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Abstract. The congestion game is a powerful model that encompasses
a range of engineering systems such as traffic networks and resource
allocation. It describes the behavior of a group of agents who share a
common set of F facilities and take actions as subsets of k facilities. In
this work, we study the online formulation of congestion games, where
agents participate in the game repeatedly and observe feedback with
randomness. We note that this paper is the result of the merging of [24]
arXiv:2306.13673 and [19] arXiv:2401.09628. In [24], we propose Conges-
tEXP, a decentralized algorithm that is based on the classic exponential
weights method. By maintaining weights on the facility level, the regret
bound of CongestEXP avoids the exponential dependence on the size
of possible facility sets, i.e.,

(

F
k

)

≈ F k, and scales only linearly with F .
Specifically, we show that CongestEXP attains a regret upper bound of
O(kF

√
T ) for every individual player, where T is the time horizon. If a

strict Nash equilibrium exists, we show that CongestEXP can converge
to the strict Nash policy almost exponentially fast in O(F exp(−t1−α)),
where t is the number of iterations and α ∈ (1/2, 1). In [19], we present
an online learning algorithm in the bandit feedback model that, once
adopted by all agents of a congestion game, results in game-dynamics
that converge to an ǫ-approximate Nash Equilibrium in a polynomial
number of rounds with respect to 1/ǫ, the number of players and the
number of available resources. The proposed algorithm also guarantees
sublinear regret to any agent adopting it. As a result, our work answers
an open question from [17] and extends the recent results of [37] to the
bandit feedback model.

Keywords: Congestion Game · Convergence to Nash equilibrium · On-
line Learning.
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1 Introduction

Congestion games are a class of general-sum games that can be used to describe
the behavior of agents who share a common set of facilities (resources) [6]. In
these games, each player chooses a combination of facilities, and popular facilities
will become congested, yielding a lower utility for the players who choose them.
Thus, players are incentivized to avoid congestion by choosing combinations that
are less popular among the other players. A range of real-world scenarios can be
captured by the congestion game model, such as traffic flow, data routing, and
wireless communication networks [44,14,45].

In the model of the congestion game, the Nash equilibrium is a popular
concept to describe the behavior of selfish players and the dynamics induced by
decentralized algorithms. It describes a stable state of the game where no player
can improve their utility by unilaterally changing their choice of actions. When
a unique Nash equilibrium exists in the congestion game, it can be a reference
point for players to coordinate to avoid suboptimal outcomes. Beyond the Nash
equilibrium, social welfare is a significant metric, capturing the overall utility or
well-being of all players involved. It serves as a crucial benchmark, enabling the
evaluation of the efficiency loss incurred when transitioning from centralized to
decentralized algorithms.

In the classic one-shot congestion game setting, the Nash equilibrium and the
loss of efficiency due to decentralized dynamics have been well studied [42,40].
However, these results do not provide insights into how players arrive at the
equilibrium. This motivates the study of congestion games in an online learning
framework, where players participate in the game repeatedly at every time step.
This framework better models many realistic scenarios, such as the traffic con-
gestion problem in urban areas. In this repeated congestion game setting, players
such as drivers in a congested city must choose between different routes to reach
their destinations every day. As more drivers use a particular route, the conges-
tion on that route increases, leading to higher travel times and lower utility. In
this scenario, players can update their desired route every day to optimize their
utility, but the observed utility by each player may be subject to randomness
due to uncertainty in the actual congestion situation (e.g., the influence of the
weather). All these make it suitable to model the congestion game in an online
learning framework.

This paper is the merged version of [19] and [24]. The rest of the paper is
summarized as follows. We will first summarize the setting and the contribution
of each paper, then we will focus mainly on the results presented in [24]. The
full results and proofs of [19] can be found at arXiv:2401.09628.

1.1 Results and Techniques in [19]

Despite the long interest in bandit online learning algorithms for congestion
games, the convergence to Nash Equilibrium of such bandit no-regret learning
algorithms is not as well explored. The broad question under consideration here
is whether or not the uncoordinated selfish behavior of agents can converge to

https://arxiv.org/abs/2401.09628
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equilibrium. To the best of our knowledge [17] were the first to provide an update
rule (performing under bandit feedback) that once adopted by all agents of an
atomic congestion game, the resulting strategies converge to an ǫ-approximate
Nash Equilibrium with rate polynomial in n, m and 1/ǫ. However, their method
does not guarantee the no-regret property. As a result, [17] asked the following
question:

Is there a no-regret algorithm, in the bandit feedback model, that once adopted
by all agents, results in strategies that converge to an ǫ-approximate Nash

Equilibrium in poly(n,m, 1/ǫ) rounds?

The main contribution of our work consists in providing a positive answer to
the open question of [17]. More precisely, we provide an online learning algorithm,
called Online Gradient Descent with Caratheodory Exploration (BGD− CE),
that simultaneously provides both regret guarantees and convergence to Nash
Equilibrium.

Informal Theorem There exists an online learning algorithm (BGD− CE)
that performs under bandit feedback and guarantees O(m2.8T 4/5) regret to any
agent that adopts it. Moreover if all agent adopt BGD− CE, then the resulting
strategies converge to an ǫ-Nash Equilibrium after O(n13.5m13/ǫ5) steps.

Our proposed online learning algorithm additionally improves the conver-
gence rate of the algorithm of [17].

Informal Theorem For Network Congestion games in Acyclic Directed
Graphs (DAGs), Online Gradient Descent with Caratheodory Exploration, can
be implemented in polynomial time.

The above result follows from strategy spaces admitting polynomial size de-
scriptions in this setting. We further exploit the specific structure of DAGs to
compute exact 1-barycentric-spanners, which as noted in [5,9] are not trivial to
obtain for DAGs. We underline that exact spanners are not necessary, and the
approximate method of [5] is perfectly suitable. However, our approach is simple,
more efficient, and can be of independent interest.

Our Techniques The fundamental difficulty in designing no-regret online
learning algorithms under bandit feedback is to guarantee that each resource is
sufficiently explored. Unfortunately, standard bandit algorithms such as EXP3
[3] result in regret bounds of the form O(2m/2

√
T ), that scale exponentially with

respect to m. However, a long line of research in combinatorial bandits has pro-
duced algorithms with a regret polynomially dependent on m [5,20,27,7,9,30,34,2].
These algorithms, in order to overcome the exploration problem, use various
techniques that can roughly be categorized two camps, simultaneous exploration
versus alternating explore-exploit, as described by [1]. However, to the best of
our knowledge, none of these algorithms have been shown to converge to NE in
congestion games once adopted by all agents.

Our online learning algorithm, guaranteeing both no-regret and convergence
to equilibrium, is based on combining Online Gradient Descent [46] with a novel
exploration scheme, much like [25]. Our exploration strategy is based on coupling
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the notion of barycentric spanners [5] with the notion of Bounded-Away Poly-
topes proposed by [37] for the semi-bandit case. More precisely, [37] introduced
the notion of µ-Bounded Away Polytope which corresponds to the description
polytope of the strategy space (convex hull of all pure strategies) with the addi-
tional constraint that each resource is selected with probability at least µ > 0.
Projecting on this polytope ensures that the variance of the unobserved cost
estimators remains bounded. In order to capture bandit estimators, we extend
the notion of µ-Bounded Away Polytope to denote the subset of the description
polytope for which each point admits a decomposition with least µ weight on a
pre-selected barycentric spanner B.

This technique of projecting on µ-Bounded polytopes closely ressembles the
mixing strategies employed in online learning schemes that have alternating
explore-exploit rounds. In those strategies, a fixed measure is added to bias the
algorithm’s chosen strategy. The projection on µ-Bounded polytopes, however,
scales the point before adding a bias, and, in some rounds, does not alter the
point. It is therefore a mix of simultaneous and alternating exploration, depend-
ing on the round.

Finally, in order to provide a polynomial-time implementation of OGD− CE
for Network Congestion Games on Directed Acyclic Graphs we need exploit its
well disposed combinatorial structure. In [19], we propose a novel construction
of barycentric spanners for DAGs that outputs a 1-barycentric spanner in poly-
nomial time and yields an efficient selfish routing scheme that converges to an
equilibrium.

1.2 Results and Techniques in [24]

While there have been various decentralized algorithms that can attain the Nash
equilibria efficiently for general online games, they can suffer from a linear depen-
dency on the number of actions when directly applied to the congestion game
[21,43,13,29,22,26], which is exponential with k, F . On the other hand, algo-
rithms designed specifically for congestion games either only converge to Nash
equilibria asymptotically [31,32,36], on average [18], on best-iterate [38] or re-
quire additional assumptions on the structure of the game [10,11]. Moreover, to
the best of our knowledge, there is no algorithm that can simultaneously guar-
antee both low regret and fast convergence to Nash equilibrium for each player.
While some online learning algorithms, such as exponential weights, have been
shown to converge faster than others due to the specific choice of regulariza-
tion [26], previous regret results indicate that their guarantees still rely on the
exponentially large number of actions, due to their specific form of updates (ex-
ponential weighting) [15].

In this paper, we study the online congestion game with semi-bandit and full
information feedback. We propose a decentralized algorithm that modifies the
celebrated exponential weights algorithm, which can be utilized by each player
without additional information about other players’ utility. From the individual
player’s perspective, we show that the algorithm guarantees sublinear individ-
ual regret, with respect to the best action in hindsight when holding the other
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Table 1: Summary of previous results. Here F denotes the number of facilities, T
denotes the time horizon, and k is the number of facilities in an action. The semi-
bandit feedback means that the learner can only observe the reward associated
with the facility chosen, and full information refers to the case where the rewards
associated with all facilities are revealed. Best iterate convergence means that
the algorithm guarantees the existence of an iterate that meets the criteria of a
Nash equilibrium. On the other hand, the last iterate convergence indicates that
the final output of the algorithm constitutes a Nash equilibrium.

Nash convergence type Convergence to Nash Regret

[10] Last iterate
Asymptotic
Semi-bandit

None

[18] Best iterate
O(F 1.5T−1/6)
Semi-bandit

None

[38] Best iterate
O
(

F 1.4T−1/5
)

Semi-bandit

O
(

F 2T 4/5
)

Semi-bandit

Ours Last iterate
O
(

F exp(−T 1−α)
)

, α ∈ (1/2, 1)
Full-information

O
(

kF
√
T
)

Semi-bandit

player’s strategy fixed. We remark that the regret is also only linear with respect
to the number of facilities. As a result of this, we show that the optimal social
welfare can be efficiently approximated, up to an error that is only linear with
respect to the number of facilities. When a strict Nash equilibrium exists for the
congestion game, we also prove that our algorithm is capable of converging to
the strict Nash equilibrium fast, with an almost exponentially fast rate that is
only linear with respect to the number of facilities.

2 Related works

2.1 Learning in games

Online learning has a long history that is closely tied to the development of game
theory. The earliest literature can be traced back to Brown’s proposal on using
fictitious play to solve two-player zero-sum games [6]. It is now understood that
fictitious play can converge very slowly to Nash equilibrium [23]. On the other
side, it has been shown that if each player of a general-sum, multi-player game
experiences regret that is at most f(T ), the empirical distribution of the joint
policy converges to a coarse correlated equilibrium of the game with a rate of
O(f(T )/T ) [8]. This implies that a variety of online learning algorithms such
as Hedge and Follow-The-Regularized-Leader algorithms can converge to coarse
correlated equilibria at a rate of O(1/

√
T ).

While the standard no-regret learning dynamic can guarantee convergence to
equilibria, it has been shown that more specialized no-regret learning protocols
can do better [21,43,13,29,22]. It has also been shown that when strict pure
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Nash equilibria are present, algorithms that are based on entropic regularization
(e.g. exponential weights) can converge fast to the equilibria [15,26]. Moreover,
such convergence rate holds for a variety of different feedback models, from full
information to bandit feedback.

Though all of the above-mentioned methods are applicable to congestion
games, the results usually involve a linear dependency on the number of actions.
As each action is a combination of the different facilities (resources) in the con-
gestion games, the results lead to undesirable exponential dependency on the
number of facilities.

2.2 Learning in online congestion games

Congestion games were first introduced in the seminal work [39] as a class of
games with pure-strategy Nash equilibria. It has then been extensively studied,
where its Nash equilibria have been characterized in [42] and a comprehensive
introduction has been given in [40].

In the online setting, many works use no-regret learning to develop learn-
ing dynamics in this class of games for efficient convergence. [31] are the first to
study no-regret learning for congestion games. They showed that the well-known
multiplicative weights learning algorithm results in convergence to pure equilib-
ria. Furthermore, they identified a set of mixed Nash equilibria that are weakly
stable and showed that the distribution of play converges to this set. Followup
works [32] showed that multiplicative weights algorithms converge to the set of
Nash equilibria in the sense of Cesàro means, and [36] investigated the effect of
learning rate on convergence to Nash equilibria.

With an additional assumption of convex potential functions, [10,11] estab-
lished a non-asymptotic convergence rate. However, their rate has an exponential
dependency on the number of facilities. [18] gave the first non-asymptotic conver-
gence rate under semi-bandit feedback and without an exponential dependency
on the number of facilities. However, the convergence is with respect to the
averaged-over-time policy and with a O(T−1/6) convergence rate. This result is
later improved by concurrent work [38], who proposed an online stochastic gra-
dient descent algorithm that converges to an ǫ-approximate Nash equilibrium in
O(ǫ−5) time while each individual player enjoys a regret of O(T 4/5). However,
their convergence is only best iterate convergence and only in terms of potential
function values (see a detailed comparison in Table 1).

2.3 Combinatorial bandits and shortest path

Combinatorial bandits offer an extension of the classic multi-armed bandit prob-
lem where the player must select an action that involves a combination of various
resources [9,12,33]. In a special case, the shortest path problem can be viewed
as a combinatorial bandit problem where the resources are edges on a graph
and the action is a path [28]. Efficient algorithms have been proposed for these
problems, and it has been shown that the sublinear regret only linearly depends
on the number of resources. However, it is important to note these algorithms



Convergence to Equilibrium of No-regret Dynamics in Congestion Games 7

are designed for a single player, and as a result, they may not converge to a Nash
equilibrium when applied directly to congestion games by allowing each player
to execute the algorithm.

3 Problem Formulation

3.1 Congestion game

A congestion game with n players is defined by G = (F , {Ai}ni=1, {rf}f∈F
)

,
where i) F is the facility set that contains F facilities; ii) Ai is the action space
for player i and contains A actions (we assume that the action space for each
player is the same), where each action ai ∈ Ai is a combination of k facilities
in F ; and iii) rf : (A1 × · · · × An) → [0, 1] is the reward function for facility
f ∈ F , which only depends on the number of players choosing this facility, i.e.,
∑n

i=1 I{f ∈ ai}.We denote a = (ai, a−i) as a joint action, where a−i is the
actions of all other players except player i. The total reward collected by player
i with joint action a = (ai, a−i) is ri(ai, a−i) =

∑

f∈ai
rf (ai, a−i). Without loss

of generality, we assume that rf (a) ∈ [0, 1].
Deterministically playing actions a = (ai, a−i) is referred to as a pure strat-

egy. The player can also play a mixture of pure strategy, ωi ∈ ∆(Ai), where
∆(Ai) denotes the probability simplex of action space Ai. Similarly, we use
ω = (ωi, ω−i) to denote a joint randomized policy.

3.2 Nash equilibrium

One of the commonly used solution concepts in congestion games is Nash equi-
librium (NE), and the policies that lead to a Nash equilibrium are referred to
as Nash policies. The players are said to be in a Nash equilibrium when no
player has an incentive from deviating from its current policy (as described in
the definition below).

Definition 1 (Nash equilibrium). A policy ω∗ = (ω∗
1 , . . . , ω

∗
n) is called a

Nash equilibirum if for all i ∈ [n], ri(ω
∗
i , ω

∗
−i) ≥ ri(ωi, ω

∗
−i) , ∀ωi ∈ ∆(Ai).

When ω∗ is pure, the equilibrium is called a pure Nash equilibrium. In ad-
dition, when the strategy is pure and the inequality is a strict inequality, the
equilibrium is called a strict Nash equilibrium.

Fact 1 ([39]). There exists a pure Nash equilibrium in any congestion game.

3.3 Social welfare and price of anarchy

Except for Nash equilibrium, another commonly used metric to measure the
efficiency of the dynamics between the players is through social welfare. For a
given joint action a = {ai}ni=1, the social welfare is defined to be the sum of
players’ rewards, i.e., W (a) =

∑n
i=1 ri(a), and the optimal social welfare of the

game is defined as OPT = maxa∈A1×···×An
W (a). This optimality is under the
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case where a central coordinator could dictate each player’s strategy, and each
player’s individual incentives are not considered.

Based on the definition of OPT, We can define smooth games as follows.

Definition 2 (Smooth game [41]). A game is (λ, µ)-smooth if there exists a
joint action a∗ such that for any joint action a,

∑

i∈n ri (a
∗
i , a−i) ≥ λOPT −

µW (a).

The results in [35] show that congestion games are smooth when the reward
function are affine, that is, when rf (a) is an affine function on the scalar variable
∑n

i=1 I{f ∈ ai}. This property enables certain decentralized no-regret learning
dynamics to efficiently approximate the optimal welfare [43].

3.4 Online congestion game

In this paper, we study the congestion game in an online setting with a finite time
horizon T , where the underlying reward function is unknown. At each time step
t ∈ [T ], each player chooses (randomized) policy ωt

i , from which it forms a joint
policy ωt = (ωt

1, . . . , ω
t
n). Then each player i draws a random action ati ∼ ωt

i ,
plays this action (denote at the joint action), and receives overall reward of
∑

f∈at
i
Rf (at), where Rf (at)’s are random variables that satisfy the following

assumption.

Assumption 1. For any facility f ∈ F , any joint action at and any player
i ∈ [n], let Ht be the history up to time step t− 1. Then, 1) Rf (a) ∈ [0, 1], and
2) E

[

Rf (at) | Ht

]

= rf (at).

The assumption implies that the mean of Rf (at) is always rf (at). Hence the
Nash equilibrium and expected social welfare of the online congestion game is
the same as those of the offline congestion game.

We consider two types of feedback rules in this paper: semi-bandit feedback,
and full information feedback. In the semi-bandit feedback, player i observes all
the Rf (at)’s for any f ∈ ai (only the facilities he played); and in full information
feedback, player i observes all possible information Rf (ai, a−i), for every ai ∈ Ai,
∀f ∈ a.

The efficiency of a sequence of policy {ωt
i}Tt=1 can be measured by the indi-

vidual regret of all the players (which is defined as follows).

Definition 3 (Individual regret). The individual regret of player i playing
policy {ωt

i}Tt=1 is defined as the cumulative difference between the received re-
wards and the rewards incurred by a best-in-hindsight policy, that is Regreti(T ) =

maxωi∈Ai,{ωt
−i

}T
t=1

∑T
t=1 ri(ωi, ω

t
−i)− ri(ω

t
i , ω

t
−i).

4 Algorithm

In this section, we introduce CongestEXP, a decentralized algorithm for online
congestion games (Algorithm 1).
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Algorithm 1 CongestEXP

1: Input: learning rate η.
2: For all f ∈ F , initialize ỹ0

i (f) = 0, ω0
i (a) initialized according to Equation (2).

3: for t = 1, . . . , T do

4: Players play strategy at ∼ ωt, ωt = (ωt
1, . . . , ω

t
n).

5: Each player i observe Rf (at) ∼ rf (at), for each f ∈ at
i.

6: Each player i ∈ [N ] computes ỹt
i(f) = 1− I{f∈at

i}(1−Rf (at
i,a

t
−i))

qt
i
(f)

, where qti(f) =
∑

ai∈Ai,f∈ai
ωt
i(ai).

7: Each player i ∈ [N ] updates ωt+1
i (a) =

∏

f∈a ω̃t
i (f)

∑

ai∈Ai

∏

f′∈ai
ω̃t
i
(f ′)

, ∀a ∈
Ai ,where ω̃t

i(f) = ω̃t−1
i (f) exp

(

ηỹt
i(f)

)

.
8: end for

The algorithm uses the combinatorial nature of the action space. Each player
maintains a sampling distribution ωt

i and a facility-level reward estimator ỹti . At
each time step, they first draw a random action ati ∼ ωt

i and play this action.
Then they use their received information to update ỹti(f)’s (for all f ∈ F) as
follows

ỹti(f) = 1− I{f ∈ ati}(1−Rf (at))

qti(f)
, qti(f) =

∑

ai∈Ai,f∈ai

ωt
i(ai) , (1)

where qti(f) is the probability that player i selects facility f at time t based on its
current policy ωt

i . One can easily check that ỹti(f) is an unbiased estimator for
rf (at), and with these facility-level reward estimators, the players then update
ωt+1
i as follows (exponential weighting), and then proceed to the next time step.

ωt+1
i (a) =

∏

f∈a ω̃
t
i(f)

∑

ai∈Ai

∏

f ′∈ai
ω̃t
i(f

′)
, ∀a ∈ Ai , ω̃t

i(f) = exp



η

t
∑

j=1

ỹji (f)



 . (2)

On the one hand, in the semi-bandit setting, our algorithm leverages this
kind of feedback and estimates rewards at the facility level. We note that this al-
gorithm has also been previously utilized to tackle online shortest path problems
and combinatorial bandit problems, as documented in the literature [28,9,12,16].
This enables us to achieve a low individual regret (Theorem 1) and guarantee a
lower bound for the overall social welfare (Corollary 1). On the other hand, our
algorithm constructs exponential weights based on the reward estimation at the
action level. This makes sure that the joint policy ωt can converge to a Nash
equilibrium fast when it is nearby (Theorem 2 and 3).

In summary, our results indicate that adopting Algorithm 1 in a congestion
game leads to favorable outcomes. Each player enjoys favorable cumulative indi-
vidual rewards, without compromising the overall social welfare. Moreover, when
the joint policy is close to the Nash equilibrium, players can quickly converge to
a stable equilibrium state, avoiding inefficient and chaotic dynamics.
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5 Theoretical Results

In this section, we present our main theoretical results.

5.1 Sublinear individual regret with linear dependency on F

Our first theorem shows that each individual player enjoys a sublinear individual
regret.

Theorem 1. Under semi-bandit feedback, Algorithm 1 with η = 1√
T

satisfies

that for all i ∈ [n], E [Regreti(T )] = O
(

kF
√
T
)

.

Remark 1. By Markov’s inequality, the above stated result also holds with high
probability.

Compared with naively applying exponential weights on the congestion game
(with a regret of Õ

(√
AiT

)

[4]), we can see that Theorem 1 reduces the factor√
Ai to kF . This is a significant improvement since A ≈ F k is exponentially

larger than kF .

Though there exist some works to achieve a similar regret upper bound [22],
we emphasize that these algorithms only work in the full-information setting,
but not the semi-bandit setting. Besides, our algorithm can converge to a strict
Nash equilibrium fast, while existing ones can only guarantee to converge to
a coarse correlated equilibrium (please see details in Section 5.2). We include
the proof in the arXiv version of the paper, and we summarize the technical
highlights here.

Technical highlight of Theorem 1 In classical proofs of exponential weights algo-
rithms, the regret is closely linked to the quadratic term of the reward estima-
tor, i.e., Et[

∑

ai∈Ai
ωt
i(ai) (ỹ

t
i(ai))

2
][4,33], where ỹti(ai) is the estimated reward

of action ai at time step t, and Et[·] denotes the conditional expectation over all
history up to time t. If we can upper bound this term by a constant polynomial
with k and F , then we can remove the exponential factor in the individual regret
upper bound.

Specifically, one would get a regret decomposition as follows, E [Regreti(T )] ≤
E

[

kF
η + η

∑T
t=1

∑

ai∈Ai
ωt
i(ai)

(

∑

f∈ai
ỹti(f)

)2
]

.

With our facility level estimator (Eq. (1)), ỹti(ai) =
∑

f∈ai
ỹti(f), the sec-

ond term could be upper bounded as
∑

ai∈Ai
ωt
i(ai)

(

∑

f∈ai
ỹti(f)

)2

≤ k +

k
∑

f∈F

(

I{f∈at
i}(1−Rf (at

i,a
t
−i))

qt
i
(f)

)2

qti(f). Let Et[·] denote conditional expectation

over all history up to time t. Notice that our estimator ỹti(f) is unbiased and
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(1 − Rf
i (a

t))2 is upper bounded by 1. Then, taking expectations on both sides
yield

E







∑

ai∈Ai

ωt
i(ai)





∑

f∈ai

ỹti(f)





2





≤ k + kE







∑

f∈F





I {f ∈ ati}
(

1−Rf
i

(

ati, a
t
−i

)

)

qti(f)





2

qti(f)







≤ k + kE



Et−1





∑

f∈F

I {f ∈ ati}
qti(f)







 ≤ k + kF .

From the above explanation, one can see the necessity of estimating the re-
wards at the facility level. If the reward estimator is constructed at the action

level, that is, an estimator of the form ỹti(ai) = k−
I{ai=at

i}
(

k−∑

f∈at
i
Rf

i (a
t
i,a

t
−i)

)

ωt
i
(ai)

.

Consider the case that Rf
i

(

ati, a
t
−i

)

is always 0 and at the beginning ωt
i(ai) =

1/|Ai|, then this quadratic term Et[
∑

ai∈Ai
ωt
i(ai) (ỹ

t
i(a))

2
] is approximately,

Et

[

∑

ai∈Ai
ωt
i(ai) (ỹ

t
i(a))

2

]

≈ ∑

ai∈Ai
ωt
i(ai) ·

(

ωt
i(ai)

(

k
ωt

i
(ai)

)2
)

= k2|Ai|,

which scales with the number of actions and is thus always exponentially large.

5.2 Tight approximation to optimal welfare

One immediate consequence of Theorem 1 is that our proposed algorithm can
achieve a tight approximation to the optimal social welfare.

Corollary 1. Under semi-bandit feedback, if the congestion game is (λ, µ)-smooth,

then Algorithm 1 with η = 1√
T

satisfies 1
T

∑T
t=1 W (ωt) ≥ λ

1+µOPT−O
(

nkF√
T (1+µ)

)

.

We remark that λ
1+µOPT is shown to be a tight approximation of optimal

social welfare possible by offline algorithms that attain Nash equilibrium in con-
gestion games [41]. Therefore, the above result shows that our algorithm is as
efficient as any offline Nash policy asymptotically.

5.3 Fast convergence to strict Nash equilibrium

Beyond the low individual regret, we also show that our algorithm can produce
a set of policies {ωt

i}Tt=1 that converges fast to a strict Nash equilibrium ω∗
i in

the full-information setting.
We first consider a simple case, where each player observes the expected

rewards directly (which also take expectation on the randomness of at−i ∼ ωt
−i,

i.e. Eat
−i

∼ωt
−i
[rf (ai, a

t
−i)] for any ai). In addition, we maintain the following

assumption on the action.

Assumption 2. We assume that any k facilities form a valid action.
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We note that the above assumption is only used to simplify our analysis.
When the game does not have such a property, we can include dummy actions
to meet this requirement, and the analysis in this section almost remains the
same.

Theorem 2. Under assumption 2, consider the case where each player receives
Eat

−i
∼ωt

−i
[rf (ati, a

t
−i)], ∀ai ∈ Ai, ∀f ∈ ai in a game that permits a strict Nash

equilibrium ω∗ = (ω∗
1 , · · · , ω∗

n), and let ỹti(f) = Eat
−i

∼ωt
−i
[rf (ati, a

t
−i)] in Line 6

of Algorithm 1. Suppose ỹ0i (f), ∀i ∈ [n] is initialized such that ω0 ∈ UM , where
UM is a neighborhood of the strict Nash equilibrium (as defined in Eq. (3)), then
for any i ∈ [n] and any t, and under Assumption 2, we have ‖ωt

i − ω∗
i ‖1 ≤

2(kF exp(−M − ηǫt)), where M ≥
∣

∣log
(

ǫ
2kF

)∣

∣, and ǫ is a constant that is game-
dependent only.

Remark 2. We note that the convergence rate of the algorithm can be improved
by increasing the step size η. This is because when each player receives expected
rewards, the player can take greedy steps toward the equilibrium strategy. This
agrees with greedy strategies that are previously employed to reach strict Nash
equilibrium [15]. However, such greedy policies would not work in the presence
of reward uncertainty, as we will discuss in Theorem 3.

It is worth mentioning that the convergence rate of our algorithm does not
rely on the number of actions Ai, but rather solely on the number of facilities
F . This is an improvement over the previous findings for exponential weights
algorithms with non-combinatorial action spaces in the context of a congestion
game, where the rate is linearly dependent on the number of actions [15]. The
reason for this is the utilization of our facility-level reward estimation technique
once again.

Previous studies on the convergence rate of congestion games [10,11] have
established a linear convergence rate when the game possesses a convex potential
function and the algorithm is given an appropriate initial starting point. The
potential function provides a means to capture the incentives of all players to
modify their actions and can be used to characterize the dynamics in policy
updates. Assuming the convexity of the potential function implies optimization
on a simpler policy optimization landscape. In contrast, our algorithm achieves
a much faster rate of convergence, and this convergence rate still holds even
in the absence of a convex potential function. This is because that we adopt a
different approach where we directly argue through the algorithm update rule
that the updated policy will always fall within a neighborhood around the Nash
equilibrium. This bypasses the need for a smoothness potential function and
demonstrates the effectiveness of our approach.

In addition, we remark that though some variants of Mirror Descent (MD)
or Follow-the-Regularized-Leader (FTRL) algorithms are also proven to enjoy
sublinear regret with logarithmic dependency on action space in the full informa-
tion setting [22], these results only imply convergence to an approximate coarse
correlated equilibrium and do not enjoy convergence to Nash equilibrium. In
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comparison, Nash equilibrium is much more stable, as the dynamic will remain
there unless external factors change, while coarse correlated equilibrium may be
more sensitive to small changes in the correlation method, which can lead to
deviation from the equilibrium [35].

[18] and [38] have also investigated the convergence to Nash equilibrium for
congestion game, under the notion of best-iterate convergence of the rewards
value. Their algorithm ensures that with high probability, there exists a t ∈ [T ]
such that ri(ω

t
i) is close enough to the rewards attained by Nash equilibrium. [38]

also showed their algorithm can attain sublinear individual regret simultaneously.
However, these results do not directly guarantee the convergence of the actual
action sequence {ωt

i}Tt=1 (as what we do in this paper).
We include the proof in the arXiv version of the paper, and we summarize the

technical highlights here. To prove Theorem 2, we first identify that there exists
a neighborhood around the strict Nash equilibrium, such that for any player i,
his action in the strict Nash equilibrium is the only optimal choice.

Lemma 1. If there exists a strict Nash equilibrium a∗ = (a∗1, . . . , a
∗
n), then there

exists ǫ > 0 and a neighborhood Uǫ of a∗, such that for all ω̃ = (ω̃i, ω̃−i) ∈ Uǫ,
ri(a

∗
i , ω̃−i) − ri(ai, ω̃−i) ≥ ǫ , ∀i ∈ [n] , ai ∈ Ai , ai 6= a∗i , where ri(ai, ω−i) is

defined as Ea−i∼ω−i
[ri(ai, a−i)].

Moreover, if the difference in reward estimator z̃ti(ai) =
∑t

j=0

(

∑

f∈ai
ỹji (f)

− ∑

f ′∈a∗
i
ỹji (f

′)
)

is upper bounded by some small enough constant, then the

induced policy of Algorithm 1 falls into the neighborhood set Uǫ.

Lemma 2. Let z̃ti(ai) =
∑t

j=0

(

∑

f∈ai
ỹji (f)−

∑

f ′∈a∗
i
ỹji (f

′)
)

, and define

UM =
{

ωt computed by Algorithm 1 | z̃ti(ai) ≤ −M , ∀ai 6= a∗i , ∀i ∈ [n]
}

. (3)

For sufficiently large M , UM ⊆ Uǫ. Moreover, following the updates of Algorithm
1, and under Assumption 2„ if ωt ∈ UM , then ωt+1 ∈ UM .

Thus, if ω0 is in the neighborhood UM ⊆ Uǫ, then the reward estimator z̃ti(ai)
can only decrease (by Lemma 1), and hence the algorithm will give an updated
policy ωt that is also within the neighborhood set Uǫ.

Also, note that ω∗
i is a strict Nash equilibrium, which implies that |ωt

i − ω∗
i |1 =

2(1− ωt
i(a

∗
i )). Hence, to establish the convergence rate, we need to lower bound

ωt
i(a

∗
i ) =

∏

f∈a∗
i
ω̃t

i(f)
∑

a′∈A

∏

f′∈a′ ω̃t
i
(f ′)

=

∏

f∈a∗
i
exp(η

∑t
j=0

ỹj
i
(f))

∑

a′∈A

∏

f′∈a′ exp(η
∑

t
j=0

ỹj
i
(f ′))

.

Technical challenge We remark that if we directly apply Lemma 2, we can get

ωt
i(a

∗
i ) =

∏

f∈a∗
i
ω̃t
i(f)

∑

a′∈A
∏

f ′∈a′ ω̃t
i(f

′)
≥ 1

1 +
∑

ai∈Ai,ai 6=a∗
i

(

∏

f∈ai
ω̃t
i(f)−

∏

f ′∈a∗
i
ω̃t
i(f

′)
)

≥ 1−
∑

ai∈Ai,ai 6=a∗
i

(

∏

f∈ai

ω̃t
i(f)−

∏

f ′∈a∗
i

ω̃t
i(f

′)

)

.
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Suppose one can upper bound
∑

ai∈Ai,ai 6=a∗
i

(

∏

f∈ai
ω̃t
i(f)−

∏

f ′∈a∗
i
ω̃t
i(f

′)

)

≤
exp(−t), then this gives 1 −

∑

ai∈Ai,ai 6=a∗
i
exp(−t), which yields a convergence

rate of (|Ai|−1) exp(−t) as ‖ωt
i − ω∗

i ‖1 = 2(1−ωt
i(a

∗
i )). However, this approach

implies that the convergence rate scales linearly with the number of actions (thus
exponentially with the number of facilities), and is what we wanted to avoid in
the analysis.

To overcome this exponential dependency, we utilize the fact that any k-
facility combination is an action, which means that we can order the facility
from f1, . . . , fF in decreasing order of ω̃t

i(f) and f1, . . . , fk form the optimal
pure Nash action a∗i .

Then we consider the case that each player observes only Rf (ati, a
t
−i), instead

of the expected rewards.

Theorem 3. Under Assumption 2, consider the case where each player receives
a stochastic reward under the full information setting and under Assumption
2. Assume the game permits a strict Nash equilibrium ω∗ = (ω∗

1 , · · · , ω∗
n). Let

ỹti(f) = Rf (ati, a
t
−i) in Line 6 of Algorithm 1, and set the learning rate to be time-

dependent such that
∑∞

t=0 η
2
t ≤ δ·M2

8kn(F−1) ≤ ∑∞
t=0 ηt = ∞. Suppose ỹ0i (f), ∀i ∈

[n] is initalized such that ω0 ∈ U2M ⊆ Uǫ, then for any i ∈ [n] and any t, we

have ‖ωt
i − ω∗

i ‖1 ≤ 2kF exp
(

−M − ǫ
∑t

j=0 ηj

)

, with probability at least 1 − δ,

where M ≥
∣

∣log
(

ǫ
2kF

)∣

∣, and ǫ is a constant that is game-dependent only.

We remark that in the case of stochastic rewards, the convergence rate of our
algorithm cannot be arbitrarily large, as the learning rate η cannot be taken to be
arbitrarily large. If we take ηt = βt−α, with β being a small positive constant and

α ∈ (1/2, 1). Then our convergence rate is ‖ωt
i − ω∗

i ‖1 ≤ O
(

exp
(

− β
1−α t

1−α
))

,

which is close to exponentially fast convergence. When the reward function is
smooth, we remark that this can imply each player only experiences constant
regret. We include the proof to Theorem 3 in the arXiv version of the paper.

6 Conclusion

We studied the congestion game under semi-bandit feedback and presented a
modified version of the well-known exponential weights algorithm. The algorithm
ensures sublinear regret for every player, with the regret being linearly dependent
on the number of facilities. Additionally, the proposed algorithm can learn a
policy that rapidly converges to the pure Nash policy, with the convergence rate
also being linearly dependent on the number of facilities. To our best knowledge,
these are the first results on congestion games for sublinear individual regret
and geometric Nash convergence rate, without an exponential dependency on
the number of facilities.
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There are several possible directions to further study the online congestion
game. First, as our work only considers the semi-bandit feedback model for in-
dividual regret, the regret and convergence rate under the full-bandit feedback
model remains unclear. For the Nash convergence result, our algorithm only en-
joys theoretical guarantees in the full-information setting. It remains future work
to extend this result to semi-bandit and full-bandit feedback models. Moreover,
it also remains in question whether the results of this work can be extended to
the online Markov congestion game proposed by [18].
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