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Abstract1

Biomedical images are often high-resolution2

and multi-dimensional, presenting computa-3

tional challenges for deep neural networks.4

These computational challenges are com-5

pounded when training transformers due to the6

self-attention operator, which scales quadrat-7

ically with context length. Recent works8

have proposed alternatives to self-attention that9

scale more favorably with context length, alle-10

viating these computational difficulties and po-11

tentially enabling more efficient application of12

transformers to large biomedical images. How-13

ever, a systematic evaluation on this topic is14

lacking. In this study, we investigate the impact15

of context length on biomedical image analy-16

sis and we evaluate the performance of recently17

proposed substitutes to self-attention. We first18

curate a suite of biomedical imaging datasets,19

including 2D and 3D data for segmentation, de-20

noising, and classification tasks. We then ana-21

lyze the impact of context length on network22

performance using the Vision Transformer and23

Swin Transformer. Our findings reveal a strong24

relationship between context length and per-25

formance, particularly for pixel-level prediction26

tasks. Finally, we show that recent attention-27

free models demonstrate significant improve-28

ments in efficiency while maintaining compara-29

ble performance to self-attention-based models,30

though we highlight where gaps remain.31

Keywords: Efficiency, long-context models,32

transformers, self-attention, medical imaging.33

Data and Code Availability Code will be avail-34

able on GitHub. Five of the datasets are public35

datasets; the cardiac MR denoising dataset is a pri-36

vate dataset that is not currently available externally.37

Institutional Review Board (IRB) This study38

did not require IRB approval.39

1. Introduction 40

Biomedical and clinical imaging modalities often pro- 41

duce high-resolution, multi-dimensional images that 42

contain rich and detailed information. These large 43

image sizes present computational challenges for deep 44

neural networks, such as increased memory require- 45

ments and long processing times (Dinsdale et al., 46

2022; Suzuki, 2017; Berisha et al., 2021). 47

The popularity of transformers has compounded 48

the computational difficulties of training neural net- 49

works on medical images. Central to transformers 50

is the self-attention operator, which scales quadrati- 51

cally with context length (Keles et al., 2023). This 52

quadratic scaling can be prohibitive when training 53

models on medical images, where capturing fine- 54

grained details in high-resolution, multi-dimensional 55

images is critical. 56

In natural language processing (NLP), recent ef- 57

forts have improved the efficiency of self-attention 58

(Dao et al., 2022; Beltagy et al., 2020; Child et al., 59

2019; Katharopoulos et al., 2020; Choromanski et al., 60

2020; Tay et al., 2020) or have investigated replacing 61

it all together (Gu et al., 2021a; Poli et al., 2023; Peng 62

et al., 2023; Fu et al., 2022; Sun et al., 2023; Gu and 63

Dao, 2023). These works aim to design operators that 64

match the performance of self-attention while scaling 65

more favorably with context length, enabling models 66

to process longer inputs. Such advances have gained 67

popularity in NLP, driving new innovation and ca- 68

pabilities (Dong et al., 2023; Tsirmpas et al., 2024; 69

Huang et al., 2023; Pawar et al., 2024). While such 70

long-context models also hold promise for biomed- 71

ical image analysis—potentially making transform- 72

ers more efficient and effective when applied to high- 73

resolution images—a systematic study on this topic 74

is lacking. 75

In this work, we investigate long-context models for 76

biomedical imaging. We ask two questions: do medi- 77
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Figure 1: Visualization of how context length changes with patch size and attention window size. When
using ViT, we use smaller patches to tokenize the input image, resulting in longer context lengths.
When using Swin, we use larger windows of attention, resulting in longer context lengths.

cal imaging applications benefit from longer context,78

and if so, what are efficient and effective approaches79

for training long-context models? We present a thor-80

ough investigation on the impact of context length81

on imaging applications and assess the performance82

of recently proposed alternatives to self-attention.83

We begin by curating a suite of biomedical imaging84

datasets comprising both two- and three-dimensional85

data as well as common medical imaging tasks: seg-86

mentation, image denoising, and classification. In-87

cluding these diverse data and task types enables us88

to evaluate long-context models in different settings.89

We then examine how varying context length im-90

pacts performance on these tasks using common91

transformers for computer vision. We evaluate the92

impact of patch size on the vision transformer (ViT,93

Dosovitskiy et al. (2020)) and the impact of the at-94

tention window on the Swin transformer (Liu et al.,95

2021)—both of which increase transformer context96

length (Figure 1). We find a strong relationship be-97

tween patch size and performance, particularly for98

pixel-level prediction tasks (e.g., denoising).99

Finally, we evaluate recently proposed alterna-100

tives to self-attention (Hyena (Poli et al., 2023) and101

Mamba (Gu and Dao, 2023)) to evaluate how each102

impacts performance and efficiency. Our results show103

these operators can achieve comparable performance104

to self-attention while improving efficiency by over105

80%, underlining the importance of efficient long-106

context processing for biomedical imaging.107

2. Related Work108

Vision Transformers. The transformer, initially109

introduced for NLP (Vaswani, 2017), has been widely110

adapted and applied to vision tasks. ViT showed 111

that a transformer architecture nearly identical to 112

those used in NLP achieved strong performance on 113

image recognition (Dosovitskiy et al., 2020). Follow- 114

on works adapted the transformer for specific vision 115

tasks (Han et al., 2022; Khan et al., 2022; Shamshad 116

et al., 2023). For example, Swin introduced a shift- 117

and-merge windowing scheme, wherein image patches 118

only attended to local windows, reducing compu- 119

tational complexity and improving performance on 120

pixel-level prediction (Liu et al., 2021). Similarly, 121

PVT and Segformer introduced hierarchical trans- 122

former architectures designed for dense prediction 123

tasks (Wang et al., 2021; Xie et al., 2021). Finally, 124

work like DeiT introduced training and distillation 125

strategies to improve the data efficiency of vision 126

transformers (Touvron et al., 2021). 127

Efficient Attention. While transformers achieve 128

strong performance, their self-attention operator 129

scales quadratically with context length (Keles et al., 130

2023), leading to prohibitive computational demands 131

for processing long-context inputs. In response, many 132

works have proposed approaches to improve atten- 133

tion’s efficiency. Flash attention is a popular ap- 134

proach that is an exact, hardware-aware implemen- 135

tation of attention, reproducing attention but with 136

subquadratic scaling (Dao et al., 2022; Dao, 2023; 137

Shah et al., 2024). Other approaches propose ap- 138

proximations to attention, including sparse and local 139

attention (Beltagy et al., 2020; Child et al., 2019), lin- 140

ear attention (Katharopoulos et al., 2020), and others 141

(Choromanski et al., 2020; Tay et al., 2020). These 142

approaches are more efficient than self-attention, but 143

typically trade-off speed with expressivity and per- 144

formance (Poli et al., 2023). 145
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Alternatives to Attention. An alternative ap-146

proach to making attention more efficient is to re-147

place it entirely (Poli et al., 2023; Peng et al., 2023;148

Fu et al., 2022; Nguyen et al., 2022; Sun et al., 2023).149

This class of approaches tries to construct operators150

that maintain attention’s performance while scaling151

more favorably with context length. For example, the152

Hyena operator leverages long convolutions to match153

self-attention’s ability to capture global dependencies154

but with an operation that scales subquadratically155

with context length (Poli et al., 2023). Other ap-156

proaches include state space models (SSMs), which157

take inspiration from traditional signal processing158

models (Gu et al., 2021a,b). Gu and Dao (2023) re-159

cently proposed the selective SSM in a model called160

Mamba, which increases the expressivity of SSMs and161

achieves promising performance on NLP and audio162

tasks.163

Some of these alternatives have been evaluated for164

vision tasks. For example, early SSM models were165

adapted to image classification (Nguyen et al., 2022),166

Hyena showed proof-of-principal on ImageNet (Poli167

et al., 2023), and Mamba has been adapted for nat-168

ural image processing (Zhu et al., 2024; Liu et al.,169

2024). Similarly, related work has proposed new ar-170

chitectures leveraging some of these efficient opera-171

tors for medical applications (Fillioux et al., 2023;172

Archit and Pape, 2024; Xing et al., 2024; Wang et al.,173

2024; Ma et al., 2024; Nasiri-Sarvi et al., 2024), how-174

ever these applications typically focus on a single task175

and architecture instead of a systematic evaluation176

over many operators, tasks, and data types.177

Image Resolution and Context Length. There178

is a growing body of evidence that context length179

and image resolution play key roles in the quality of180

representations learned by transformers. While not181

synonymous, image resolution and context length are182

closely linked, as smaller patches used to tokenize the183

image better preserve image resolution at the expense184

of increased context length (Figure 1).185

For example, a study on masked autoencoding186

showed improved performance for increasing context187

length (Hu et al., 2022). Diffusion models have188

shown improved performance with decreased patch189

size (Peebles and Xie, 2023). A recent work showed190

competitive performance tokenizing images at the191

pixel-level (Nguyen et al., 2024), a finding consistent192

with the results of this work and which further mo-193

tivates our exploration of efficient alternatives to at-194

tention. Recent work in multimodal pretraining have195

found improved performance with higher-resolution 196

images (Meng et al., 2024; McKinzie et al., 2024). A 197

few studies have looked at the impact of ViT patch 198

size on classification, finding improved performance 199

with smaller patches (Than et al., 2021; Ibrahimovic, 200

2023; Beyer et al., 2023). Finally, prior work has 201

explored conceptually similar questions using CNNs. 202

For example, several studies have highlighted the im- 203

portance of preserving image resolution to achieve 204

high CNN performance (Thambawita et al., 2021; 205

Sabottke and Spieler, 2020), and some work has sug- 206

gested larger convolutional filter sizes improve CNN 207

performance (Ding et al., 2022). 208

Summary. While significant progress has been 209

made improving transformer efficiency for long- 210

context inputs in NLP, a systematic evaluation of the 211

relationship between context length, efficiency, and 212

performance in biomedical imaging is lacking. Fur- 213

ther, many efficient operators have not been tested in 214

common medical imaging settings (e.g., with 3D data, 215

for improving image quality). We aim to fill these 216

gaps by investigating the impact of context length 217

and the performance of efficient attention alterna- 218

tives on diverse biomedical imaging datasets, offering 219

insights into the development of more efficient deep 220

learning models for biomedical applications. 221

3. Approach 222

We begin with background on self-attention and the 223

alternative operators we evaluate. We then discuss 224

model architectures, our approach to changing con- 225

text length, and our evaluation datasets. 226

3.1. Background: Attention and Alternatives 227

Self-Attention We show the standard transformer 228

block in Figure 2, which is traditionally powered 229

by self-attention (Vaswani, 2017; Dosovitskiy et al., 230

2020). For an input sequence X ∈ Rn×d, where n 231

is the sequence length and d is the sequence dimen- 232

sion, self-attention maps this sequence to Y ∈ Rn×d
233

using the set of trainable parameters Wq ∈ Rd×d, 234

Wk ∈ Rd×d, Wv ∈ Rd×d. First, the query, key, 235

and value matrices are computed as Q = XWq, 236

K = XWk, and V = XWv. The softmax dot-product 237

self-attention operation is then defined as: 238

Attention(Q,K, V ) = Softmax

(
QK⊤
√
d

)
V.

3



A Study on Context Length and Efficient Transformers for Biomedical Image Analysis

Figure 2: Attention and alternative operators. Left, we show a standard transformer block. Right, we show
the operators we evaluate in the transformer blocks: self-attention, Hyena, and MambaVision.

The computational complexity of self-attention239

is O(n2) (Keles et al., 2023), meaning using self-240

attention with longer sequences results in quadratic241

increases to memory and computation.242

Alternatives to Attention. Many alternative op-243

erators have been proposed to enable longer context244

processing. To do a thorough analysis across tasks,245

datasets, and context lengths, we carefully selected246

which alternatives to evaluate. We selected operators247

that showed proof-of-principal performance on imag-248

ing tasks and outperformed similar baselines. Fur-249

ther, we selected operators that could be swapped250

out for attention in existing architectures, enabling251

a direct comparison between operators without con-252

founding influences from other architectural changes.253

Hyena. We selected the Hyena operator as the254

first attention alternative to evaluate (Poli et al.,255

2023) (Figure 2). Hyena uses long convolutions to256

achieve subquadratic scaling with respect to con-257

text length, while still maintaining token-level pre-258

cision and global context. Hyena further introduces259

element-wise gating to inject data dependence into260

the operator, mimicking the data dependence prop-261

erty of self-attention. The computational complexity262

of Hyena is O(nlog2(n)) (Poli et al., 2023).263

We selected Hyena because it maintains two char-264

acteristics of attention—token-level precision and265

global context—that we hypothesized would help266

maintain performance on both sparse and dense im-267

age analysis tasks. Additionally, Hyena has shown268

strong performance on ImageNet and has exceeded 269

the performance of or generalized related methods 270

(Nguyen et al., 2022; Fu et al., 2022; Poli et al., 2023). 271

Mamba. We selected MambaVision as the second 272

operator to evaluate. Mamba is a selective SSM that 273

transforms an input X into output Y via a learn- 274

able hidden state (Gu and Dao, 2023). We evaluated 275

the MambaVision operator proposed by Hatamizadeh 276

and Kautz (2024), which adapts the selective SSM 277

module in Gu and Dao (2023) to vision tasks. Mam- 278

baVision incorporates a selective SSM along with a 279

skip connection (Figure 2), defined as: 280

Z1 = Scan(σ(Conv(Lineard→ d
2
(X))))

Z2 = σ(Conv(Lineard→ d
2
(X)))

Y = Linear d
2→d(Concat(Z1, Z2))

where Scan(·) is the selective scan operation in Gu 281

and Dao (2023) and σ is the SiLU function. 282

We selected Mamba as a SotA SSM approach that 283

has been adapted to vision with promising initial 284

results. Further, MambaVision reportedly exceeds 285

the performance of other Mamba vision architectures 286

(Liu et al., 2024; Zhu et al., 2024; Pei et al., 2024). 287

3.2. Model Architectures 288

We evaluated two widely used architectures for vi- 289

sion: ViT (Dosovitskiy et al., 2020) and Swin (Liu 290

et al., 2021). ViT closely mirrors transformers used 291
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Figure 3: Task visualization. We visualize a network input and ground truth output for each task. Starting
from the upper left and moving clockwise: retinal vessel segmentation, microscopy denoising,
pneumothorax classification, pulmonary embolism classification, CMR denoising, and abdominal
CT organ segmentation.

in NLP. Swin restricts attention to local windows,292

then shifts and merges these windows. By stacking293

multiple Swin transformer blocks, the effective recep-294

tive field grows. To keep the number of parameters295

similar between ViT and Swin, we used ViT’s small296

configuration and Swin’s tiny configuration.297

We selected ViT and Swin as two common vision298

transformers used in medical imaging applications299

(He et al., 2023; Shamshad et al., 2023) that other300

transformers share similarities with. For example,301

DeiT’s architecture is nearly identical to ViT, while302

PVT and Segformer compress patches in attention-303

based blocks, similar to Swin.304

Both ViT and Swin are made up of repeating trans-305

former blocks. Traditionally, these blocks are pow-306

ered by self-attention. We evaluated attention as well307

as Hyena and MambaVision when used as drop-in re-308

placements for attention, as shown in Figure 2.1309

For classification tasks, we used a linear layer as the310

task head. For pixel-level prediction tasks, we used311

the ViT UNETR head (Hatamizadeh et al., 2022) for312

ViT and the UPerNet head (Xiao et al., 2018) for313

Swin. We chose these prediction heads as they are314

relatively lightweight and maintain similar parameter315

counts between ViT and Swin models.316

1. We removed Swin’s shift operation when using Hyena and
MambaVision, as the masking procedure used with atten-
tion does not translate to the alternative operators. We
evaluate the impact of the shift operator in the Appendix.

3.3. Changing Context Length 317

Consistent with most transformers for computer vi- 318

sion, both ViT and Swin begin with a patch em- 319

bedding layer that partitions the image into non- 320

overlapping patches, which are then embedded and 321

used as tokens. The context length of the self- 322

attention operator is defined by how many tokens are 323

processed concurrently. Thus, longer context lengths 324

occur when attending to more image patches. 325

We can vary context length by (i) changing the 326

patch size, thereby increasing the number of tokens 327

per image region; or (ii) changing the size of the at- 328

tention window, enabling attention among a greater 329

portion of the image. We explore both in this work. 330

To change the context length in ViT, we swept the 331

patch size used in the patch embedding layer. We 332

evaluated 32-, 16-, 8-, and 4-pixel isotropic patches. 333

Reducing the patch size increases context length and 334

computational complexity, but results in a higher res- 335

olution representation of the input image (Figure 1). 336

For Swin, we fixed the embedding patch size to 337

2-pixel isotropic patches while we varied the size of 338

the local attention window. We evaluated 4-, 8-, and 339

16-token isotropic windows. Larger windows increase 340

context length and computational complexity, but en- 341

able the network to use a greater portion of the im- 342

age to inform each token’s representation (Figure 1). 343

In the Appendix, we also evaluate the impact of the 344

patch size on Swin performance. 345
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These changes to context length do not strongly346

impact the parameterization of the attention mod-347

ules. However, changing ViT’s patch size does change348

the number of parameters in the patch embedding349

layer. We provide parameter counts in the Appendix.350

3.4. Dataset and Task Selection351

We selected diverse biomedical imaging tasks to eval-352

uate the impact of context length and self-attention.353

We included segmentation to evaluate the networks’354

ability to identify pixel-level features. We included355

image denoising as a task that requires models to re-356

store high-fidelity details. Finally, we included clas-357

sification to evaluate the networks’ ability to aggre-358

gate global information and predict image-level la-359

bels. For each task type, we included 2D and 3D360

data from different imaging modalities. This compre-361

hensive evaluation allowed us to analyze how context362

length and different operators influence performance363

across many datasets as well as tasks that require364

fine-grained precision and global understanding.365

Our tasks are visualized in Figure 3 and described366

below, with additional details in the Appendix.367

• 2D Retinal Vessel Segmentation. This public fun-368

dus photograph dataset contains 800 images, each369

of shape 2048 × 2048 pixels with three channels370

(Jin et al., 2022). Each image has pixel-wise anno-371

tations of retinal vessels.372

• 3D Abdominal CT Organ Segmentation. This pub-373

lic dataset contains 945 images, each with nine or-374

gans segmented (Qu et al., 2024; Antonelli et al.,375

2022). We resized each axial slice to 256×256 pix-376

els and cropped to 64 axial slices per volume.377

• 2D Microscopy Denoising. This public fluorescence378

microscopy dataset contains 360 images, each of379

shape 1024×1024 (Zhou et al., 2020). Each sample380

contains a paired high- and low-SNR image.381

• 3D Cardiac MRI (CMR) Denoising. This pri-382

vate dataset contains 13,964 retro-gated cines, each383

with 32 frames and center cropped to 128 × 128384

pixels. Each sample contains a paired high- and385

low-SNR image.386

• 2D Pneumothorax Classification. This public chest387

x-ray dataset contains 18,887 chest x-rays, each of388

1024 × 1024 pixels (Feng et al., 2021). 15% of the389

images contain a pneumothorax.390

• 3D Pulmonary Embolism Classification. This pub-391

lic CT dataset contains 7,205 images, 32% posi-392

tive for pulmonary embolism (Colak et al., 2021).393

We resized each axial slice to 256× 256 pixels and 394

cropped to 64 axial slices per volume. 395

4. Experiments 396

We first describe our experimental setup, then eval- 397

uate task performance and training efficiency as a 398

function of context length. 399

4.1. Experimental Setup 400

We split the datasets randomly by patient into 60% 401

train, 20% validation, and 20% test, except for the 402

vessels dataset which has pre-defined splits. We 403

tuned the learning rate for each experiment; final 404

learning rates are given in the Appendix. 405

We trained the classification and segmentation 406

tasks using the cross entropy loss and the denois- 407

ing tasks using the sum of the mean squared error 408

loss, Charbonnier loss, and Gaussian loss. We used 409

an affine transform and brightness jitter as training 410

augmentations for all tasks except CMR denoising, 411

where we only used an affine transform. We did not 412

use brightness jitter on CMR denoising since the pixel 413

values are representative of the SNR. 414

Other training parameters were kept constant for 415

all experiments. We used the Adam optimizer with 416

a one cycle learning rate scheduler and no weight 417

decay. All experiments were run for 250 epochs on 418

eight 80GB NVIDIA A100s using Python 3.11. Mod- 419

els were checkpointed using the minimum validation 420

loss. 421

4.2. Task Performance 422

We next report the task performance for each net- 423

work with changing context lengths and operators, as 424

shown in Figures 4 and 5. We evaluated segmentation 425

performance using the Dice coefficient, denoising per- 426

formance using the structural similarity index mea- 427

sure (SSIM), and classification performance using the 428

area under the receiver operating curve (AUROC). 429

We computed 95% confidence intervals by bootstrap- 430

ping over the test set. 431

Patch Size Strongly Impacts ViT Perfor- 432

mance. In Figure 4, we observe a strong relation- 433

ship between patch size and performance. Using self- 434

attention, the best performance across all tasks was 435

achieved by the smallest patch size. 436

We notice a particularly strong correlation for 437

pixel-level prediction, with all operators consistently 438
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Figure 4: ViT performance. We visualize performance for each task, operator, and patch size with 95%
confidence intervals. An X on the x-axis indicates that the patch size exceeded available memory.

achieving improved performance across the four439

pixel-level prediction tasks with smaller patch sizes.440

The trend on classification is less clear. Attention-441

based networks still saw improved performance with442

decreasing patch size, with an average 4.85% increase443

in performance comparing the largest and smallest444

patch size. However, the Mamba-based networks did445

not show this same relationship, as discussed in more446

detail later in this section.447

In the Appendix, we further evaluate the impact448

of patch size on Swin performance to verify we ob-449

serve the same trends shown above with ViT. To sum-450

marize our findings, we observed an average 8.66%451

improvement to performance using 2-pixel isotropic452

patches instead of 4-pixel isotropic patches in Swin,453

with performance improving across all of our six tasks454

with the smaller patch size. These results indicate455

that preserving resolution via smaller patch sizes is456

important to performance in both architectures. In457

the remainder of the main text, we evaluate Swin458

with 2-pixel isotropic patches.459

Attention Window Size has Only Minor Im-460

pacts on Swin Performance. We do not ob-461

serve a strong relationship between the attention win-462

dow size and Swin performance (Figure 5). While463

CMR denoising performance improved with larger464

windows in attention-based networks—with 16-token465

windows improving performance 11.37% compared to466

4-token windows—we observed only minor differences467

for segmentation and classification, with performance 468

sometimes decreasing. The improved performance in 469

the CMR denoising task might be attributed to the 470

dataset containing videos, as increasing the window 471

size provides the network with additional frames of 472

the same structure to aid in the denoising process. 473

For other tasks, local information captured in small 474

windows combined with Swin’s window merging may 475

provide a sufficient balance of local and global infor- 476

mation to achieve high performance. 477

Attention Alternatives Perform Well at Pixel- 478

Level Prediction Tasks. On segmentation and 479

denoising tasks, both attention alternatives showed 480

promising performance. We summarize their change 481

in performance compared to attention in Table 1. 482

Table 1: Average performance change compared to
networks that use self-attention.

Performance
change

Segment Denoise Classify

Hyena -1.23% 2.91% -2.75%
MambaVision -0.09% 4.12% -18.34%

However, MambaVision struggled to consistently 483

match the performance of attention on classifica- 484

tion tasks, with MambaVision performance degrad- 485
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Figure 5: Swin performance. We visualize performance for each task, operator, and patch size with 95%
confidence intervals. An X on the x-axis indicates that the window size exceeded available memory.

ing with increasing context length on ViT classifica-486

tion. Classification requires global reasoning, since487

predictions are made at the image level, and one of488

self-attention’s strengths is the ability to identify im-489

portant information across global contexts. In our490

experiments, we observe MambaVision cannot yet re-491

liably match this performance.492

In contrast, Hyena more closely tracks attention’s493

performance over all task types. While there is a494

performance gap on Swin classification with Hyena,495

the differential may be attributed to the absence of496

the shift operation (see Appendix for more details).497

4.3. Training Efficiency498

We next evaluate training efficiency. While smaller499

patches can improve performance, they also increase500

computational complexity due to increased context501

length. For example, when training a self-attention-502

based ViT on our datasets, using 16- or 8-pixel503

patches increased the time required for a forward and504

backward pass by 252.90% and 2,335.48% compared505

to using 32-pixel patches, respectively. This drastic506

increase in computation with longer context lengths507

motivates the use of more efficient operators.508

To assess the efficiency of each model, we evaluated509

the time required to perform a forward and backward510

pass as well as the maximum memory allocated. We511

provide results for all runs in the Appendix and sum-512

marize key findings in Tables 2 and 3, where we report513

the average speedup achieved by Hyena and Mam- 514

baVision compared to attention. 515

Table 2: Average ViT speedup compared to networks
that use self-attention.

Speedup over
ViT-attn

Patch
32

Patch
16

Patch
8

Patch
4

Hyena -48.66% 5.50% 42.79% 81.49%
MambaVision -7.68% 32.67% 57.74% 86.82%

Table 3: Average Swin speedup compared to net-
works that use self-attention.

Speedup over
Swin-attn

Window
4

Window
8

Window
16

Hyena -8.99% 12.30% 27.30%
MambaVision 10.03% 34.19% 46.61%

Attention Alternatives Improve Efficiency at 516

Long Context Lengths. We observe speedups 517

with longer context lengths, with both Hyena and 518

MambaVision achieving over 80% speedups with 4- 519

pixel patches in ViT. At smaller context lengths, we 520
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observe the alternative operators slow down training,521

as expected given the complexity terms (Section 3).522

Attention Alternatives Enable Longer Context523

Lengths. In addition to speeding up training at524

long context lengths, both Hyena and MambaVision525

enabled longer context lengths than could be achieved526

with self-attention given our hardware. For exam-527

ple, in abdominal CT segmentation, memory lim-528

itations prevented a self-attention ViT from being529

trained with 8-pixel patches, while both Hyena and530

MambaVision reduced memory requirements enough531

to train with 8-pixel patches. This enabled Hyena532

and/or MambaVision to exceed the maximum per-533

formance achieved by attention-based ViTs on mul-534

tiple tasks, including vessel segmentation, organ seg-535

mentation, microscopy denoising, and pneumothorax536

classification.537

5. Discussion and Conclusion538

In this study, we evaluated the impact of context539

length on the performance and efficiency of trans-540

formers for biomedical image analysis. We further in-541

vestigated two alternatives to self-attention—Hyena542

and MambaVision—on diverse imaging tasks.543

Key Findings. Our results indicate a strong re-544

lationship between patch size and task performance,545

particularly for pixel-level prediction tasks. Smaller546

patch sizes, which correspond to longer context547

lengths, consistently yielded better performance.548

This finding underscores the importance of preserv-549

ing high-resolution information in biomedical images,550

which often contain critical fine-grained details nec-551

essary for accurate predictions.552

In contrast, Swin’s window size did not strongly553

impact performance, although denoising tasks554

showed some performance gains with larger windows.555

This suggests that while local context is crucial,556

Swin’s hierarchical design may already provide a suf-557

ficient balance between local and global information558

for many tasks. In this case, dedicating more context559

length to preserving image resolution may be more560

impactful than extending context length to achieve561

larger attention windows.562

We found both Hyena and MambaVision to be563

promising alternatives to self-attention that en-564

able smaller patches and greater attention win-565

dows, though Hyena more consistently tracked self-566

attention’s performance. For ViT pixel-level predic-567

tion tasks, we found that both operators could ex-568

ceed the performance achieved by self-attention net- 569

works while also offering significant speedups—up 570

to 80% faster—for longer context lengths. This ef- 571

ficiency gain is critical for biomedical applications, 572

where high-resolution images are common and com- 573

putational resources are often a limiting factor in net- 574

work design. 575

Limitations and Future Work. This work fo- 576

cuses on a specific set of alternative operators. Fur- 577

ther work may explore a wider range of efficient at- 578

tention alternatives and their suitability for diverse 579

medical imaging tasks. Additionally, the datasets we 580

used are relatively small. Future work using larger 581

datasets may show additional strengths and weak- 582

nesses of each of these operators. Similarly, the max- 583

imum context lengths in this work were limited by 584

GPU memory. Future work may further extend con- 585

text length with alternative training environments. 586

Finally, future work may study how context length 587

and attention alternatives impact pretraining strate- 588

gies and self-supervision performance. 589

Conclusion. In this study, we explored the role 590

that context length plays in biomedical image anal- 591

ysis, investigating the relationship between context 592

length, performance, and efficiency. We found that 593

smaller patch sizes improved performance across a 594

range of task and data types, underscoring the im- 595

portance of preserving high-resolution information in 596

biomedical image analysis. However, the increased 597

computational demands associated with longer con- 598

text lengths present challenges for practical clinical 599

applications. 600

We demonstrated that replacing the traditional 601

attention operator with alternatives like Hyena or 602

Mamba can help alleviate these computational chal- 603

lenges. These operators facilitate computation over 604

longer context lengths by reducing the compute 605

time and memory requirements while maintaining— 606

sometimes even improving—performance, particu- 607

larly for pixel-level prediction tasks. The efficiency 608

of Hyena and Mamba offers advantages for real-time, 609

real-world clinical implementations, where computa- 610

tional resources can be limited, fast processing is de- 611

sired, and performance is paramount. 612

In conclusion, our findings can inform the design 613

of model backbones for biomedical imaging tasks and 614

provide insights for the development of new biomed- 615

ical imaging models that balance performance and 616

efficiency, ultimately supporting more effective solu- 617

tions for biomedical image analysis. 618
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Appendix A. Training Details960

A.1. Hyperparameters961

We tuned the learning rate for each experiment from962

{1e− 5, 1e− 4, 1e− 3, 1e− 2}. Selected learning rates963

are given in Table 4 and Table 5. We set batch size964

to maximize GPU memory. We required a minimum965

batch size of two to fit on the GPU to enable batch966

normalization layers.967

A.2. Data Preprocessing968

For the retinal vessel segmentation dataset (Jin et al.,969

2022), we directly used the public data with no addi-970

tional preprocessing. When training the Swin mod-971

els, we resized the images to 1024 × 1024 to fit onto972

the GPU.973

For the abdominal CT organ segmentation dataset,974

we used the images supplied by Antonelli et al. (2022)975

and segmentation masks supplied by Qu et al. (2024)976

for the aorta, gall bladder, kidneys, liver, pancreas,977

postcava, spleen, and stomach. We windowed the CT978

with a window level of 50 and window width of 400.979

We resized each axial image using linear interpolation980

to 256× 256 and center cropped to 64 axial slices.981

For the microscopy denoising dataset (Zhou et al.,982

2020), we treated each of the three supplied channels983

in the public dataset as different images. We selected984

a single frame from the widefield images as our low-985

SNR image and normalized each to zero mean and986

unit variance. We used the structured-illumination987

microscopy image as our paired high-SNR image, and988

scaled the high-SNR image using a least squares fit.989

For the cardiac MR denoising dataset, we used im-990

ages reconstructed in SNR units, meaning the ampli-991

tude of the signal in the reconstructed images is rep-992

resentative of its SNR. We added realistic MRI noise993

using an MRI noise model, reducing the SNR by a994

ratio selected from a uniform distribution between995

[1, 40]. We center cropped each cine to 128 × 128996

pixels and 32 frames.997

For the pneumothorax dataset (Feng et al., 2021),998

we normalized each image between [0, 1].999

For the pulmonary embolism dataset (Colak et al.,1000

2021), we windowed the CT with a window level of1001

100 and window width of 700. We cropped around1002

the lung region then resized each axial slice to 256×1003

256 and center cropped the axial slices to 64 slices,1004

ensuring the embolism was captured in the cropped1005

region.1006

A.3. Model Implementation 1007

We used the ViT and Swin implementations from 1008

Monai (Cardoso et al., 2022). We used the Mam- 1009

baVision implementation provided by the authors of 1010

the MambaVision paper (Hatamizadeh and Kautz, 1011

2024), which calls code provided by the authors of the 1012

original Mamba paper (Gu and Dao, 2023). We used 1013

the Hyena implementation from a study on efficient 1014

language models (Arora et al., 2023), which provides 1015

a simple implementation of the method proposed in 1016

the Hyena paper (Poli et al., 2023). 1017

A.4. Model Parameter Count 1018

As discussed in Section 3, changing the patch size in 1019

ViT and local attention window in Swin changes the 1020

initial patch embedding parameters and task head pa- 1021

rameters; otherwise, the backbone parameterization 1022

is largely unchanged. We report the number of pa- 1023

rameters in the model for each experiment in Tables 6 1024

and 7. An X in these tables indicate the configuration 1025

could not be run due to GPU memory limits. 1026

Appendix B. Additional Results 1027

B.1. Efficiency 1028

B.1.1. Training Timing 1029

To assess runtime efficiency, we timed a forward and 1030

backward pass on a single NVIDIA A100 using a 1031

batch size of one. We only timed the backbone mod- 1032

els (i.e., we did not include the linear, UNETR, or 1033

UPerNet task heads). We took the average of ten 1034

runs as the runtime reported in this work. We plot 1035

the runtime for each dataset and model configura- 1036

tion in Figures 6 and 7. Note that the abdominal 1037

CT dataset and chest CT embolism dataset have ap- 1038

proximately the same runtime and the chest x-ray 1039

pneumothorax dataset and the microscopy denoising 1040

dataset have approximately the same runtime due to 1041

these pairs of datasets having the same image sizes. 1042

For Swin, the vessels dataset also has the same run- 1043

time as the microscopy and chest x-ray datasets since 1044

it was resized to train the Swin models. 1045

B.1.2. Maximum memory allocated 1046

To assess memory efficiency, we recorded the max- 1047

imum memory allocated on a single NVIDIA A100 1048

using a batch size of one. We only assessed the back- 1049

bone models (i.e., we did not include the linear, UN- 1050

14
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Table 4: Selected learning rates for the ViT backbone.

ViT with Attention ViT with Hyena ViT with MambaVision
Patch 4 Patch 8 Patch 16 Patch 32 Patch 4 Patch 8 Patch 16 Patch 32 Patch 4 Patch 8 Patch 16 Patch 32

Vessel X X X 1e-3 X X 1e-3 1e-3 X X 1e-3 1e-3
Ab. CT X X 1e-3 1e-3 X 1e-3 1e-3 1e-3 X 1e-3 1e-3 1e-3

Microscopy X X 1e-3 1e-3 X 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
CMR 1e-3 1e-2 1e-2 1e-2 1e-3 1e-3 1e-2 1e-2 1e-3 1e-3 1e-3 1e-3

Pneumothorax X X 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-5 1e-5 1e-5 1e-5
Embolism X 1e-5 1e-4 1e-4 1e-3 1e-3 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

Table 5: Selected learning rates for the Swin backbone.

Swin with Attention Swin with Hyena Swin with MambaVision
Window 16 Window 8 Window 4 Window 16 Window 8 Window 4 Window 16 Window 8 Window 4

Vessel 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Ab. CT X 1e-4 1e-4 1e-3 1e-3 1e-3 1e-4 1e-4 1e-4

Microscopy 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-5 1e-4 1e-5
CMR 1e-4 1e-4 1e-4 1e-5 1e-5 1e-5 1e-4 1e-4 1e-4

Pneumothorax 1e-5 1e-5 1e-5 1e-5 1e-4 1e-5 1e-5 1e-5 1e-5
Embolism X 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

Table 6: ViT parameter counts in the model backbone/task heads.

Patch
32

Patch
16

Patch
8

Patch
4

Vessel
Attn 24,033,408/4,353,026 X X X
Hyena 26,659,776/4,353,026 30,493,632/4,328,450 X X

MambaVision 20,674,176/4,353,026 24,508,032/4,328,450 X X

Ab. CT
Attn 33,912,960/11,398,346 23,246,976/11,283,658 X X
Hyena 36,539,328/11,398,346 25,873,344/11,283,658 27,249,600/11,269,322 X

MambaVision 30,553,728/11,398,346 19,887,744/11,283,658 21,264,000/11,269,322 X

Microscopy
Attn 22,067,328/4,352,353 22,952,064/4,327,777 X X
Hyena 24,693,696/4,352,353 25,578,432/4,327,777 30,223,296/4,321,633 X

MambaVision 18,708,096/4,352,353 19,592,832/4,327,777 24,237,696/4,321,633 43,093,632/4,206,945

CMR
Attn 46,452,864/11,398,945 24,475,776/11,284,257 22,067,328/11,269,921 24,475,776/10,958,625
Hyena 49,079,232/11,398,945 27,102,144/11,284,257 24,693,696/11,269,921 27,102,144/10,958,625

MambaVision 43,093,632/11,398,945 21,116,544/11,284,257 18,708,096/11,269,921 21,116,544/10,958,625

Pneumothorax
Attn 22,067,712/770 22,952,448/770 X X
Hyena 24,693,696/770 25,578,432/770 30,223,296/770 49,079,232/770

MambaVision 18,708,096/770 19,592,832/770 24,237,696/770 X

Embolism
Attn 33,913,344/770 23,247,360/770 24,623,616/770 X
Hyena 36,539,328/770 25,873,344/770 27,249,600/770 49,097,664/770

MaMambaVisionmba 30,553,728/770 19,887,744/770 21,264,000/770 X
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Table 7: Swin parameter counts in the model backbone/task heads.

Window
4

Window
8

Window
16

Vessel
Attn 32,222,346/9,263,618 32,246,634/9,263,618 32,348,202/9,263,618
Hyena 34,799,712/9,263,618 34,799,712/9,263,618 34,799,712/9,263,618

MambaVision 28,090,272/9,263,618 28,090,272/9,263,618 28,090,272/9,263,618

Ab. CT
Attn 38,540,934/12,629,770 38,959,350/12,629,770 X
Hyena 41,077,728/12,629,770 41,077,728/12,629,770 41,077,728/12,629,770

MambaVision 34,368,288/12,629,770 34,368,288/12,629,770 34,368,288/12,629,770

Microscopy
Attn 32,221,578/9,261,889 32,245,866/9,261,889 32,347,434/9,261,889
Hyena 34,798,944/9,261,889 34,798,944/9,261,889 34,798,944/9,261,889

MambaVision 28,089,504/9,261,889 28,089,504/9,261,889 28,089,504/9,261,889

CMR
Attn 38,541,702/12,583,105 38,960,118/12,583,105 42,605,526/12,583,105
Hyena 41,078,496/12,583,105 41,078,496/12,583,105 41,078,496/12,583,105

MambaVision 34,369,056/12,583,105 34,369,056/12,583,105 34,369,056/12,583,105

Pneumothorax
Attn 32,221,578/3,074 32,245,866/3,074 32,347,434/3,074
Hyena 34,798,944/3,074 34,798,944/3,074 34,798,944/3,074

MambaVision 28,089,504/3,074 28,089,504/3,074 28,089,504/3,074

Embolism
Attn 38,540,934/3,074 38,959,350/3,074 X
Hyena 41,077,728/3,074 41,077,728/3,074 41,077,728/3,074

MambaVision 34,368,288/3,074 34,368,288/3,074 34,368,288/3,074

Figure 6: ViT timing. We visualize timing for a forward and backward pass for each task, operator, and
patch size. An X on the x-axis indicates that the patch size exceeded available memory.
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Figure 7: Swin timing. We visualize timing for a forward and backward pass for each task, operator, and
patch size. An X on the x-axis indicates that the window size exceeded available memory.

Figure 8: ViT maximum memory allocated. We visualize maximum memory allocated for each task, opera-
tor, and patch size. An X on the x-axis indicates that the patch size exceeded available memory.
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Figure 9: Swin maximum memory allocated. We visualize maximum memory allocated for each task, op-
erator, and patch size. An X on the x-axis indicates that the window size exceeded available
memory.

ETR, or UPerNet task heads). We plot the maximum1051

memory allocated for each dataset and model config-1052

uration in Figures 8 and 9. Note that the abdominal1053

CT dataset and chest CT embolism dataset have ap-1054

proximately the same memory and the chest x-ray1055

pneumothorax dataset and the microscopy denoising1056

dataset have approximately the same memory due to1057

these pairs of datasets having the same image sizes.1058

For Swin, the vessels dataset also has the same mem-1059

ory requirements as the microscopy and chest x-ray1060

datasets since it was resized to train the Swin models.1061

B.2. Additional Results on Swin1062

B.2.1. Swin Patch Size1063

In the main text, we discussed how context length1064

can be varied by either changing the patch size or at-1065

tention window. We varied patch size on ViT, while1066

we kept the patch size constant for Swin and instead1067

varied the attention window. In this section, we eval-1068

uate the impact of patch size on Swin performance.1069

Specifically, we investigated tokenizing the image1070

with 4-pixel patches instead of 2-pixel patches (as1071

used in the main text). We evaluated performance1072

on all tasks using self-attention with a window size1073

of eight and report the results in Table 8. For seg-1074

mentation, we report Dice; for denoising, we report1075

SSIM; and for classification, we report AUROC. 95%1076

confidence intervals are reported in parentheses, com- 1077

puted by bootstrapping over the test set. 1078

Table 8: Effect of patch size on Swin performance
(95% confidence intervals).

Patch
4

Patch
2

Vessel 0.85 (0.83-0.86) 0.88 (0.87-0.89)
Ab. CT 0.80 (0.78-0.81) 0.86 (0.84-0.87)

Microscopy 0.60 (0.55-0.64) 0.60 (0.55-0.64)
CMR 0.50 (0.49-0.51) 0.64 (0.64-0.65)

Pneumothorax 0.83 (0.81-0.85) 0.86 (0.84-0.87)
Embolism 0.73 (0.70-0.76) 0.79 (0.77-0.82)

We observe that smaller patches correspond to bet- 1079

ter performance. This is the same trend we observed 1080

in the main text with ViT, indicating that preserving 1081

resolution is important to achieving optimal perfor- 1082

mance in both architectures. 1083

B.2.2. Window Shifting in Swin 1084

In the main text, we did not use window shifting 1085

when training the Swin transformers with Hyena or 1086

MambaVision. We opted not to use window shifting 1087

because doing so efficiently requires masking parts 1088

of the attention matrix; for additional details, see 1089
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Liu et al. (2021). This masking operation does not1090

have a straightforward analog for Hyena or MambaV-1091

ision, so we removed the shift instead. We retained1092

the shift operation when training the attention-based1093

Swin networks to maintain the fidelity of the Swin1094

transformer, as originally proposed.1095

To assess the impact of removing the shift opera-1096

tion, we report the results of training an attention-1097

based Swin network with and without the shift oper-1098

ation. We trained these networks for all tasks and a1099

window size of 8. We report results in Table 9.1100

Table 9: Effect of window shifting on Swin perfor-
mance (95% confidence intervals).

Without
shift

With
shift

Vessel 0.88 (0.87-0.89) 0.88 (0.87-0.89)
Ab. CT 0.85 (0.84-0.87) 0.86 (0.84-0.87)

Microscopy 0.60 (0.55-0.64) 0.60 (0.55-0.64)
CMR 0.68 (0.67-0.68) 0.64 (0.64-0.65)

Pneumothorax 0.78 (0.76-0.80) 0.86 (0.84-0.87)
Embolism 0.76 (0.73-0.79) 0.79 (0.77-0.82)

We observe that only classification tasks experience1101

degraded performance without the shift operation. In1102

this case, an efficient implementation of Swin with1103

shifting for the Hyena and MambaVision operators1104

may further boost their performance on classification1105

tasks. We note that this shift operation may explain1106

the performance difference between Swin classifica-1107

tion using self-attention vs. Hyena in the main text.1108
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