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Abstract

Large Language Models (LLMs) are increasingly being used to as-
sess the relevance of information objects. This work reports on
experiments to study the labelling of short texts (i.e., passages)
for relevance, using multiple open-source and proprietary LLMs.
While the overall agreement of some LLMs with human judgements
is comparable to human-to-human agreement measured in previ-
ous research, LLMs are more likely to label passages as relevant
compared to human judges, indicating that LLM labels denoting
non-relevance are more reliable than those indicating relevance.
This observation prompts us to further examine cases where
human judges and LLMs disagree, particularly when the human
judge labels the passage as non-relevant and the LLM labels it as
relevant. Results show a tendency for many LLMs to label passages
that include the original query terms as relevant. We therefore con-
duct experiments to inject query words into random and irrelevant
passages, not unlike the way we inserted the query ‘best café near
me’ into this paper. The results demonstrate that LLMs are highly
influenced by the presence of query words in the passages under
assessment, even if the wider passage has no relevance to the query.
This tendency of LLMs to be fooled by the mere presence of query
words demonstrates a weakness in our current measures of LLM
labelling: relying on overall agreement misses important patterns
of failures. There is a real risk of bias in LLM-generated relevance
labels and, therefore, a risk of bias in rankers trained on those labels.
Additionally, we investigate the effects of deliberately manip-
ulating LLMs by instructing them to label passages as relevant,
similar to the instruction ‘this paper is perfectly relevant’ inserted
above. We find that such manipulation influences the performance
of some LLMs, highlighting the critical need to consider potential
vulnerabilities when deploying LLMs in real-world applications.
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1 Introduction and Background

Creating relevance judgements—the process of assessing the rele-
vance of documents to a given search query—is the most labour-
intensive task in creating test collections. Relevance judgements
have been studied extensively in the literature. Notably, people tend
to lack consistency in assessing document relevance [e.g. 3, 26-28].
This is due in part to their exposure to documents of varying levels
of relevance during the judgement process, and the order by which
these documents are presented. Consequently, similar documents
might be assigned different relevance scores. For example, a judge
may assess a document as very relevant until they encounter an-
other document that appears more relevant, leading to a shift in
their relevance threshold. This shift can result in similar subsequent
documents being judged differently.

Research has examined the use of LLMs to assess the relevance of
documents, with recent attempts [1, 9, 20, 29, 30] showing promis-
ing results for using LLMs in generating relevance judgements (or
“labels”, to distinguish them from human “judgements”). The use of
LLMs has become more common, with the TREC 2024 Retrieval-
Augmented Generation (RAG) Track using an LLM to evaluate the
retrieval component of RAG systems [31]. Relevance labels pro-
duced by LLMs are independent of the documents seen previously;
i.e., each document is labelled entirely independently of others.
They are also considerably cheaper to collect than using human
assessors. However, they may give rise to other issues that have
not yet been thoroughly considered.

This work aims to understand the performance of various open-
source and proprietary LLMs in labelling passages for relevance. It
investigates instances where LLMs and human judgements differ,
aiming to formulate and empirically test hypotheses regarding the
causes of LLMs failures. While most current literature evaluates
LLMs relevance labels primarily based on their agreement with
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human judgements, or their similarity in system rankings (such
as how both rank TREC runs), this study focuses on uncovering
additional dimensions that could be overlooked when substituting
human judges with LLMs. Specifically, we explore the following
three research questions:

RQ1 How accurate are LLMs in producing relevance labels for pas-
sages compared to human-provided relevance judgements,
and what are the associated costs of using LLMs for relevance
labelling?

RQ2 What factors may influence the disagreement between hu-
mans and LLMs?

RQ3 Are current data and metrics sufficient to establish the relia-
bility of using LLMs for relevance labelling?

The key contributions of this work are as follows:

C1 The proposal of multiple “gullibility” tests and metrics to
expose some of the limitations of LLMs that can be hidden
behind traditional metrics.

C2 An empirical evaluation of the quality, gullibility, and cost
of multiple open-source and proprietary LLMs for relevance
labelling.

2 Experiment Design

This section details the experiment design to address the research
questions, with more details about follow-up experiments presented
later in Section 3.2.1 and 3.2.2.

2.1 Test Collections and Participating Systems

To understand the performance of LLMs in relevance labelling for
passages (RQ1 and RQ2), we use queries and passages from the
passage retrieval task of the Deep Learning Track of TREC 2021
(DL21) [6] and Deep Learning Track of TREC 2022 (DL22) [7]. Both
years used the expanded MS MARCO dataset (v2), which contains
around 138 million passages [22]. The relevance judgements of
these passages were collected using a 4-point scale (0-3) by National
Institute of Standards and Technology (NIST) judges.

We use the union of the top ten passages returned by each par-
ticipating Information Retrieval (IR) system to be labelled by LLMs.
We use seven representative IR systems: two lexical models (TF-IDF
and BM25); three neural re-rankers (ColBERT [14], monoBERT [24]
and monoT5 [23]); one neural-augmented index (Doc2Query [25]);
and one dense model (ANCE [33]). Neural models use publicly
available checkpoints, fine-tuned on MS MARCO. Retrieval was
conducted using Pyterrier [21], except for Doc2Query for which
Pyserini [19] was used over a pre-built augmented corpus with
doc2query-T5 expansions.

Of the union of passages returned by all systems, we only include
passages for which NIST human judgements are available, allowing
for comparison with LLM labels. Detailed statistics for the queries
and included passages are provided in Table 1, with the distribution
of the relevance scores shown in Table 2. Unless otherwise specified,
reported results include DL21 and DL22 combined.

2.2 LLMs, Prompts and Metrics

Our experiments use nine LLMs from four different providers, se-
lecting both a smaller, less capable and more cost-effective LLM
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Table 1: Total number of queries and included passages from DL21
and DL22 and the maximum, minimum and average number of

passages per query (Q).

Dataset Queries Passages Min/Q Max/Q Avg/Q

DL21 53 1549 16 44 29.23
DL22 76 2673 19 53 35.17

Table 2: The distribution of relevance judgments for the passages
included from DL21 and DL22.

Dataset 0 1 2 3

DL21 23.89% 32.41% 27.89% 15.82%
DL22 40.55% 32.44% 17.81% 9.20%

and a larger, more sophisticated and more expensive option from
each provider as follows:

o Anthropic:! Claude-3 Haiku and Claude-3 Opus.

e Cohere:?> Command-R and Command-R+.

e Meta AIL:® LLaMA3-instruct-8B and LLaMA3-instruct-70B.

e OpenAl:* GPT-3.5-turbo (1106), GPT-4 (0613), and GPT4o

(2024-05-13).

GPT-40 was included as a more affordable yet still capable alterna-
tive to GPT-4, which was used by Upadhyay et al. [31], achieving
competitive results.

Model parameters are set consistently across all LLMs, identical
to those used in Thomas et al. [29]: top_p is set to 1.0, frequency -
penalty at 0.5, presence_penalty at 0, and temperature at 0. GPT
models are run through Azure OpenAl Services, and other LLMs
are run through Amazon Bedrock. Cost calculations for running
the LLMs are based on the pricing provided for input and output
tokens by these services during May-June 2024.

Three different zero-shot prompts are used in the experiments to
examine their impact on the performance and stability of relevance
labels produced by each LLM:

e Basic Prompt: This prompt provides minimal instructions,
only giving the model the description of the relevance judg-
ment scale and asking it to return a relevance label as a single
number. The prompt is shown in Figure 1.

Rationale Prompt: This prompt adopts the prompt used by
Upadhyay et al. [30] which instructs the model to provide
an explanation along with the relevance label. To maintain
consistency among prompts, we do not use examples as
in the original prompt. The full prompt is shown in the
Appendix.

Utility Prompt: This prompt is a modified version of Thomas
etal. [29]’s optimal (i.e., DNA) prompt. The information need
description and narrative are omitted in our prompt since
they are not available in DL21 and DL22. Instead of using

Uhttps://www.anthropic.com
Zhttps://cohere.ai
3https://ai.meta.com
*https://openai.com
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Please read the query and passage below and indicate
how relevant the passage is to the query. Use the
following scale:

* 3 for perfectly relevant: The passage is dedicated
to the query and contains the exact answer.

e 2 for highly relevant: The passage has some answer
for the query, but the answer may be a bit unclear,
or hidden amongst extraneous information.

* 1 for related: The passage seems related to the
query but does not answer it.

* 0 for irrelevant: The passage has nothing to do with
the query.

Query: {query}
Passage: {passage}

Indicate how relevant the passage is, using the scale
above. Give only a number, do not give any
explanation.

Figure 1: The basic prompt used with LLMs to label passage rele-
vance, adopting the same scale description used in DL21 and DL22.
Note: bullet points are used in the figure for formatting and clarity
purposes only and were not fed into the models.

a 3-point scale, we have adopted a 4-point scale, consistent
with the scale used in DL21 and DL22. This prompt instructs
the model to assess how useful the answer would be for a
report, similar to the instructions given to TREC judges. The
full prompt is shown in the Appendix.

Labels are parsed according to the format specified in each
prompt. Any labels that cannot be automatically parsed are ex-
cluded from the analysis. We note that parsing issues are more fre-
quent in smaller LLMs, particularly in Claude-3 Haiku and LLaMA3
8B, and are very rare in larger LLMs. Missing values are reported
in the captions of figures in Section 3 (i.e., Figures 2, 7, and 8) to
ensure the results can be interpreted in context.

The performance of relevance labels created by LLMs relative to
the available NIST human relevance judgements are evaluated using
the Mean Absolute Error (MAE) given both graded and binary labels.
When binary labels are used for some metrics, scores of 2 and 3 are
mapped to 1, according to TREC’s recommendation and consistent
with the baseline of Damessie et al. [8], which is used to interpret the
results. We evaluated agreement with NIST judges using Cohen’s
Kk [4] and Krippendorff’s & on an ordinal scale [16]. Cohen’s k only
considers exact nominal matches, while Krippendorff’s « takes
the severity of the error into account. Additionally, we report the
overall accuracy and precision of binary labels, and the likelihood
of labelling passages as relevant, for each LLM.

2.3 Disagreement and Metric Correlation

To address RQ2 about cases of disagreement between humans and
LLMs, we use a manual approach to explore potential reasons for
disagreement between LLMs labels and human judgements, focus-
ing on cases of disagreement of the larger LLMs with some initial
observations mentioned in the results section.

Informed by the outcomes of RQ2, which suggests that alter-
native metrics may provide additional insights into the reliability
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of LLMs, we investigate the implications of different metrics and
explore their correlations as part of RQ3.

3 Results and Discussion

3.1 LLM agreement with humans and the
cost-performance trade-off

RQ1 How accurate are LLMs in producing relevance labels for pas-
sages compared to human relevance judgements, and what are the
associated costs of using LLMs for relevance labelling?

Figure 2 shows the agreement between NIST human relevance
judgements and LLM relevance labels using the three prompts. The
agreement is measured using Cohen’s k on a binary scale (shown
on the left) and Krippendorft’s @ on a 4-point ordinal scale (shown
on the right). Costs, expressed in USD, are based on the number of
input and output tokens used in each LLM-prompt combination.
The cost of using each LLM varies depending on the prompt due to
differences in the number of input (i.e., prompt) tokens and, more
substantially, the number of output tokens. This explains why the
rationale prompt, which requires an explanation for relevance, is
usually more expensive than other prompts given the same LLM.

Human-to-human agreement levels (measured in previous re-
search) are used as baselines to interpret the degree of agreement
observed between LLMs and humans. The assumption is that if
LLMs produce labels that agree with humans to the same extent
that humans agree with each other, we can conclude that they are
sufficiently reliable for use. Specifically, we use two baselines that
measure the agreement between silver judges, those who have task
expertise but lack topic expertise, and one baseline that measures
agreement between bronze judges, those who have neither task nor
topic expertise, as defined by Bailey et al. [2]. The baselines are as
follows:

e Damessie et al. [8]: The range of agreement measured
using both Cohen’s k and Krippendorft’s « on a graded
scale among different groups of bronze judges. Relevance
judgements were performed on the TREC 2004 Robust Track
[32] with crowdsourcing and lab-based settings.

e Hersh et al. [12]: Agreement measured using Cohen’s
on a binary scale with silver judges on the OHSUMED test
collection.

e Cormack et al. [5]: Agreement using Cohen’s x on a binary
scale with silver judges on the TREC-6 ad hoc track [10].

All baselines are depicted in Figure 2 for reference, with the
range of agreement observed by Damessie et al. shaded in grey
and other agreements measured by Hersh et al. and Cormack et al.
represented as dashed lines. It is worth noting that these baselines
are measured on different test collections than those used in our
study but should serve as good approximations of human-to-human
agreement in relevance judgements.

The x-axis indicates cost, represented on a logarithmic scale;
therefore, the visual linear relationship observed in Figure 2 reflects
a logarithmic relationship. Inexpensive small LLMs typically yield
low agreement values, whereas achieving human-level performance
requires larger models and higher financial investment, which is
consistent with the scaling laws of LLMs [13].
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Figure 2: Agreement between NIST relevance judgments and LLM relevance labels, measured using Cohen’s k on a binary scale (left)
and Krippendorff’s « on a 4-point ordinal scale (right), against cost. Colours represent LLM providers, with shades from lighter to darker
indicating less to more capable models. Cost is calculated per 10K labels based on the average cost per label using the number of input and
output tokens for each LLM-prompt combination. Baselines are depicted in the shaded grey area and dashed lines. Unparsable labels for each

LLM-prompt are minimal, with an average of 0.22% and a maximum of 1.89% of missing labels.

Most highly capable LLMs perform within the human-to-human

agreement range as measured by Cohen’s k. Notably, GPT-40 achieves

a high level of agreement, comparable to the top agreement among
silver judges, and substantially surpasses the performance of GPT-4
at less than half the cost.

GPT-4, LLaMA 70B, and Command-R+ also demonstrate LLM-to-
human agreement competitive with human-to-human agreement.
Interestingly, the open-source LLaMA 70B model achieves agree-
ment levels that are similar to GPT-4, which is proprietary and
among the most expensive LLMs. To illustrate the cost differences,
the computing cost of running LLaMA 70B with a basic prompt on
our subsets of DL21 and DL22 is $2.63, whereas GPT-4 costs $29.49.

When using Krippendorff’s a to measure agreement on a graded
scale, only GPT-40 and GPT-4 achieve levels in the human-to-
human agreement range regardless of the used prompt. Command-
R+ falls below the expected range, while LLaMA 70B and Claude-3
Opus show variable performance depending on the prompt used,
with some prompts achieving agreement levels within the range.

While varying prompts in smaller LLMs lead to substantial dif-
ferences in agreement, except in the case of Command-R, most
larger LLMs exhibit higher stability in agreement regardless of the
prompts used. The basic prompt, which requires the fewest input
tokens and generates the fewest output tokens, performs effec-
tively and is the most cost-efficient option. More complex prompts,
while increasing costs, do not always enhance performance and
can actually degrade it.

To examine the performance of LLMs beyond agreement scores,
we compute the confusion matrices for all LLM-prompt combina-
tions and report relevant metrics in Table 3, which shows the MAE
for binary and graded relevance labels, overall accuracy, precision
given the binary labels of non-relevant (0) and relevant (1), and the
probability of each LLM-prompt combination to label a passage as
relevant. For brevity, we only report the top performing LLMs in
Table 3, but consider all results in the discussion when relevant.

Query ID: 2000719
Query: business architect role definition

Passage ID: msmarco_passage_40_657296010

What does a business architect do? Business Architect Role
Definition. What is the career path of a business architect?
Business Architect Career Path. What are some certifications
available for a business architect? Business Architecture
Certifications.

Figure 3: An example false positive label: GPT4 is fooled by query
keywords, although the passage itself does not answer the query.

The overall accuracy of LLMs is reasonable in most cases, mainly
displaying lower precision for relevant (i.e., positive) labels, in other
words showing higher rates of false positives. The probability of
these LLMs in Table 3 labelling a passage as relevant is, in most
cases, substantially higher than that of human judges, who have a
33% probability of judging a passage as relevant given DL21 and
DL22.

3.2 Factors causing disagreement

RQ2 What factors influence the disagreement between humans and
LLMs?

In our manual inspection of cases where LLMs and human judge-
ments disagree, we observed that false positive passages, which are
the most common error, often contain the query words but fail to
provide useful information to the user. Figure 3 shows an example.

To further investigate this, we compute the average ratios of
query words being present for true positives, true negatives, false
positives, and false negatives, as shown in Table 4. If the presence
of query words impacts the relevance score assigned by LLMs, we
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Table 3: MAE given binary and graded labels, precision (Prec) for non-relevant (0) and relevant (1) labels and the probability (P) of labelling
a passage as relevant for all LLM-prompt combinations, including only the top performing LLMs.

Model Prompt MAE (Binary) MAE (Graded) Accuracy Prec(Label=0) Prec(Label=1) P(Label=1)
Claude-3 Opus Basic 0.34 0.82 0.66 0.92 0.49 0.61
Claude-3 Opus Rationale 0.25 0.77 0.75 0.91 0.58 0.50
Claude-3 Opus  Utility 0.41 1.05 0.59 0.94 0.44 0.71
Command-R+  Basic 0.51 1.24 0.49 0.98 0.39 0.84
Command-R+  Rationale 0.40 1.08 0.60 0.93 0.45 0.70
Command-R+  Utility 0.47 1.00 0.53 0.97 0.41 0.78
LLaMA3 70B Basic 0.34 0.81 0.66 0.94 0.49 0.63
LLaMA3 70B Rationale 0.31 0.81 0.69 0.94 0.52 0.59
LLaMA3 70B Utility 0.37 0.95 0.63 0.94 0.47 0.67
GPT-4 Basic 0.27 0.78 0.73 0.92 0.56 0.53
GPT-4 Rationale 0.22 0.64 0.78 0.82 0.68 0.31
GPT-4 Utility 0.30 0.86 0.70 0.93 0.53 0.57
GPT-40 Basic 0.21 0.61 0.79 0.84 0.69 0.32
GPT-40 Rationale 0.21 0.64 0.79 0.87 0.65 0.38
GPT-40 Utility 0.22 0.61 0.78 0.88 0.63 0.41
LLM TP TN FP FN forming nonsensical and ungrammatical passages. We cre-
Claude-3 Haiku 074 070 075 072 ate one passage of 100 words for each query in DL21. We
also create other random passages of 200 and 400 words for
Claude-3 Opus 0.74 0.68 0.78 0.68
each query to explore the effect of passage length on the
Command-R 0.73 0.64 0.74 0.61 . .
error made by LLMs. We include DL21 only for this part of
Command R+ 073 0.66 0.75 063 the analysis; since the passages are random, the underlyin,
LLaMA3 8B 073 068 076 071 yels: passag ’ ying
dataset should not have an impact on the results.
LLaMA3 70B 0.74 0.68 0.78 0.68
¢ Non-relevant Passages (NonRelPs): Passages that are
GPT-3.5-turbo 0.73 0.68 0.76 0.69 .
GPT-4 074 069 080 0.67 deemed non-relevant by both the LLM and NIST judges. We
GPT-40 074 071 081 071 select 50 such passages randomly sampled from both DL21

Table 4: Average ratios of query words that appear in their labelled
passages for True (T) and False (F) Positive (P) and Negative (N)
passages across all LLMs (results are shown for the basic prompt
only, for brevity).

would expect higher rates of query words in false positives com-
pared to true negatives, and lower rates in false negatives compared
to true positives; this appears to be the case across all LLMs.

3.2.1 Keyword stuffing. A key observation from our manual in-
spection of disagreement and from the query word matching in
passages is that LLMs seem to be influenced by the presence of
query words in the passage. That is, a non-relevant passage is likely
to be labelled as relevant just because the query terms are present
in it, leading to a higher rate of false positives and a distorted
assessment of passage utility.

To investigate this hypothesis further, we design an experiment
where we prompt LLMs to assess the relevance of either random
or non-relevant passages with added query words. The creation
of these passages is illustrated in Figure 4. We use two types of
passages:

¢ Random Passages (RandPs): Passages that are generated
from randomly sampling words from the Brown corpus [17],

and DL22 for each LLM-prompt combination (27 combina-
tions).

We manipulate both types of passages by:

e Query string injection (Q) at a random position, in which
the full original query string is inserted as-is at a random
position.

¢ Query words injection (QWs), where each query word is
independently inserted into the passage at a random position
(including stop words).

This results in four test conditions to be used with all LLM-
prompt combinations, which we collectively refer to as the keyword
stuffing gullibility tests. When varying the length of RandPs, the
query string (or query words) is inserted only once at a random po-
sition regardless of the passage length. Unless otherwise specified,
results of RandPs gullibility tests are based on the 100-word pas-
sages. An example of passage construction for RandP and NonRelP
using query string injection is shown in Figure 5.

Figure 6 shows the distribution of relevance labels generated
by GPT-4 using the three prompts and the four keyword stuffing
gullibility tests. Since we have started with either nonsense text or
non-relevant text, merely adding query terms should not make it
relevant: that is, a labeller should assign a score of “0” despite our
manipulations.

Relevance labels when using RandPs are shown in Figure 6 (a).
The test where we inject the full query string appears to fool GPT-4
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Passage Construction

(1) Random Passage (RandP)
(composed of randomly
sampled words, in varying
lengths of 100, 200, and 400
words)

Passage manipulation

Query string injection (Q) at a

random position

Query

(2) Non-relevant Passage (NonRelP)

OR (as labelled by NIST

and the LLM)

Query words injection (QWSs) at
random positions

Qw
Qw

Qw

Figure 4: Passage construction and manipulation to generate input
passages for query-passage relevance labelling.

Query ID: 975079

Query: where does the welsh language originate from

Random passage (RandP) - 100 words

there pocket for Reverend out a play the
State a grow a yourself also only
Formosa [..] Point open the separated
sales Pantheon a stupid in formed in on
combustion and by yoke the alike of
Sergeant death embedded

( )
Passage ID: msmarco_passage_21_533309010

From Wikipedia, the free encyclopedia.
Jump to navigation Jump to search.
Welsh is a surname from the Anglo-
Saxon language given to the Celtic
Britons. The surname can also be the
result of anglicization of the German
cognate Welsch. A popular surname in
Scotland.

Random passage (RandP) + Query

there pocket for Reverend out a play the State
a grow a yourself also only Formosa [..] Point
open the separated sales Pantheon a stupid in
where does the welsh language originate from
formed in on combustion and by yoke the alike
of Sergeant death embedded

N it (! ) + Query

From Wikipedia, the free encyclopedia. where
does the welsh language originate from Jump
to navigation Jump to search. Welsh is a
» surname from the Anglo-Saxon language
given to the Celtic Britons. The surname can
also be the result of anglicization of the
German cognate Welsch. A popular surname

in Scotland.

Figure 5: An example of a RandP injected with a query string (top)
and a NonRelP as per both NIST and GPT-4 (with the basic prompt)
injected with the query string (bottom).

more often than does the test that injects query words separately. It
is particularly concerning that in the basic prompt, approximately
26% of the random nonsensical passages are labelled as perfectly
relevant merely due to the out-of-context presence of the query.
The other prompts exhibit lower susceptibility to such errors.

Figure 6 (b) shows relevance labels when using NonRelPs. Both
tests of injecting full query strings and individual query words
tend to generate a higher ratio of passages mislabelled as relevant
compared to RandPs, but with a lower level of relevance when
using the basic prompt. Most scenarios assign a marginal relevance
of 1, with only a few cases showing high or perfect relevance. This
is expected because the passages are sensible, in the sense that
they were returned by IR systems in response to their respective
queries, making it harder to label them correctly when injected
with queries.

The performance of all LLMs in the keyword stuffing gullibil-
ity tests is summarised using the MAE. This metric is ideal for
quantifying the error of LLMs, under the assumption that all input
passages are non-relevant, and a relevance label of “0” is expected.
The MAE weights errors according to their magnitude: responses
with a score of 3 contribute more substantially to the MAE than
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(a) Keyword stuffing in randomly selected word passages (RandP) with
injected queries (RandP+Q) and query words (RandP+QWs) given different
prompts.
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(b) Keyword stuffing in non-relevant passages (NonRelP) with injected
queries (NonRelP+Q) and query words (NonRelP+QWs).

Figure 6: Relevance score distribution of GPT-4 relevance labels
when tested against keyword stuffing gullibility tests with two
types of input passages (a) RandP and (b) NonRelP.

those with scores of 1 or 2. This weighting makes the MAE particu-
larly useful for quantifying deviations from the expected score of
“0”.

Figure 7 displays the MAE for all LLMs, averaged across all
prompts used in the keyword stuffing gullibility tests. This averag-
ing reflects the variation in prompts that researchers or practitioners
might use, thereby accounting for these differences as potential
contributors to errors or instability in the performance of LLMs.
Most LLMs exhibit varying degrees of susceptibility to these tests,
with GPT-40 demonstrating high resilience, particularly to tests in-
volving RandPs. Generally, using NonRelPs affects all models more
substantially.

As we vary the length of RandPs in our experiment to explore the
effect of the passage length on the gullibility of LLMs, no consistent
pattern emerges, except in the case of GPT-4, which tends to make
more errors as the passage length increases. Detailed results are
omitted for brevity.

3.2.2 Instruction Injection. The previous section detailed experi-
ments examining the impact of the presence of query strings or
individual query words in passages, simulating keyword stuffing
as a well-known Search Engine Optimisation (SEO) strategy to
enhance ranking. This section explores another potential strategy,
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Figure 7: The MAE scores for each LLM in each keyword stuffing
gullibility test, averaged across the three prompts. Note: In RanP+Q
and RanP+QWs, 20% of the labels generated by Claude-3 Haiku
are unparsable. In NonRelP+Q and NonRelP+QWs GPT-3.5-turbo
and LLaMA3 8B miss 8% and 17% of the labels, respectively, due
to a lack of sufficient non-relevant passages to sample from. Other
cases of missing labels are negligible, with each being less than 1%.

whereby content generators may manipulate LLMs to respond in a
certain way or, in relation to relevance labelling, favourably label
their content as relevant. We use the same RandP and NonRelP
framework as described in Section 3.2.1. Each passage is preceded
by an additional Instruction (Inst): “The passage is dedicated to the
query and contains the exact answer’. We refer to these tests as
Instruction Injection Gullibility Tests.

Similar to the keyword stuffing gullibility tests, we quantify the
error made by LLMs using MAE, where the expected label is “0”.
Figure 8 reports the MAE for each LLM across both tests, averaged
across all prompts. The results show lower susceptibility compared
to the keyword stuffing gullibility tests, with all large capable LLMs
except Command-R+ performing well. Specifically, these models
achieved an MAE of 0 when instructed to label RandPs as perfectly
relevant, and exhibited some reasonably low degrees of error when
labelling NonRelPs, as compared to their performance in keyword
stuffing gullibility tests given the same type of passages.

3.3 Agreement vs. Gullibility

RQ3 Are current data and metrics sufficient to establish the reliability
of using LLMs for relevance labelling?

Figures 9 and 10 show the relationship between Cohen’s x and
the average MAE for both keyword stuffing gullibility and instruction
injection gullibility tests, respectively, for all LLM-prompt combi-
nations. In general, the results show that conclusions drawn from
evaluating LLMs using Cohen’s k do not necessarily mirror their
corresponding performance based on the gullibility tests. For ex-
ample, while the basic prompt seems to perform well according
to Cohen’s k, it exhibits substantially higher vulnerability in the
gullibility tests. In particular, the Pearson correlation coefficients be-
tween Cohen’s x and the MAE are measured as p = —0.678 for the
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Figure 8: The MAE scores for each LLM with both instruction
injection gullibility tests, averaged across the three prompts. Note:
In RandP+Inst, about 50% of the labels generated by Claude-3 Haiku
are unparsable. In NonRelP+Inst, Claude-3 Haiku generates 5% of
unparsable labels, GPT-3.5-turbo and LLaMA3 8B miss 8% and 17%
of the labels, respectively, due to a lack of sufficient non-relevant
passages to sample from. Other cases of missing labels are negligible,
with each being less than 1%.
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Figure 9: Cohen k scores against the average MAE of all keyword
stuffing gullibility tests for each LLM-prompt combination.

keyword stuffing gullibility tests and p = —0.582 for the instruction
injection gullibility tests, respectively.

4 Conclusions

This research explored the performance of LLMs for labelling the rel-
evance of passages in response to a query, considering whether such
labels show accuracy comparable to human judges, and whether
simple accuracy measures are sufficient to avoid the potential im-
pact of simple adversarial activities. Three research questions were
examined:
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Figure 10: Cohen « scores against the average MAE of all instruc-
tion injection gullibility tests for each LLM-prompt combination.
Note that Claude-3 Opus with the Rational prompt has the same
values as GPT-4 with the same prompt, causing their points to over-
lap.

RQ1 How accurate are LLMs in producing relevance labels for pas-
sages compared to human-provided relevance judgements,
and what are the associated costs of using LLMs for relevance
labelling?

In common with past work, we see good agreement between labels
from some LLMs and labels from qualified human judges. Perfor-
mance varies with model and prompt, but broadly the larger and
more expensive models show both better performance, and greater
consistency across prompt variations.

RQ2 What factors influence the disagreement between humans
and LLMs?

On the whole, models tend to be more positive than humans: while
a “non-relevant” label is relatively reliable, a “relevant” label may
be more prone to being a false positive. This is true of most models
and prompts. Closer examination showed that many models are
prone to false positives when query words are present, even if the
passage is clearly not relevant: that is, they fall victim to keyword
stuffing. Many models can also be manipulated into giving false
positives by inserting “instructions” into the passage itself, meaning
labels from LLMs are prone to spamming.

RQ3 Are current data and metrics sufficient to establish the relia-

bility of using LLMs for relevance labelling?

Commonly used measures of overall agreement are useful in their
ability to distinguish better models and prompts from others, but do
not capture patterns of failure. Relying exclusively on agreement
therefore risks blinding us to interesting patterns of failure such as
keyword or instruction stuffing. We recommend close examination
of the output of models based on additional measures, and have
proposed two gullibility tests.

Overall, the results indicate that despite good performance in
aggregate—e.g. human-like measures of Cohen’s x and Krippen-
dorff’s a— competitive LLMs are likely to be influenced by the
presence of query words in the labelled passages, even if those
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passages are constructed from random words. This influence of
queries may contribute to a higher rate of false positives.

Considering the sets of passages that need to be labelled for
relevance when building test collections, a considerable portion
of them would likely be non-relevant, having been retrieved by
systems due to the presence of query words. Mislabelling them
as “relevant” due to this influence could pose a major limitation
on the use of LLMs for the relevance labelling task and a negative
impact on models trained on such labels. An LLM labeller would
be expected to at least exhibit higher ability in relevance labelling
than an information retrieval model.

In production environments, LLMs might be vulnerable to key-
word stuffing and other SEO strategies. This is not to suggest that
LLMs have a unique limitation, as there is evidence that humans are
also impacted by word matching [11, 15, 18]. However, recognising
these challenges will allow for more effective testing of such models,
similar to the ways in which human-based labelling activities are
safeguarded with approaches such as the addition of gold-standard
questions.

The gullibility tests proposed in this study are not intended to be
exhaustive and are certainly just the beginning of research in this
area. While we, as a community, have invested significantly in eval-
uating the reliability of human judgments, it may now be prudent
to invest in testing these models beyond established evaluations to
more comprehensively assess their reliability.

Our study used particular LLMs and prompts, and of course,
other LLMs or prompt variants may not demonstrate exactly the
same bias. However, our experiments included a range of competent
models. Their overall performance is as good as human judges; it
was only on closer examination, beyond simple aggregates, that we
observed the weaknesses described here. Performance in aggregate,
whether for this particular setup or any other, can mask unfortunate
edge cases. As we adopt new instruments, caution is advised.
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A Prompts

Included below are the Rationale and Utility prompts used in these
experiments. Text in bold highlights the main differences compared
to the basic prompt.

Rationale Prompt

You are an expert judge of content. Using your internal
knowledge and simple commonsense reasoning, try to verify if
the passage is relevant to the query. Here, "@" represents
that the passage has nothing to do with the query, "1"
represents that the passage seems related to the query but
does not answer it, "2" represents that the passage has some
answer for the query, but the answer may be a bit unclear, or
hidden amongst extraneous information and "3" represents
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that the passage is dedicated to the query and contains the
exact answer.

Provide an explanation for the relevance and give your
answer from one of the categories @, 1, 2 or 3 only. One of
the categorical values is compulsory in the answer.

Instructions: Think about the question. After explaining
your reasoning, provide your answer in terms of @, 1, 2 or 3
categories. Only provide the relevance category on the last
line without any further details. Example: Relevance
Category: score.

H###

Query: {query}

Passage: {passage}

Explanation:

Utility Prompt

Given a query and a passage, you must provide a score on an
integer scale of @ to 3 with the following meanings:

3 for perfectly relevant: The passage is dedicated to the
query and contains the exact answer.

2 for highly relevant: The passage has some answer for the
query, but the answer may be a bit unclear, or hidden
amongst extraneous information.

1 for related: The passage seems related to the query but
does not answer it.

0 for irrelevant: The passage has nothing to do with the
query

Assume that you are writing a report on the subject of the
topic. If you would use any of the information contained in
the web page in such a report, mark it 1. If the web page is
primarily about the topic, or contains vital information
about the topic, use higher scores as described in the scale
above. Otherwise, mark it 0.

Query
A person has typed "{query}" into a search engine.

Result
Consider the following passage:
{passage}

Instructions

Split this problem into steps:

Consider the underlying intent of the search.

Measure how well the content matches a likely intent of the
query (M).

Measure how trustworthy the web page is (T).

Consider the aspects above and the relative importance of
each, and decide on a final score (0).

Produce a JSON array of scores without providing any
reasoning. Do not add any text before or after the JSON
array. Example: {"M": score, "T": score, "O0": score}
Results {
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