
Predictability of identifier naming with Copilot:
A case study for mixed-initiative programming tools

Michael Jing Long Lee
Computer Laboratory

University of Cambridge
mjll2@cam.ac.uk

Advait Sarkar
Microsoft Research

advait@microsoft.com

Alan F. Blackwell
Computer Laboratory

University of Cambridge
Alan.Blackwell@cl.cam.ac.uk

Abstract
Studies show that predictive text entry systems make writing faster, but written content more predictable.
We consider if these trade-offs extend to code synthesis tools such as GitHub Copilot. While Copilot
can make developers produce code faster, it may also affect how they choose identifiers for methods and
classes. This may have non-trivial effects on the activity of programming, because identifier names are a
primary semantic signal in code, and play important roles in authoring, debugging, and developer com-
munication. In a controlled, within-subjects experiment (n=12), we compared identifiers chosen in the
presence and absence of Copilot suggestions. We find that identifiers chosen in the presence of Copilot
suggestions were significantly more predictable (have lower mean entropy), even when suggestions were
only visible and could not be automatically accepted. These results imply that mixed-initiative systems
can take an active role in shaping programmer intentions and potentially impact their sense of agency.
We consider whether an increased convergence towards predictable names is an asset or a liability for
the practice of programming, and suggest design opportunities for surfacing surprising identifiers and
conceptual refactoring tools.

1. Introduction
Code synthesis tools based on generative Large Language Models (LLMs), such as GitHub Copilot
(hence Copilot), have been widely adopted by developers and firms (Dohmke, 2023). In February 2023,
Copilot was estimated to produce 46% of code across all programming languages, a percentage that had
doubled over the previous year (Zhao, 2023). Unlike traditional code-completion tools, Copilot has the
ability to suggest multiple lines of code at once, and to recommend potential identifiers (Ziegler et al.,
2022). It has been found to increase productivity – both actual (Mozannar et al., 2023), and perceived
(Peng et al., 2023; Ziegler et al., 2022).

We consider these programmer aids from the perspective of mixed-initiative interaction, in which either
the user or the tool might take the next action. This means that the system must make judgments on how

Figure 1 – An example study task as seen by participants, with a suggestion by Copilot highlighted
in pink. Participants were more likely to accept identifier suggestions (in this case, Movable), than
to generate original names (e.g., TakesSingleStep or Move).

1



well it understands the user’s goals, and on when it might be appropriate to interrupt the user with an
offer of assistance (Horvitz, 1999).

In the case of programming tools such as Copilot, the utility function for mixed initiative interaction is
less easily calculated, because the only explicit “goal” of a working programmer is the system specifi-
cation, itself often ambiguous or incomplete. More tractably, the programmer’s goal from moment to
moment is simply to refine their understanding of the problem domain and of the required execution
behaviour (Naur, 1985), expressing that developing model with conceptual clarity and economy, for
example by well-chosen identifier names.

In this paper, we specifically consider the choice of identifier names as a valuable case study through
which to understand the nature of interaction with Copilot from a mixed initiative perspective. Choosing
good names for identifiers is a key skill of the working programmer (McConnell, 1993). For example, the
name of an abstract type often reflects basic concepts in an application domain, a function name should
succinctly describe the operation that will be performed, and a field in a database schema might express
an important feature of a customer relationship. For programmers developing reusable frameworks,
libraries and APIs, the name of each element is critical to the usability of the whole (Furnas et al., 1987).

As a result, defining, reviewing and updating identifier names is an essential conceptual element of
programming work, in which the programmer both refines and communicates their understanding of the
software engineering problem in a way that will be understandable by other programmers (Schankin
et al., 2018).

Mixed-initiative interaction when choosing identifier names can be considered as a trade-off in attention
investment (Blackwell, 2002). Mixed-initiative interaction and the attention investment model are both
fundamentally about the cost-benefit tradeoff of automation (Williams et al., 2020). In this case, Copilot
might suggest a conventional identifier name at relatively low attentional cost, but the programmer could
alternatively invest attention in making the name more informative and specific to a distinctive context
they are working in (Blackwell, 2022).

We relate this to prior work, showing that in certain cases, intelligent user interfaces that streamline
processes to be more efficient can also make content more generically predictable (Arnold et al., 2020),
and therefore less informative (Shannon, 1948). A common situation in machine learning-based code
assistants is that the system may propose a conventional name based on its training corpus. This works
well in highly standardised programming tasks such as student coding exercises, and also in very rou-
tine or conventional programming work where a single correct name might be highly predictable. The
challenge that we address here comes in situations where a programming task is not standardised, per-
haps in a new domain or involving an original approach. In those cases where the best name cannot be
straightforwardly predicted from prior code, reuse of conventional identifiers could easily misrepresent
the programmer’s intention and be subtly incorrect. Our investigation therefore focuses on this tradeoff
between originality and predictability, recognising that each has its place in good quality code.

We adapt the experimental paradigm developed by Arnold et al. (2020) for study of predictive text,
applying their approach in the context of source code identifiers. The authors of that study take care
to note that their conclusions did not necessarily extend to tasks involving conceptual exposition. In
contrast, the creation of identifiers, which describe the properties of abstract objects, is exactly the task
of conceptual exposition. Our controlled, within-subjects experiment (n=12) compared identifier naming
with and without Copilot support, including a condition where suggestions were only visible, but not
available as automated actions.

The main contribution of this work is to demonstrate a statistically reliable effect, that the visible pres-
ence of Copilot suggestions results in more predictable identifiers, which may sometimes be desirable,
but not in more novel domains or coding tasks. We consider the consequences of this phenomenon in
relation to attention investment for mixed-initiative programming tools, and suggest design strategies
that might mitigate the problems that can result where predictable or conventional code is not a primary



quality objective.

2. Related Work
2.1. Predictability of AI-assisted work and critical integration
The theory of critical integration (Sarkar, 2023b) is a general account of the nature of generative AI-
assisted knowledge workflows. According to this, as the work of material production (e.g., the physical
typing of text or code, or creation of images) is increasingly delegated to AI, the role of the user is to
critically evaluate and integrate AI output into their broader workflow. However, the workflow itself and
the user’s objectives can be affected through interaction with AI output.

For example, models of interaction with predictive text systems (Bhat et al., 2023) have identified spe-
cific cognitive processes (Hayes, 2012) that are influenced by suggestions. Notably, the writer’s respect
for the system affects the degree to which suggestions are accepted. Additionally, suggestions shape
Working Memory State. Therefore, they impact not only syntactic choices, but sentence structure and
semantic content. Suggestions have even been found to influence authors’ topic choices and opinions
(Jakesch et al., 2023; Poddar et al., 2023).

Arnold et al. (2020)’s work is theoretically grounded in Rational Speech Act (RSA), a goal-oriented
model of communication. Under RSA, speakers choose phrases by balancing utility and cost (Goodman
& Frank, 2016). If words are chosen whilst writing (MacArthur et al., 2016), reducing the cost of a
predictable word can prompt users to choose less informative phrases.

Buschek et al. (2021) and Singh et al. (2023) show how such findings may be operationalised, by design-
ing predictive text interfaces that leverage cognitive impacts to aid ideation. Proposals generally involve
encouraging users to critically integrate suggestions. They include surfacing multiple suggestions at
once, and forcing explicit integration of suggestions rather than automatic acceptance.

2.2. Attention Investment
Good identifier names involve an attention investment (Blackwell, 2003): by investing immediate at-
tention, programmers may choose a distinctive name that accurately summarises hundreds of lines of
original code. In doing so, there is a pay-off : future attentional cost savings, since they or others may
efficiently surmise the nature of the abstract object by its name. However, there is also a risk that no
pay-off accrues, which varies depending on the nature of the task.

The attention investment problem is especially acute in settings where identifier names are hard to con-
ceptualise but have the potential to be very informative (cf: Section 4.1). As identified by Blackwell
(2022), such settings include

1. Naming concepts that are frequently reused, potentially in different settings,

2. Naming concepts that are related, for example, in API design, where related methods chain to
form a language, and

3. Naming refactored concepts, where updated requirements or semantics are reflected in subtle
changes to names (Blackwell, 2023).

2.3. Studies of GitHub Copilot
A systematic review of research on GitHub Copilot identified developer productivity, code quality, code
security, and education as primary themes (Ani et al., 2023). Evaluation of Copilot as a mixed-initiative
system tends to define utility in terms of productivity impact (Mozannar et al., 2023; Peng et al., 2023).
While the effect of Copilot on identifier choice has not been considered, results show that Copilot in-
creases productivity. However, as Buschek et al. (2021) found, ideation and efficiency are often in ten-
sion, so greater volume of code production may be associated with more conventional or homogeneous
names.



Multiple evaluations of Copilot have found that while it is useful in some situations, it requires the pro-
grammer to still exercise algorithmic thinking, program comprehension, debugging and communication
skills, and can prove a liability for non-expert programmers (Dakhel et al., 2023; Fajkovic & Rundberg,
2023; Imai, 2022; Zhang et al., 2023b). These have led researchers to caution against indiscriminate
use of AI assistance in programming education settings (Puryear & Sprint, 2022; Wermelinger, 2023).
Moreover, while the complexity and readability of Copilot-generated code is comparable to that written
by humans, eye-tracking data suggests that programmers pay less visual attention to AI-generated code
(Al Madi, 2022), corresponding to studies of agency in mixed-initiative interaction where users are less
critical of automated suggestions when they perceive the machine as having greater agency (Yu et al.,
2021).

Benchmark tests show that performance of GitHub Copilot, OpenAI ChatGPT, and Amazon CodeWhis-
perer can approach human level, but varies depending on the target language (Nguyen & Nadi, 2022;
Yetistiren et al., 2022; Yetiştiren et al., 2024). Inappropriate sensitivity to the prompting language is also
a challenge; in one study Copilot generated different code results for semantically equivalent natural
language prompts in approximately 46% of the test cases (Mastropaolo et al., 2023). Moreover, while
Copilot can be prompted in multiple natural languages, it is not equally performant, with one study
finding that performance with Chinese language prompts was significantly worse than with English
(Koyanagi et al., 2024).

Studies on developers’ subjective experience (Kalliamvakou, 2023; Sarkar et al., 2022; Vaithilingam et
al., 2022; Vasconcelos et al., 2023; Zhang et al., 2023a; Zhou et al., 2023) and mental models (Mozannar
et al., 2022) have additionally found that Copilot reduces perceived mental effort and that users often
accept suggestions without verification, which they defer to some future point. Such deferrals, as well as
the introduction of suboptimal solutions or unaddressed issues which can interfere with future software
development, can contribute to technical debt (OBrien et al., 2024). Tools such as Copilot can be used
to facilitate the authoring of code when programmer intent is clear, but also to aid exploration and
discovery (Barke et al., 2023; Sarkar et al., 2022). While Copilot can improve efficiency, it can come
at the cost of code comprehension and autonomy or control (Bird et al., 2022). An analysis of a corpus
of software developers’ tweets about GitHub Copilot found that programmers’ negative emotions can
become more positive when the capabilities of the AI tools are linked to their identity work (Eshraghian
et al., 2023). When considered in the framework of attention investment, these both hint at less attention
being invested into identifier names.

3. Research Questions
We aim to understand how developers are influenced by the identifiers suggested by Copilot. If de-
velopers tend to accept Copilot’s suggestions, this may result in more predictable identifier names (the
assumption being that Copilot produces more predictable names, an assumption which we discuss in
Section 6). We also consider whether making it more effortful to accept suggestions, by disabling key-
board shortcuts for easy acceptance, can affect the influence of Copilot on identifier names (and thereby
programmer agency). Our research questions are:

RQ1: To what extent are identifiers more predictably named in the presence of Copilot suggestions?

RQ2: To what extent do results differ if keyboard shortcuts for accepting suggestions are disabled?

4. Study Design
To evaluate the effect of Copilot suggestions on identifier choice, we conducted a within-subjects exper-
iment in which participants completed short Java programming tasks (Section 4.1) under different levels
of access to Copilot suggestions (Section 4.2). The 12 participants were computer science undergradu-
ates at our institution, recruited via convenience sampling. All participants had prior knowledge of Java
interfaces and experience in practical Java programming through undergraduate-level coursework.



Expression Definition Interpretation
C A set of common concepts

named by participants
NA

names(c, t) The names given to concept c
under treatment t

NA

Hnames(c, t) The entropy of names(c, t) The unpredictability of the names given to
a specific c under t

{Hnames(c, t) | c ∈
C}

The set of all Hnames(c, t) in a
given treatment t

Assuming Hnames(c, t) is independent of c,
this estimates the distribution of Hnames(t)

⟨Hnames(t)⟩ The mean of {Hnames(c, t) | c ∈
C}

The predictability of the names given to an
arbitrary c under t

Table 1 – Collated Definitions

4.1. Tasks
Using IntelliJ IDEA, participants defined Java interfaces based on natural language prompts. Three tasks
were developed, each with the aim of reflecting a context where distinctive original names are useful,
but hard to conceptualise.

Task 1 involved defining interfaces that form a pipeline for working with data. Participants had to
consider the relationships between interfaces, and methods that could be reused in a variety of contexts.
For example, a method for checking data could be called by a process writing to, or reading from, a
database. The checks could differ in the two cases.

Task 2 involved defining interfaces for a game, where characters could move around a grid, and rotate
in-place. Careful naming was required to capture the relationships between interfaces, for example,
methods to move right and to rotate right might clarify if the motion is relative or absolute.

Task 3 involved participants developing a structure for managing custom user settings. Participants were
asked to imagine that this was originally a command line tool, that was being replaced by a GUI. This
refactoring task encouraged participants to consider how the changing context updates requirements,
and how these updates may be reflected in changes to existing names.

The prompts were designed to avoid priming participants to pick certain identifier names adopting the
method described in Liu and Sarkar, et al. (Liu et al., 2023). Tasks were described in verbose and indirect
ways, encouraging participants to make new identifier choices rather than reuse vocabulary from the task
descriptions.

In the original study of predictive text by Arnold et al. (2020), the experimental task involved writing
image captions. The predictive text system was allowed to consider the image prompt as part of the
context when generating suggestions. By analogy to that study, we included the prompt stimulus text in
comment blocks so that it was visible to Copilot. Copilot may also consider content in other open files.
To ensure all participants saw the same initial suggestions, the set of open files was controlled.

A full listing of our experimental tasks and prompts is given in Appendix A.

4.2. Treatments
We manipulate the visibility of suggestions and the mechanism for accepting suggestions, resulting in
three conditions:

1. ON: Copilot is enabled, with keyboard shortcuts for accepting suggestions.

2. VIEW: Copilot is enabled, but keyboard shortcuts were disabled. Users could view the suggestion,
but could only incorporate it in their code by manually typing it out.



3. OFF: Copilot is disabled, and no suggestions were shown.

Many IDEs, including IntelliJ IDEA, have native (non-AI based) code completion tools that are widely
used in practice. These tools offer autocomplete so that programmers can repeatedly reference identifiers
already present in the codebase. Because the autocomplete functionality acts as a confounding factor
in this setting and interfere with programmer’s attention towards Copilot suggestions, code completion
was disabled for all three treatments to preserve internal validity. This comes at a slight cost to external
validity, but as Intellij IDEA’s native code completion tool does not suggest potential new identifiers,
and our tasks did not require participants to reference the same identifier multiple times, its absence is
unlikely to have been detrimental.

4.3. Protocol
The study was carried out in-person. All 12 participants declared that they were familiar with pro-
gramming in Java, and read and signed a statement of informed consent. Participation in the study was
voluntary and participants were not directly compensated. Our study protocol was approved by our
institution’s ethics committee.

Participants were first asked to read a description of the study, which explained that they would be asked
to define interfaces under three different treatments, and that the experiment was a study of Copilot.
We did not explicitly draw attention to identifiers, but asked participants to consider the readability and
maintainability of their code.

Before attempting any of the tasks, participants were first given a tutorial, where they familiarised them-
selves with defining interfaces and working with Copilot. Participants then completed each of the three
tasks in turn. The assignments of tasks to conditions was counterbalanced, so that each task was com-
pleted by 4 participants each in the ON, OFF, and VIEW conditions respectively. The study sessions
lasted between 45-60 minutes.

ds : An interface for reading and writing data
t ∈ T

t = ON t = VIEW t = OFF

names(ds, t)

DataSource, DataSource, Datum,
DataSource, DataSource, GetAndSet,
DataSource, DataSource, Manipulator,
DataSource DataSource QueryData

H(·) 0 0 2

Table 2 – Example Computation of Hnames(ds, t). Hnames(ds, t) is the entropy of the distribution of
names (each column) given to ds under treatment t ∈ T ..

4.4. Measures
Since all participants were given the same three task descriptions, all participants were creating names
relating to the described set of concepts C.1 As a running example, consider one such concept described
in Task 1 — ds: an interface that reads and writes to some source of data. As shown in Table. 2, we con-
sider names(ds, t): the bag of names given by participants to ds under treatment t ∈ {ON, VIEW, OFF}.

To measure predictability, we employ Shannon Entropy, an information theoretic model for quantifying
the average amount of information communicated by a source (Shannon, 1948). By measuring average
surprisal, entropy quantifies unpredictability.

We ask: “What did programmer X name concept ds under treatment t?”. Hnames(ds, t) quantifies the
uncertainty of the answer. Mathematically, it is the entropy of the empirical distribution of the bag. If

1Some concepts were not named by all participants. In particular, participants disagreed on how to encode inputs to
functions, with some choosing not to specify them at all. These concepts were excluded.



the bag has only one unique element, the name can be predicted with certainty; the entropy is 0. In
general, an entropy of n can be interpreted as the uncertainty associated with predicting the name from
one of 2n equiprobable candidates. This increases as predictability decreases.

To generalise from a single concept ds to the effect of a treatment t on an arbitrary concept c, we make
the simplifying assumption that Hnames(c, t) is independent of c (not generally the case, but reflecting our
experimental tasks). Hence, each Hnames(c, t) is an observation of the same random variable, Hnames(t),
and {Hnames(c, t) | c∈C} is a sample from the underlying distribution. Let ⟨Hnames(t)⟩ denote the sample
mean. This is the expected unpredictability of an identifier under t, regardless of the concept it names.
These definitions are collated in Table 1.

This analysis was repeated at the word level: Hwords(ds, t). This was to investigate whether Copilot en-
courages multiword identifiers that reshuffle words drawn from a smaller vocabulary. Finally, we noted
cases where participants changed their first choice, effectively renaming the identifier, since revisiting a
previous decision represents additional investment of attention by the namer.

We analysed the effect of each treatment on predictability. Two levels of granularity were considered:
a fine-grained comparison of entropy distributions was reinforced by a coarse-grained comparison of
means. 95% confidence intervals were estimated by bootstrap re-sampling with replacement (1000
iterations).

5. Results
5.1. Predictability
Fig. 2 plots histograms of the sample {H(c, t) | c ∈ C} for each treatment t, as an estimate of the
underlying distribution of H(t).

[0, 0.5] [0.5, 1] [1, 1.5] [1.5, 2]
Entropy

0.0

0.2

0.4

0.6

0.8

Empirical Distribution of Entropy (names)
Distributions computed across treatments

On View Off

[0, 1] [1, 2] [2, 3]
Entropy

0.0

0.2

0.4

0.6

0.8

Empirical Distribution of Entropy (words)
Distributions computed across treatments

On View Off

Figure 2 – Treating each H(c, t)as an observation of H(t), these histograms estimate the underlying
distribution of H(t) for each treatment t. Left: Hnames(t) and Right: Hwords(t) 2

2Bin sizes were chosen for interpretability.



Fig. 3 illustrates the sample mean ⟨H(t)⟩ for each treatment t ∈ T . 3 Fig. 4 illustrates, for pairs of
treatments (t1, t2) ∈ T ×T , the pairwise difference ⟨H(t1)⟩−⟨H(t2)⟩.

On View Off
Treatment

M
ea

n
En

tr
op

y
/b

its

Mean Entropy
Of names (left) and words (right), across treatments.
95% Confidence Interval

On View Off
Treatment

0

0.5

1

1.5

2

2.5

Figure 3 – Mean entropy ⟨H(t)⟩ for each
treatment t. This is the mean of H(c, t) (Table
2) over all concepts c under the same treat-
ment t. Left: ⟨Hnames(t)⟩. Right: ⟨Hwords(t)⟩.

View - On Off - View Off - On

Treatment Pair

Pa
irw

is
e

Di
ffe

re
nc

e
/b

its

Pairwise Differences of Mean Entropy
Of names (left) and words (right), across treatments.
95% Confidence Interval

View - On Off - View Off - On

Treatment Pair

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 4 – Difference in mean entropy
⟨H(t1)⟩ − ⟨H(t2)⟩ for pairs of treatments
(t1, t2). Left: name level. Right: word level.

At the name level, the mean entropy was 1.04 bits higher when Copilot was OFF compared to the ON

treatment (CI: [0.81,1.19]), and 0.90 bits higher than the VIEW treatment (CI: [0.69,1.09]).

Fisher’s Exact Test confirmed this to be a statistically significant difference. Under the null hypothesis

H0 : ⟨Hnames(OFF)⟩= ⟨Hnames(VIEW)⟩

H0 was rejected at the p = 0.01 level (p = 0.001).

At the name level, the mean entropy was 0.15 bits higher under the VIEW treatment as compared to the
ON treatment (CI: [−0.13,0.36]). This is not statistically significant at the 0.01 level (p = 0.18).

Analysis at the word level revealed similar results. The mean entropy of words was 0.85 bits higher
when Copilot was OFF compared to the ON treatment, (CI: [0.65, 1.05]), and 0.73 bits higher than the
VIEW treatment. (CI: [0.51, 0.96]). The mean entropy under the VIEW treatment was 0.12 bits higher
than under the OFF treatment. Symmetric to the name level results, this difference between ON and OFF

was significant at the p = 0.01 level (p = 0.001) but the difference between VIEW and OFF was not
(p = 0.26).

Table 3 presents the same data in terms of predictability rather than entropy. Given an arbitrary concept
c, Fig. 3 tabulates the probability that c is more unpredictably named under the OFF treatment than
the ON and VIEW treatments. More precisely, this is the probability that for some fixed concept c,
Hnames(c,OFF) > Hnames(c, t), t ∈ {ON, VIEW}. If given a random concept c, it is likely that c is more
unpredictably named under the OFF treatment than under the ON (p = 0.91, CI: [0.82,1.00]) or VIEW

treatments (p = 0.85, CI: [0.73,0.97]).

5.1.1. Probability of Renaming
When Copilot was OFF, participants renamed their “initial” identifier – defined as the first identifier
they typed – with probability 0.26. Under the VIEW and OFF treatments, where the “initial identifier”
is defined as Copilot’s suggestion, the probability of renaming dropped to 0.20 and 0.11 respectively
(Table 4). While the difference in probability between the OFF and ON treatments is significant at the
α = 0.05 level (p = 0.04), the difference between OFF and VIEW treatments is not (p = 0.06).

3Mean entropy is higher for words than names because each name is counted as multiple words. Hence, an outlier name
can be counted as three or four outlier words.



t P(H(c,OFF)> H(c, t)) 95% CI
ON 0.909 [0.818,1.000]
VIEW 0.848 [0.727,0.970]

Table 3 – Probability that a randomly drawn concept is more predictably named under the ON

and VIEW treatment than under the OFF treatment, with 95% CI. (Unpredictability quantified by
entropy of the empirical set of names).

t P(renamed|t) 95% CI
ON 0.106 [0.061,0.160]
VIEW 0.197 [0.129,0.267]
OFF 0.258 [0.182,0.333]

Table 4 – Probability that a participant re-named the “initial” name for a concept under treatment
t. If t ∈ {ON, VIEW}, the “initial” name is Copilot’s suggestion. If t = OFF, the “initial” name is
the first name typed by participants.

5.1.2. Interfaces vs. Methods
Our experimental tasks required participants to name two distinct types of concepts: interfaces and
methods. Fig. 5 compares the distribution of entropy for interfaces, Hnames(i, t), with the distribution of
entropy for methods, Hnames(m, t). Under the ON treatment, the mean entropy of interface names is 0.39
bits higher than for method names. However, this is not statistically significant (p = 0.06). Under the
VIEW treatment, the difference between the entropy of interfaces and methods is −0.01 bits, and under
the OFF treatment, the difference between the entropy of interfaces and methods is 0.08 bits.

6. Discussion
We find that, regardless of the mechanism for accepting suggestions (RQ2), names are significantly
more predictable in the presence of Copilot suggestions (RQ1). Under the ON and VIEW treatments,
for more than 67% of concepts, less than 1 bit of information was needed to determine the chosen
name. This means that concepts were more predictably named than if all participants were given the
same two names, and asked to pick one at random. Under the OFF treatment, for more than 90% of
concepts, Hnames(c,OFF) was greater than 1.5 bits. As only four participants named each concept under
each treatment, the maximum possible entropy is 2 bits (4 unique names), i.e., the empirically observed
diversity in the OFF condition approaches the theoretical limit.

Our quantitative and qualitative data support the interpretation that participants experienced an attention
investment trade-off in identifier naming with Copilot. Three participants indicated that they felt they
could have improved on Copilot’s suggestions, but “it just wasn’t worth the effort” (P2, P6, P10). This
suggests that participants felt that the marginal attentional cost of improving on Copilot’s suggestion was
higher than that of improving on one’s own candidate name. This is corroborated by the experimental
data, which showed that participants were more than twice as likely to re-name their initially chosen
identifiers when Copilot was OFF than the suggested identifier when Copilot was ON.

However, this is not a complete explanation, as the difference in the probability of re-naming under the
OFF and VIEW treatments was not significant. This could be attributed to two factors. First, the process
of typing out Copilot’s suggestion reduced the marginal cost of thinking up a better name. Second, we
underestimated the frequency of renaming under the OFF treatment, by assuming that the first identifier
written down by participants was the first candidate name considered. Hence, if participants considered
several names before typing out an identifier, which they did not later edit, this was not counted as a re-
naming. In contrast, under the VIEW and OFF treatments, the frequency of re-naming could be measured
much more accurately.



[0, 0.5] [0.5, 1] [1, 1.5] [1.5, 2]
Entropy

0.0

0.2

0.4

0.6

0.8

Distribution of Entropy (Methods)
Distributions computed across treatments

On View Off

[0, 0.5] [0.5, 1] [1, 1.5] [1.5, 2]
Entropy

0.0

0.2

0.4

0.6

0.8

Distribution of Entropy (Methods)
Distributions computed across treatments

On View Off

Figure 5 – Left: Distributions of entropy that only consider interfaces and ignore methods:
Hnames(i, t). Right: Distributions of entropy that only consider methods and ignore interfaces:
Hnames(m, t).

6.1. Mixed-initiative systems, agency, and mechanised convergence
These results have implications for our understanding of how contemporary mixed-initiative program-
ming tools can introduce much broader concerns than the traditional narrow focus on task completion. In
particular, our findings suggest that there may be implications for mixed-initiative interaction on agency
as well as the convergence (homogeneity) of output.

For example, one participant who stated that they “care a lot” (P2) about naming noted that program-
ming with Copilot ON was harder than with it OFF, as they felt like they were “fighting to break free” of
the names suggested by Copilot. Yu et al. (2021) showed that mixed-initiative systems can cause users to
feel a loss of agency, which may increase cognitive load. Darvishi et al. (2024) found that AI assistance
impacts the agency of students, causing them to rely on rather than learn from AI. While Kalliamvakou
(2023) posits that Copilot reduces cognitive load by automating mundane tasks, our results suggest that
should developers decide to invest attention into a task, such as choosing a good name, Copilot may
decrease feelings of agency and thus increase cognitive load. The perception of agency is an important
aspect of the user experience in interacting with intelligent text assistants (Yu et al., 2023), and conver-
gence to Copilot naming might reduce the overall agency and ownership perceived by the programmer.
Sarkar (2023a) observes that in generative AI-assisted end-user programming, the traditional attention
investment trade-off (between the costs of automation, the time saved, and the risks of failing to build a
useful automation) may well be subsumed by considerations of agency and trust in automation.

The second challenge posed by our findings is to the idea that mixed-initiative systems neutrally progress
users towards achieving their goals. When the goal is broad and admits a variety of solutions (as in the
case of identifier naming), the system may actually influence the goal rather than just infer it. This may
or may not be inappropriate – in cases where the programmer should be using a standardised solution
or algorithm, but has not recognised this, substitution of a more conventional, predictable, identifier
could improve their solution. However, in aspects of software development that relate to contextual and



domain understanding, standardised solutions may be worse.

Consider the mixed-initiative nature of traditional code completion tools (Mărăs, oiu et al., 2015), and
paradigms such as programming by demonstration (Cypher & Halbert, 1993) or programming by ex-
ample (Lieberman, 2001), and compare their properties to Copilot. Previous work has largely focused
on the technical challenge of inferring the user’s goals, over which the user is assumed to have com-
plete autonomy. In contrast, here we observe that the mixed-initiative system is taking an active role in
goal-shaping. And the particular form of goal-shaping we have observed in our study corresponds to the
phenomenon of mechanised convergence (Sarkar, 2023b).

Mechanised convergence is a general principle positing that automation has a standardisation effect,
reducing the frequency of outliers. For example, a study of consultants at Boston Consulting Group
found that ideas generated with AI assistance had a “marked reduction in ... variability ... compared to
those not using AI. ... it might lead to more homogenized outputs” (Dell’Acqua et al., 2023). Similarly,
Anderson et al. (2024) found that “different users tended to produce less semantically distinct ideas with
ChatGPT” and further, that this could impact agency: “ChatGPT users ... felt less responsible for the
ideas they generated”.

In the context of creating identifier names, the principle of mechanised convergence suggests that as
names become more predictable, this reduces the frequency of very bad names, but also the frequency
of very good ones. One researcher informally analysed the identifiers authored during the study for
informativeness. With Copilot OFF, there were more extremely informative, and extremely uninfor-
mative identifiers. For example, consider the task where participants were asked to name a character
that can move around a grid, one square at a time. With Copilot ON, most participants chose the name
Movable – this is moderately informative as it states what can be done with the character but contains
no information about the one-square constraint. With Copilot OFF, the quality of names ranged from
Move (very bad) to TakesSingleStep (very good). Move is uninformative, as the vocative case of
the verb “to move” is more appropriate for a function that causes the character to move, and the noun
form indicating a specific instance of a motion (i.e., in the sense of “a dance move”) is more appropriate
for an object that records a move instance. Both senses of Move fail to describe the character’s ability
(unlike the adjective Movable), and also fail to capture the one-square constraint. On the other hand,
TakesSingleStep is extremely informative, uses an appropriate grammatical form, and captures the
one-square constraint. A full listing of identifiers written by our participants by task and condition is
given in Appendix B.

Is mechanised convergence, per se, an asset or a liability for the practice of programming? Even if
Copilot’s suggested identifiers cannot match the quality or informativeness of those written by the best
programmers, they only need to be better than those written by most programmers for the aggregate
benefits of naming-by-Copilot to outweigh the negatives. However, programmers do not experience
the practice of programming in aggregate (Bergström & Blackwell, 2016), and individual programmers
almost certainly vary in their naming skill at different times and in different contexts. Moreover, we
must also consider not simply the quality of the final identifier, but also the cognitive challenges and
benefits of inventing it. The process of naming a concept itself might induce changes or insights. For
example, one craft practice of programming holds that if a function is hard to name, this is probably an
indication that one is doing too much or too little in that function (Blackwell et al., 2008).

When Copilot suggestions were enabled, suggestions for method names were more readily accepted
by participants than suggestions for interface names. Participants occasionally thought of names for
interfaces while reading the problem description, before seeing Copilot’s suggestion, but this was rare
for methods. Even without Copilot suggestions, the predictability of names may vary between concepts.
Concepts for which strong conventions exist – for example, getters, setters, and common algorithms
like QuickSort – might be named more predictably than bespoke methods or interfaces. However, in
all treatments the mean entropy for interfaces does not differ significantly from the mean entropy for
methods. Hence, there is insufficient evidence to suggest that interfaces are more, or less, predictably



named than methods.

6.2. Implications for design and developer practice
While Github Copilot may boost developer productivity, it also results in significantly more predictable
identifiers. This may be because Copilot suggestions increase the attentional costs of improving on a
suggested identifier.

These findings offer suggestions for developer workflows that increasingly require “critical integration”
(Sarkar, 2023b) of Copilot-generated code.

First, consider settings where good names are costly, but important. For example, when establishing
a new set of naming conventions for a codebase. Given that appropriate names suggested by Copilot
increase the marginal cost of investing attention, the converse might also hold: inappropriate suggestions
may decrease this cost, and encourage programmers to think more carefully about names, a similar
strategy to Wilson et al. (2003)’s Surprise-Explain-Reward model, in which the user’s attention is drawn
toward features of the code that they didn’t expect.

Second, consider settings where good names are not as critical. For example, when an established con-
vention already exists, and predictable names are informative within the context. In these cases, Copilot
may help developers follow existing conventions in predictable ways. In turn, this may help create a
setting where unpredictable names draw attention more effectively. When the predictability of a set
of names increases, an outlier is more surprising. Hence, when most names are predictable, deliber-
ate breaks from convention can more effectively emphasise subtle differences and direct developers’
attention.

We can also draw on the observations from this empirical study to suggest several design opportunities
for mixed-initiative features that could result in improved quality of identifier names.

First, it is important to note that in some cases, the predictable names suggested by Copilot might
sometimes be better names than more idiosyncratic alternatives created by the programmer. This may
be because the programmer’s suggestion reflects a misunderstanding of the problem, or perhaps a lack
of knowledge of standard approaches. In these cases, it could be beneficial to the programmer to invest
more attention, thinking again about the reason for their name choice. Wilson et al. (2003)’s Surprise-
Explain-Reward design pattern can help here, alerting the programmer to the unconventional name they
have chosen, and giving them the opportunity to investigate why this is the case.

A second design opportunity could be to optimise investment of attention with better understanding of
contextual factors that are relevant to naming, such as distinguishing between a) throw-away program-
ming “sketches” where the code will be discarded immediately after execution; b) systems intended to
have a long maintained lifetime that will involve intermittent attention from many different program-
mers; or c) API libraries and frameworks where thousands of programmers will eventually need to
understand the implications of the identifiers chosen. In cases where the choice of identifier names has
especially costly implications, a programming assistance tool would be able to take this into account by
collecting information about the eventual audience and context of use, encoding that contextual infor-
mation as additional prompts to the LLM during code generation.

A third design opportunity is to consider a new kind of software development / maintenance tool that
might be described as “conceptual refactoring”, which makes no changes to the function or semantics
of the source code, but simply modifies identifier names. During incremental and iterative software
development, it is not unusual for programmers to improve their understanding of the system such
that they see opportunities to improve on the identifier names that were initially chosen. A conceptual
refactoring tool, by focusing only on identifier names, could improve the overall clarity and coherence of
that name space. Technical strategies that might achieve this through the use of LLMs could include use
of summarising approaches to extract and clarify the variety of identifiers that have been used in a large
code base, then reconsidering individual identifiers in terms of their role within that overall structure.
Such a tool could be implemented as direct interaction with a symbol table or data dictionary, or by



using chat dialog prompts such as “Please include in your response a list of identifiers you’ve used, with
the reasons for your choices” (Lewis, 2024).

6.3. Limitations and Future Work
Sample Size. While the results we have observed are statistically significant, it is also possible (given
the upper bound on the entropy), that the effect size has been underestimated. Supplemental analyses
that increase the sample size might find an even larger effect.

Assumption of Independence. The simplifying assumption that the predictability of an identifier de-
pends only on the treatment, not the concept, may be loosened. While we took preliminary steps in this
direction - broadly dividing concepts between interfaces and methods - further work could consider finer
granularity in these subdivisions. As suggested, Copilot might have a smaller effect on the predictability
of getter and setter names than other methods.

External Validity. The decision to disable IntelliJ IDEA’s code completion tool could be revisited. The
presence of IntelliJ IDEA’s code completion tool could have been manipulated as an independent factor,
resulting in three more treatments. While this was not feasible due to resource constraints, it represents
a natural extension to the study.

Mechanised Convergence. A surface-level survey of the names finds results consistent with the phe-
nomenon of “mechanised convergence”. However, a more thorough analysis requires considering not
only changes to the predictability of names, but quality of names, including cases where the best quality
name would be a very predictable one (for example when implementing a standard algorithm such as
quicksort). Analysis might involve multiple raters ranking names by quality in context, with consistency
achieved by employing set-wise comparison (Sarkar et al., 2016).

Sample Homogeneity. We only studied CS undergraduates at one University. Undergraduates are, in
general, less than experienced software engineers. They may find it more difficult to choose good names,
and be more susceptible to authoritative suggestions. Programmers in industry may be trained to respect
certain company-specific conventions, or constraints, in naming. Future work may consider whether the
effects generalize to samples of professional programmers.

Language Effects. This study considered the effect of Copilot on identifier names in Java specifically.
Different programming languages are used by different types of programmer, and for different purposes,
which may bring different implications for attention investment. As a result, distinct languages often
have distinct conventions for identifiers. Future work might consider if and how the effect on identifier
choice varies between languages. For languages with larger training corpora, e.g., popular languages
such as Python and JavaScript, identifiers that follow conventions may be assigned higher probabilities
by the language model, and so the effect size is unlikely to vary.

7. Conclusion
This study explored how AI code generation tools like GitHub Copilot influence the conceptual task
of choosing identifiers during programming. Selecting descriptive names for classes, methods, and
variables is a crucial activity that shapes code readability and communicates intent. Yet developers may
face tensions between investing sufficient attention for informative naming versus prioritizing efficiency.

We conducted a controlled experiment where 12 participants defined Java interfaces both with and with-
out the presence of Copilot’s identifier suggestions. Across three coding tasks carefully designed to
require subjective naming decisions, identifiers chosen under Copilot’s influence were found to have
significantly lower entropy – that is, they were more predictable and less informative. Strikingly, this
tendency towards predictable names occurred even when Copilot merely displayed suggestions without
allowing auto-completion.

We find that generative AI problematizes the traditional task-oriented narrative of mixed-initative sys-
tems. Mixed-initiative systems can have an impact on programmer agency as well as their goals. While
predictable names promote consistency, overly deferring to AI suggestions could deprioritise investing



the human attention required to craft identifiers that are specifically tailored to the nuances of the current
context and requirements.

To mitigate risks of AI prematurely narrowing programmers’ perspectives, we propose AI tools that sur-
face surprising or unconventional alternatives, counterbalancing predictable suggestions. Incorporating
conceptual refactoring aids could also encourage revising identifiers as the programmer’s understanding
evolves.

As AI’s role in programming extends beyond just accelerating tasks, this work underscores the need
to thoughtfully steer AI-assisted workflows. Simply optimizing for productivity could inadvertently
discourage essential cognitive activities that underpin coding quality. Balancing AI assistance with
preserving key human skills like intentional naming will be crucial.

Acknowledgments
Thanks to our participants for their valuable time.

References
Al Madi, N. (2022). How readable is model-generated code? examining readability and visual inspection of github copilot.

Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering, 1–5.
Anderson, B. R., Shah, J. H., & Kreminski, M. (2024). Homogenization effects of large language models on human creative

ideation.
Ani, Z. C., Hamid, Z. A., & Zhamri, N. N. (2023). The recent trends of research on github copilot: A systematic review.

International Conference on Computing and Informatics, 355–366.
Arnold, K. C., Chauncey, K., & Gajos, K. Z. (2020). Predictive text encourages predictable writing. IUI ’20: Proceedings of

the 25th International Conference on Intelligent User Interfaces. https://doi.org/10.1145/3377325
.3377523

Barke, S., James, M. B., & Polikarpova, N. (2023). Grounded copilot: How programmers interact with code-generating models.
Proceedings of the ACM on Programming Languages, 7(OOPSLA1), 85–111.

Bergström, I., & Blackwell, A. F. (2016). The practices of programming. 2016 ieee symposium on visual languages and
human-centric computing (vl/hcc), 190–198.

Bhat, A., Agashe, S., Oberoi, P., Mohile, N., Jangir, R., & Joshi, A. (2023). Interacting with next-phrase suggestions: How sug-
gestion systems aid and influence the cognitive processes of writing. IUI ’23: Proceedings of the 28th International
Conference on Intelligent User Interfaces. https://doi.org/10.1145/3581641.3584060

Bird, C., Ford, D., Zimmermann, T., Forsgren, N., Kalliamvakou, E., Lowdermilk, T., & Gazit, I. (2022). Taking flight with
copilot: Early insights and opportunities of ai-powered pair-programming tools. Queue, 20(6), 35–57.

Blackwell, A. F. (2002). First steps in programming: A rationale for attention investment models. Proceedings IEEE 2002
Symposia on Human Centric Computing Languages and Environments, 2–10.

Blackwell, A. F. (2003). First steps in programming: A rationale for attention investment models. IEEE. https://doi
.org/10.1109/hcc.2002.1046334

Blackwell, A. F. (2022, September). Chapter 10: The craft of coding [https://moralcodes.pubpub.org/pub/chapter-9]. In Moral
Codes. MIT Press.

Blackwell, A. F. (2023, June). Chapter 11: How can stochastic parrots help us code?
[https://moralcodes.pubpub.org/pub/1osz744d]. In Moral Codes. MIT Press.

Blackwell, A. F., Church, L., & Green, T. R. (2008). The abstract is an enemy: Alternative perspectives to computational
thinking. PPIG, 5.

Buschek, D., Zürn, M., & Eiband, M. (2021). The impact of multiple parallel phrase suggestions on email input and com-
position behaviour of native and non-native english writers. CHI ’21: Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. https://doi.org/10.1145/3411764.3445372

Cypher, A., & Halbert, D. C. (1993). Watch what i do: Programming by demonstration. MIT press.
Dakhel, A. M., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais, M. C., & Jiang, Z. M. J. (2023). Github copilot ai pair

programmer: Asset or liability? Journal of Systems and Software, 203, 111734.
Darvishi, A., Khosravi, H., Sadiq, S., Gašević, D., & Siemens, G. (2024). Impact of ai assistance on student agency. Computers

Education, 210, 104967. https://doi .org/https://doi .org/10 .1016/j .compedu .2023
.104967

Dell’Acqua, F., McFowland III, E., Mollick, E. R., Lifshitz-Assaf, H., Kellogg, K., Rajendran, S., Krayer, L., Candelon, F., &
Lakhani, K. R. (2023, September). Navigating the jagged technological frontier: Field experimental evidence of the
effects of ai on knowledge worker productivity and quality (Working Paper No. 24-013). Harvard Business School
Technology Operations Mgt. Unit. https://doi.org/10.2139/ssrn.4573321

Dohmke, T. (2023, June). The economic impact of the ai-powered developer lifecycle and lessons from github copilot - the
github blog. https://github.blog/2023-06-27-the-economic-impact-of-the-ai-powered
-developer-lifecycle-and-lessons-from-github-copilot/



Eshraghian, F., Hafezieh, N., Farivar, F., & De Cesare, S. (2023). Dynamics of emotions towards ai-powered technologies: A
study of github copilot. Academy of Management (AOM) Annual Meeting 2023.

Fajkovic, E., & Rundberg, E. (2023). The impact of ai-generated code on web development: A comparative study of chatgpt
and github copilot.

Furnas, G. W., Landauer, T. K., Gomez, L. M., & Dumais, S. T. (1987). The vocabulary problem in human-system communi-
cation. Communications of the ACM, 30(11), 964–971.

Goodman, N. D., & Frank, M. C. (2016). Pragmatic language interpretation as probabilistic inference. Trends in Cognitive
Sciences, 20(11), 818–829. https://doi.org/10.1016/j.tics.2016.08.005

Hayes, J. R. (2012). Modeling and remodeling writing. Written Communication, 29(3), 369–388. https://doi.org/10
.1177/0741088312451260

Horvitz, E. (1999). Principles of mixed-initiative user interfaces. Proceedings of the SIGCHI conference on Human Factors in
Computing Systems, 159–166.

Imai, S. (2022). Is github copilot a substitute for human pair-programming? an empirical study. Proceedings of the ACM/IEEE
44th International Conference on Software Engineering: Companion Proceedings, 319–321.

Jakesch, M., Bhat, A., Buschek, D., Zalmanson, L., &, (2023). Co-writing with opinionated language models affects users’
views. CHI ’23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. https:
//doi.org/10.1145/3544548.3581196

Kalliamvakou, E. (2023, September). Research: Quantifying github copilot’s impact on developer productivity and happi-
ness - the github blog. https://github .blog/2022 -09 -07 -research -quantifying -github
-copilots-impact-on-developer-productivity-and-happiness/

Koyanagi, K., Wang, D., Noguchi, K., Kondo, M., Serebrenik, A., Kamei, Y., & Ubayashi, N. (2024). Exploring the effect of
multiple natural languages on code suggestion using github copilot. arXiv preprint arXiv:2402.01438.

Lewis, C. (2024).
Lieberman, H. (2001). Your wish is my command: Programming by example. Morgan Kaufmann.
Liu, M. X., Sarkar, A., Negreanu, C., Zorn, B., Williams, J., Toronto, N., & Gordon, A. D. (2023). “What It Wants Me

To Say”: Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language
Models. CHI ’23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. https:
//doi.org/10.1145/3544548.3580817

MacArthur, C. A., Graham, S., & Fitzgerald, J. (2016, October). Handbook of writing research, second edition. Guilford
Publications.

Mărăs, oiu, M., Church, L., & Blackwell, A. F. (2015). An empirical investigation of code completion usage by professional
software developers. Proceedings of the 26th Annual Workshop of the Psychology of Programming Interest Group.

Mastropaolo, A., Pascarella, L., Guglielmi, E., Ciniselli, M., Scalabrino, S., Oliveto, R., & Bavota, G. (2023). On the robustness
of code generation techniques: An empirical study on github copilot. 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), 2149–2160.

McConnell, S. (1993, May). Code complete: A practical handbook of software construction. http://ci.nii.ac.jp/
ncid/BA26593422

Mozannar, H., Bansal, G., Fourney, A., & Horvitz, E. (2022). Reading between the lines: Modeling user behavior and costs in
ai-assisted programming. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2210.14306

Mozannar, H., Bansal, G., Fourney, A., & Horvitz, E. (2023). When to show a suggestion? integrating human feedback in
ai-assisted programming. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2306.04930

Naur, P. (1985). Programming as theory building. Microprocessing and microprogramming, 15(5), 253–261.
Nguyen, N., & Nadi, S. (2022). An empirical evaluation of github copilot’s code suggestions. Proceedings of the 19th Interna-

tional Conference on Mining Software Repositories, 1–5.
OBrien, D., Biswas, S., Imtiaz, S., Abdalkareem, R., Shihab, E., & Rajan, H. (2024). Are prompt engineering and todo com-

ments friends or foes? an evaluation on github copilot. 2024 IEEE/ACM 46th International Conference on Software
Engineering (ICSE), 1003–1003.

Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M. (2023). The impact of ai on developer productivity: Evidence from
github copilot. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2302.06590

Poddar, R., Sinha, R., & Jakesch, M. (2023). Ai writing assistants influence topic choice in self-presentation. CHI EA ’23:
Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems. https://doi.org/
10.1145/3544549.3585893

Puryear, B., & Sprint, G. (2022). Github copilot in the classroom: Learning to code with ai assistance. Journal of Computing
Sciences in Colleges, 38(1), 37–47.

Sarkar, A. (2023a). Will Code Remain a Relevant User Interface for End-User Programming with Generative AI Models?
Proceedings of the 2023 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, 153–167. https://doi.org/10.1145/3622758.3622882

Sarkar, A. (2023b). Exploring Perspectives on the Impact of Artificial Intelligence on the Creativity of Knowledge Work:
Beyond Mechanised Plagiarism and Stochastic Parrots. CHIWORK ’23: Proceedings of the 2nd Annual Meeting
of the Symposium on Human-Computer Interaction for Work. https://doi .org/10 .1145/3596671
.3597650



Sarkar, A., Gordon, A. D., Negreanu, C., Poelitz, C., Srinivasa Ragavan, S., & Zorn, B. (2022). What is it like to program with
artificial intelligence? Proceedings of the 33rd Annual Conference of the Psychology of Programming Interest Group
(PPIG 2022).

Sarkar, A., Morrison, C., Dorn, J. F., Bedi, R., Steinheimer, S., Boisvert, J., Burggraaff, J., D’Souza, M., Kontschieder, P., Rota
Bulò, S., Walsh, L., Kamm, C. P., Zaykov, Y., Sellen, A., & Lindley, S. (2016). Setwise Comparison: Consistent,
Scalable, Continuum Labels for Computer Vision. Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, 261–271. https://doi.org/10.1145/2858036.2858199

Schankin, A., Berger, A., Holt, D. V., Hofmeister, J. C., Riedel, T., & Beigl, M. (2018). Descriptive compound identifier names
improve source code comprehension. 2018 ACM/IEEE 26th International Conference on Program Comprehension.
https://doi.org/10.1145/3196321.3196332

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. https:
//doi.org/10.1002/j.1538-7305.1948.tb01338.x

Singh, N., Bernal, G., Savchenko, D., & Glassman, E. L. (2023). Where to hide a stolen elephant: Leaps in creative writing
with multimodal machine intelligence. ACM Transactions on Computer-Human Interaction, 30(5), 1–57. https:
//doi.org/10.1145/3511599

Vaithilingam, P., Zhang, T., & Glassman, E. L. (2022). Expectation vs. experience: Evaluating the usability of code genera-
tion tools powered by large language models. CHI Conference on Human Factors in Computing Systems Extended
Abstracts. https://doi.org/10.1145/3491101.3519665

Vasconcelos, M. H., Bansal, G., Fourney, A., Liao, Q. V., & Vaughan, J. (2023). Generation probabilities are not enough:
Exploring the effectiveness of uncertainty highlighting in ai-powered code completions. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.2302.07248

Wermelinger, M. (2023). Using github copilot to solve simple programming problems, 172–178. https://doi.org/10
.1145/3545945.3569830

Williams, J., Negreanu, C., Gordon, A. D., & Sarkar, A. (2020). Understanding and Inferring Units in Spreadsheets. 2020
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 1–9. https://doi.org/10
.1109/VL/HCC50065.2020.9127254

Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C. R., Durham, M. D., & Rothermel, G. (2003).
Harnessing curiosity to increase correctness in end-user programming. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. https://doi.org/10.1145/642611.642665

Yetistiren, B., Ozsoy, I., & Tuzun, E. (2022). Assessing the quality of github copilot’s code generation. Proceedings of the 18th
international conference on predictive models and data analytics in software engineering, 62–71.

Yetiştiren, B., Özsoy, I., Ayerdem, M., & Tüzün, E. (2024). Evaluating the code quality of ai-assisted code generation tools:
An empirical study on github copilot, amazon codewhisperer, and chatgpt. arxiv preprint arxiv: 230410778. 2023.
arXiv preprint arXiv:2304.10778.

Yu, C. G., Blackwell, A. F., & Cross, I. (2021). Perception of rhythmic agency for conversational labeling. Human-Computer
Interaction, 38(1), 25–48. https://doi.org/10.1080/07370024.2021.1877541

Yu, C. G., Blackwell, A. F., & Cross, I. (2023). Perception of rhythmic agency for conversational labeling. Human–Computer
Interaction, 38(1), 25–48.

Zhang, B., Liang, P., Zhou, X., Ahmad, A., & Waseem, M. (2023a). Demystifying practices, challenges and expected features
of using github copilot. arXiv preprint arXiv:2309.05687.

Zhang, B., Liang, P., Zhou, X., Ahmad, A., & Waseem, M. (2023b). Practices and challenges of using github copilot: An
empirical study. arXiv preprint arXiv:2303.08733.

Zhao, S. (2023, February). Github copilot now has a better ai model and new capabilities - the github blog. https://
github .blog/2023 -02 -14 -github -copilot -now -has -a -better -ai -model -and -new
-capabilities/

Zhou, X., Liang, P., Zhang, B., Li, Z., Ahmad, A., Shahin, M., & Waseem, M. (2023). On the concerns of developers when
using github copilot. arXiv preprint arXiv:2311.01020.

Ziegler, A., Kalliamvakou, E., Li, X. A., Rice, A. S., Rifkin, D., Simister, S., Sittampalam, G., & Aftandilian, E. (2022). Pro-
ductivity assessment of neural code completion. MAPS 2022: Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming. https://doi.org/10.1145/3520312.3534864

Appendices

A. Experimental Prompts and Tasks
A.1. Prompts
This experiment is interested in how programmer style is influenced by the use of CoPilot.

It will comprise three tasks. Each task will require you to define one or more interfaces or abstract
classes.



Unless explicitly told otherwise, you will not need to implement the interfaces, nor implement any of
the methods in the abstract classes. In essence, the focus of task is on the interface/class signatures, not
on the logic.

Each task will be in its own .java file, with a comment explaining the nature of the task. Points where
you are expected to write code are explicitly flagged with TODO.

Each task will have a different CoPilot configuration. There are three configurations:

1. One where CoPilot is turned on,

2. One where you can see CoPilot’s suggestions, but you can’t automatically accept them (you have
to type them out), and

3. one where CoPilot is off.

The researcher will adjust the settings for each of the tasks. Please do not modify them.

When you are done with the task, please indicate to the researcher that you are happy with your submis-
sion, at which point the researcher will change the CoPilot settings, and allow you to move to the next
task.

If you have any questions, please indicate them to the researcher at this point.

A.2. Tasks
A.2.1. Warmup

1 interface TwoDimPoint {
2 int getX();
3 int getY();
4 void setX(int v);
5 void setY(int v);
6 }
7

8 // TODO: Extend this interface to obtain a ThreeDimPoint interface.

A.2.2. Task 1
1 public class Task1 {
2 // A data pipeline is a series of steps for working with data. This typically
3 // involves reading, extracting, transforming, manipulating, validating,
4 // checking, visualising, storing, plotting, and many other steps.
5

6 // You are tasked with designing three interfaces that, if implemented,
7 // form a very basic pipeline for working with data.
8

9 // First, an interface that is able to ask some source, or knowledge object,
10 // or database for some datum or data. Further, it should be able to take some
11 // datum or data and ask the source/object/database/knowledge base to store it.
12 // When this interface is given a datum or data to store, it should
13 // automatically assume that the datum or data is valid. Further, you can
14 // assume that any singular piece of datum or data will be encoded as a string

.
15 // TODO
16

17 // We have the data from the source, or to be written into the source.
18 // What’s next? Well, we want an interface that makes sure we’re not doing
19 // anything silly. The interface should have some signal that can call on when
20 // the checks have failed. This ought to be an exception. Now, we assume all
21 // users are internal, so throwing this checked exception shouldn’t crash the
22 // program, but instead be caught and handled. This means we want checked
23 // exceptions to be thrown. Your job is to define some checked exception that
24 // is thrown when the second interface catches some mangled or nasty data.
25 // TODO



26

27 // Now we are ready to define the second interface.
28 // This interface should have two roles.
29 // Its first role is to take a datum or data that the first interface has
30 // returned, and check it for faults.
31 // These flaws could be mistakes, or corruption, or garbled data. While not
32 // important, potential sources of corruption could be faults in the hardware,
33 // problems in transmission over the wire, etcetera. Its second role is that
34 // it should have a method that checks if the data that the user gives to the
35 // first interface is valid. So this treats data going in the other direction.
36 // The causes of the potential mistakes/corruption are different in this case,
37 // as the user could have made a mistake, by encoding some flawed data, or by
38 // calling a buggy encoding method.
39 // TODO
40

41 // Now we are ready to define the third interface.
42 // The final task is to give clients something that they can actually use.
43 // So far we’ve only been working with data encoded as strings.
44 // Clients don’t actually want the strings, but they want something that’s
45 // easier to play around with. This involves molding or reshaping the data
46 // into something they can actually use. We don’t want to rely on the clients
47 // building proper decoders, so it makes sense to define a couple of defaults
48 // that they can call on to manipulate the data into the form that they
49 // actually plan on using. We’ve done some studies, and we’ve narrowed down
50 // the three most commonly used formats to be:
51 // json,
52 // byte64, and
53 // a Map object
54 // Hence, the interface should expose three methods, one for each format.
55 // TODO
56 }

A.2.3. Task 2
1 public class Task2 {
2 // I am building a board game that will be populated by characters.
3

4 // First, it’s important that some characters can move around the board.
5 // Different characters can move in different ways, following different
6 // constraints. The interface should describe characters that can move
7 // one square up, one square down, one square left, and one square right.
8 // These characters aren’t allowed to move multiple squares at once, or
9 // diagonally.

10 // TODO
11

12 // Sometimes we care about allowing the characters to move, and other
13 // times we care about allowing the characters to perform more complex
14 // motions, like spinning. In order to build something like spinning, we
15 // need to allow characters to rotate. Here, we only care about characters
16 // that can turn left with respect to the direction that they are facing,
17 // and right with respect to the direction that they are facing. The arc
18 // of rotation should be a quarter-circle, that is, increments of 90 degrees,
19 // or pi/2 radians.
20 // TODO
21

22 // Third, some characters will have an inventory.
23 // An inventory is a collection of items that a character can carry around
24 // with them. We care about characters that are able to take a single item
25 // from their surroundings, and put it into their inventory. After they do
26 // so, they will be able to carry these items around with them.
27 // Characters should also be able to retrieve stuff from the inventory, to
28 // use it or discard it in some manner. Characters should operate on singular
29 // items, that is, there won’t be a method to put many things into the
30 // inventory, or take many things out of it, in just a single go.



31 // TODO
32

33 // Fourth, some characters will be able to throw things.
34 // When a character throws something, they will throw it in the direction
35 // that they are facing, rather than in any arbitrary direction. This means
36 // that they can only throw things in the direction they are facing. In
37 // addition, characters need to throw something. They can’t just throw nothing.
38 // Further, characters that implement this interface should throw things
39 // exactly 5 squares. To recap: characters can throw things 5 squares in the
40 // direction that they are facing.
41 // TODO
42

43 // As a test, build a Character interface that extends each of the previous
44 // interfaces
45 // TODO
46

47 // Build a dodge method that moves a character. Assume that the character is
48 // facing the up direction.You want to move it in a zig-zag motion in the up
49 // direction. The character should turn to face the direction of motion and
50 // moving in some interesting pattern. The signature of the method should be
51 // void dodge(Character c)
52 // TODO
53

54 // Build an attack method: get a stone from the inventory, throw it, walk 5
55 // steps, and get the stone back. The signature of the method should be
56 // void attack(Character c)
57 // TODO
58

59 // Finally, build an interface for characters that can move 5 squares up,
60 // down, left, and right. They shouldn’t be able to move in increments of
61 // less than 5.
62 // TODO
63 }

A.2.4. Task 3
1 public class Task3 {
2 /*
3 We have a user-facing command line system.
4 Users can personalise the system, for example, changing the time zone,

language, and font size.
5

6 There are also some global settings, or defaults. These global settings /
defaults kick in

7 when the user has not specified any personal settings. For example, when the
user is a new user.

8 In some sense these settings are pre-installed or pre-defined by the company,
though once the

9 software has shipped, users (be they people or companies) can change these
global or default settings

10 to their liking.
11

12 Currently, the mechanism for changing settings, both global and local, is by
setting feature flags.

13 A feature flag is a single bit, indicating if the feature is on, or off.
14 The code will query these feature flags to determine methods to execute, or

items to display.
15 This means that the system will operate differently depending on if a feature

flag is on, or off.
16 Specifically, this is done via a command line tool, called, flg. There are 5

ways to use flg
17

18 flg 0 is a getter, that returns the user’s custom settings. For example, if
the user settings are



19 "1011", then flg 0 will return "1011" for that user. Different users will get
different results.

20

21 flg 0[sequence] acts as a setter for the user’s private, personal, custom
settings.

22 The sequence is used to determine what settings ought to be set.
23 For example, flg 011001 turns feature flag 0 on, feature flag 1 on, feature

flag 2 off, feature flag 3 off,
24 and feature flag 4 on.
25

26 flg 1 is a getter, and it gets the global or universal settings. For example,
if the global settings are 0000, then

27 flg 1 will return 0000.
28

29 flg 1[sequence] changes the global settings (for everyone). The sequence is
used to determine what the new

30 global settings ought to be. For example, flg 10111 will turn feature flag 1,
feature flag 2, and feature flag 3 on,

31 and it will turn feature flag 0 off. It does not delete any custom settings.
That is, if the user already has

32 feature flag 0 on, they will not notice a change.
33

34 flg 2 deletes all custom settings, effectively resets all custom settings to
the global default. So for example,

35 if there are 3 users, users A, B, and C, and they each have custom settings,
and the global setting is 0000, then

36 after we call flg 2, all 3 users will have 0000 as their settings.
37

38 The company has decided to move to a system with a GUI.
39 You have been asked to refactor flg into an abstract class (no implementation

required, all methods should be stubs).
40 This class will not be exposed to the user via a command line interface.
41 This means there is no need for backwards compatibility, and you only need to

preserve the functionality, not
42 the exact syntax, or the exact mechanisms that supply the functionality.
43 Indeed, you have been advised to define one method for each possible different

way to use flg.
44 Your abstract class should store the global settings as a static list of

integers.
45 You abstract class should also store the user’s custom settings as a static

dictionary from user ID (string) to a list of integers.
46 */
47 // TODO
48

49 }

B. Participant Responses
Tasks are named Tn::Im::Mk, as in Task n, Java Interface m, Java Method k.

T1::I1
DataSource DataSource ManipulateData

DataSource DataStore GetAndSettable

DataSource DataSource SourceQuery

DataSource DataSource Datum

T1::I1::M1
query read getData

read getData get

read read retrieve

read read getDatum

T1::I1::M2
store store storeData

write storeData set

write store store

write write storeDatum

ON VIEW OFF

Continued on next page



T1::I2::E1
DataValidationException DataIntegrityException CheckedException

DataException DataHandlerException SillyData

DataException DataException SourceException

DataException DataException MangledDataException

T1::I2::E2
DataValidationException DataConsistencyException CheckedException

DataException DataHandlerException SillyData

DataException DataException SourceException

DataException DataException MangledDataException

T1::I3
Validator DataChecker CheckData

DataChecker DataHandler DataChecker

DataChecker DataValidater SourceVerifier

DataChecker DataChecker DataChecker

T1::I3::M1
validate checkRead checkDataOutput

checkRead checkDataReturn checkRetrievedData

checkRead sourceValidate checkForFaults

checkRead checkRead checkReturnedData

T1::I3::M2
validate checkWrite checkDataInput

checkWrite checkDataInput checkInputData

checkWrite userValidate checkForFaults

checkWrite checkWrite checkInputData

T1::I4
Decoder DataTransformer convertData

DataTransformer DataDecoder Decoder

DataTransformer DataDecoder Decoder

DataTransformer DataTransformer DataManipulator

T1::I4::M1
decodeJson toJson jsonData

json asJson toJson

json json toJson

json json dataToJson

T1::I4::M2
decodeBase64 toBase64 byte64Data

byte64 asByte64 toBase64

byte64 byte64 toByte64

byte64 byte64 dataToByte64

T1::I4::M3
decodeMap toMap mapData

map asMap toMap

map map toMap

map map dataToMap

T2::I1
Movable TakesSingleStep Movable

Movable CharacterTranslations Movable

Movable CharacterMove MovableCharacter

Movable Move MovingCharacter

T2::I1::M1
moveUp movesOneSquareUp moveUp

moveUp moveUp moveUp

moveUp moveUp moveUp

moveUp up moveUp

T2::I1::M2
moveDown movesOneSquareDown moveDown

moveDown moveDown moveDown

moveDown moveDown moveDown

moveDown down moveDown

T2::I1::M3
moveLeft movesOneSquareLeft moveLeft

moveLeft moveLeft moveLeft

moveLeft moveLeft moveLeft

moveLeft left moveLeft

T2::I1::M4
moveRight movesOneSquareRight moveRight

moveRight moveRight moveRight

moveRight moveRight moveRight

moveRight right moveRight

T2::I2
Rotatable AbleToRotate Rotatable

Rotatable CharacterRotations Rotatable

Rotatable CharacterRotate RotatableCharacter

Rotatable Rotate SpinningCharacter

T2::I2::M1
rotateClockwise turnsLeft90Degrees rotateLeft

ON VIEW OFF

Continued on next page



rotateLeft rotateLeft rotateLeft

rotateLeft rotateCW rotateLeft

rotateLeft rotateLeft rotateLeft

T2::I2::M2
rotateAntiClockwise turnsRight90Degrees rotateRight

rotateRight rotateRight rotateRight

rotateRight rotateACW rotateRight

rotateRight rotateRight rotateRight

T2::I3
Inventory HasInventory Inventory

Inventory CharacterInventory Inventory

Inventory CharacterInventory CharacterWithInventory

Inventory Inventory InventoryCharacter

T2::I3::M1
storeItem storeItem takeItem

takeItem store takeItem

takeItem store takeItem

storeItem put takeItem

T2::I3::M2
retrieveItem retrieveItem retrieveItem

retrieveItem retrieve retrieveItem

retrieveItem retrieve retrieveItem

retrieveItem retrieve retrieveItem

T2::I4
Throwable AbleToThrow Thrower

Thrower CharacterThrow Thrower

Thrower CharacterThrow CharacterThatThrows

Thrower Throw ThrowingCharacter

T2::I4::M1
throwItem throwForwardFiveSquares throwItem

throwItem throwFive throwItem

throwItem throwFive throwItemFiveSquares

throwItem throwItem throwItem

T3::I1
FeatureFlags Flg Flg

FeatureFlag Flg Settings

Flg Flg Flg

Flg Flg Flg

T3::I1::A1
defaultFlags globalSettings globalSettings

global globalSettings globalSettings

globalFlags globalSettings globalSettings

globalSettings globalSettings globalSettings

T3::I1::A2
userFlags customSettings customSettings

custom userSettings customSettings

userFlags customSettings userSettings

custom customSettings customSettings

T3::I1::M1
setDefault getGlobalSettings getGlobalSettings

getGlobal getGlobalSettings getGlobalSettings

flg1 getCustomSettings getUserSettings

flg0Get getCustomSettings getGlobalSettings

T3::I1::M2
getDefault setGlobalSettings setGlobalSettings

setGlobal setGlobalSettings setGlobalSettings

flg1 setCustomSettings setUserSettings

flg0Set setCustomSettings setGlobalSettings

T3::I1::M3
setUser getCustomSettings getCustomSettings

getCustom getUserSettings getCustomSettings

flg0 getGlobalSettings getGlobalSettings

flg1Get getGlobalSettings getCustomSettings

T3::I1::M4
getUser setCustomSettings setCustomSettings

setCustom setUserSettings setCustomSettings

flg0 setGlobalSettings setGlobalSettings

flg1Set setGlobalSettings setCustomSettings

T3::I1::M5
clear reset reset

deleteAllCustom reset resetToGlobalSettings

flg2 reset resetUserSettings

flg2Del reset deleteCustomSettings

ON VIEW OFF

Table 5 – Participant Responses




