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Abstract11

Recent years have seen a rising interest in cloud-hosted financial exchanges. While the public cloud12

platforms promise a cost-effective and more accessible option to traders, unfortunately, achieving13

fairness in cloud environments is challenging due to non-deterministic network latencies and execution14

times.15

This work presents Cuttlefish, a fair-by-design cloud execution environment for algorithmic16

trading. The idea behind Cuttlefish is the efficient and robust mapping of real operations to a novel17

formulation of ‘virtual time.’ With it, Cuttlefish abstracts out the variances of the underlying network18

communication and computation hardware. Our implementation and evaluation not only validate19

the practicality of Cuttlefish, but also show its operational efficiency on public cloud platforms.20
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1 Introduction28

Low-latency algorithmic trading—a subset of the broader securities trading taxonomy—is29

pivotal to the efficiency of modern financial markets, promoting accurate and timely pricing of30

securities, higher liquidity, and lower trade costs for all investors [32]. The goal of low-latency31

algorithmic trading is to create an ecosystem within each exchange where, based on incoming32

market data, traders can issue buy and sell orders as quickly as possible to take advantage of33

ephemeral market-making and arbitrage opportunities [57]. A sizable fraction of activity in34

today’s exchanges is the result of this class of trades [2, 24].35

In recent years, exchanges like NASDAQ, CME, LSE, and B3, alongside cloud providers36

like Microsoft, Amazon, and Google, have expressed growing interest in exploring the viability37

of hosting this type of trading in the cloud [22, 49, 42, 41]. Their interest is rooted in a variety38

of factors including better scaling, fewer outages, improved cost savings, and a potentially39

broader customer base as, in this model, any Market Participant (MP)1 can rent a machine40

1 In low-latency algorithmic trading, MP also refers to the computer program executing the trading
algorithm, terms we use interchangeably.

© Liangcheng Yu, Prateesh Goyal, Ilias Marinos, and Vincent Liu;
licensed under Creative Commons License CC-BY 4.0

7th Conference on Advances in Financial Technologies (AFT 2025).
Editors: Zeta Avarikioti and Nicolas Christin; Article No. 3; pp. 3:1–3:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7010-2529
https://orcid.org/0000-0001-7945-1821
https://orcid.org/0000-0002-1901-3157
https://orcid.org/0000-0001-7683-208X
https://doi.org/10.4230/LIPIcs.AFT.2025.3
https://www.microsoft.com/en-us/research/publication/cuttlefish
https://www.microsoft.com/en-us/research/publication/cuttlefish
https://www.microsoft.com/en-us/research/publication/cuttlefish
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 A Fair, Predictable Execution Environment for Cloud-hosted Financial Exchanges

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

D8s_v3 E16ds_v4
F32s_v2 F72s_v2E

x
e

c
u
ti
o

n
 t

im
e

 d
if
fe

re
n

c
e
 [

µ
s
]

Figure 1 Execution time differences (candlesticks showing p0.1, Q1, Q2, Q3, and p99.9, with
some quantiles visually converging to a single bar) measured with rdtsc for 1M parallel invocations
of two MPs running on separate VM instances within the same region, despite an identical program
(performing a moving average crossover strategy, with each invocation taking ≈ 14µs on D8s_v3),
input market data stream, performance optimizations, and VM type.

in the same region as the Central Exchange Server (CES) and participate, bypassing the41

logistical hurdles involved in installing and maintaining on-premise hardware [24, 17, 19, 18].42

Smaller and newer exchanges (e.g., for cryptocurrency) are particularly interested, as the43

cloud can also lower their barriers to entry by eliminating the need for custom infrastructure.44

Unfortunately, in addition to the above advantages, cloud-hosted exchanges also face45

significant challenges in ensuring fairness for MPs, a primary requirement of exchange ser-46

vices [48, 24, 17, 18]. Recent work has noted these exchanges’ issues with unpredictable47

network latencies [24, 38, 19], but the sources of unfairness extend beyond the network and48

include practicalities like noisy neighbors, thermal fluctuations, or (un)scheduled mainten-49

ance [39, 53, 55]. For example, Figure 1 shows the differences between local execution time of50

two identical trading programs running on parallel instances in the same Azure region. The51

experiment is for a simple program, single-tenancy (in the case of the F72_v2 instance type),52

and strict scheduling policies (core pinning, highest kernel scheduling priority, etc.). It fur-53

ther omits network variability and clock drift effects—two important and difficult-to-control54

sources of unfairness. Even so, we can observe significant variability and bias between the55

two executions.56

Crucially, the magnitude of the variability is immaterial—any difference, no matter how57

small, may alter the order in which trades are processed by the CES. We note that some of58

these effects also exist in traditional on-premise exchanges; however, cloud-hosting (besides59

increasing the sources and magnitude of variability/bias) presents a qualitative change in how60

these effects must be handled. In an on-premise deployment, customers are in full control61

of their infrastructure—when a machine is slow, it is the customer’s fault. In the cloud,62

infrastructure can be slow through no fault of the customer, and the responsibility falls upon63

the cloud provider.64

In this paper, we tackle an ambitious goal: a cloud execution environment where the65

outcome of races between different MPs’ buys/sells is based only on the design of the MPs66

rather than (un)lucky performance fluctuations of their underlying cloud infrastructure.67

Our approach is similarly ambitious: to change the execution model from one where users68

have unfettered access to (virtualized) hardware to one where users provide bytecode-level69

programs (closer to a Functions-as-a-Service interface) and cloud providers control their rate70

of execution to ensure fairness.71

The resulting system, Cuttlefish2, is an execution environment for a cloud-hosted exchange72

2 The animal renowned for its ability to see invisible polarized light to discern subtle changes in murky
waters for navigation and communication.
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that ensures fair, predictable end-to-end execution. Cuttlefish is the first to address execution73

variation/bias in cloud-hosted exchanges, but its focus on end-to-end guarantees means that74

it also handles deficiencies in the communication guarantees of prior work that specialize in75

communication [17, 24, 19]. Further, not only is Cuttlefish able to guarantee these strong76

properties, but it is able to do so while offering low latency and high throughput.77

Guaranteeing this level of fairness is fundamentally challenging as, in the end, simultaneous78

data delivery and synchronous execution is a classic (and under some assumptions impossible)79

challenge in distributed systems [20, 13, 56, 24]. Moreover, modern hardware performance is80

increasingly unpredictable, complex to reason about, and difficult to verify [39, 53, 55, 61,81

12, 4, 33, 3, 9].82

Cuttlefish achieves the above using an efficient mapping of real operations to ‘virtual83

time’ from a platform-agnostic intermediate representation (IR). This indirection through84

virtual time allows us to quantify computation and, critically, to control its advancement85

deterministically through the rate-limiting of MP operations—a level of control that is86

not possible with real time. This approach enables deterministic and fair operations in87

both simultaneous market data release and MP exeuction processes and guarantees fairness,88

regardless of the varying latencies in the communication of market data and trade responses89

or variations in execution platforms.90

This concept of virtual time mirrors that of other applications such as co-simulation [4,91

33, 3, 9], which coordinates virtual time for concurrent emulation and simulation processes.92

Cuttlefish takes a step further by extending the concept to real-time cloud systems and93

developing an end-to-end trading platform. Cuttlefish’s architecture is, thus, a combination94

of (1) a platform-agnostic Intermediate Representation (IR) instantiating virtual time per95

virtual machine instruction cycle count, along with its expressive programming interface and96

lightweight instrumentation for virtual cycle tracking, (2) a runtime execution environment97

optimized for co-located MPs, and (3) a protocol to control inflight virtual cycles and handle98

variations in the underlying network or compute.99

While Cuttlefish represents an extreme point in the design space, our prototype demon-100

strates the feasibility and efficiency of its design, deployable to commercial cloud virtual101

machines. This paper makes the following contributions:102

We propose Cuttlefish, the first fair execution environment for cloud-hosted exchange103

that abstracts out the differences in the underlying cloud primitives, tackling execution104

fairness and simultaneously addressing persistent gaps in the communication fairness of105

existing systems.106

We introduce an efficient mapping strategy of the virtual time overlay to real-time107

operations while maintaining low latency and high execution throughput to MPs.108

We evaluate Cuttlefish using an end-to-end implementation on a real cloud platform. When109

serving 100 MPs, Cuttlefish guarantees fairness in both communication and execution,110

while introducing low overhead and achieving latency and execution throughput close to111

the limits of the underlying cloud hardware.112

2 Background113

Historically, financial exchanges were bustling places where people would shout orders,114

negotiate prices, and physically exchange papers representing ownership of stocks or other115

assets. In today’s financial markets, however, the vast majority of trades are executed by116

computers rather than by humans, opening up the possibility of so-called algorithmic trading117

techniques, now the cornerstone of modern financial markets.118

AFT 2025
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Figure 2 Basic structure of cloud-hosted exchanges. All system components are controlled by
the trusted cloud provider.

Algorithmic trading refers to the process of making trade decisions with the help of119

computer programs. Under this umbrella, low-latency algorithmic trading, which focuses120

on fast (e.g., <1 ms) reactions to real-time market data with minimal human intervention,121

has become critical to market efficiency, price discovery, liquidity, and low transaction122

costs. These algorithms account for a significant portion of the trading volume in financial123

markets [2, 24, 32, 36, 57]. Compared to the broader set of algorithmic trading strategies, the124

logic of MPs who participate in low-latency algorithmic trading is relatively simple (designed125

for quick reactions) and features highly optimized data path logic [37, 34].126

Exchanges that support low-latency algorithmic trading expose a simple top-level abstrac-127

tion: (1) the exchange broadcasts market data to all MPs within the exchange, delivered at128

time {D}, (2) the MPs analyze the data, and (3) they return buy/sell orders to the exchange129

at time {S}, processed in the order of submission.130

In the most cases, the market data feed is the sole input into the system, and orders are131

handled entirely within the exchange. However, MPs sometimes also integrate outside data132

into their strategies. Exchanges can also provide alternative trading interfaces [27], although133

these are typically three to four orders of magnitude higher latency and used by MPs for less134

latency-critical trading (e.g., those leveraging complex machine learning models). In this135

work, we assume that all such external interactions are funneled through the CES (in the136

case of alternative trading interfaces) or a special gateway node (Section 7; in the case of137

outside data). Clearly, Cuttlefish cannot control the outside world or make it fair, rather,138

our focus is only on the variability and bias of communication and execution after it enters139

the system through these nodes. We discuss the interaction of Cuttlefish with the broader140

ecosystem in Section 11.141

Cloud-hosted exchanges. As mentioned, there has been recent interest in cloud-hosted142

exchanges for reasons including better scaling, fewer outages, improved cost savings, and143

broader access to the financial markets [24, 19, 17, 36].144

Figure 2 depicts the main components of these exchanges. At the core of these systems145

is the CES, which disseminates market data to all MPs through Release Buffers (RBs) or146

equivalents. The communication between CES and MPs typically leverages a reliable message147

transport [24, 19]. Then, the MPs—hosted by proxy cloud instances in the same cloud148

region as the CES—compute their trading decisions and forward them to the CES.3 There,149

trades are first enqueued and sorted at the Ordering Buffer (OB) and then processed by the150

Matching Engine (ME). The ME finally updates the limit order book and generates a new151

3 Cross-region deployment of VMs is feasible (e.g., through virtual network (VNet) peering [45]), but not
suitable for low-latency communication [24, 19].
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Notation Definition
G(x) Wall-clock time when market data x is generated.

D(i, x) Wall-clock time when data x is delivered to MPi.
S(i, y) Wall-clock time trade y is submitted by MPi.

D̃(x) Virtual time assigned by CES for delivering data x.
S̃(i, y) Virtual time when trade y is submitted by MPi.
C̃ES(t) Virtual time of CES at a wall clock time t.
ÕB(t) Virtual time of OB at a wall clock time t.
M̃Pi(t) Virtual time of MPi at a wall clock time t.

C̃ES
−1

(vt) Wall clock time of CES at a virtual time vt.
ÕB

−1
(vt) Wall clock time of OB at a virtual time vt.

M̃Pi

−1
(vt) Wall clock time of MPi at a virtual time vt.

Table 1 Summary of notations. Each refers to a scalar timestamp in real or virtual time.

batch of market data.152

Performance variations of cloud primitives. Unfortunately, despite their attractive prop-153

erties, in our conversations with major cloud providers, financial exchanges, and trading154

firms, there is still a fundamental distrust of the performance properties of the underlying155

infrastructure. In particular, for both exeuction and communication, performance variations156

have the potential to invalidate the benefits of careful design, creating a world where MPs157

win and lose not on the strength of their algorithms but on purely external factors (e.g.,158

temporal variation or provider monitoring/maintenance).159

To illustrate, consider the simple scenario of delivering market data x for MPi and MPj in160

Figure 3a. Coordinating delivery to ensure D(i, x) = D(j, x) is difficult due to unpredictable161

and unbounded path latencies. More importantly, even with simultaneous data delivery, the162

same hardware substrate (e.g., same server SKUs), the same software stack (OS and the163

MP’s trading algorithm), and the same algorithm, the exeuction time can still vary (e.g., due164

to different thermal state). This leads to non-deterministic submission times S(i, y) ̸= S(j, y),165

as shown in Figure 3b. In both cases, any disparity, even at nanosecond time scales, can166

advantage/disadvantage an MP.167

Recent measurements on cloud-hosted exchanges have quantified the danger of latency168

spikes in modern clouds [24, 19]. Equally important, however, is the bias and variability in169

execution performance, which can also occur for any number of reasons, including everything170

from non-deterministic software operations to machine-specific hardware wear and thermal171

effects, with prior measurement citing the Coefficient of Variation (CoV) of performance172

in bare-metal infrastructure of up to 30% [55, 39]. These are on top of noisy neighbor and173

hypervisor effects introduced in cloud deployments. Our benchmarks on Azure cloud, shown174

in Figure 1, validate the presence of these biases and variances. Even for single-tenant F72_v2175

instances, with all physical cores of the machine reserved, the interquartile range (IQR) is176

still 20 ns with disparities exceeding > 1µs at p99.9.177

While in both cases it may be possible for cloud providers to try to tame this effect, for178

instance, by removing all management and telemetry infrastructure or carefully controlling179

temperature and wear, resulting in much tighter SLOs, (1) doing so would substantially cut180

into the cost and scalability advantages of cloud-hosted exchanges, and (2) this still does not181

eliminate disparities that can result in unfairness.182

AFT 2025
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Figure 3 Simultaneous data delivery and execution fairness are difficult, even under the same
market data, MP algorithm, and execution platform.

3 Goals and Related Work183

Our goal in this work is to create a fair and predictable execution environment where the184

outcome of competitions is based on only the properties of MPs’ algorithms rather than luck.185

More specifically, we target:186

R1 Communication fairness: (a) All MPs should get access to the market data points at the187

same time and (b) in the other direction, MPa’s trade should execute before MPb iff MPa188

submits a trade before MPb.189

R2 Execution fairness: Given any execution of the algorithm on the platform, the submission190

time of the generated trades is completely defined by the delivery time of the input data191

to the algorithm. Consequently, given R1, for a given trading algorithm, the execution192

time to generate the trades should not vary across MPs.193

To be practical, MPs should be able to sustain the above requirements while maintaining194

low latency and high execution throughput for their trades and algorithms. As previously195

noted, we explicitly do not consider the fairness or feasibility of cross-exchange arbitrage,196

which is likely impossible in a partial deployment scenario.197

Prior work on cloud exchange fairness. Existing cloud-hosted exchanges, despite focusing198

exclusively on communication [24, 17, 19], provide incomplete guarantees, even for R1. For199

example, CloudEx [17] and Octopus [18] enforce high-resolution clock synchronization among200

all RBs and the CES. The CES, upon generating market data at time t, assigns a future201

release timestamp t + ∆tr with a predefined threshold ∆tr, allowing RBs to forward the202

data simultaneously. Similarly, when an inbound trade arrives at an RB at time t, the203

CES enqueues it to the OB until t + ∆d where the delay ∆d allows earlier trades to arrive204

within this headroom. Unfortunately, even with perfect clock synchronization—a strong205

assumption in distributed systems [38]—the guarantees break whenever latency spikes exceed206

the threshold. Such latency spikes can occur unpredictably in cloud environments [24, 19, 35].207

Configuring conservative threshold values can help (at the cost of performance) but are not208

a complete remedy [24, 19, 13].209

More recent work, DBO [24, 19], relaxes the requirement of clock synchronization and210

proposes logical clocks based on MP response time. Briefly, DBO offloads RBs to local211

SmartNICs that measure and tag each MP’s response time, while trades are being ordered212

accordingly at the OB/CES. This method corrects inaccuracies in simultaneous data delivery213

post hoc and provably guarantees Limited Horizon Response Time Fairness for of R1.214

However, DBO’s guarantees are limited to a specific trading pattern, namely trigger-point-215

based high-speed trades. Trades that do not fit this model (e.g., trades triggered using two216

or more data points) are not necessarily fair.217
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Figure 4 Recent cloud-hosted exchanges [17, 24, 19, 18] target only communication fairness, but
still struggle to achieve it. We discuss other related works in Appendix D.

4 Virtual Time in Cuttlefish218

Cuttlefish tackles both execution and communication fairness simultaneously. As depicted219

in Figure 4, we find that including execution fairness not only serves to present a more220

predictable execution platform, it also naturally addresses the fundamental limitations of221

existing work on communication.222

To guarantee both R1 and R2, our system, Cuttlefish, adopts a ‘virtual time’ abstraction.223

Virtual time, as a general concept, is not new—there are many instances where it is beneficial224

to have a global and fine-grained notion of dependencies independent of wall-clock time.225

Of particular relevance is the use of virtual time in high-fidelity emulation of processes226

interacting over a network [3, 33, 9, 4, 23]. In these frameworks, all processes keep a virtual227

clock for use in coordinating per-process progress and cross-process events, e.g., network228

communication. Unlike wall-clock time, virtual time is controllable: a process’s virtual clock229

advances only when it is scheduled. Virtual time is, thus, a stand-in for the expected behavior230

of the emulated network. The framework exploits the ability to pause and resume processes231

to ensure that all processes are synchronized and events are sequenced correctly according to232

their virtual time.233

Network emulation vs. low-latency algorithmic trading. Cuttlefish takes an analogous234

approach by assigning virtual time to all communication and execution—down to an instruc-235

tion level. Like emulation, Cuttlefish benefits from the ability to control the fine-grained236

progression of virtual time for each MP (pausing and skipping forward as necessary). Unlike237

emulation, however, low-latency algorithmic trading presents a substantially different set of238

goals and knobs.239

Soft real-time constraints on virtual time progression: Generally, the primary concern240

of network emulation is fidelity to a target emulated network. The relationship between241

the emulator’s virtual time and wall-clock time is of secondary importance, with the most242

important impact being its effect on the end-to-end execution time of emulation. In contrast,243

Cuttlefish is a platform for trading real-world financial instruments, so consistent timeliness244

is critical, especially in the presence of alternative trading interfaces and external data.245

Control over input frequency: Emulation’s focus on fidelity also generally assumes a246

‘correct’ emulation target. In contrast, the CES in Cuttlefish has significant control over247

market data delivery times—what matters is the fairness of the delivery, not fidelity to any248

particular execution. Cuttlefish uses this control to adjust the market data delivery rate in249

response to the current load and to allow lagging nodes to catch up.250

AFT 2025



3:8 A Fair, Predictable Execution Environment for Cloud-hosted Financial Exchanges
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Figure 5 Communication and execution fairness are achievable in the virtual time domain through
the deterministic control of virtual time passage and the quantification of execution.

Cuttlefish virtual time, illustrated. Figure 5 depicts the operation of virtual time in251

Cuttlefish. The Cuttlefish CES operates unrestricted in wall-clock time, while the MPs track252

and adhere to virtual time. For simplicity, we will ignore component failures but discuss how253

Cuttlefish can be extended to handle them in Section 8. The notation used in the figure and254

the remainder of the paper are summarized in Table 1.255

1. [Figure 5a] For fair market data delivery (R1a), the CES picks and tags a virtual time256

D̃(x) for the release of each data point x. Each MP’s local execution runtime controller257

ensures the release accordingly.258

2. [Figure 5b] For execution fairness (R2 ), Cuttlefish provides a deterministic accounting of259

compute (in virtual time). Specifically, it counts the instruction cycles executed by its260

platform-agnostic virtual machine substrate. This ensures that, for any MPi consuming an261

input x at D̃(x) and producing a trade y, the resulting S̃(i, y) is deterministic, regardless262

of execution performance variations.263

3. [Figure 5b] For fair trade ordering (R1b), trades from an MP are marked with the264

virtual time at which they are generated, S̃(i, y1) and S̃(j, y2). Similar to DBO, Cuttlefish265

features an ordering buffer that forwards these trades to the CES based on their generation266

virtual time in monotonically increasing order. Thus, the ME processes y1 before y2 if267

and only if S̃(i, y1) < S̃(j, y2).268

Strict adherence to virtual time on all MPs ensures both (R1) and (R2). Further, the269

CES’s ability to bridge wall-clock and virtual time ensures minimal delta between the two270

(Section 8).271

5 Design Overview272

Instantiating virtual time abstraction end-to-end necessitates several building blocks: How273

can we express computation in the virtual time domain (§6.1)? How do we execute the274

programs efficiently (§7)? How can we track and control the virtual time advancement (§8)?275

Architecture. Similar to other cloud-hosted exchanges [24, 19], VMs executing MPs are276

co-located in the CES region for low-latency services. Unlike existing systems, however, users277

of Cuttlefish build on a platform-agnostic virtual machine substrate clocked by virtual time278

cycles, mediating all MPs’ computational and I/O operations through this abstraction.279

Figure 6 depicts Cuttlefish’s high-level architecture. For simplicity, most of our discus-280

sion will assume homogeneous, single-threaded market participants and the market data281

stream as the only input to the ecosystem. We describe the integration of external data in282

Section 7, extension to heterogeneous compute in Section 11, and multi-threading support in283

Appendix A.284
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Figure 6 Overview of the Cuttlefish platform.

Workflow. Building on the typical cloud-hosted exchange architecture, Cuttlefish introduces:285

1 MP algorithm representation via eBPF VM bytecode [Section 6]: To account for the286

amount of execution deterministically, Cuttlefish leverages a platform-agnostic IR that is287

based on the eBPF Virtual Machine (VM)4 instruction set. Cuttlefish advances virtual time288

based on the consumed number of VM instruction cycles, allowing it to abstract out potential289

variances in the underlying infrastructure. Cuttlefish also adapts eBPF user-space libraries to290

support a simple but expressive programming interface. Cuttlefish verifies, instruments, and291

translates this code from MPs to native assembly for the underlying computation platform292

for efficient execution.293

2 Virtual time execution runtime (VT-RT) [Section 7]: Cuttlefish develops a runtime294

execution environment that can efficiently utilize all available cores to execute the binaries295

for MPs allocated to the same cloud VM. It also manages a range of real-time operations296

for the responsible MPs, including tracking and advancing the virtual time, data delivery,297

and local batching of trades and heartbeat to the central CES for ordering based on the298

submitted virtual time.299

3 Virtual time control (VTC) [Section 8]: Cuttlefish integrates a virtual time control300

algorithm for the CES to assign virtual market data release times. By controlling virtual301

time assignment, the CES controls how much compute throughput is available to each MP.302

This is crucial to mitigating underlying network latency spikes or slowdown in execution303

behaviors.304

The cost of fairness. Cuttlefish prioritizes fairness, which is the primary concern for305

exchanges [48, 24, 19]. This trade-off is intentional, as a slower exchange operating within306

the higher latency bounds of public clouds can still meet market needs, provided it delivers307

market data and accepts orders uniformly across all participants [24, 48, 40].308

In exchange for fairness, Cuttlefish incurs modest overheads on MP execution. Some309

of this is due to the extra instrumentation to track and control virtual time (∼2–20%).310

More fundamentally, guaranteeing that all MPs have equal opportunity means that system-311

wide progress is gated on the slowest node. This limitation is intrinsic to any fair system.312

Prior work like DBO and CloudEx noted similar limitations when equalizing network delay;313

Cuttlefish incurs the same for execution.314

Despite these trade-offs, in our evaluation on a public cloud and 100 MPs (approximately315

the maximum scale of most existing exchanges [24, 27]), Cuttlefish incurs low overhead in316

both latency and throughput under real-world performance variation, approximating the317

limits of the underlying cloud hardware (Section 10.3). If higher throughput is needed,318

4 A virtual machinery abstraction, not to be confused with physical cloud VMs.

AFT 2025
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better hardware or multi-threaded execution (Appendix A) can help. Also, the observed319

latency is well within the requirements of many major exchanges.5 Regardless, Cuttlefish320

still guarantees fairness and predictability in all cases.321

Trust assumptions and threat model. Moving to a cloud-hosted solution fundamentally322

requires MPs to trust the cloud provider and trading platform to not steal or manipulate323

the MP trading code and execution [17, 19, 24]. Such requirements are typically enforced324

through contracts, log auditing, privacy laws, and regulatory bodies such as the SEC, and325

the same prohibitions apply here. Recent advances in hardware (e.g., Intel SGX [10]) as326

well as efforts in cloud confidential computing [47, 1, 26] could also benefit Cuttlefish by327

providing cryptographic attestation and secure enclaves during both instrumentation and328

execution. An exploration of these mechanisms is out of the scope of this work.329

For the provider’s side of the provider-MP relationship, following prior work [24, 19, 17], we330

assume that all core system components—including release and ordering buffers—are trusted331

and protected against tampering. As we discuss in Sections 6.2 and 8, Cuttlefish’s abstractions332

naturally defend against problematic instructions or program structures. Otherwise, MPs can333

utilize the system in arbitrary ways, including trying to slow down virtual time advancement334

through interaction with the CES and execution engine.335

For all other interactions (e.g., MP-to-MP or to/from malicious third parties), we assume336

secure and exclusive communication channels between MPs and Cuttlefish components337

using standard public cloud features, such as security groups [24, 19] to prohibit outside338

communication with any of these entities. While it is possible that malicious actors may339

attempt to indirectly influence these connections, e.g., through datacenter-level DDoS attacks,340

cloud providers themselves are already quite capable of mitigating, defending against, and341

provisioning for these types of attacks.342

6 MP Algorithm Representation343

This section elaborates on Cuttlefish’s abstractions and platform-agnostic IR, taking a344

top-down approach.345

6.1 Programming Interface346

Recall from Section 2, MP algorithms consist of processing CES data feeds to make trading347

decisions that aim to optimize profit from price disparities, bid-ask spreads, or liquidity348

subsidies. To allow users to easily program MP algorithms, Cuttlefish utilizes a simple349

event-driven programming interface.350

MP handler abstraction. Figure 7 shows a simplified example of how users may express351

trading logic with Cuttlefish’s mp_handler interface.352

An MP’s handlers are invoked serially on each subscribed market data point. Virtual353

time advances on every new invocation (in accordance with R1a) and on every execution of354

an IR instruction (with a fixed virtual time cost per instruction).355

More specifically, for each market data x, the virtual time of MPi is updated according356

to the rule M̃Pi = max(D̃(x), M̃Pi). This involves two scenarios: (1) If the prior invocation357

finishes before D̃(x), Cuttlefish advances M̃Pi to the target virtual time and releases the358

5 A major exchange, IEX, prides itself on fairness with a 700µs latency [27, 24].
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1 #include <cuttlefish_user.h> /* Single include of whitelist APIs */
2 int mp_handler (subscribed_context_t* ctx):
3 if (ctx->price) > 100 then
4 trade_t trade = 1; /* Sell */
5 submit_trade(&trade); /* Just-in-time trade submission */
6 else if (ctx->price) < 10 then
7 trade_t trade = 2; /* Buy */
8 submit_trade(&trade);
9 update_map(0, &ctx->price); /* Save the history price */

10 return 0;

Figure 7 An example MP pseudocode in high-level language using Cuttlefish service APIs,
which includes a narrow interface to a KV store for stateful invocations.

data; and (2) if the MP handler chose to consume more cycles that ends up overshooting359

D̃(x), M̃Pi remains unchanged. MPs can submit trades at any point in this process. Each360

trade’s ordering is determined by the exact virtual time of the associated submit_trade call.361

The cost of each instruction is fixed and public knowledge (for details on the map between362

individual IR instruction types to its virtual time cost, see Section 9).363

eBPF IR. Although any platform-agnostic runtime could serve as a virtual hardware364

substrate, Cuttlefish chooses an IR based on the eBPF VM instruction set. This IR is365

compelling for many reasons: it is simple (a 64-bit RISC register machine), it has a mature366

ecosystem including support for various language frontends, and it is widely supported367

in multiple target architectures including specialized hardware accelerators (e.g., FPGAs,368

smartNICs) [5, 31]. More importantly, the simple eBPF Instruction set architecture (ISA)369

allows us to easily enforce a constrained memory access model and reason about safety by370

verifying MPs’ eBPF bytecode accordingly before execution through static analysis [54, 16, 31].371

We note that using the eBPF IR does not mean that we are using the kernel-based eBPF372

VM. While the kernel-based VM [16] imposes restrictions that limit expressiveness, e.g., loop373

bounds, Cuttlefish does not impose such constraints. Thus, it provides a Turing-complete374

interface [16, 54] for trading strategies, and we show examples of these in Table 4.375

Usability: Users can write their trading programs directly in eBPF bytecode (and will376

likely do so for performance reasons), or they can use more accessible toolchains (such as377

llvm’s eBPF backend) to compile the MP expressed in a high-level language like C to the378

bytecode and then sent (e.g., as an elf file) as input to Cuttlefish.379

Service APIs: To enable user access to Cuttlefish’s trading services, Cuttlefish provides a380

single header file that contains main data structures and a whitelist of shared service APIs.381

These include: (1) primitive service APIs for trade submission and virtual time facilities,382

as well as a runtime context object for accessing real-time market data, current virtual383

time M̃Pi(t), and the release virtual time D̃(x) for the current invocation, (2) a narrow384

interface for KV store interactions (e.g., update, lookup) for stateful invocations, and (3)385

extensible built-in computational helpers like FFT—which users can optionally leverage for386

convenience—although users can also write their own implementations in the MP handler.387

6.2 MP Bytecode Processing Lifecycle388

Figure 8 illustrates the subsequent processing pipeline of MP bytecode: Cuttlefish first389

validates and instruments the bytecode before final JIT compilation to native hardware390

binary for safe and efficient execution.391
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Figure 8 MP bytecode processing workflow.

Validation. Cuttlefish ensures the safety of input bytecode through a validation process392

similar to that of kernel space eBPF VMs [16, 31]. It rejects programs that attempt memory393

interactions beyond the allowed indirect KV store access, such as through dynamic memory394

allocation. Additionally, the use of BPF_CALL instructions is restricted to the predefined set of395

service APIs in Section 6.1, blocking any attempts to invoke unsupported functions through396

illegal opcodes. Further security checks are described in Section 8.397

Note that this step requires that MPs trust the cloud provider and the trading platform398

operator to not tamper with the ordering of trades or MP code; however, as noted by399

prior work, this trust is fundamental to a cloud-hosted paradigm [17, 19, 24]. We discuss400

enforcement mechanisms further in Section 11.401

Memory relocation and service API instantiation. As MP programs operate within a402

constrained memory access environment, Cuttlefish performs memory relocation for those403

requesting access to KV maps. In particular, it dynamically resolves and replaces symbolic404

references in the KV map API’s BPF_CALL instructions with the appropriate memory address405

during eBPF bytecode loading. This indirection process and the dynamically assigned406

addresses are invisible and inaccessible to the MPs.407

Virtual time tracking instrumentation. To track the virtual time efficiently, Cuttlefish408

takes a passive, non-intrusive approach via binary rewriting [4, 59], shown in Figure 9:409

(1) Basic block segmentation: The bytecode is split into basic blocks (BBs)—straight-line410

sequences of instructions without branches—to facilitate batched virtual time increments411

∆vt. In addition to BPF_JMP call sites, trade submission calls also serve as instrumentation412

points for capturing the most recent virtual time as the trade needs to be tagged413

accordingly. For large blocks, Cuttlefish inserts dummy trade submission calls for timely414

updates of virtual time progress of the MP.415

(2) Virtual time increment instruction: Cuttlefish emits native machine code (two instructions416

for x64) at the epilogue of each block to update MPi’s virtual time by addressing the417

memory location storing M̃Pi during JIT translation.418

(3) Offset correction: The instrumentation also updates the offsets for the JMP instructions.419

The absence of indirect jumps in the eBPF assembly simplifies this step.420

Finally, instead of the slower eBPF interpreter, Cuttlefish adapts eBPF JIT translator to421

compile IR bytecode into native binaries (e.g., x86_64). This two-tier compilation ensures422

fair, platform-agnostic virtual time tracking and efficient execution on native hardware.423
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; movabs r11, <vt mem address>
49 BB F0 DE BC 9A 78 56 34 12
; add qword ptr [r11], 8
49 81 03 08 00 00 00

0000000000000000 <mp_handler_i>:
  0: 85 00 00 00 0b 00 00 00 call 11
  1: 7b 0a f8 ff 00 00 00 00 *(u64 *)(r10 - 8) = r0
  2: bf a2 00 00 00 00 00 00 r2 = r10
  3: 07 02 00 00 f8 ff ff ff r2 += -8
  4: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
  6: 85 00 00 00 0a 00 00 00 call 10
  7: bf 01 00 00 00 00 00 00 r1 = r0
  8: 67 01 00 00 20 00 00 00 r1 <<= 32
  9: 77 01 00 00 20 00 00 00 r1 >>= 32
  10: b7 00 00 00 01 00 00 00 r0 = 1
  11: 55 01 01 00 00 00 00 00 if r1 != 0 goto +1 <LBB0_2>
  12: b7 00 00 00 00 00 00 00 r0 = 0

0000000000000068 <LBB0_2>:
  13: 95 00 00 00 00 00 00 00 exit

eBPF asm

M̃Pi += ∆vt

HW asm 

(x64)
{M̃Pi(t)}

BB1

BB2

BB3

BB4

Figure 9 Virtual time update instrumentation.

7 Cuttlefish Execution Runtime424

Cuttlefish features a practical runtime architecture efficiently implementable on modern425

clouds. We describe a single VM’s execution runtime (Figure 10); extending to multiple is426

straightforward.427

Communication with CES. Cuttlefish runtime interfaces with CES via the data dispatcher428

and the trade aggregator, both exchanging data streams over a reliable transport layer.429

Data dispatcher: The dispatcher manages inbound market data, each coming with an430

assigned virtual release time.431

Trade Aggregator: The trade aggregator gathers tuples from MPs, each comprising a432

trade decision y and its virtual submission time S̃(i, y). These tuples are locally sorted433

by submission time, batched, and sent to the OB for global sorting. The aggregator is434

additionally responsible for sending heartbeats to the CES to indicate the latest virtual time435

reached by all local MPs. The OB uses these heartbeats to decide when it can forward the436

trade with the lowest virtual submission time in its buffer to the CES safely (i.e., there are437

no in-flight trades with lower virtual time). This localized handling of sorting and heartbeat438

calculations enhances the CES’s scalability.439

Local execution workflow. Cuttlefish’s runtime allows consolidating multiple MPs into440

multi-core VMs for efficiency. It also maximizes CPU utilization (for execution-throughput)441

and eliminates blocking operations along the data path (for latency). Central to its workflow442

are the worker threads that execute MPs in parallel, each affined to a dedicated CPU core443

and configured to run a loaded MP binary. Interaction with the dispatcher and aggregator is444

streamlined using lock-free, cache-efficient Single-Produce-Single-Consumer (SPSC) rings to445

minimize processing latency.446

The worker threads operate in a busy loop with minimal stalls (e.g., context switching)447

during the execution. It first polls a batch of command items that contain market data from448

the command ring. For each market data x processed by MPi, the worker thread updates449

the virtual time and invokes the binary with the new market data immediately. Each worker450

then runs hardware binaries instrumented for uninterrupted virtual time advancement, as451

outlined in Section 6.2. During execution, MP handlers access the KV store in a thread-safe452

manner and invoke the redirected function that enqueues trades to the ring with a virtual453

submission time of the submit_trade calls.454
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Figure 10 Overview of Cuttlefish’s execution runtime.

External data handling. In addition to supporting internal data feeds from the CES,455

Cuttlefish also accommodates external data sources. These interactions are done through a456

designated gateway (GW) node, as shown in Figure 6, which enforces an additional virtual457

time latency comparable to that of the public Internet.6 Just as with current exchanges,458

we expect that MPs can and will leverage a variety of optimization for these messages,459

e.g., microwave [7, 6] and satellite [25, 52, 29] networks to surpass wireline c limitations,460

and/or employ human oversight to tweak parameters in response to changing conditions or461

unexpected events. Cuttlefish’s goal is only to ensure that the post-GW transmission and462

delivery of the data is fair and predictable. MPs can access the data through the subscribed463

data context input to the handler, just as they do with normal CES data. We detail the464

mechanism in Appendix C.465

8 Virtual Time Control466

So far, we have discussed how the CES broadcasts data and processes aggregated trades467

from MPs in the order of their virtual submission times at the OB. Another key role of the468

CES in Cuttlefish is to assign the virtual release time, D̃(x), tagged to each market data x469

for delivery by runtime engines. Intuitively, this virtual time assignment process resembles470

congestion control but concerns regulating the rate of virtual time progression rather than471

bytes on a wire.472

Objectives. Cuttlefish’s virtual time control targets two goals:473

1. Minimizing latency (L(vt) = ÕB
−1

(vt) − C̃ES
−1

(vt)), defined as the time difference474

between the CES releasing market data with virtual time vt (C̃ES
−1

(vt) ) and when the475

OB hears from all MPs until vt (ÕB
−1

(vt)). In simple terms, latency here refers to the476

minimum time between when market data is produced at the CES and when a trade477

from an MP using this data can be executed. This definition extends previous end-to-end478

latency concepts [24] for trades ordered per virtual time.479

2. Maximizing overlay execution-throughput θ = ∆vt/∆t. This represents the rate of virtual480

time advancement at the CES or, equivalently, the number of IR instruction cycles481

available to each MP (per unit of wall-clock time) to process the incoming market data.482

6 A modern commodity switch can provide Tbps capacity [50, 51], which is sufficient to handle typical
quantities of external data to exchanges. The GW can scale beyond a single node with a shared clock.
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Figure 11 Examples when the latency gets impacted by environmental conditions. For the
purpose of illustration, the diagram simplifies the discrete steps on events of market data release,
invocation, and trade response receipt.

Note that neither of these goals affects correctness, fairness, or predictability. Rather,483

a good virtual time assignment is important for purely performance reasons. Specifically,484

virtual time assignment that is too slow can limit the execution-throughput of the exchange,485

even when the underlying MPs are capable of supporting a higher virtual-time throughput.486

Conversely, virtual time assignment that is too fast can increase worst-case L(vt) due to487

MPs that are lagging behind.488

Methodology. As Cuttlefish seeks to guarantee fairness across all MPs, stragglers (depicted489

in Figure 11) can influence virtual time control. Stragglers can arise for two reasons.490

First, increased network latencies delay market data delivery to MPs, slowing virtual time491

progression. For example, in Figure 11a, a spike in latency from CES to an MP results in492

latency growth from L(vt1) to L(vt2). In reality, network latencies for both paths (CES-493

to-MP or MP-to-OB) can affect L(vt). Virtual time assignment should try to mitigate the494

effect of such spikes. Second, execution slowdowns at an MP (e.g., due to change in processor495

frequency) can reduce the rate of virtual time progression, cumulatively affecting latencies if496

these slowdowns are prolonged. Figure 11b illustrates a simplified example of this effect.497

To account for them, Cuttlefish presents an easy-to-reason-about approach by coupling498

its virtual time assignment with real-time evolution. We detail the assignment algorithm499

in Appendix B. The key idea of our algorithm is similar to that of BBR congestion control500

protocol [8]. In particular, Cuttlefish measures τi, which is the estimated computational501

capability of MPi (i.e., how many virtual cycles can the executing engine of MPi process502

per unit wall-clock time). We then control the virtual time progression rate based on the503

bottleneck compute capacity, min(τi). Similar to BBR, Cuttlefish applys a window cap on504

the max ‘in-flight’ virtual time as a guardrail to prevent excessive virtual time assignment in505

worst-case scenarios.506

Failure handling. As described, any MP failure will halt the progress of virtual time. Cut-507

tlefish incorporates timeouts at the CES to detect such events.7 Because of the determinism508

of virtual time, with periodic check-pointing of the MP state, the CES can restart and/or509

relocate such failed components.510

We further note that eBPF uses predefined key-value stores for managing state, which511

makes identifying state and replicating it straightforward. Cuttlefish is also amenable to512

replication of the MPs themselves. This approach can potentially mask the impact of failures513

on virtual time progression (§10.4).514

7 Spurious timeouts may degrade performance, but will not affect fairness.
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An alternate choice would be to remove the failed MP from the VTC assignment and515

trade-forwarding logic, and then do a clean restart. The failed MP incurs unfairness in this516

case. In some abstract sense, Cuttlefish is subject to a CAP-theorem-like limitation: here,517

the choice is between fairness and progression of virtual time progress in case of failures.518

CES failure: CES fault tolerance is beyond the scope of this work; to the best of our519

knowledge, existing CESes also rely on state replication (e.g., of the order book) for fault520

tolerance.521

Security. While MP code will run alongside other MPs and Cuttlefish components, Cuttlefish522

benefits greatly from its IR abstraction, basis in virtual time, and validation process (Sec-523

tion 6.2). Potentially problematic instructions or program structures (e.g., attempts to524

access system memory or cycle counters for creating side channels) are explicitly disallowed.525

Communication is similarly restricted. As mentioned in Section 5, Cuttlefish adopts a model526

that forbids MP-to-MP communication similar to prior proposals [24, 19]. However, whereas527

prior work punts on enforcement, Cuttlefish’s constrained runtime provides natural avenues528

to guarantee it.529

Within the confines of the system, the main potential avenue of attack for MPs is the530

manipulation of virtual time. Note that MPs with fewer instructions per invocation do not531

affect system-wide progress, as virtual time advances independently. Instead, MPs might try532

to deliberately slow their virtual time advancement speed for a chance to influence min(τi)533

(if they are the slowest MP in the system) by picking sequences of instructions that have the534

largest ratio of real-time cost to virtual-time cost. Conversely, if they are already the slowest535

MP, they could speed up to try to accelerate virtual time advancement. Within Cuttlefish,536

there is no advantage to manipulating the advancement speed; instead, differences only arise537

in interactions with external communication and events. We note that the impact is limited:538

Cuttlefish’s GW ensures that external coordination is inefficient (Section 7) and the extent of539

manipulation is constrained to the gap between the ‘slowest’ virtual program and the second540

slowest MP. In the end, however, the critical guarantee that Cuttlefish provides is that any541

variability in virtual time advancement speed is experienced equally by all MPs.542

9 Implementation543

To demonstrate Cuttlefish’s practicality, we developed and ran a prototype on standard544

public cloud VMs [44].545

Processing MP handler programs. Cuttlefish supports the end-to-end workflow for MP546

handlers described in Section 6, exposing a single-header interface for Cuttlefish’s virtual547

time services. For verified eBPF bytecodes provided by users, Cuttlefish embeds virtual548

time tracking transparently through binary writing, while achieving high performance by549

leveraging the existing eBPF JIT compiler to emit native code [31].550

Virtual time cost of instructions. By default, Cuttlefish assigns the virtual time for eBPF551

instructions based on the equivalent hardware instructions on standard CPU models (e.g.,552

x86_64) and leveraging previous studies that have extensively quantified their costs per553

machine cycles or reciprocal throughput in modern hardware architecture [14]. For example,554

BPF_ADD is assigned one virtual time unit, with other operations, including handler invocation555

and BPF_CALL instructions for built-in service APIs such as the access to the KV store, scaled556

accordingly. In Cuttlefish, the relatively small eBPF instruction set [30] simplifies the process.557
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Figure 12 Cuttlefish guarantees 100% fairness ratio, whereas FIFO and RT-based ordering can
only approximate even when MPb spends non-negligible number of instructions more than MPa.

While actual instruction cycle times (e.g., memory accesses) can vary in wall-clock time558

due to microarchitectural effects such as caching, these variances are abstracted away in559

the virtual time domain. The idea behind such an assignment is to, as much as possible,560

reduce the dependency of τ on the IR instructions used by the MP in its code. However,561

exchanges can customize their cost model according to their needs—as long as the models562

are transparent, the system is fair and predictable.563

Supporting efficient execution in virtual time. Cuttlefish employs a reliable, message-based564

transport [43] for its dispatcher and trade aggregator thread, interfacing with the CES/OB.565

Worker threads are affined to dedicated cores and are responsible for invoking MP handlers.566

To facilitate communication between workers and the data dispatcher, Cuttlefish uses a567

cache-efficient, lock-free Single Producer/Single Consumer circular buffer implementation to568

instantiate the market and trade rings respectively as detailed in Section 7.569

10 Evaluation570

10.1 Unfairness in the Cloud571

Ordering mechanisms. In addition to Cuttlefish, we examine:572

Response Time (RT) based ordering, which ranks trades by MP processing time. Since573

CloudEx and DBO either require high-resolution clock synchronization or SmartNIC574

support—hard to replicate in our environment—we use (1) as a proxy to evaluate behaviors575

(potential execution unfairness) of CloudEx under perfect network communication fairness576

and that of DBO’s logical clock based on response time. Under identical execution577

conditions, RT-based ordering should yield 100% fairness ratio.578

FIFO ordering, which processes trades by OB arrival time. Under ideal network and579

execution conditions, FIFO should also achieve 100% fairness.580

Setup. We consider two MPs. MPb executes N additional primitive IR instructions than581

MPa, with all other aspects being identical. In theory, an identical network and execution582

environment must always prioritize the trades of MPa over those of MPb triggered by the583

same market data. To quantify fairness, we define fairness ratio as the fraction of MPa trades584

were (correctly) ordered ahead of corresponding trades from MPb.585

We run experiments on Azure, with one VM operating as CES to generate market data586

messages at ≈100 µs intervals. We examine two scenarios: (a) MPa and MPb run on identical587

VMs with Intel(R) Xeon(R) Platinum 8272CL CPU @ 2.60GHz; (b) MPb uses Intel(R) Xeon(R)588

Platinum 8272CL CPU @ 2.60GHz while MPa running on a different CPU Intel(R) Xeon(R) CPU589
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Latency (µs)
avg. p50 p90 p99 p99.9

MaxRTT 52.04 47.74 49.95 55.85 144.2
Cuttlefish 54.19 50.82 53.49 68.46 166.3

Table 2 L(vt) for 100 MPs: Cuttlefish achieves θ = 3279M vt/s with avg. τmin = 3702M vt/s.

E5-2673 v4 @ 2.30GHz. In approach (2), we use lightweight, high-resolution rdtsc counters—590

leveraging constant tsc support across modern processor cores—to measure CPU time at fine591

granularity and piggyback the measurement with the data for OB ordering. A caveat of this592

experiment is that the fairness ratio for (1) and (2) can be impacted by the specifics of how593

the MP algorithm is executed. To reduce this impact, we execute the algorithm using the594

Cuttlefish runtime environment, which uses strategies like core pinning, CPU isolation, and595

DPDK to minimize the impact of the OS on execution and network. Further and alternative596

optimizations (e.g., IPU-based network offload) could further reduce this impact, though597

other variability would still remain.598

Observation. Figure 12a shows the fairness ratios of different ordering mechanisms when599

two MPs operate on the same type of VMs. In this case, FIFO ordering exhibits significant600

unfairness as the VM of MPa experiences a higher RTT compared to that of MPb. When601

MPb executes N = 10000 more instructions than MPa per invocation, the fairness ratio602

only improves to 78.8%. On the other hand, RT-based ordering shows resilience to network603

latency disparities. Nevertheless, it incurs about 48% unfairness for N = 1, attributable to604

execution time variances. Despite the mitigation effect of increasing N , RT-based ordering605

still incurs 0.18% unfairness rate, even at N = 10000.606

Figure 12b presents a different scenario (b) where MPa operates on a VM with a slower607

processor and significantly higher RTT from the CES. FIFO’s unfairness remains pronounced608

at higher N values. RT-based ordering, in turn, experiences a substantially reduced fairness609

ratio due to the disparity in processor frequencies. E.g., with N = 1 or N = 100, RT-based610

ordering’s fairness ratio drops below 5%. Throughout these scenarios, Cuttlefish consistently611

maintains deterministic and 100% fairness ratio. Cuttlefish’s fairness guarantee by design612

remains unaffected by variations in underlying computational power and network latency.613

10.2 Performance of Cuttlefish614

We evaluate the performance cost of Cuttlefish for fairness, focusing on end-to-end latency615

L(vt) and execution throughput θ (Section 8). We run Cuttlefish in the Azure cloud616

environment using Standard_F16s_v2 instances. Our setup includes a CES VM with a617

ConnectX-4 NIC and Intel Xeon Platinum 8272CL CPU @ 2.60GHz. We use 10 VMs to host618

100 MPs and another for the gateway, all in the same VNet/region. The CES broadcasts619

market data at ≈ 100µs intervals.620

We also compare the performance of Cuttlefish against its limits (max network latency and621

minimum compute capability τmin across MPs). To ensure a fair comparison, we measured622

both network latencies of messages and the computational capabilities of the cores for each623

MP’s core under identical environmental conditions. We record timestamps when market624

data arrive at the VM (t1) and when the corresponding trade response leaves the VM (t2), as625

well as when they leave (t0) and arrive at the CES machine (t3). We then calculate the RTT626

per VM based on (t3 − t0) − (t2 − t1) without needing high-resolution clock synchronization.627
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Latency (µs)
avg. p50 p90 p99 p99.9

MaxRTT 112.0 101.0 113.7 640.3 2984
Cuttlefish 115.5 104.2 116.8 674.5 2996

Table 3 Under higher RTT and background noise: avg. τmin = 2488M vt/s and θ = 2373M vt/s.

Abbreviation Algorithm
bbs Bollinger Bands Strategy
bmm Basic Market Making
ema EMA Mean Reversion
macd Moving Average Convergence Divergence
macs Moving Average Crossover Strategy
mmacs Multiple Moving Average Crossover Strategy
obv On Balance Volume (OBV) + EMA
psar Parabolic SAR
rsi Relative Strength Index
sma SMA Mean Reversion

Table 4 Example textbook algorithmic trading technical analysis indicators that we have expressed
with Cuttlefish’s MP handlers.

MaxRTT across VMs is the highest latency across VMs corresponding to the same market628

data release. Similarly, we measure τmin using rdtsc counters.629

Table 2 compares Cuttlefish’s end-to-end latencies against the MaxRTT across various630

percentiles. The observed latency discrepancies are attributed to the data flow operations631

of Cuttlefish, including ring management, batching, and virtual time assignment. Despite632

trading off some latency for fairness, Cuttlefish shows a commendably low p99.9 tail latency633

within a typical public cloud setting, in part due to minimal barriers in data release and634

MP execution. Further, Cuttlefish exhibits a execution-throughput of 3279 M vt/s, which635

is close to τmin = 3702M vt/s.8 In a separate experimental setup, shown in Table 3, we636

incorporated a VM with a comparatively slower processor at 2.3 GHz frequency and a higher637

RTT. Cuttlefish adapts well, incurring a modest latency overhead and approximating latency638

bounds even under stressed conditions.639

10.3 Instrumentation Cost640

Section 10.2 evaluates the performance of Cuttlefish against latency and throughput limits,641

showing the end-to-end costs associated with online operations of the virtual time overlay.642

This subsection investigates the static overhead due to virtual time tracking instrumentation.643

In particular, we evaluate the impact of this instrumentation on compute capacity.644

To quantify the cost, we conducted a stress test under a worst-case scenario: invoking645

the handler at maximum rate through market data in-memory. Our tests covered various646

programs shown in Table 4, each with different computational logic and memory access647

patterns. While these algorithms are simple versions of what is actually used in practice,648

they demonstrate that, as expected, the Turing completeness of our language is expressive649

enough to support a wide range of trading algorithms, such as those for statistical arbitrage650

or directional trading. Interestingly, the interface is also sufficiently intuitive to allow GPT-4651

to generate the core algorithmic trading programs that are fully compatible.652

8 This number should not be directly compared with native cycles/s on a superscalar processor [14, 3].
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As shown in Figure 13, the tracking instructions incur 2–20% overhead in throughput as653

compared to the vanilla executable, depending on the basic block and branch patterns in654

the program. In particular, those with thinner loop blocks exhibited a higher virtual time655

tracking cost. Note the evaluations involve raw algorithms. Cuttlefish can also mitigate the656

virtual time tracking overhead by providing common computational blocks (often involving657

intensive loops) as a BPF_CALL helper, thus reducing the virtual time tracking breakpoints.658

10.4 Exploiting Determinism in Virtual Time For Fault Tolerance659

To speed up recovery in the event of failures (§8), Cuttlefish can replicate the execution660

of an MP handler across different machines by exploiting the deterministic virtual time661

progression across replicas. A physical replica gets integrated as usual with Cuttlefish’s662

virtual time overlay, however, the OB processing the trade that arrives earliest in real-time663

across the replicas to advance the virtual time for the logical MP. This helps improving the664

fault-tolerance of Cuttlefish. Figure 14 illustrates a case where Cuttlefish replicates a single665

MP across 2 different VMs. When a replica MP(1) fails (by killing the worker thread), the666

virtual time of the logical MP still proceeds as the other replicas MP(2) keeps updating its667

virtual time. With Cuttlefish, the service provider may trade the cost of replication (and the668

associated traffic overhead) for lower latency and reliability. Beyond fault tolerance, such669

replication can also help reduce the latency of Cuttlefish [11].670

11 Discussion and Future Work671

Cuttlefish explores an admittedly extreme design point, but one that provides strong guaran-672

tees, presents an attractive and general interface, and is amenable to efficient implementation.673

It also happens to fit with existing calls from the financial community and SEC to reduce the674

barrier to entry for retail traders [36, 6, 7]. The entrenchment of existing exchange architec-675

tures means that it is unlikely Cuttlefish will supplant traditional exchanges; however, only676

time can tell if its tradeoffs allow it to carve out a small, sustainable segment of the market.677

Even so, as computer scientists, we argue that exploring the challenges and opportunities of678

this design is worthwhile. This section briefly discuss how Cuttlefish potentially fits into the679

broader cloud/financial ecosystem.680

Heterogenous hardware backends. While Cuttlefish currently focuses on a CPU-based681

interface and runs on common x64-based cloud VMs, the choice of eBPF IR allows operators682

to benefit from a broader ecosystem, including mature toolchains that compile eBPF bytecode683

to ARM64 [31] or offload it to accelerators such as FPGAs [5, 15].684
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In the extreme case, virtual time is flexible enough to support differentiated instance685

types and price points. For example, clouds could charge more money for more memory or686

faster processing (via scaled-up virtual time throughput); they could also sell instances with,687

for example, 8 CPU cores and 4 FPGAs (by leveraging alternative eBPF backends and the688

techniques in Appendix A). While this type of support is well out of scope for this paper,689

one could imagine an IaaS abstraction as rich as traditional cloud offerings, but where each690

compute device is metered using virtual time.691

Interaction with the broader market ecosystem. Securities represent and interact with692

global assets, and Cuttlefish is only designed to mediate the low-latency algorithmic trading693

API of the specific exchanges that adopt it; financial activity can occur outside the exchange694

and even through the slower alternative APIs of an adopting exchange.695

In all cases, Cuttlefish eliminates variability and bias between MPs in the exchange.696

While it potentially also slows them compared to the rest of the world, for securities listed697

solely at the adopting exchange, Cuttlefish will still be the fastest way to issue buy/sell698

orders (Section 7). Securities cross-listed at multiple exchanges (Cuttlefish or otherwise) may699

present opportunities for arbitrage, but that is no different than today, and crucially, the700

Cuttlefish-enabled cloud platform will never be the determiner of which MP wins the race.701

As others have noted [48, 24, 7, 19, 40], this prioritization—fairness over pure latency—is a702

desirable one.703

Scalable deployment. Our prototype currently runs with 100 MPs, with the CES broad-704

casting market data at approximately 100µs intervals. In this setup, the primary bottleneck705

lies in the CES, which must serialize inbound data ingestion and outbound market data706

dissemination. One can mitigate bottlenecks with faster processors and high-bandwidth707

NICs for the CES, which translate to scalability directly. ‘Beefier’ VM SKUs on the MP708

side can also help, as Cuttlefish’s execution runtime is also designed to scale up with the709

number of cores, which allows greater MP co-location per machine. To that end, modern710

cloud providers can offer ‘beefy’ VM SKUs with over 100 vCPUs [46].711

As the number of MPs increases further, components like OB can be scaled out using712

a distributed architecture: multiple OB instances can be deployed, each responsible for a713

disjoint subset of RBs (e.g., sharded by trading symbol). These distributed OBs can safely714

dequeue and batch pending trades, forwarding them to a final merge layer colocated with715

the matching engine (ME) for order finalization [24].716

In parallel, Cuttlefish can benefit from ongoing advances in cloud networking infrastructure.717

Techniques such as traffic admission control and prioritization [21, 60] can reduce or bound718

end-to-end latencies. Additionally, scalable multicast engines [26, 48, 18] can help scale CES’s719

market data dissemination, enabling high-rate, low-latency delivery to a larger number of720

participants.721

12 Conclusion722

This paper presents Cuttlefish, a fair-by-design execution environment for low-latency al-723

gorithmic trading that can run on commercial public clouds. With its virtual time overlay,724

Cuttlefish abstracts out the variances in the underlying communication and computation725

hardware, while maintaining low latency and high execution throughput.726
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A Multi-threaded Virtual Time896

Cuttlefish can be easily extended to a multi-threaded interface, e.g., to enable the use of897

heterogeneous hardware or simply to increase the virtual time throughput of the platform.898

In parallel execution, each user provides an MP program with multiple handler functions899

to execute concurrently. The runtime workflow remains the same as described in Section 7,900

where the dispatcher releases the market data at the same virtual time, preserving the901

requirements of R1. At any virtual time point, a handler function invokes the built-in service902

API, specifying a target thread ID and the data bytes for inter-thread communication.903

If cross-thread coordination is required, we can extend Cuttlefish to deterministic multi-904

threaded execution by again borrowing inspiration from simulation/emulation parallelization.905

In particular, we can split thread execution into discrete epochs, each spanning V T virtual906

time cycles. Threads can schedule inter-thread communication, where data sent during907

epoch k are batched and released at the start of epoch k + 2. Thus, before advancing epoch908

k + 2, each thread must wait for the others to complete epoch k. This one-epoch offset is909

to minimize potential latency caused by the loose synchronization barrier among threads.910

Increasing V T will also reduce the chances of synchronization stalls for faster threads.911

While this inter-thread communication introduces a virtual time delay in data forwarding912

(which mirrors real-time delays in any such communication), it ensures computation fairness913

as outlined in R2. As a result, for a given MP, trade submission times remain deterministic914

in the virtual time domain, regardless of variations in the runtime execution of individual915

threads.916

B Virtual Time Assignment917

CES updates its virtual time C̃ES(t) when it assigns the virtual delivery time D̃(x) for each918

market data to maintain a stable control loop, accounting for fluctuations in network latency919

and compute capacity:920

D̃(x) = min(D̃(x − 1) + min(τi)(G(x) − G(x − 1))
1 + ε

, ÕB(t) + Ω) (1)921

where τi is the estimated computational capability of MPi, ε (> 0) is a slack parameter and922

Ω serves as a cap on the virtual time increase per current ÕB(t), where t = G(x).923
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Figure 15 Rate of recovery after a network latency spike is governed by the slack parameter ε.

Measuring τi: Cuttlefish periodically profiles τi for the executing environment of MPi.924

min(τi) represents the compute capacity of the bottleneck MP. To minimize noise, it uses a925

low-pass filter such as a moving average.926

Role of ε: The idea behind ε is to keep the virtual time assignment rate ( D̃(x)−D̃(x−1)
G(x)−G(x−1) )927

just under the bottleneck compute capacity (τi). Upon a network latency spike, the slack928

can help MPs straggling in virtual time progression to catch up with the CES. The rate of929

recovery depends on the value of ε. Figure 15 illustrates this effect. Selecting ε involves930

a trade-off between reducing latency and maintaining high compute-throughput. We use931

ε = 0.05 in our experiments.932

Role of Ω: This cap guard against potential overestimation of min(τi) In particular,933

Cuttlefish enforces a cap of ÕB(t) + Ω to bound the maximum amount of ‘in-flight’ virtual934

time. The cap is similar to the congestion window cap in network congestion control protocols.935

Perception of virtual time assignment for MPs. How does virtual time assignment correlate936

with MP behaviors? In real-time trading, MPs react to varying market data arrival, striving937

to minimize processing time based on the latest available information. Similar incentives for938

rapid response remain in Cuttlefish’s virtual time environment.939

Unlike traditional trading setups, MPs respond based on virtual time. To facilitate MPs940

favoring in-time response to market data, Cuttlefish provides access to several virtual time941

primitives. These include the current virtual time (M̃Pi(t)), the release time of the triggering942

market data (D̃(x)), and a sleep(vt) primitive service API to perform NOPs for a specific943

number of virtual cycles (Section 6.1). This allows MPs to tailor their response strategies, for944

example, by comparing M̃Pi(t) − D̃(x) to adjust their computation for the current invocation.945

C External Data Handling946

As mentioned in Section 7, Cuttlefish ensures that the post-GW transmission and delivery of947

the data is fair and predictable. Cuttlefish supports two types of external data streams:948

Public data feeds. MPs can incorporate external, symmetric data in their algorithms, such949

as news or market data feeds from other exchanges. Handling these feeds is straightforward:950

the CES simply integrates the public data stream from the GW with the internal market951

data when multicasting it to MPs, which subscribe to and deliver the data fairly.952

Private event triggers. Cuttlefish’s support of private external messages involve two steps:953
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Gateway processing: The GW sends incoming packets to the corresponding MPs with a954

per-MP admission rate limit of ρ (to prevent the network from being overwhelmed). It955

also maintains a loosely synchronized clock with CES and tags each data packet with the956

admission timestamp tr, which will be used in the subsequent decision on virtual release957

time.958

Dispatcher delivery: On receiving the private data for MPi, the data dispatcher buffers959

and delivers it at the virtual time C̃ES(tr + ∆t). When there is no external data to send,960

the GW will still periodically send to each runtime engine a heartbeat packet with its tr.961

This allows the runtime to release the CES data and advance the virtual time safely by962

assuring no external private data that might arrive by the scheduled virtual release time.963

Thus, a larger ∆t decreases the chances of introducing additional latencies to the CES964

data delivery9.965

D Other Related Work966

Cloud-hosted exchanges. As detailed in Section 2, others have looked at the fairness of967

cloud-hosted exchanges. Like other works on cloud-hosted exchanges [17, 24, 18], we seek to968

retain the liquidity incentives of current markets and do not wish to modify the matching969

engine. Unlike these approaches, Cuttlefish takes a holistic strategy that not only bridges970

the gap to a complete guarantee of communication fairness (without assumptions about971

the trading model or hardware support), but also extends the fairness guarantee to the972

underlying computation.973

Other approaches to fair exchanges. Our goals are explicitly distinct from previous work974

in the financial community. For instance, Frequent Batch Auctions (FBA) [7] proposes to975

batch deliver and process market data at a substantially lower frequency of (1 batch/100ms).976

LIBRA [40] employs a stochastic (non-deterministic) notion of communication fairness for977

financial exchanges. These strategies modify the existing first-come first-served (FCFS)978

strategy used by matching engines today; there is a lot of debate on the efficacy and979

properties of alternative market design choices.980

9 Like ρ, ∆t should be also set by the exchange. As the latency of these messages is typically larger
overall [28], we configure ∆t = 1ms by default, which is conservative enough for a negligible latency
impact on CES data delivery while bounding the relative latency dilation on the external data.
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