-its-impact-on-the-optimizer
https://blogs.oracle.com/optimizer/post/dynamic-sampling-and-its-impact-on-the-optimizer

396

[157]

[158]

[159]

[160]

[161]

[162]

163]

[164]

[165]

[166]

References

Oracle, Oracle Automatic Workload Repository, 2023. URL: https:
//docs.oracle.com /en /database /oracle /oracle- database /23 /
tgdba/awr-report-ui.html.

Oracle, Oracle Result Set Caching, 2024. URL: https://docs.oracle.
com/en/database/oracle/oracle-database/19/jjdbc/statement-
and-resultset- caching. html# GUID-5D1A9E2F-F191-4FCF-
994C-C1D5B143FCA4F.

Oracle, Oracle SQL Tuning Guide: Histograms, 2024. URL: https:
//docs.oracle.com /en/database /oracle /oracle- database /19 /
tgsql/histograms.html#GUID-BE10EBFC-FEFC-4530-90DF-
1443D9ADIB64.

Oracle, Statistics Best Practices: Oracle, 2024. URL: https://
www.oracle.com /docs /tech /database /technical-brief- bp- for-
stats-gather-19c.pdf.

Oracle, The Optimizer In Oracle Database 19c, 2024. URL: https:
/ /www.oracle.com/technetwork /database/bi-datawarehousing /
twp-optimizer-with-oracledb-19¢-5324206.pdf.

Oracle, SQL Plan Management in Oracle database. URL: https:
//docs.oracle.com/en-us/iaas/database-management /doc/use-
spm-manage-sql-execution-plans.html.

A. Pellenkoft, C. A. Galindo-Legaria, and M. L. Kersten, “The
Complexity of Transformation-Based Join Enumeration,” in Pro-
ceedings of the 23rd International Conference on Very Large
Data Bases, pp. 306-315, 1997.

G. Piatetsky-Shapiro and C. Connell, “Accurate Estimation of
the Number of Tuples Satisfying a Condition,” ACM Sigmod
Record, vol. 14, no. 2, 1984, pp. 256-276.

H. Pirahesh, T. Leung, and W. Hasan, “A Rule Engine for Query
Transformation in Starburst and IBM DB2 C/S DBMS,” in
Proceedings 13th International Conference on Data Engineering,
pp. 391-400, 1997. por1: 10.1109/ICDE.1997.581945.

H. Pirahesh, J. M. Hellerstein, and W. Hasan, “Extensible/Rule
based Query Rewrite Optimization in Starburst,” ACM Sigmod
Record, vol. 21, no. 2, 1992, pp. 39-48.

https://docs.oracle.com/en/database/oracle/oracle-database/23/tgdba/awr-report-ui.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/tgdba/awr-report-ui.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/tgdba/awr-report-ui.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/jjdbc/statement-and-resultset-caching.html#GUID-5D1A9E2F-F191-4FCF-994C-C1D5B143FC4F
https://docs.oracle.com/en/database/oracle/oracle-database/19/jjdbc/statement-and-resultset-caching.html#GUID-5D1A9E2F-F191-4FCF-994C-C1D5B143FC4F
https://docs.oracle.com/en/database/oracle/oracle-database/19/jjdbc/statement-and-resultset-caching.html#GUID-5D1A9E2F-F191-4FCF-994C-C1D5B143FC4F
https://docs.oracle.com/en/database/oracle/oracle-database/19/jjdbc/statement-and-resultset-caching.html#GUID-5D1A9E2F-F191-4FCF-994C-C1D5B143FC4F
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/histograms.html#GUID-BE10EBFC-FEFC-4530-90DF-1443D9AD9B64
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/histograms.html#GUID-BE10EBFC-FEFC-4530-90DF-1443D9AD9B64
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/histograms.html#GUID-BE10EBFC-FEFC-4530-90DF-1443D9AD9B64
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/histograms.html#GUID-BE10EBFC-FEFC-4530-90DF-1443D9AD9B64
https://www.oracle.com/docs/tech/database/technical-brief-bp-for-stats-gather-19c.pdf
https://www.oracle.com/docs/tech/database/technical-brief-bp-for-stats-gather-19c.pdf
https://www.oracle.com/docs/tech/database/technical-brief-bp-for-stats-gather-19c.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-19c-5324206.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-19c-5324206.pdf
https://www.oracle.com/technetwork/database/bi-datawarehousing/twp-optimizer-with-oracledb-19c-5324206.pdf
https://docs.oracle.com/en-us/iaas/database-management/doc/use-spm-manage-sql-execution-plans.html
https://docs.oracle.com/en-us/iaas/database-management/doc/use-spm-manage-sql-execution-plans.html
https://docs.oracle.com/en-us/iaas/database-management/doc/use-spm-manage-sql-execution-plans.html
https://doi.org/10.1109/ICDE.1997.581945

References 397

167

[168]

[169]
[170]
[171]

[172]

[173]

[174]

[175]

176]

M. Poess and C. Floyd, “New TPC Benchmarks for Decision
Support and Web Commerce,” SIGMOD Rec., vol. 29, no. 4,
Dec. 2000, pp. 64-71. por: 10.1145/369275.369291.

V. Poosala, P. J. Haas, Y. E. loannidis, and E. J. Shekita,
“Improved Histograms for Selectivity Estimation of Range Pred-
icates,” ACM Sigmod Record, vol. 25, no. 2, 1996, pp. 294-305.
Postgres Query Optimizer, 2023. URL: https://github.com /
postgres/postgres/tree /master/src/backend /optimizer.
PostgreSQL pg__stats, 2024. URL: https://www.postgresql.org/
docs/current /view-pg-stats.html.

PostgreSQL: Genetic Algorithms, 2024. URL: https://www.
postgresql.org/docs/current /geqo-pg-intro.html.

K. Ramachandra, K. Park, K. V. Emani, A. Halverson, C.
Galindo-Legaria, and C. Cunningham, “Froid: Optimization of
Imperative Programs in a Relational Database,” Proc. VLDB
Endow., vol. 11, no. 4, Dec. 2017, pp. 432-444. por: 10.1145/
3186728.3164140.

N. Reddy and J. R. Haritsa, “Analyzing Plan Diagrams of
Database Query Optimizers,” in Proceedings of the 31st Inter-
national Conference on Very Large Data Bases, ser. VLDB 05,
pp. 1228-1239, Trondheim, Norway: VLDB Endowment, 2005.
A. van Renen, D. Horn, P. Pfeil, K. Vaidya, W. Dong, M.
Narayanaswamy, Z. Liu, G. Saxena, A. Kipf, and T. Kraska,
“Why TPC is not enough: An Analysis of the Amazon Redshift
fleet,” Proceedings of the VLDB Endowment, vol. 17, no. 11,
2024, pp. 3694-3706.

P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe, “Efficient and
extensible algorithms for multi query optimization,” in Proceed-
ings of the 2000 ACM SIGMOD international conference on
Management of data, pp. 249-260, 2000.

SAP, CREATE STATISTICS Statement in SAP Hana,
2024. URL: https : / / help . sap . com / docs / SAP
HANA _ PLATFORM / 4fe29514{d584807ac9f2a04f6754767 /
20d5252d7519101493f5e662a6cdadd4.html.

https://doi.org/10.1145/369275.369291
https://github.com/postgres/postgres/tree/master/src/backend/optimizer
https://github.com/postgres/postgres/tree/master/src/backend/optimizer
https://www.postgresql.org/docs/current/view-pg-stats.html
https://www.postgresql.org/docs/current/view-pg-stats.html
https://www.postgresql.org/docs/current/geqo-pg-intro.html
https://www.postgresql.org/docs/current/geqo-pg-intro.html
https://doi.org/10.1145/3186728.3164140
https://doi.org/10.1145/3186728.3164140
https://help.sap.com/docs/SAP_HANA_PLATFORM/4fe29514fd584807ac9f2a04f6754767/20d5252d7519101493f5e662a6cda4d4.html
https://help.sap.com/docs/SAP_HANA_PLATFORM/4fe29514fd584807ac9f2a04f6754767/20d5252d7519101493f5e662a6cda4d4.html
https://help.sap.com/docs/SAP_HANA_PLATFORM/4fe29514fd584807ac9f2a04f6754767/20d5252d7519101493f5e662a6cda4d4.html

398

[177]

178]

[179)]

[180]

[181]

[182]

[183]

[184]

References

T. Schmidt, A. Kipf, D. Horn, G. Saxena, and T. Kraska, “Pred-
icate caching: Query-driven Secondary Indexing for Cloud Data
Warehouses,” 2024.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price, “Access Path Selection in a Relational Database
Management System,” in Proceedings of the 1979 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD
79, pp. 23-34, Boston, Massachusetts: Association for Computing
Machinery, 1979. por: 10.1145/582095.582099.

T. K. Sellis, “Multiple-query Optimization,” ACM Transactions
on Database Systems (TODS), vol. 13, no. 1, 1988, pp. 23-52.
P. Seshadri, H. Pirahesh, and T. Leung, “Complex Query Decor-
relation,” in Proceedings of the Twelfth International Conference
on Data Engineering, pp. 450-458, 1996. por: 10.1109/ICDE.
1996.492194.

S. Shankar, R. Nehme, J. Aguilar-Saborit, A. Chung, M. Elhe-
mali, A. Halverson, E. Robinson, M. S. Subramanian, D. DeWitt,
and C. Galindo-Legaria, “Query Optimization in Microsoft SQL
Server PDW,” in Proceedings of the 2012 ACM SIGMOD In-
ternational Conference on Management of Data, pp. 767776,
2012.

T. Siddiqui, A. Jindal, S. Qiao, H. Patel, and W. Le, “Cost
Models for Big Data Query Processing: Learning, Retrofitting,
and our Findings,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pp. 99-113,
2020.

M. A. Soliman, L. Antova, V. Raghavan, A. El-Helw, Z. Gu,
E. Shen, G. C. Caragea, C. Garcia-Alvarado, F. Rahman, M.
Petropoulos, et al., “Orca: a Modular Query Optimizer Architec-
ture for Big Data,” in Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pp. 337-348,
2014.

SQLShack, SQL Server Trivial Execution Plans, 2021. URL: https:
//www.sqlshack.com /sql-server-trivial-execution-plans/.

https://doi.org/10.1145/582095.582099
https://doi.org/10.1109/ICDE.1996.492194
https://doi.org/10.1109/ICDE.1996.492194
https://www.sqlshack.com/sql-server-trivial-execution-plans/
https://www.sqlshack.com/sql-server-trivial-execution-plans/

References 399

[185]

[186]

[187]

188

[189)]

[190]
[191]

[192]

193]

[194]

M. Steinbrunn, G. Moerkotte, and A. Kemper, “Heuristic and
Randomized Optimization for the Join Ordering Problem,” The
VLDB journal, vol. 6, 1997, pp. 191-208.

M. Stillger, G. M. Lohman, V. Markl, and M. Kandil, “LEO
- DB2’s LEarning Optimizer,” in Proceedings of the 27th In-
ternational Conference on Very Large Data Bases, ser. VLDB
01, pp. 19-28, San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2001.

M. Stonebraker and L. A. Rowe, “The Design of Postgres,” ACM
Sigmod Record, vol. 15, no. 2, 1986, pp. 340-355.

M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O'Neil, et al., “C-
store: a Column-oriented DBMS,” in Proceedings of the 31st
International Conference on Very Large Data Bases, ser. VLDB
'05, Trondheim, Norway: VLDB Endowment, 2005.

M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, et al., “C-
store: a Column-oriented DBMS,” in Making Databases Work:
the Pragmatic Wisdom of Michael Stonebraker, 2018, pp. 491—
518.

Substrait, 2024. URL: https://github.com/substrait-io/substrait.
J. Sun and G. Li, “An End-to-end Learning-based Cost Estima-
tor,” arXiv preprint arXiv:1906.02560, 2019.

N. Thaper, S. Guha, P. Indyk, and N. Koudas, “Dynamic Multi-
dimensional Histograms,” in Proceedings of the 2002 ACM SIG-
MOD international conference on Management of data, pp. 428—
439, 2002.

I. Trummer, J. Wang, Z. Wei, D. Maram, S. Moseley, S. Jo, J.
Antonakakis, and A. Rayabhari, “Skinnerdb: Regret-bounded
Query Evaluation via Reinforcement Learning,” ACM Transac-
tions on Database Systems (TODS), vol. 46, no. 3, 2021, pp. 1-
45.

K. Vaidya, A. Dutt, V. Narasayya, and S. Chaudhuri, “Lever-
aging Query Logs and Machine Learning for Parametric Query
Optimization,” Proc. VLDB Endow., vol. 15, no. 3, Nov. 2021,
pp. 401-413. por: 10.14778/3494124.3494126.

https://github.com/substrait-io/substrait
https://doi.org/10.14778/3494124.3494126

400

[195]

[196]

197]

[198]

199

[200]

[201]

[202]

203]

References

F. M. Waas and J. M. Hellerstein, “Parallelizing Extensible
Query Optimizers,” in Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD
'09, pp. 871-878, Providence, Rhode Island, USA: Association
for Computing Machinery, 2009. por: 10.1145/1559845.1559938.
X. Wang, C. Qu, W. Wu, J. Wang, and Q. Zhou, “Are We
Ready for Learned Cardinality Estimation?” Proc. VLDB En-
dow., vol. 14, no. 9, May 2021, pp. 1640-1654. por: 10.14778/
3461535.3461552.

W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigiimiis, and J. F.
Naughton, “Predicting Query Execution Time: are Optimizer
Cost Models Really Unusable?” In 2018 IEEE 29th International
Conference on Data Engineering (ICDE), IEEE, pp. 1081-1092,
2013.

W. P. Yan and P.-A. Larson, “Eager Aggregation and Lazy
Aggregation,” in Proceedings of the 21th International Conference
on Very Large Data Bases, ser. VLDB ’95, pp. 345-357, San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995.
J. Yang, S. Wu, D. Zhang, J. Dai, F. Li, and G. Chen, “Rethinking
Learned Cost Models: Why Start from Scratch?” Proceedings of
the ACM on Management of Data, vol. 1, no. 4, 2023, pp. 1-27.
Z. Yang, W.-L. Chiang, S. Luan, G. Mittal, M. Luo, and I. Stoica,
“Balsa: Learning a Query Optimizer Without Expert Demonstra-
tions,” in Proceedings of the 2022 International Conference on
Management of Data, ser. SIGMOD 22, pp. 931-944, Philadel-
phia, PA, USA: Association for Computing Machinery, 2022. DOT:
10.1145/3514221.3517885.

Z. Yang, A. Kamsetty, S. Luan, E. Liang, Y. Duan, X. Chen,
and I. Stoica, “NeuroCard: One Cardinality Estimator for all
Tables,” arXiv preprint arXiv:2006.08109, 2020.

Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen,
P. Abbeel, J. M. Hellerstein, S. Krishnan, and I. Stoica,
“Deep Unsupervised Cardinality Estimation,” arXiv preprint
arXiv:1905.04278, 2019.

M. Yannakakis, “Algorithms for Acyclic Database Schemes,” in
VLDB, vol. 81, pp. 82-94, 1981.

https://doi.org/10.1145/1559845.1559938
https://doi.org/10.14778/3461535.3461552
https://doi.org/10.14778/3461535.3461552
https://doi.org/10.1145/3514221.3517885

References 401

[204]

[205]

[206]

207]

Y. Zhao, G. Cong, J. Shi, and C. Miao, “Queryformer: A Tree
Transformer Model for Query Plan Representation,” Proceedings
of the VLDB Endowment, vol. 15, no. 8, 2022, pp. 1658-1670.
J. Zhu, N. Potti, S. Saurabh, and J. M. Patel, “Looking ahead
makes Query Plans Robust: Making the initial case with In-
memory Star Schema Data Warehouse Workloads,” Proceedings
of the VLDB Endowment, vol. 10, no. 8, 2017, pp. 889-900.

R. Zhu, W. Chen, B. Ding, X. Chen, A. Pfadler, Z. Wu, and J.
Zhou, “Lero: A Learning-to-rank Query Optimizer,” Proceedings
of the VLDB Endowment, vol. 16, no. 6, 2023, pp. 1466-1479.
R. Zhu, Z. Wu, Y. Han, K. Zeng, A. Pfadler, Z. Qian, J. Zhou,
and B. Cui, “FLAT: Fast, Lightweight and Accurate Method for
Cardinality Estimation,” arXiv preprint arXiv:2011.09022, 2020.

	Introduction
	Key Challenges in Query Optimization
	System R Query Optimizer
	Need for Extensible Query Optimizer Architecture
	Outline
	Suggested Reading

	Extensible Optimizers
	Basic Concepts
	Volcano
	Cascades
	Techniques to Improve Search Efficiency
	Example of Extensibility in Microsoft SQL Server
	Parallel and Distributed Query Processing
	Suggested Reading

	Other Extensible Optimizers in the Industry
	Starburst
	Orca
	Calcite
	Catalyst
	PostgreSQL
	Suggested Reading

	Key Transformations
	Access Path Transformations
	Inner Join Transformations
	Outer Join Transformations
	Group-by and Join
	Decorrelation
	Other Important Transformation Rules
	Suggested Reading

	Cost Estimation
	Cost Estimation Overview
	Cost Model
	Statistics
	Cardinality Estimation
	Case Study: Cost Estimation in Microsoft SQL Server
	Suggested Reading

	Plan Management
	Plan Caching and Invalidation
	Improving Sub-optimal Plans with Execution Feedback
	Influencing Plan Choice Using Hints
	Optimizing Parameterized Queries
	Suggested Reading

	Open Problems
	Robust Query Processing
	Query Result Caching
	Feedback-driven Statistics
	Leveraging Machine Learning for Query Optimization
	Other Research Topics in Query Optimization
	The Big Questions

	Acknowledgements
	Appendix
	Access Methods
	References

