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ABSTRACT
The Open RAN architecture, with disaggregated and virtual-
ized RAN functions communicating over standardized inter-
faces, promises a diversified and multi-vendor RAN ecosys-
tem. However, these same features contribute to increased
operational complexity, making it highly challenging to trou-
bleshoot RAN related performance issues and failures. Tack-
ling this challenge requires a dependable, explainable anomaly
detection method that Open RAN is currently lacking. To ad-
dress this problem, we introduce SpotLight, a tailored system
archtecture with a distributed deep generative modeling based
method running across the edge and cloud. SpotLight takes
in a diverse, fine grained stream of metrics from the RAN
and the platform, to continually detect and localize anom-
alies. It introduces a novel multi-stage generative model to
detect potential anomalies at the edge using a light-weight
algorithm, followed by anomaly confirmation and an explain-
ability phase at the cloud, that helps identify the minimal set of
KPIs that caused the anomaly. We evaluate SpotLight using
the metrics collected from an enterprise-scale 5G Open RAN
deployment in an indoor office building. Our results show that
compared to a range of baseline methods, SpotLight yields
significant gains in accuracy (13% higher F1 score), explain-
ability (2.3 − 4× reduction in the number of reported KPIs)
and efficiency (4 − 7× bandwidth reduction).
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1 INTRODUCTION
The Open RAN architecture [16, 30, 49, 54] is fast taking root
as the blueprint for future radio access networks (RANs) with
the backing from governments, regulators and the industry,
including focus groups like the O-RAN alliance [2] speci-
fying the reference standards. Disaggregating the traditional
monolithic base stations into Centralized (CU), Distributed
Unit (DU) and Radio Unit (RU) components communicating
over open interfaces promises to diversify the mobile tele-
coms ecosystem, and offers flexibility for operators to mix
and match solutions from different vendors. Decoupling the
RAN function and management software from hardware can
reduce CAPEX for operators by leveraging virtualization and
the cloud. Moreover, the ability to program RAN behavior via
RAN intelligent controllers (RICs) and Apps provides new
opportunities for efficient RAN operation driven by AI/ML.

Along with the aforementioned benefits and opportunities
to increase competition and accelerate innovation, Open RAN
introduces new complexities, arising from its disaggregated
multi-vendor nature. In particular, two major obstacles must
be confronted to clear the path for its widespread adoption.
One barrier that received most attention so far is the issue of
interoperability of components from multiple vendors. Sig-
nificant progress has been made on this front to date with
numerous PlugFests, trials and interoperability testing/labs
(e.g., NTIA 5G Challenge [1], SONIC Labs [4]).

Our focus in this paper is on the other equally significant
roadblock: the much higher operational complexity arising
from orchestrating and managing components from multiple
vendors. This has been well recognized in the current RAN
ecosystem [3, 7–11], but has received little attention till date,
partly due to the limited number and scale of real-world Open
RAN deployments. There are concerns on the performance
and robustness of multi-vendor Open RAN deployments and
this in turn delays the move away from single-vendor radio
networks, considering that a single outage can cost millions
of dollars in lost revenue and reputation for operators [3]. In a
multi-vendor Open RAN network, even simple and inadver-
tent misconfigurations can result in degraded performance or
downtime, but such issues are hard to diagnose and identify
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the component causing the issue [7, 48]. Without effective
ways to cope with the increased complexity, OPEX costs are
expected to rise [8, 10, 11], negating the CAPEX cost savings.

Overcoming the operational complexity roadblock hinges
on the ability to continually monitor the Open RAN system as
a whole, to automatically detect and localize anomalies; a ca-
pability that is lacking today. Introducing this capability entails
addressing multiple challenges. First, to enable detection of
system anomalies, we need rich monitoring data streams cover-
ing a wide range of key performance indicators (KPIs) across
RAN components as well as the underlying platform, in a way
that provides a unified view of the system state at any time
instant. Second, we need a method that can not only detect any
and all anomalies but also minimizes false alarms. Third, the
method should reliably pinpoint the root cause of an anomaly,
i.e., it should come with explainability. Fourth, such an explain-
able anomaly detection method should be efficient and lend
itself to easier deployment, operating within computational
constraints at the RAN edge sites, with minimal bandwidth
consumption. To the best of our knowledge, even the basic
Open RAN anomaly detection problem has not been addressed
to date, let alone with the above mentioned scope we target.

Motivated by the above, we introduce SpotLight, a system
architecture and explainable anomaly detection method for
Open RAN. The core of SpotLight is a novel distributed
anomaly detection method (illustrated in Figure 3) based on
deep generative modeling [52]. For effective anomaly detec-
tion, SpotLight uses two custom-designed deep generative
models – JVGAN and MRPI – in sequence that respectively
perform distribution learning and time-series imputation. The
first generator, JVGAN, that runs at the edge learns the ‘dis-
tribution of the normal KPI time series data’ during training
and uses that as a reference to reliably infer any ‘potential’
anomalies in the observed KPI time series data (or equiva-
lently to filter out likely normal cases). The result of JVGAN
is further inspected by our second detection model running
in the cloud, MRPI, to minimize false alarms while detecting
all anomalies. MRPI, also trained with normal data, achieves
this by treating the outlier portions of anomalies highlighted
by JVGAN as missing data in a time series and relies on the
inability to generate them with MRPI, the trained imputation
model, as a cue to inferring anomalous data points.

For reliable explaination of anomalies when they are de-
tected, i.e., for fine-grained root cause identification, Spot-
Light pipeline incorporates two further steps. The first KFil-
ter step takes in anomalous KPIs highlighted by MRPI as
input and retains only persistently anomalous KPIs. The final
causal discovery step leverages CausalNex [18] to select a
subset of anomalous KPIs obtained from KFilter that have
a causal effect on the rest of those KPIs. The initial detec-
tion with JVGAN is key to achieving efficiency as it is not
only very lightweight to fit within the limited computational

resources available at RAN edge sites but it also filters out
KPI data streams exhibiting normal behavior. As a result,
bandwidth and processing requirements for further anomaly
detection and identification in the cloud (via MRPI, KFilter
and CausalNex) are significantly reduced.

As part of SpotLight’s system design, we develop a data
collection process, that allows us to collect a detailed set of
KPIs (>600 KPIs) spanning both the radio network and plat-
form dimensions, i.e., both 3GPP and OS/network related
parameters. We collect the KPIs at a fine time granularity of
100ms that allows us to accurately detect and pinpoint a wide
range of anomalies. We leverage a state-of-the-art enterprise-
scale 5G Open RAN deployment [17] to create, to our knowl-
edge, the largest and most realistic multi-UE Open RAN
dataset till date, comprising more than 100 million datapoints.

We evaluate SpotLight by considering several realistic
anomalies (e.g., CPU contention, network contention and ra-
dio interference), both separately and in conjunction. We also
evaluate with several real-world anomalies we detected while
operating our deployment for over a year. Our results demon-
strate that SpotLight can detect and localize all introduced
anomalies with very high accuracy compared to existing ap-
proaches, while also being very efficient in terms of the com-
putational and networking overhead.

In summary, we make the following key contributions:

• For the first time, we draw attention to the problem of anom-
aly detection and localization in the Open RAN context,
highlight its uniqueness and the new challenges (§2).

• We introduce the SpotLight system architecture and method
design to resolve the above problem. SpotLight employs a
novel distributed multi-stage anomaly detection and identi-
fication pipeline. It features a new approach to time series
anomaly detection combining distribution learning and time-
series imputation, realized through a pair of custom-designed
deep generative models distributed across edge and cloud for
accurate and efficient anomaly detection in Open RAN (§3).

• We develop a detailed and holistic Open RAN data collection
process spanning both the RAN and platform dimensions,
and we create, to our knowledge, the largest and most realistic
multi-UE Open RAN dataset to date (§4). We make our
dataset publicly available1 to support Open RAN related
efforts in the research community.

• We evaluate SpotLight on a realistic 5G RAN deployment
and demonstrate its accuracy and explainability benefits com-
pared to existing solutions over synthetic anomalies, as well
as its ability to detect and localize real world anomalies dur-
ing normal RAN operation (§5-§7).

1https://github.com/netsys-edinburgh/SpotLight
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2 BACKGROUND AND MOTIVATION
2.1 Open RAN Architecture
Traditional RAN deployments are typically developed as em-
bedded systems, where the hardware and software components
are built by a single vendor and are tightly integrated. Open
RAN is an industry transformation, similar to SDN, that seeks
to decouple RAN software (SW) from hardware (HW), fur-
ther disaggregate the SW, and have open interfaces between
all different components. It allows independent evolution of
hardware and software, and faster rollout of new services. It
also enables operators to mix and match their components
from different vendors, thus help diversify the ecosystem.

As shown in Figure 1, an Open RAN base-station consists
of several components. One is a radio unit (RU), deployed
at a cell tower. A virtualized distributed unit (vDU) serves
several RUs and performs latency-critical operations, such
as signal processing and radio resource scheduling. It runs
on commodity servers, optimized for low latency (e.g. Linux
with real-time kernel patches). Due to stringent latency re-
quirements, it is deployed at a far-edge site, within a few kms
from the cell towers. Several vDUs connect to a virtualized
centralized unit (vCU), which often runs at a near-edge site,
further away from the towers, since it has more relaxed la-
tency requirements. Note that for cost and power efficiency
reasons, vRAN deployments severely limit tasks other than
RAN function processing at edge sites. A typical large telco
may have 10,000s of far-edge and 100s of near-edge sites.

In contrast to conventional RANs, Open RAN deployments
are composed of several multi-vendor hardware and software
components and are bundled into a single solution by third-
parties (e.g., system integrators). For example, a vDU and
vCU from one vendor can run on server hardware from an-
other vendor and the platform software can come from a third
vendor, as illustrated in Figure 1. A key goal of Open RAN
is to standardize different interfaces in the architecture to en-
able such multi-vendor deployments. Entities like a service
management and orchestration framework (SMO) and radio
intelligent controllers (RICs) allow operators to control vari-
ous aspects of RAN deployments, such as switching off RUs
for power saving and optimizing handovers between cells.

2.2 The Open RAN Management Challenge
The main challenge in Open RAN is how to manage the inter-
action among different disparate components, together with
their ever present software updates. This is a novel challenge
that did not exist in conventional, tightly integrated RANs pro-
vided by a single vendor. It becomes even harder in the case of
a vDU, due to its latency sensitivity. The vDU is characterized
by sub-millisecond processing deadlines. Packets are dropped
if a deadline is violated, affecting the performance and the re-
liability of the RAN [27]. Commodity hardware and software
has not been designed to enforce such a low latency. Relatively

Far-edge

Server HW
Linux/K8s

vDU

Near-edge

Server HW
Linux/K8s

vCU
nRT-RIC

Far-edge

Far-edge Near-edge

Data center
SMO

Data plane
mid-haul
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back-haul

Control
interfaces
(O1, O2)

Control
interface

(E2)
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Figure 1: Open RAN defines various open interfaces and consists
of hardware and software components provided by diverse ven-
dors (marked in different colors). nRT-RIC: near realtime RIC.

recent Linux developments, such as real-time kernel patches,
isolated CPU cores and DPDK, provide the required capabil-
ity to meet the RAN real-time requirements, but special care
needs to be taken to configure it and detect any problems.

There are many potential sources of problems, both at the
RAN and platform level. For example, misconfigurations or
bugs (introduced by operations people when assigning cores
in configuration files) can make some threads to be incor-
rectly migrated to and run on cores that are meant to run only
real-time RAN processing workload, thereby causing CPU
contention and violating the RAN runtime deadlines. Similar
problems could also arise from regressions of software up-
dates (cf. [13, 38, 51] for OS related regressions and [37] for
an orchestration layer regression). Besides, a wrongly config-
ured MAC address can cause unintended contention on the
RAN Fronthaul (FH) and performance degradation. Exter-
nal wireless interference can also cause a RAN performance
degradation. In many cases, such degradations look similar
and it is hard to blame a specific component and its vendor,
leading to operators being reluctant to adopt Open RAN due
to lack of a “single neck to choke” [40].

We now highlight the difficulty of troubleshooting prob-
lems in Open RAN, through an example realized using an
enterprise-scale 5G RAN deployment (see §5.1 for details).
We consider a cell with a single user receiving TCP traffic. We
collect and plot the throughput of the vDU Ethernet port used
for the fronthaul traffic, the aggregate runtime of all threads
collocated on the same CPU core as the FH traffic thread, as
well as the SNR and the downlink (DL) TCP throughput of
the user device. In the normal case, shown in Figure 2(a), we
can observe that the user receives data at a constant rate of
17Mbps, the SNR value is stable, the fronthaul network link
has constant rate traffic of 5.15Gbps, and the runtime of the
collocated threads is less than 100ms per second.

Next, we introduce three different types of anomalies: i)
wireless interference from an external transmitter (Figure 2(b)),
ii) CPU contention on the CPU core of the fronthaul traffic
processing thread (Figure 2(c)), and iii) network contention on
the vDU FH interface, by introducing an extra flow with 2.2
Gbps of traffic (Figure 2(d)). By using the results of the above
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Figure 2: FH link throughput and aggregate runtime of FH related collocated threads (top); DL TCP throughput and SINR at the UE
(bottom) for different cases. KPIs for downlink (DL) TCP traffic in (a) normal operation; (b) with external radio interference; (c) with
CPU contention on FH thread; (d) with FH network contention; (e) with benign FH network contention.

experiment, we highlight the following key observations about
the challenges of anomaly detection in the OpenRAN context.

Different anomalies may have similar effects on the KPIs.
Simply by observing individual KPIs can be misleading in
identifying the root cause of a problem. For example, in Fig-
ure 2(b), we observe that the SNR fluctuates, which one might
correctly view as an indicator of radio interference. How-
ever, the same observation would be wrong in the case of
Figure 2(c). Even though SNR fluctuates in this case too, it is
not a root cause, but rather a side-effect of the CPU contention
applied to the fronthaul thread, which makes the vDU to delay
(and ultimately drop) some of the IQ samples coming from
the radio. The difference in the two cases, only becomes clear
once more KPIs, like the runtime of the threads collocated
with the FH thread are also taken into account.

Telling apart normal from anomalous behavior is not
easy. Just because some KPIs might be deviating from a well-
known pattern, does not mean that an anomaly is actually
present. For example, consider the FH network link contention
case of Figure 2(d). The packets of the contending flow end
up delaying the fronthaul packets carrying the IQ samples,
which miss their deadlines and have to be dropped. This leads
to a noticeable degradation of the user TCP thoughput. For
this anomalous scenario, and in contrast to the baseline case
of Figure 2(a), we can see that the FH network link through-
put fluctuates, due to the contending flow. This could lead
someone to the conclusion that a deviation from a constant
rate in the fronthaul network link is the correct indicator to
identify this anomaly. However, that would be wrong, because
fluctuations in the fronthaul network link are only anomalous,
if they lead to deadline violations. As a counter example, con-
sider the scenario of Figure 2(e), in which we introduce a
traffic flow in the fronthaul link, which is configured to have a

lower priority than the fronthaul traffic. In this case, while the
fronthaul link throughput fluctuates, it does so in a controlled
manner, without affecting the RAN performance.

The challenge of scale and granularity. The above exam-
ple demonstrate that troubleshooting is not straightforward,
even for a domain expert. In practice, the problem is even more
challenging, due to the large number of KPIs. For instance,
in the RAN that we used for our evaluation, a single cell has
more than thirty CPU threads and five network interfaces.
From each of those sources, we could extract several useful
KPIs. If we combine the RAN and platform KPIs, we get sev-
eral hundred time series that one would have to monitor and
correlate, making anomaly detection a very challenging task.
To add to this challenge, current standard RAN and O-RAN
KPIs [12, 44] define only high-level aggregate metrics that
were not designed to troubleshoot subtle RAN and platform
interaction issues like the ones discussed here.

2.3 Limitations of Prior Work
Even assuming that the right instrumentation is in place to
enable troubleshooting of operational Open RAN problems,
existing anomaly detection approaches are insufficient. While,
to our knowledge, there is no existing work focusing on anom-
aly detection for the Open RAN setting, there have been several
studies on anomaly detection for traditional RANs. Klaine et
al. [36] survey early work on 3G/4G RAN anomaly detection.
The focus of these works was on specific use cases of fault
detection, fault classification and cell outage management,
relying on a small number of relevant KPIs corresponding
to each. Recent RAN related anomaly detection works also
share this same characteristic of focusing on particular causes
(anomalies) and corresponding KPIs. Examples include: radio
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interference detection, mainly based on using uplink RSSI,
cell-level traffic volumes [34]; traffic spike detection using
cellular control channel measurement data [56]; and detecting
end-to-end performance drops using TCP loss ratio and round
trip time [14]. While the explainability is not an issue with
these works due to the focus on one cause, as we show in §6.1,
this myopic anomaly detection approach considering only a
few KPIs is ineffective to reliably detect the diverse set of
anomalies in our target Open RAN setting.

From a method design perspective, the problem we target is
essentially (multivariate) time series anomaly detection [19].
In the RAN context, prior work (e.g., [34]) has shown that
commonly used non time series anomaly detection methods
(e.g., Z-Score, robust covariance, one-class SVM) [6, 36],
and supervised binary classification based anomaly detec-
tion, as considered in early works (e.g., [33]), are ineffective.
Consequently, the state-of-the-art methods for RAN anomaly
detection broadly fall under two classes: (i) time series predic-
tion with recurrent neural networks (e.g., LSTM) [22, 34, 56,
59]; (ii) reconstruction based with autoencoders [34, 43, 56].
Both these type of methods are limited by the unwieldy chal-
lenge of having to determine a right threshold for predic-
tion/reconstruction errors, especially when there are many
KPIs and with highly stochastic nature, as our results in §6.1
demonstrate.

Explainability or root cause analysis has been considered in
some prior works on anomaly detection in traditional RANs [22,
50, 59]. A common approach is to augment an anomaly detec-
tion method with SHAP (SHapley Additive exPlanations) [42]
or similar model-agnostic explainers, for identifying important
features/KPIs responsible for the detection of anomalies [22,
59]. Interpretable shallow ML models such as decision trees
have also been used [50]. Explainability of AI models is start-
ing to be recognized as an important requirement in the Open
RAN context [20] but we are unaware of any existing work
on explainable anomaly detection for this context.

More generally speaking, time series anomaly detection is
an active area of research in the machine learning domain [19,
23, 53]. As highlighted in a latest survey [23], deep learn-
ing based time series anomaly detection methods outperform
the traditional alternatives, and deep learning based methods
themselves can be classified into forecasting (time-series pre-
diction) based (e.g., GDN [24]), reconstruction based (e.g.,
TranAD [57]) or a combination of both (e.g., VAE-LSTM [41]).
This is in line with what is noted above about most recent meth-
ods for anomaly detection in traditional RANs. Also, with the
exception of a few methods like GDN [24], most existing
time series anomaly detection methods lack explainability.
Overall, as we show in §6.1, the existing time series anomaly
methods have poor precision (high false alarms) and therefore
yield poor detection when applied to our Open RAN setting.

This aligns with observations from prior work that most exist-
ing time series anomaly detection methods fail to distinguish
between normal and anomalous behavior when faced with
irregular and stochastic features [53].

2.4 Key Takeaways
• Operational problems (anomalies) in an Open RAN sys-

tem can occur anywhere across components from different
vendors. These problems not only include traditional RAN
anomalies such as external interference but also arise from
software upgrades and misconfigurations involving complex
interactions between RAN and the platform.

• These anomalies are hard to detect and pinpoint because:
(1) telling apart normal and anomalous behavior is not easy,
unless multiple KPIs are considered and correlated; (2) dif-
ferent anomalies may have similar effect on the KPIs.

• Identifying the whole spectrum of potential problems re-
quires fine-grained measurements of many (hundreds of)
KPIs throughout the system along the RAN and platform
dimensions, way beyond the aggregate and RAN only KPIs
available with standard 3GPP RAN and O-RAN.

• Manually inspecting KPIs by experts to analyze and correlate
hundreds of KPIs to infer anomalies and their root causes is
simply not scalable, and so an automated process is essential.

• With many potential anomalies and hundreds of KPIs to con-
sider, existing multivariate time series anomaly detection
methods are unreliable and result in high number of false
alarms when used in the Open RAN context. The fact that
they depend on setting thresholds for prediction/reconstruction
errors is a key reason why they are ineffective.

• Even from an explainability perspective, existing approaches,
which rely either on augmenting anomaly detection methods
with model agnostic explainers like SHAP or the few methods
that have a builtin explainability feature (e.g., GDN), flag
up too many and misleading KPIs to be useful as reliable
guides to pinpoint anomalies when they occur.

• From a deployability perspective, reliable anomaly detection
and localization alone is insufficient for a method. It should
additionally be efficient to stay within the computational and
bandwidth resource constraints at the RAN sites (§2.1).

3 SPOTLIGHT DESIGN
3.1 System Architecture
SpotLight is a system for detecting and explaining anomalies
across RAN and platform components in Open RAN. It is
built on the observations that (i) anomaly detection needs
to be automated to the extent possible, and (ii) to build this
automation we need to collect detailed metrics from both RAN
and platform. SpotLight is powered by a new custom multi-
stage deep learning model pipeline, distributed across edge
and cloud, to reliably detect anomalies and guide towards root
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Figure 3: Schematic of SpotLight system architecture. OOD:
Out of Distribution.

causes. Its high-level architecture (Figure 3), consists of three
parts:

• Data collection. Unlike conventional RAN systems, Spot-
Light introduces detailed instrumentation on both the RAN
and platform. We introduce probes that collect fine-grained
metrics or KPIs (over 600 in total) that provide required
data to enable reliable anomaly detection and root cause
identification (see §4).

• Data processing at the edge. A far-edge node has limited
compute capacity and is not suited for sophisticated ML meth-
ods. A centralized location (e.g., cloud) is better equipped
for this task, however, sending massive amounts of data from
10,000s of far-edge sites can be prohibitively expensive. So
we use the edge only for lightweight yet robust filtering of
normal cases (that constitute the majority) to fit within the
available compute as well as minimize the uplink bandwidth.

• Anomaly detection and identification in the cloud. We
deploy the heavy part of our processing in the cloud due to
ample availability of compute and storage resources.

We measure samples for each KPI every 100ms. We col-
lect 64 consecutive samples into a window 𝑊 , as part of a
multi-variate time series, and feed it to SpotLight’s detection
pipeline. As the output, in the event of an anomaly, we receive
a filtered set of anomalous KPIs related to specific RAN and
platform components that help identify the root cause.

3.2 Method Description
3.2.1 Design Requirements.

• Accuracy. Our goal is to to maximize the detection of all
anomalies (i.e., have a high recall) as well as minimize spuri-
ous detections or false alarms (i.e., have a high precision). To
detect any kind of anomaly, we further require our method
to be semi-supervised in that it should be trained only using
normal data [21, 23], and a limited amount of it. The method
should also generalize well to new and unseen KPI patterns,
including normal cases not in the training data.

• Explainability. We need an anomaly detection method that
reliably directs us to the minimal subset of KPIs that point
to the source of an anomaly. For example, an anomaly in a

physical (L1) layer of vRAN can be visible through unex-
pected uplink traffic variations in L1. But this will also cause
variations in uplink traffic in MAC, RLC and PDCP layers,
and we will potentially mark these metrics anomalous as
well. As such, the method should filter KPIs to help find the
right root cause through a minimal set of relevant KPIs, by
learning and tracking dependencies between them.

• Efficiency. We seek a method that makes efficient use of lim-
ited available local processing resources at the far-edge sites
while also minimizing the bandwidth and cost requirements
for further processing in the cloud, all while ensuring anom-
aly detection and identification within the desired timescales.

3.2.2 Design Overview. Formally, the anomaly detection and
identification problem we target takes as input the multivariate
time series of KPIs = (𝑥𝑖 (𝑡))𝑖 , for each KPI 𝑖. This includes
measured as well as derived KPIs, and span both radio net-
work and platform (§4). Resolving our problem translates to
outputting ∅ if no anomaly is found, and a minimal subset
K ⊆ K otherwise, where K is set of all KPIs. In the anomaly
case, the subset of KPIs K in the output reflects the likely
cause and location of the anomaly, given that each KPI im-
plicitly represents a location in the system. We continually
perform the detection and identification for every incoming
time window𝑊 of KPI streams.

To address this problem in a way that meets the aforemen-
tioned requirements, existing methods, that are either time-
series prediction or reconstruction based [23], are ineffective
when applied to our setting, as comprehensively shown in §6.
We therefore introduce a custom-tailored anomaly detection
and identification pipeline that takes a fundamentally differ-
ent approach. The SpotLight pipeline consists of 4 stages
(Figure 3).The first two stages are aimed at anomaly detection
and filtering at the window level. In the event of an anomaly,
the latter two stages help explain the underlying root cause by
filtering at the KPI level.

For anomaly detection, our approach uses a combination of
distribution learning and time-series imputation, to achieve
both accuracy and efficiency. To our knowledge, neither of
these ideas has been used previously for time-series anomaly
detection, individually or together. In the first stage, JVGAN
(Figure 3), runs at the edge to filter out likely normal cases (or
equivalently, detects if there is a ‘potential’ anomaly) using
the distribution of normal data learned during training with
our new variational autoencoder (VAE) based deep generative
model. As we show in §6.4, JVGAN is lightweight (<0.1%
of a CPU core) and, as such, well suited for deployment at
the edge. It also significantly reduces upstream bandwidth
consumption (4×-7×), in line with the observation that normal
cases typically make up the majority. The following MRPI
stage in the cloud is a deep generative model we developed for
time-series imputation, that seeks to minimize false detections,
thereby achieve high precision. The key idea is that, if we
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treat the outlier points from the JVGAN stage as missing
points and cannot generate them with a time-series imputation
model (trained on normal data), then the outliers represent
true anomalies, otherwise false alarms. This step ensures a
high precision very close to 1 (see §6.1).

To address the explainability requirement, when an anomaly
is detected by JVGAN and MRPI, the KFilter and Causal-
Nex stages (Figure 3), also running in the cloud, filter down
the list of anomalous KPIs to the minimal set, to help iden-
tify the root cause. The KFilter stage is a mechanism to trim
down the inspected KPIs, by only retaining persistently anoma-
lous KPIs in a given time window. Then CausalNex [18]
stage leverages a state-of-the-art causal discovery method,
DYNOTEARS [47], to learn the causal relationship among
the remaining KPIs from the KFilter stage to pinpoint to the
root cause KPIs. Note that, although CausalNex is an existing
causal reasoning library we incorporate in our pipeline, our
contribution lies in strategically using it at the right point to
aid in explainability. Only because of whittling down the KPIs
through the KFilter stage, the use of CausalNex becomes
viable, as its computational cost exponentially grows with
the number of variables (KPIs in our case). Running time of
DYNOTEARS increases from the order of seconds with 5-10
variables to 10s to 100s of minutes with 50-100 variables [46].
Experimentally, we find that KFilter reduces the number of
KPIs passed to CausalNex by 90%, thereby playing a crucial
role in enabling real-time anomaly identification. We next
elaborate on the different stages of the SpotLight pipeline.

3.2.3 Distribution based inference with JVGAN. JVGAN,
the initial stage of our pipeline, is a generator that first learns
the distribution of normal KPI time series and then uses the
learned distribution as a reference to infer if a given test KPI
time series is anomalous. This distribution learning approach
is not only robust to highly diverse and stochastic patterns
across many KPIs, as in our setting, but also does not have the
threshold setting issue as prior methods. Furthermore, it has
the beneficial effect of data filtering at the edge by efficiently
distinguishing clearly normal cases from potentially anoma-
lous cases so that only the latter cases are further inspected.

Specifically, for JVGAN we train a generator 𝐺 𝑗

𝜃
on KPI

data streams x(𝑡) ⊂ X(𝑡), where 𝜃 and X(𝑡) respectively
refer to the learned weights of the generator model and the
training data. The objective of the generator𝐺 𝑗

𝜃
is to help infer

during operational phase if a given measured KPI time series
x(𝑡) ∈ X(𝑡), where X(𝑡) is the true but unknown distribution
of the ‘normal’ KPI time series. For this, the trained generator
𝐺

𝑗

𝜃
(x(𝑡)) is sampled N times (empirically set to 150 in this

work) to get a set of samples of a learned distribution J(𝑡)
that approximates X(𝑡). Then, given a ‘test’ KPI time series
y(𝑡), we check to see if it falls within the learned distribution
J(𝑡). We use the upper and lower bounds of J(𝑡), represented
respectively as𝑎(𝑡) and𝑏 (𝑡), as the envelope of samples drawn

from the distribution J(𝑡), and we declare observed KPI data
stream y(𝑡) as anomalous if

∃𝑦 𝑗 ∈ 𝑦 (𝑡), 𝑠 .𝑡 . 𝑦 𝑗 < 𝑏 𝑗 or 𝑦 𝑗 > 𝑎 𝑗 (1)

This is illustrated in Figure 4(c).
JVGAN generator 𝐺 𝑗

𝜃
(x(𝑡)) is based on the variational au-

toencoder (VAE) [35], which is a standard approach for distri-
bution learning. However, as we show in §6.1, vanilla VAE is
ineffective for this purpose due to the following three issues:

(1) Classical VAE works well only when dealing with con-
tinuous data but there exist many KPIs in our setting
that are discrete or categorical (e.g., HARQ outcome).

(2) Our KPI time series is highly bursty, which makes it
harder for vanilla VAE to learn the distribution in a way
that can reliably separate normal and anomalous cases.

(3) Fitting the learned distribution too closely to training
data hurts generalization, as training data does not rep-
resent all possible normal cases since X(𝑡) ⊂ X(𝑡).

We address issue (1) in 𝐺
𝑗

𝜃
(x(𝑡)) by considering Joint-

VAE [25] as our basic neural network structure, as it is more
robust with categorical and binary data streams. For issue (2),
we include adversarial training (à la GANs [31]) for high fi-
delity distribution learning. For issue (3), we use Monte Carlo
(MC) Dropout [29] to have the learned distribution to be not
limited by training data, which has not been explored before
in the anomaly detection context. In particular, we do this by
using MC dropout technique to estimate the inherent uncer-
tainty in the generator for modeling the distribution of normal
data. This is then used in setting 𝑎(𝑡) and 𝑏 (𝑡) bounds above to
additionally account for model’s uncertainty, and not simply
use max and min from the samples as the bounds. As shown in
§6.1, this approach significantly improves the detection perfor-
mance with JVGAN. More generally, learning the distribution
of low dimensional representation of high dimensional data
streams and using that for anomaly detection as we do here is
new.

The JVGAN generator architecture (𝐺 𝑗

𝜃
(x(𝑡))) with the

above techniques is illustrated in Fig. 4(a). The input to JV-
GAN is the set of KPI streams across RAN and platform
components every time window. Before inputting them to
JVGAN, few preprocessing steps are carried out: (1) any miss-
ing data in a given window are filled using nearest-neighbor
imputation; (2) values in each stream are normalized to 0-1
scale; (3) all streams are aligned in time. Note that all KPI
streams are fed into the SpotLight pipeline, as it is not known
a priori if an anomaly is present and of what kind; the set of
KPIs get automatically whittled down as a result of processing
through the pipeline. Moreover, as the source of anomaly can
be anywhere in the system, all KPIs are treated equally.

3.2.4 Imputation guided Inference withMRPI. JVGAN can
reliably detect normal cases when a given test KPI time series
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Figure 4: (a) JVGAN architecture; (b) MRPI workflow; (c) Illustration of learned distributions: J(𝑡) in blue;M(𝑡) in green.
is fully within J(𝑡). Considering that J(𝑡) is only an approxima-
tion of the unknown true distribution of the normal KPI time
series, X(𝑡), and that it is limited by the training data X(𝑡),
we have many cases that only fall partially in J(𝑡). Fig. 4(c)
illustrates such a case where some of the points fall outside the
distribution J(𝑡). However, simply inferring all such cases as
anomalies will lead to poor precision (i.e., many false alarms).
So, we introduce a further vetting step through another gen-
erator called multiple rate probabilistic imputation (MRPI)
to minimize spurious anomalies. The key idea behind MRPI
is as follows. The points that fall outside J(𝑡) are treated as
‘missing points’, and then we assess if they can be generated
by an imputation model trained using only normal data X(𝑡).
Among those missing points, the ones that cannot be reliably
generated through imputation, i.e., fall outside the distribution
M(𝑡) learnt by the imputation model, can be safely inferred as
anomalous. The use of time-series imputation as we do with
MRPI is new in the anomaly detection context.

Our MRPI design is based on CSDI [55], which is the best
existing time series imputation model [15]. However, the orig-
inal CSDI design is limited to just one setting of missing data
rate. On the other hand, it is impractical to have a separate
imputation model for each possible missing data rate. We em-
pirically observe that imputation at 10% granularity of rates
provides good generalizability for any rate of missing data.
Therefore, we train multiple CSDI models for different inter-
vals (ranges of missing data rates) using normal training data
X(𝑡): ≤ 5%, 5− 15%, 15− 25%, .. (11 models in total). Fig. 4(b)
illustrates MRPI design. During inference, we pick the model
that is closest, based on fraction of points corresponding to
x(𝑡) that are not covered by the learned distribution J(𝑡). For
example, if 10% of x(𝑡) is not in J(𝑡), then we pick the trained
5 − 15% CSDI model. We declare a point as an anomaly, if it
does not belong to the distribution of the selected CSDI model.
We illustrate this in Fig. 4(c) where the CSDI distribution is
shown in green.

3.2.5 Explainability with KFilter and Causal Discovery.
By applying the combination of JVGAN and MRPI, we can
continually detect any KPIs exhibiting anomalous behavior
based on the most recent window of KPI data streams. How-
ever, the anomalous nature of some of these KPIs may be
transient while other anomalous KPIs might be the effect of
an anomaly caused elsewhere. So, to better identify the actual

root causes of persistent anomalies, we employ two methods –
KFilter and Causal Discovery – as elaborated below.
KFilter. The purpose of this method is to filter out insignifi-
cant anomalous KPIs. In particular, the aim is to discard those
KPIs that are detected as anomalous only for a brief period
of time but otherwise show normal behavior. So, we monitor
the percentage of time each KPI is detected to be anomalous
across each measurement window (which in this work is set
to 6.4𝑠 = 64 × 100𝑚𝑠) and filter out the ones which appear
anomalous below a certain threshold period. We empirically
set that threshold to 25% in our experiments.
Causal Discovery. Even after applying the KFilter, there
may be several anomalous KPIs left for a domain expert to
examine to identify the root cause behind a detected anomaly.
We observe that KPIs have inherent correlations and causal re-
lationships between them. This suggests that the actual KPIs to
inspect in the event of an anomaly are the subset of anomalous
KPIs that have a causal relation from them to other anoma-
lous KPIs. So, in the event of an anomaly, we aim to use
the directed graph of causal relations among KPIs to reduce
the ones reported by SpotLight. To deduce the causal graph
among anomalous KPIs after KFilter, we make use of Causal-
Nex [18], the state-of-the-art toolkit for causal reasoning with
Bayesian Networks. Specifically, each anomalous KPI is rep-
resented as a node in this graph and we report the ones that
have directed edges from them to other anomalous KPIs.

4 DATA COLLECTION
Here we describe the data collection process behind Spot-
Light. A brief summary of all the collected KPIs, statistics
and the data collection process is listed in Table 1, while a de-
tailed description of the dataset’s schema can be found in [5].

Radio Network KPIs: For the collection of RAN KPIs, we
leveraged Janus [28], which is a telemetry extraction frame-
work that is integrated in several commercial-grade RAN
functions, including the vCU and vDU used for our exper-
iments (see §5). Janus introduces RAN function hooks to
expose raw data in real-time. The hooks are used to inject
statically verifiable codelets, to programmatically process and
extract only relevant data, in a safe and lightweight manner.
Using this framework, we developed 16 codelets, each with ap-
proximately 300 lines of C code, which allowed us to capture
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KPI Category Description Type
Signal Quality UL/DL SINR, CSI reports, UL/DL MCS, etc. Radio

Packet Size UL/DL packet size at PDCP, Midhaul, RLC, MAC
and FAPI layers Radio

Buffer Info UL buffer status report and DL buffer occupancy Radio
Resource Allocation UL/DL PRB usage and UL/DL TBS Radio
Losses UL BLER and DL HARQ NACK rate Radio
FH Traffic FH UL/DL link usage in Gbps Platform
Thread Scheduling On and off CPU runtimes of threads Platform
PTP Logs PTP frequency, RMS, delay and max offset Platform

Table 1: Summary of KPIs collected.

data from many vCU and vDU events, such as signal quality
reports of UEs, MAC scheduling decisions, queue and packet
sizes at the PDCP and RLC layers, HARQ ACKs/NACKs, etc.
Using the raw data, we derived several KPIs at the granularity
of 100ms, including histograms and other statistics (min, max,
distribution skewness, etc.), for a total of 206 radio network
KPIs, all agnostic of the number of UEs.
Platform KPIs: We collected network counters (number of
packets and throughput) exposed by a gRPC network manage-
ment interface (gNMI) API of the ToR switch at a granularity
of 100ms. We developed an eBPF tool [26], to collect detailed
per-CPU runtime information from all the threads running in
the system (RAN and others), by capturing all the scheduling
events. The tool exposes both on- and off-cpu runtimes of
threads, i.e., how long a thread ran before being pre-empted
(on-cpu) and how long it waited until it was scheduled again
(off-cpu). As these events can reach hundreds of thousands per
second, we aggregated the thread runtime statistics at a granu-
larity of 100ms to guarantee the stability of the system, in a
similar way as we did for the radio network KPIs (histograms,
skewness, etc.). We also scraped OS logs to collect data about
PTP synchronization (100ms granularity). This resulted in the
collection of 466 platform KPIs overall.

5 EVALUATION METHODOLOGY
5.1 Evaluation setup
We have deployed a state-of-the-art, enterprise-scale 5G Open
RAN deployment, covering a five floor office building in Cam-
bridge, UK, with two 5G base stations per floor [17]. All the
components are commercial-grade and O-RAN compliant.
Table 2 summarizes the hardware and software configuration.
The vRAN functions support several 5G features, including
4×4 MIMO and the O-RAN 7.2x FH protocol. To our knowl-
edge, this combination of features in a standards-compliant
and end-to-end 5G Open RAN setup is a unique characteristic
of our deployment. We operated the deployment for over a
year, and in that period we identified a number of real-world
cases of anomalies (discussed in Section 7.1).

For the evaluation, we focus on a single cell, using the con-
figuration illustrated in Fig. 5(a). In terms of the end-user
devices, we use up to 8 UEs during the network’s normal oper-
ation, including both commercial 5G smartphones (OnePlus
N10, Samsung Galaxy A52s) and Raspberry Pi development
kits equipped with Qualcomm 5G modems.

(a)
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Figure 5: (a) Cell deployment configuration; (b) Floorplan of cell
and UE deployment used for data collection and evaluation.

5.2 Dataset Creation

Using the deployment described in §5.1, we created a rich
dataset of fine-grained platform and radio network KPIs de-
scribed in §4, considering both non-anomalous and anoma-
lous cases. Our training dataset consists of approximately 77
million measurement points, and, to our knowledge, it is the
largest and most realistic Open RAN dataset to date.

To generate a realistic dataset, we introduced a diverse set
of eight traffic profiles, summarized in Table 3, and consid-
ered scenarios with one, five and eight UEs. In experiments
involving a single UE, we generated traffic with all profiles for
a duration of 10 minutes each. For five and eight UEs, we se-
lected random UE subsets and created two scenario types:

• Constant traffic: Each UE selects a traffic profile and main-
tains it for 10 minutes.

• Mixed Traffic: Each UE repeats a cycle for 10 minutes, where
it randomly selects one of the 8 traffic profiles for a random
duration (5 to 10 seconds) and then pauses for a random
duration (5 to 10 seconds).

Obtaining reproducible data in a controlled manner is chal-
lenging in a multi-UE setting with mobility. Therefore, in this
work, we opt to use static UEs, meaning that some KPIs, such
as SNR, are more static than in a truly mobile environment.
We compensate for this in two ways:

• We consider several UEs with diverse positions and varying
distances from the radio (showed in Fig. 5(b)), ensuring that
these KPIs differ across different UEs.

• All the KPIs of our dataset are aggregates across all UEs,
rather than capturing individual UE metrics.

Servers (8×) HPE Telco DL110 Gen 10; Xeon 6338N CPU
Accelerator Intel ACC100 for LDPC coding
Ethernet NIC Intel E810 4×25GbE NIC

Ethernet switch Arista 7050-CX3
Radio unit Foxconn 4x4 RU; 100MHz at 3.5GHz
PTP grandmaster Qulsar Qg2 multi-sync gateway

Operating system Real-time CBL-Mariner Linux kernel 5.15
vRAN software Intel FlexRAN v22.03 (L1) & CapGemini 5G (L2+)
Table 2: 5G RAN hardware and software configuration.
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Traffic Type Description
iperf3 TCP DL UE sends TCP DL traffic in DL direction
iperf3 TCP UL UE sends TCP UL traffic in UL direction

iperf3 UDP DL UE sends UDP traffic at 10 Mbps in
DL direction

iperf3 UDP UL UE sends UDP UL traffic at 10 Mbps in
UL direction

file download UE downloads a file from Internet
file upload UE uploads a file to server using scp

video stream UE streams a video
web traffic UE constantly accesses a random website

random ping UE constantly pings at different rate and count
Table 3: Different profiles of generated traffic.

Anomaly Target Effect Duration Frequency

PDCP worker
thread contention CU

Delays in processing
user packets, leading

to packet drops

between 0.8
to 6 seconds

Every
10 seconds

Radio
interference

DU air
interface

SNR reduction and
packet retransmissions

between 1
to 2 seconds

Every
10 seconds

FH
network

contention

FH
and DU

SNR reduction and
packet retransmissions

between 0.3
to 0.6 seconds

Every
15 seconds

MAC scheduler
thread contention DU Missed scheduling

decisions and packet drops
between 0.8

to 1.2 seconds
Every
10 seconds

Mixed anomalies All Combination of effects
Same as in

single anomaly
cases

Same as in
single anomaly

cases
Table 4: Description of considered anomalies. The end
result of all anomalies is UE throughput degradation.

This combination makes the aggregate signal quality related
KPIs of the dataset dynamic. In addition, due to random traffic
patterns that we introduce, all the other KPIs are also dynamic.
Note that we ensured that the data of our normal cases do not
contain any anomalous samples, through manual checks.

5.3 Representative Anomalies
During the operation of our testbed for over a year, we often
experienced performance degradation, which was related to
several anomalies occurring across the stack, with the most
common linked to thread and network contention, as well as
radio interference. Motivated by this real-world experience, we
initially focused our evaluation of SpotLight on generating
(synthetic) anomalies linked to the above three issues, which
we use for our evaluation in §6. The choice of the exact points
in which to introduce anomalies (e.g., PDCP and MAC layer)
was made with the goal of covering the whole RAN stack.
The generated anomalies allowed us to create a test dataset
containing ∼33 million datapoints. Once we tuned our method
with the synthetic anomalies and traffic, we also deployed it
in the real system, which allowed us to detect several further
real anomalies, as discussed in Section 7.1.

Below, we provide more details about the synthetic anom-
alies (also summarized in Table 4):
CPU contention – We emulate a class of anomalies in which
thread contentions or misconfigurations throttle threads that
are responsible for RAN operations (see Section 7.1 for a real-
world example). We introduced CPU contention using stress-
ng [32] to a worker thread responsible for relevant processing
(e.g. a PDCP worker thread for CU).
Radio interference – This scenario reflects radio interference
related issues that could be a result of inter-cell or external
(jamming) interference. Here we focus on the latter and realize
it by configuring a USRP software-defined radio to transmit
an intermittent traffic over 40MHz of spectrum overlapping
with our vRAN allocated spectrum and use 70-75 dB gain
for the interference signal. We also inspected to ensure such
interference did not exist in our training set. Note that for this
anomaly we examined different interference patterns (peri-
odic, aperiodic, etc.) but only included results for the pattern
described in Table 4, due to lack of space.

Network contention – This scenario is meant to represent
anomalies stemming from the sharing of network links be-
tween RAN and other functions, without proper isolation and
QoS guarantees. For this anomaly, we introduced intermittent
traffic on the same link that carries the FH traffic (I/Q samples)
between the DU and the RU.
Mixture of anomalies – In this scenario, all six possible
combinations of the four anomalies occur together in pairs.

5.4 Baselines
5.4.1 Accuracy baselines. As discussed in §2.3, most state-of-
the-art time series anomaly detection methods in both RAN
and ML domains are prediction based, reconstruction based
or combination of both. To assess accuracy benefit with Spot-
Light’s anomaly detection approach, we pick representative
baselines from each of these categories, as outlined in Table 5.
Like SpotLight, all these methods are trained on normal data.

Methods based on time series prediction (GDN [24] and
LSTM-PRED [34, 56]) rely on the prediction error (i.e., differ-
ence between predicted and actual KPIs at each time step) for
anomaly inference. On other hand, reconstruction based meth-
ods (TranAD [57], MADGAN [39] and LSTM-AE [34, 56])
encode and decode the test time series input using trained
models and infer anomalies based on the reconstruction error
(i.e., discrepancy between decoded and actual test input). For
LSTM-PRED and LSTM-AE methods, we use the standard
deviation of prediction/reconstruction errors during training
as the threshold for anomaly detection during inference.

As a simple-minded statistical baseline method, we also use
a Z-Score based time series anomaly detection [6] in which
z-score is continually computed over a sliding window and
classify a new point in the time series as an anomaly if its
z-score is above a threshold (one standard deviation).

Note that among these baselines, LSTM-PRED, LSTM-
AE and Z-Score perform ‘univariate’ time series anomaly
detection separately for each KPI, whereas SpotLight and
rest of the baselines are multivariate across all KPIs.

5.4.2 Explanation baselines.
SHAP with TranAD: SHAP [42] is a commonly used model
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Category Baseline Method

Statistical Z-Score [6]

Prediction based GDN [24]
LSTM-PRED [34, 56]

Reconstruction based TranAD [57], MADGAN [39]
LSTM-AE [34, 56]

Prediction VAE-LSTM [41]
& Reconstruction

Table 5: Baseline anomaly detection
methods.
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Figure 6: Average F1 score across all
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Figure 7: Anomaly detection behavior of SpotLight
vs TranAD with PDCP worker thread contention.

agnostic method for explainability and provides a unified mea-
sure of feature importance – higher SHAP score for a KPI
reflects its higher importance. We augment TranAD, the best
performing anomaly detection method among our baselines,
with SHAP (using its Omnixai [58] implementation).
GDN [24] has inherent explanation capability by modeling the
set of KPIs (variables) as graph nodes and learning the edge
weights between them through its attention mechanism. KPI(s)
inferred to be anomalous and their highest weight neighbors
forms the explanation output from GDN.

Besides the above baselines, all univariate baseline methods
we consider – LSTM-PRED, LSTM-AE and Z-Score – pro-
vide explainability by default, as they treat KPIs independently
and each KPI corresponds to a location in the RAN.

6 EVALUATION RESULTS
6.1 Accuracy
We begin our evaluation by comparing the overall accuracy
of SpotLight to the baselines from Section 5.4 for all the
configurations identified in Section 5. As an overall accuracy
measure, we use F1 score – harmonic mean of precision and
recall. As it can be seen from Fig. 6, the average F1 score
of SpotLight for all the considered anomalous cases is 0.94,
∼13% higher than the second best method (TranAD), demon-
strating its high accuracy across all scenarios under study.

To understand the nature of SpotLight’s accuracy, we
present a detailed view of the results in Table 6, for all single
anomalies in the case of 5 UEs with mixed traffic. We obtain
similar results for all other scenarios, but we omit them due
to lack of space. As we can observe, SpotLight has similar
recall to the baselines, but fares significantly better in terms
of precision. This can be observed in the example of Fig. 7,
in which we show the anomalies detected by SpotLight and
the second best method, TranAD, for the PDCP worker thread
contention anomaly. In contrast to SpotLight, TranAD iden-
tified false anomalies during 85-95s and 130-175s. Instead,
the JVGAN component of SpotLight correctly identified the
samples during 85-95s as non anomalous, as they fell within
the distribution it learned. On the other hand, JVGAN falsely
identified the samples between 135s and 147s as anomalous.
However, the imputation of MRPI corrected the false detec-
tion, maintaining SpotLight’s precision at a high level.

The benefits of MRPI on improving the precision of Spot-
Light can also be seen in the ablation test of Table 7 for one of
the 5 UEs scenarios. JVGAN captures most of the true anom-
alies, leading to a very high recall score for all anomalies
under study. However, the precision of the model is fairly low,
but is significantly enhanced by the introduction of MRPI at
the expense of a marginally negative effect on recall. Finally,
it should be noted that if we replace the JointVAE structure
with a conventional VAE, then the precision becomes much
lower, because the performance on categorical and binary
variable is much worse. Introducing model uncertainty based
tolerance contributes to the overall precision by reducing false
detections. Without adversarial training and MC dropout, the
JointVAE does not perform better than other VAEs (e.g. VAE-
LSTM), and therefore we can see that the adversarial training
and MC dropout play critical roles in enhancing the precision.

Spotlight

TranAD(SHAP)
GDN

LSTM-PRED
LSTM-AE

ZScore
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Figure 8: Ratio of KPIs flagged as potential causes for anomaly
among all considered KPIs.
6.2 Explainability
Here, we focus on evaluating SpotLight in localizing and ex-
plaining anomalies. We begin by comparing the explainability
power of SpotLight compared to the baseline methods of
Section 5.4. We first consider the ratio of anomalous KPIs
that are flagged as potential culprits among all the considered
KPIs for each anomaly by both SpotLight and the baselines.
A low ratio indicates that a model is more focused and does
well in filtering out irrelevant KPIs from the explainability
step, effectively simplifying the root cause analysis process.
Fig. 8 illustrates the ratios for all single anomalies that we
considered. We observe that in all cases, SpotLight has a
significantly lower ratio compared to the other methods.

Next, we zoom in the causal analysis results to explain the
benefits of SpotLight for explainability over the baselines. We
use Anomaly Detection Ratio (AD Ratio) as a score for each
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Method PDCP Radio MAC Network Overall
F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑

SpotLight 0.96 1 0.93 0.94 0.95 0.93 0.96 0.93 1 0.93 0.94 0.92 0.95 0.96 0.95
TranAD 0.87 0.79 0.97 0.80 0.71 0.91 0.86 0.76 1 0.68 0.59 0.80 0.80 0.71 0.92

MADGAN 0.78 0.68 0.92 0.76 0.69 0.85 0.85 0.74 1 0.67 0.61 0.75 0.77 0.68 0.88
GDN 0.66 0.54 0.85 0.41 0.27 0.82 0.49 0.35 0.84 0.08 0.06 0.15 0.41 0.30 0.66

VAE-LSTM 0.66 0.52 0.93 0.77 0.63 1 0.74 0.58 1 0.40 0.26 0.81 0.63 0.48 0.93
LSTM-AE 0.36 0.22 0.98 0.34 0.21 0.89 0.10 0.05 0.99 0.05 0.02 0.98 0.21 0.12 0.96

LSTM-PRED 0.37 0.23 0.98 0.34 0.22 0.83 0.10 0.05 1 0.05 0.02 0.98 0.21 0.13 0.94
ZScore 0.33 0.21 0.72 0.35 0.23 0.73 0.13 0.07 0.91 0.06 0.03 0.91 0.21 0.13 0.81

Table 6: F1 score, precision and recall for the 5 UE scenario and for all types of anomalies.

Method PDCP Radio MAC Network Overall
F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑ Precision↑ Recall↑

SpotLight 0.963 1 0.93 0.939 0.95 0.93 0.963 0.93 1 0.929 0.94 0.92 0.949 0.955 0.945
JVGAN (MC Dropout) 0.924 0.90 0.93 0.89 0.85 0.93 0.90 0.82 1 0.91 0.90 0.93 0.906 0.87 0.95

JVGAN (w/o MC Dropout) 0.73 0.60 0.92 0.72 0.59 0.92 0.73 0.57 1 0.758 0.65 0.91 0.735 0.60 0.938
JVAE 0.70 0.54 1 0.72 0.56 1 0.73 0.57 1 0.65 0.50 0.95 0.70 0.54 0.99
VAE 0.66 0.50 1 0.66 0.50 1 0.66 0.49 1 0.31 0.19 0.90 0.57 0.42 0.97

Table 7: Ablation Test considering the 5 UE scenario.

anomalous KPI, reflecting their relative significance, after the
causal discovery step. Fig. 10 illustrates an aggregation of the
KPIs that were flagged up by SpotLight and TranAD+SHAP
for each anomaly, grouped by the category they belong to. The
height of each bar (y-axis) shows the anomaly detection score
(or SHAP score for TranAD+SHAP) of the most influential
KPI of each category. The number of flagged KPIs of each
category are shown at the top of each bar.

F1↑ Precision↑ Recall↑
Overall 0.97 0.95 1

PDCP + Radio 0.95 0.91 1
PDCP + MAC 0.97 0.95 1

PDCP + Network 0.98 0.96 1
Radio + MAC 0.98 0.97 1

Radio + Network 1 1 1
MAC + Network 0.96 0.92 1

Table 8: Accuracy of Spot-
Light with pairs of anom-
alies across all scenarios.
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Figure 9: Ratio of processing time vs
data collection time.

Taking as a concrete example the anomaly of PDCP con-
tention in Fig. 10(a), only 18 KPIs (out of more than 600)
were flagged as potential culprits by SpotLight. Eight were
localized to the platform layer and were related to the PDCP
threads (the correct cause) and the rest to the radio KPIs of
the RLC layer. In contrast, in the case of TranAD+SHAP, 41
KPIs were flagged as significant. In addition, the flagged KPIs
belong to six different categories, meaning that a domain ex-
pert would have a much harder job in identifying the actual
root cause, as they would have to consider a much bigger and
less focused set of KPIs. Similar observations can be made
for the remaining anomalous scenarios (Fig. 10(c) - 10(d)).

6.3 Results with Multiple Anomalies
As we can observe from Table 8, SpotLight can generalize
well to complex anomalous scenarios, achieving similar accu-
racy to the single anomaly cases, in terms of both precision
and recall. It is also successful in localizing combinations of
anomalies, as illustrated in Fig. 11, for the case of combined
PDCP/network contention and of MAC contention and radio
interference. Similar observations about the causal detection

capability of SpotLight can be drawn for all the remaining
combinations of anomalies (omitted due to lack of space).

6.4 Efficiency
We next show that our algorithm fits the architecture of Fig. 3
in terms of CPU and bandwidth requirements. We measure
the time it takes to process metrics of a 5s window on different
architectures and we plot the ratio of the processing time over
the measurement time (5s). If the ratio is 1 or below, the pro-
cessing can be done in real-time. We perform measurements
on an AMD EPYC 7453 28-Core CPU and NVIDIA RTX
A5000 GPU. We show the results in Fig. 9. We see that JV-
GAN is well suited for running at the edge as it takes less than
0.1% of a CPU core to process the data at line rate. In contrast,
MRPI requires almost 10 CPU cores or less than 6% of a
GPU to run at line rate. That amount of compute power is not
available at the edge, but can be easily accommodated in the
cloud. Moreover, sharing 1 GPU (approx $2,000) to manage
17 far-edge servers is a reasonable management overhead.

We next quantify the network overhead. Considering all the
KPIs required by SpotLight and their frequency of collection
(§4), the upstream bandwidth required from each far-edge site
to ship all the KPI data streams to the cloud is nearly 2 Mbps.
This would aggregate to 100 Gbps for a large telco network
with 50,000 base stations, reflecting very high ingestion costs.
Recall that the first JVGAN stage in our SpotLight pipeline
running at each far-edge site detects likely normal cases and
filters them out from further inspection in the cloud (§3.2).
Therefore, the amount of data that ends up being shipped
to the cloud depends on i) the rate of anomalies and ii) the
detection accuracy of JVGAN. For the test data used in our
evaluations (§5.3, Table 4), we find that the above data fil-
tering characteristic of JVGAN reduces upstream bandwidth
used for KPI data streams by 4 – 7×.In practice, we expect the
bandwidth savings due to JVGAN to be higher, as occurence
of anomalies is rarer than our deliberately challenging test sce-
narios. Finally, JVGAN, MRPI, and KFilter, also make the
explanation more efficient by reducing the number of KPIs to
process; only 3% ∼ 5% KPIs are used for the explanation step.
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Figure 10.(a) PDCP contention
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Figure 10.(b) Radio interference
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Figure 10.(c) MAC contention
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Figure 10.(d) Network contention

Figure 10: KPIs flagged by SpotLight and TranAD+SHAP grouped by category. AD Ratio: score for each anomalous KPI.
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Figure 11.(a) PDCP and network
contention
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Figure 11: KPIs flagged by SpotLight for mixture of anomalies.
SpotLight only takes around 30 seconds to run CausalNex
for a ten minutes measurement.

7 REAL-WORLD EVALUATION
7.1 Case Studies
In addition to the artificial anomalies that we introduced in
Section 5.3, we used SpotLight in our real deployment to
evaluate its detection and localization capabilities with real,
previously unknown anomalies. By collecting the exact same
KPIs that we used for training, SpotLight allowed us to detect
and troubleshoot three real anomalies in our network:
NIC driver misbehavior – This issue was linked to a misbe-
havior of the Intel ICE driver for the E810 NICs. Specifically,
the driver version used in our deployment ignored the hints
of interrupt thread affinities and placed interrupt threads to
isolated CPU cores dedicated to the vRAN. This resulted in
CPU contention with vDU worker threads, which degraded the
performance of the vRAN. SpotLight successfully identified
the thread contentions, which led us to investigate which other
processes were running on the same cores, revealing the mis-
behaving threads. The issue was resolved, after upgrading the
ICE driver to a version that introduced relevant patches [45].

Inter-cell interference – Our 5G testbed supports several
cells on each floor of the building. Given the limited spec-
trum covered by our license, the cells are provisioned with
a frequency reuse factor of 1. While we have optimized the
placement of the radios, ensuring interference-free communi-
cation is not always possible. Inter-cell interference manifests
when a UE is positioned in cell overlapping areas and is send-
ing or receiving traffic. SpotLight was able to automatically
identify inter-cell interference anomalies and to attribute the
anomalies to the relevant radio KPIs (e.g., L1 BLER).
PTP synchronization loss – This issue was related to a mis-
configuration, where an NTP daemon (systemd-timesyncd)

was running alongside the PTP daemon (ptp4l) that was syn-
chronizing our vDU server with the grandmaster clock. Every
time that the NTP daemon would run, the server would get
de-synchronized from the PTP grandmaster, resulting in UE
detachments and/or traffic drops. SpotLight successfully pin-
pointed the PTP timestamp KPIs as the culprit.
vDU RLC queue overflow bug – This issue was related to a
bug of our vDU stack, that caused the RAN to drop all packets
arriving at the RLC layer for all attached UEs, if saturated
with traffic for a long time. SpotLight detected succesfully
the anomaly and reported that the anomalous KPI was related
to the RLC queues. After reporting this issue to our vRAN
vendor, we were able to identify and rectify the bug.

7.2 Operational model
Here, we demonstrate how SpotLight works in an operational
environment. In such environment, it is important to have a
very low fraction of false positives to reduce the unnecessary
workload of operational teams. Our observation window is
6.4s (Section 3.1), which means that we have about 10 ob-
servations per minute. Note that most of the RAN anomalies
we had observed are not transient and last for many minutes,
so, in order to reduce the false positives, we aggregate the
observations over one minute, and we report an anomaly only
if we have 10 positive reports out of 10 windows. This means
that the precision over 1h interval is 2 · 10−4 and the recall is
0.91 – 0.98. We verify these results by running the system for
1h without an anomaly, and we note that we do not observe a
single false positive during that time.

8 CONCLUSIONS
In this work, we presented SpotLight, a tailored system ar-
chitecture with a deep generative modeling based method for
Open RAN anomaly detection and localization, that is dis-
tributed between the edge and the cloud. SpotLight manages
to provide highly accurate and explainable anomaly detec-
tion results, while remaining computationally efficient. To
train and evaluate SpotLight, we developed a large scale
and realistic data collection process spanning both the RAN
and the platform layer on an enterprise-scale 5G Open RAN
deployment.
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