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Abstract—FPGAs are being increasingly used on network
interface cards (NICs) as offload units to accelerate packet
processing tasks. The rationale is that by customizing the NIC
logic it is possible to achieve higher performance for the most
critical tasks while eliminating unnecessary logic, thus improving
overall efficiency.

In this paper, we aim to investigate if similar benefits can
also be extended to network switches. We compare different
switch architectures and analyze their suitability to an FPGA
implementation. We discuss several optimization techniques to
overcome the challenges of limited FPGA resources and assess
the scalability of our designs up to 10, 25, and 50 Gb/s throughput
per port.

I. INTRODUCTION

FPGAs are often used in today’s data centers to support
compute-intensive workloads such as data analytics and ma-
chine learning as well as to accelerate network processing
functions at the end hosts. For example, Microsoft has shown
that using FPGAs as a bump-in-the-wire between the CPU
and the NIC can accelerate Bing search, machine learning
inference tasks, and packet processing [1]–[3]. In this paper,
we explore whether FPGAs can be used to implement and
customize network switches.

While modern network switches support some limited form
of programmability, e.g. [4], most of their operations are
implemented as fixed logic. This poses two main challenges.
First, data center operators can not arbitrarily modify this
logic and implement custom network functions. For example,
if a new packet scheduling policy is to be implemented, the
only option is to engage with the switch manufacturer (if
at all possible) and wait for the next chip tape out, which
typically requires 18 months or longer. Second, today’s cloud
providers only use a fraction of all functionality offered by
network switches. This leads to a waste of silicon area as
well and potentially higher costs and power consumption
than necessary. An FPGA-based switch in contrast provides
more efficient solutions as they allow the flexibility of only
implementing the switch functions needed (including custom
ones).

However, it remains unclear whether an FPGA-based switch
can match the performance of commodity switches used today.
If we just consider the total transceiver bandwidth provided
by FPGAs today, the gap between FPGAs and commodity
switches is shrinking. The latest generation Intel Stratix 10 TX

FPGA has an aggregate transceiver bandwidth of 8Tb/s [5],
which is almost two thirds of the bandwidth provided by
top-end data center switches (12.8 Tb/s). This, however, only
reflects the IO capability and does not indicate whether the
FPGA has sufficient memory and compute capabilities to
switch packets at such rates.

This paper makes a first step towards determining this by
focusing on the core functionality required by any switch, i.e.,
the ability of forwarding packets from its input ports to its
output ports. Such functionality can be provided by either
a crossbar-based fabric along with some buffering and an
appropriate scheduling algorithm, or a memory based fabric
that operates at a rate that is proportional to the number of
switch ports (see Section II). Since the memory speed is
limited by the AC and DC characteristics of the FPGA, our
work is limited to crossbar-based switch designs. In this paper,
we explore the trade-offs provided by different architectures
for implementing the building blocks (buffers and scheduling
logic) of a crossbar-based switch, and reveal the challenges in
scaling such architectures on FPGAs. We make the following
contributions:

1) The development of an efficient buffer-sharing technique
that minimizes memory resource usage on FPGAs for
input buffered crossbar switch (Section III).

2) A feasibility study that shows the performance and re-
source utilization trade-offs of considered switch archi-
tectures (Section IV).

3) A technology-independent model to predict the perfor-
mance and resource requirements of the implemented
architectures at various scales (Section V).

II. BACKGROUND AND RELATED WORK

In this section, we provide the reader with the necessary
context of different switching architecture and provide a
summary of related literature work.

A. Network Switches on FPGAs

Various techniques for implementing high-performance,
crossbar-based switches have been proposed in available lit-
erature. These techniques differ both in terms of the location
of the buffers and the scheduling algorithms used to eliminate
resource conflicts that can arise in a switch. Fig. 1 shows three
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Fig. 1: Buffering Techniques for Crossbar-based Switches

prominent buffering approaches. The strengths and weaknesses
of each approach are described below.

(a) Input Buffering (IB): A limitation of placing one queue
at each input port of a switch is Head of Line (HOL) blocking,
which can significantly reduce the switch’s maximum through-
put [6]. This occurs when multiple input queues have packets
destined to the same output. Those packets prevent subsequent
packets destined to other output ports from traversing the
switch, which ultimately leads to poor throughput.

To avoid HOL blocking, Virtual Output Queues (VOQs)
are used in input buffered switches. The goal of VOQs is to
have a queue for each output port at each input port such that
packets no longer block each other when destined to different
outputs as shown in Fig. 1a. Though VOQs eliminate HOL
blocking, they introduce the need for simultaneous input and
output conflict resolution. This means that the scheduler must
not only determine input and output port matching, but also
which VOQ to select from each input port. Therefore, for
an N port switch, the scheduler must efficiently solve N2

requests from VOQs, which greatly complicates the scheduling
logic. This makes the choice of a scheduling algorithm that
can achieve high throughput while still being simple enough
to be implemented on an FPGA particularly challenging.
Based on the outcome of our analysis of the complexity of
implementing schedulers for input-buffered architectures on
FPGAs [7], the scheduling algorithm iSLIP [8] is determined
to be most suitable for an FPGA implementation. At a high
level, iSLIP works as follows. At the beginning of each round,
the input will send requests to the output grant arbiter based
on the existence of packet in the corresponding VOQs. Then
the output grant arbiter will take the request vector (vector
consists of all the requests from the input) and grant one
request with a round-robin fashion starting from the port next
to the previously granted port. Finally, when the input accept
arbiter receives the granted request from the grant arbiter, it
will accept the requests using the same round-robin method
as the grant arbiter.

Our simulation results indicate that iSLIP provides the best
performance in terms of latency and throughput under uniform
traffic patterns while achieving a good performance under
non-uniform traffic patterns when compared with other simple
scheduling techniques for input buffered switches. Therefore,
we consider an input-buffered architecture with the scheduling
algorithm iSLIP in this work and leave the exploration of more

complex scheduling algorithms for future work.
(b) Combined Input and Output Buffering (CIOB):

Placing buffers at the output provides the best ideal switch
performance and eliminates the need for scheduling by having
the buffers operating N times faster than the line-rate in an
N-port switch. However, since the line-rate increases much
faster than the memory bandwidth, output buffered switches
scale poorly, and this is supported by available commercial
products [9]. Combining input buffering and output buffering
as shown in Fig. 1b allows the emulation of an output buffered
switch using a broad class of packet scheduling algorithms
while only requiring the scheduler, crossbar fabric, and output
buffers to operate with a speed up of 2 − (1/N) as opposed
to N [10]. However, operating the scheduling algorithm with
such a speedup is still challenging on FPGAs especially when
considering scaling to higher port counts (radix) and line rates.
Therefore, we do not consider these architectures in our work.

(c) Combined Input and Cross-point Buffering (CICB):
Buffers are located both at the inputs of the switch and are
also made available for each input-output pair, as shown in
Fig. 1c. This decouples the task of scheduling and allows the
use of simpler scheduling algorithms at the switch’s inputs
and outputs, achieving a good performance in terms of both
throughput and latency. However, the number of cross-point
buffers scales quadratically with the number of ports and that
makes cross-point buffering less attractive. To address this
shortcoming, Hierarchical Crossbar switch with CIOB was
proposed by Kim [11] in order to retain the advantages of
the CICB while making it more FPGA-friendly as we discuss
next.

(d) Hierarchical Crossbar switch + CIOB (HC+CIOB):
Kim et al. [11] proposes the use of a Hierarchical Crossbar
architecture with CIOB to reduce the memory usage of cross-
point buffered architectures as shown in Fig. 2. The author
modified the CIOB architecture by replacing a N×N buffered
crossbar with (N/p)2 smaller p×p crossbars with CIOB. This
modification reduces the memory usage by 40% compared
to a fully buffered crossbar. The idea of using HC switch
is particularly beneficial for FPGAs: dividing the large radix
(number of ports) switch into smaller ones allows for simpler
scheduling algorithms and simplifies the overall design. Dai
and Zhu built on this idea and proposed a Grouped Crosspoint
Queued (GCQ) switch targeting FPGAs [12]. The idea of the
GCQ switch is to replace the CIOB sub-switches with small-
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Fig. 2: Hierarchical crossbar switch with total radix of N
and all sub-switches of radix p

radix memory based switches. Since BRAMs on the FPGA can
run much faster than the fabric, the author chooses to speed
up the block RAM S times faster than the fabric to emulate
an S × S switch. We adopt a similar architecture in our
analysis: we use a round-robin scheduler for conflict resolution
and investigate its hardware resource usage for higher radix
switches.

B. Related Work

Based on the above discussion, we found that switch archi-
tectures that make use of buffering approach (a) with the iSLIP
scheduling algorithms and the buffering approach (d) that
leverages GCQ with a simpler scheduling algorithm are most
amenable for FPGA implementation due to their scalability
and switching performance. Therefore, this paper focuses on
their implementations and the corresponding investigation to
demonstrate the feasibility of these two approaches. In partic-
ular, we study these approaches from a single-chip perspective
and provide a comprehensive overview of their advantages and
drawbacks.

To the best of our knowledge, this is the first work that
provides a direct comparison of these two architectures in
the context of FPGAs. Yoshigoe et al. [13] implement a 24
port 10-Gbps switch with CIOB structure. However, multiple
FPGAs are used due to the limitation of the past FPGA tech-
nology resulting in a high latency due to packet transmission
across FPGAs. NetFPGA [14] is an open source hardware
and software platform for network developers. The latest
NetFPGA-SUME board provides four 10Gb/s ports and is
capable of achieving 100Gb/s aggregate bandwidth by further
utilizing available FMC ports. It is further provided with a
4-port 10 Gb/s reference switch design that uses a CIOB
fabric with a round-robin scheduler for conflict resolution. This
results in limited scalability because the round-robin scheduler
requires an internal data path that runs four times faster than
the input interface to support all 4 ports. More recently, there
has been a few proposals to use hardened NoCs [15], [16] for
FPGA switch implementations. These papers, however, only
demonstrate the possibility of leveraging NoCs for implement-
ing low latency and area efficient network switches on the
FPGAs through simulation since FPGAs with hardened NoCs
are only recently made available [17]. The relatively small
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well as waste; A buffer depth of 64 provides zero packet
loss as explained in section IV

number of master/slave NoC ports provided (28), however, is
likely to limit their usage to medium/low radix switches.

III. ARCHITECTURE

In this work, we restrict our attention to architectures that
can fit within a single FPGA chip for the following rea-
sons. First, multi-chip implementations introduce a significant
latency overhead due to the long round-trip time (RTT).
According to Shen, the measured average latency between
FPGAs using the Interlaken IP was approximately 170 ns [18]
which is roughly the same as the port to port latency of our
entire single-chip implementation. Furthermore, multi-FPGA
implementations are far more complicated than a simple,
single-chip design.

1) Fabric: A crossbar based switch consists primarily of
buffers, a scheduler, and the crossbar fabric itself. Crossbar-
based switches are non-blocking since any input port can be
connected to any output port. In addition, the behaviour of the
crossbar can be easily emulated with a group of multiplexers
making them an attractive fabric choice for FPGA based
switches.

2) Buffering: Since low memory access latency is crucial
to any switch design, fast on-chip memory resources must be
used for buffering instead of the off-chip memory. Naively
using BRAM FIFOs on FPGA for VOQs implementation,
however, would limit the design’s scalability and would make
use of the memory resource available on-chip inefficiently.

Example: The Xilinx UltraScale+ XCVU9P consists of
2160 on-chip BRAMs. Assume that a line-rate of 10Gb/s can
be supported with a data width of 256 bits and a queue depth
of 64 operating at a frequency of 40MHz. Since the 36 Kb
BRAMs on the FPGA can be configured to have a maximum
width of 72 bits, a total of four 36 Kb BRAMs would
be required to write 256 bits in parallel. Since the number
of VOQs required for a NxN switch is N2, the following
constraint must be satisfied: 4 × N2 ≤ 2160. This in turn
limits the maximum number of ports that can be supported to
23. Additionally, most of the BRAM resources are also wasted
as shown in Fig. 3. Utilizing the distributed RAMs instead of
the BRAMs relaxes the constraint to 256×64×N2 ≤ 36.1 Mb
[19]. Nonetheless, the maximum port number is still limited to
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46. While UltraRAMs present larger storage capacities, they
are as limited as BRAMs in flexibility and utilizing them for
implementing VOQs would similarly be inefficient.

To efficiently use the on-chip FPGA memory resources,
the shared memory architecture used by the IBM Prizma
switch [20] is adopted to replace large VOQs. This architecture
enables flexibly sharing a single BRAM/UltraRAM based
memory across VOQs belonging to the same input port.
Another advantage of this architecture is its high tolerance
to bursty traffic, as the busy queues will be allocated with
more buffer space in the shared memory space. The shared
memory structure has similarly been used in the work of Dai
and Zhu [12] when implementing a memory-based switch, and
is shown in Fig. 4.

The proposed shared memory architecture is implemented
using a dual-port RAM that supports concurrent read and write
operations. The address pool is implemented as a simple FIFO
populated with available memory addresses. When a packet
arrives at a shared memory block, the destination field is
fed to the output pointer queues whereas the data get stored
in the shared memory with the address provided indicated
by the address pool. The indicator block shown in Fig. 4
is designed to handle multi-cast packets that are destined to
multiple output ports. Instead of storing the same data multiple
times in the shared memory, only one copy of the multi-cast
data is kept. This minimizes storage overhead since the number
of bits required to represent the request is much smaller than
the data itself. The indicator stores a bit-map indicating the
output ports requested by a packet when it is first written into
memory. The bit-map entry representing a certain output is
cleared when the header is popped out of the corresponding
output port, and the memory address is freed and returned
to the address pool only after the bit-map value is 0, which
indicates that all the multi-cast requests have been handled.

Although utilizing an asymmetric dual port memory for
implementing the indicator might appear optimal as it allows
the modification of individual bits within the bit-map with a
single clock cycle delay, such an approach would limit the
scalability of the shared memory. This is because the read
and write width ratio of the dual port memory provided by
Xilinx [21] memory is limited to 32. This in turn would
restrict the maximum number of queues that can be shared.
To enhance design scalability, we choose to implement the
indicator block using a symmetric dual port memory at the
expense of a cycle overhead required for updating the entire
bit-map on each access. In other words, the symmetric memory

TABLE I: Utilized custom packet format
Field Source Data Destination

Width log2 N W − log2 N −N N

now requires the entire old bit-map content to be read before
writing back the new value thereby introducing an additional
read delay.

3) Schedulers: Schedulers are among the core components
of crossbar-based switches as they are needed to resolve
potential port conflicts that could arise in a switch. We
consider two schedulers in our work: 1) a centralized iSLIP
scheduler that implements the iterative maximal size matching
scheduling algorithm proposed in [22] and guarantees 100%
throughput for uniform Bernoulli traffic. We chose the iSLIP
algorithm after simulating a group of input buffered algorithms
including [23] [24] [25]. Our simulation results show that
under uniform traffic, iSLIP has the highest throughput and
the lowest average packet latency while allowing for simple
hardware implementation. 2) a round-robin (RR) scheduler
that can provide additional implementation simplicity over
iSLIP in architectures where complex centralized scheduling
is not required.

IV. FEASIBILITY STUDY

To investigate the scalability of FPGA based switches, two
architectures are considered. The first switch architecture,
SMiSLIP, uses shared memory input-buffering with a cen-
tralized iSLIP scheduler and is chosen to represent the broad
class of input-buffered switches with centralized schedulers.
The second design, GCQ, is the switch architecture proposed
by Dai and Zhu in [12], and is chosen to be representative of
CICB and HC+CIOB architectures since the CICB architecture
is an extreme case of the HC switch with S=1 as explained
in Section II-A. We also implemented a simple crossbar
switch architecture with an iSLIP scheduler and with no buffer
sharing to serve as a baseline. We specifically focus on simple
scheduling algorithms since they are more likely to scale to
higher line rates and number of ports while achieving timing
closure on FPGAs.

In the rest of this section, we first introduce our design
setup and then discuss the results of our study. Specifically,
we present the trade-offs of the various architectures in terms
of their maximum achievable line rate and number of ports
(aggregate bandwidth), port-port latency, and FPGA resource
utilization based on the simulation results obtained.

A. Design setup

1) Design Flow & Tools: Vivado Design Suite 2017.2
is used for hardware implementation, and our results are
obtained targeting Virtex Ultrascale+ XCVU9P FPGA with
out_of_context flag to prevent IO insertion. Our results
do not include any transceiver logic and are limited to the
switching architectures themselves.

2) Packet Format: All implementations assume uniform
traffic and a fixed packet size representing a single transfer
unit, namely the cell. Though this approach increases the



TABLE II: Design specification
Platform Operating frequency Line rate Data width

Virtex
UltraScale+

xcvu9p

40MHz 10Gb/s 256

40MHz 25Gb/s 640

40MHZ 50Gb/s 1280

TABLE III: Buffer depth configurations
iSLIP SMiSLIP GCQ

VOQ depth 64 n/a 16
Shared memory depth n/a 64N 64N
Memory pool depth n/a 64N 64N

Output address pointer
queue depth n/a 64N 64N

control resource overhead, it allows for a simpler flow control
logic. We simply use buffer occupancy flags (full or empty)
as a notifier to the sender. A customized packet format
summarized in Table I is chosen since our primary goal is
investigating the basic switching functionality. The radix of the
switch is represented by N , and W is the total packet width.
Each bit in the destination field represents the request to the
corresponding output port. Log2(N) bits are used to represent
the input port, and are only included to provide a more realistic
packet format even though they are not necessarily required
for correct switch operation.

3) Design specification: We consider switches with the
three line rates shown in Table II. The reason why the op-
erating frequency is fixed at 40MHz is twofold: First, 40MHz
is the boundary operating frequency for the iSLIP scheduler to
support 128 input based on our experimental results. Second,
the GCQ switch requires four times speedup in the design,
using 40MHz not simultaneously eases achieving timing and
provides a fair comparison with the previous work.

4) Buffer Depth: Through simulation with Omnet++ [26]
we found that for the iSLIP based switch, a VOQ buffering
depth of 40 is required for no packet loss. To ease the
implementation process, we use a buffer depth of 64. The
GCQ switch requires a smaller VOQ depth for no packet loss
and a VOQ depth of 16 is sufficient as presented in [12]. The
utilized buffer depths for the various switching architectures
considered are further summarized in Table III.

B. Performance analysis

1) Maximum Achievable Line rate: Table IV summarizes
the obtained results targeting line rates of 10 Gb/s, 25 Gb/s,
and 50 Gb/s respectively. It also demonstrates the extent to
which each design can be scaled in terms of both line rate
and number of ports. This is indicative of the maximum
achievable aggregate bandwidth of each switch architecture
which is simply the product of line rate and port count.

The maximum frequency and link capacity (maximum run-
ning frequency × data width) that could be supported for
each data width and port count is determined and provided
in Table V. Note that GCQ consists of two clock domains,
with one being 4 times faster than the other. The slower
clock frequency is displayed in Table V because this clock
determines the link speed of the switch. As can be seen from

TABLE IV: Implementation results summary
iSLIP SMiSLIP GCQ

N 10G 25G 50G 10G 25G 50G 10G 25G 50G

8 X X X X X X X X X

16 X X T X X X X X X

32 X X X X X X X X X

64 X X X X C X X XX X

96 X X X C X X X X X

128 X X X X X X X X X
X: Successful implementation
XX: Best aggregate throughput
C: Failed to resolve global congestion
T: Failed to resolve timing closure
X: Implementation failed due to resource shortage

Fig. 6a, for switches with 32 or fewer ports, SMiSLIP can
support a higher link capacity than GCQ. This is because no
speed up is required for SMiSLIP so that the entire switch can
run at the highest frequency. However, due to the centralized
architecture of SMiSLIP, the maximum supported frequency
decreases more rapidly than that of the GCQ switch. This
is because the iSLIP scheduler contains three stages in one
scheduling iteration and the input size of the scheduler is
proportional to the port number squared. Larger input size
leads to higher combinational logic delay and eventually
reduces the maximum running frequency. While inserting
registers could help increase the operating frequency, this
would also introduce cycle overhead to the scheduler and as an
iterative scheduler, this overhead would be multiplied by the
number of iterations, which makes its overall efficiency less
clear. We leave a more thorough exploration of this possible
optimization to future work. GCQ on the other hand has
a stable performance due to its hierarchical structure which
makes it more suitable for higher radix switch designs.

2) Average port-port latency: Table VI reports the port-
port latency obtained for each implementable configuration.
The latency of all the designs increases with both the port
number and the data width. Fig. 6b contrasts the average port-
port latency of the SMiSLIP and GCQ switch designs for
different port speeds. To provide a fair comparison against
commodity switches, the latency of the transceivers are further
accounted for in the result. According to [27], the latency of
the transceivers ranges from 13.65ns to 96.75ns for 10 Gb/s
line rate resulting in an average latency of 55.2ns. The
shaded area represents the latency boundary of commodity
switches [28]–[30]. Overall, both design performs well in
latency compared with the commodity products, and SMiSLIP
has much lower latency compared with GCQ. This is because
GCQ switches require clock domain crossing at both input
and output interfaces as well as the use of pipeline registers
to break the long wires that inter-connect the memory based
switches.

C. FPGA Resource Utilization

Three floorplans of a 16 port switch are shown in Fig. 5
to demonstrate the scaling of each architecture in terms of



TABLE V: Frequency and line rate scaling with switch size and data width
Maximum Frequency (MHz) Link Capacity (Gbps)Data Width 256 bit 640 bit 1280 bit

# Ports SMiSLIP GCQ SMiSLIP GCQ SMiSLIP GCQ SMiSLIP GCQ
8 228.68 55.49 206.31 54.14 206.65 48.31 264.52 61.83
16 201.49 54.29 192.53 52.69 183.79 43.67 235.25 55.88
32 135.65 51.28 109.89 50.64 56.727 46.42 70.33 59.42
64 52.46 49.29 - 48.56 - - 13.43 31.08

TABLE VI: Port-port latency scaling with switch size and data width
Port-port Latency (ns) Average port-port latency (ns)Data Width 256 bit 640 bit 1280 bit

# Ports SMiSLIP GCQ SMiSLIP GCQ SMiSLIP GCQ SMiSLIP GCQ
8 26.238 172.52 32.082 173.09 32.034 175.875 31.118 173.83

16 33.778 182.23 35.164 183.213 36.646 186.22 35.196 183.89
32 49.232 203.627 59.6 204.307 141.02 209.23 54.416 203.97
64 171.53 246.36 - 247.81 - - 247.09

(a) iSLIP 10G 16-port (b) SMiSLIP 10G
16-port

(c) GCQ 10G 16-port

Fig. 5: Implemented device view of three architectures. The
leaf cells highlighted in blue represent the memory resources
used by buffers. The yellow cells represent the scheduler
in iSLIP design and memory based switch in GCQ design.

resource utilization. As expected, the basic crossbar switch
with no buffer sharing has a high memory utilization and is
limited in scalability. The resource usage versus port number
for various port line rates are presented in Fig. 7a and Fig. 7b
for the SMiSLIP switch and the GCQ switch respectively.
As can be seen, GCQ requires a higher number of logic
resources compared with the SMiSLIP switch (FFs and LUTs).
However, comparing the utilization of the other resources is
not as straightforward. Since the compiler views the rest of
available resources as a collective pool of memory resources,
it attempts to make optimal use of the pool of resources while
compensating the lack of one resource with another based on
the total resources available on the target device. This, in turn,
obfuscates the relationship between the scale and the resource
requirements of the design, as it is now subject to target
dependent optimization constraints. We therefore propose a
target independent model in Section V.

V. ANALYTICAL MODEL

We present a target independent model that can be used
to estimate the resource requirement of our proposed ar-
chitectures at various scales for future adoption on next-
generation FPGAs. This enables us to estimate the resource
requirements of each architecture and predict whether they
can be implemented on a target FPGA while relying on
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Fig. 6: Switch Performance Scaling Results

the FPGA datasheet. This approach reduces design time by
eliminating the need to repeatedly implementing the designs
while targeting different boards and scales. We also estimate
the expected latency of each architecture to show their trade-
offs in terms of both latency and resource utilization.

A. Memory Resource Model

We rely on our existing implementations of the SMiSLIP
switch and the GCQ switch to obtain a memory model that can
be used to predict the memory resource requirements without
being subject to target device constraints. When we consider
the SMiSLIP switch, the shared-memory VOQs contribute to
all the memory resource utilization resulting in the equality
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shown in (1), where Usm is the memory resources used by
the shared memory VOQs.

USMiSLIP = Usm (1)

We further break down the shared memory VOQ archi-
tecture into the utilization of its four main sub-components:
(a) a shared memory buffer (Ushared mem), (b) the memory
pool (Umem pool), (c) the output queues (Uout q), and (d)
the indicator (Uindicator). Consider an N port switch with
data path width of W and queues with a depth of D. The
shared memory buffer is expected to hold a total of N VOQs.
This results in Ushared mem = DNW as shown in Fig. 4.
The memory pool should contain all the addresses for the
shared memory. Given the depth of D × N , the input width
of the memory pool equals to log2(DN); hence the usage for
memory pool Umem pool = DNlog2(DN). The output queues
store the addresses issued by the memory pool with a depth
of D, so the usage for output queues Uout q = DNlog2(DN)
The indicator module should have the same depth with the
memory pool and the data width of N to indicate the request
status for N outputs. This results in Uindicator = DN2.
Finally, a total of N shared memory units are needed. In
summary the total memory usage Usm for the shared memory

can be expressed as:

Usm = N × ( DNW︸ ︷︷ ︸
shared mem

+ 2DNlog2(DN)︸ ︷︷ ︸
mem pool&out q

+ DN2︸ ︷︷ ︸
indicator

) (2)

Similarly, the GCQ switch memory utilization can be broken
down into 3 sub-components: (a) the memory based switches
(UMBS), (b) the VOQs (UV OQ), and (c) the output buffers
(Uoutbuf ). The core of the GCQ switch is the memory based
switch (MBS) which extends the shared memory architecture
by adding multiplexers and de-multiplexer at the beginning
and end respectively. As a result, the memory usage model
for a MBS is very similar to that of Usm, with the eception
that the size of MBS used in GCQ is fixed. With a speed up
of S, the total number of MBS needed in the GCQ design is
(NS )2, hence UMBS can be expressed as:

UMBS = (
N

S
)2 × ( DSW︸ ︷︷ ︸

shared mem

+ 2DSlog2(DS)︸ ︷︷ ︸
mem pool&out q

+ DS2︸ ︷︷ ︸
indicator

) (3)

The GCQ switch reduces the number of queues at the input
to (NS ). The UV OQ usage can then be calculated as follows
with DV OQ representing the depth of the VOQ at the input:

UV OQ = N(N/S)×W ×DV OQ (4)

GCQ requires additional asynchronous output buffers at
the output whose usage can be expressed as the product



of the number of buffers and a factor F to compensate the
resource variation when using the IP generator. The factor F
is calculated by the ratio of actual memory resources used by
the IP to the theoretical memory usage without the IP. The
memory utilization of a GCQ switch can then be given by:

UGCQ = (
N

S
)2 × (DSW + 2DSlog2(DS) +DS2)︸ ︷︷ ︸

UMBS

+F ×N(N/S)×W ×DV OQ)︸ ︷︷ ︸
UV OQ

+F × (N/S)2 × SWD︸ ︷︷ ︸
Uoutbuf

(5)

B. Port to port Latency model

1) SMiSLIP: The latency of iSLIP based switches are
dominated by the minimum clock period T of the scheduler.
According to [8], the iSLIP scheduler needs log2(N) iterations
to converge, which means each cell waits for at least log2(N)
cycles in the buffer before it is scheduled to the output port.
The latency of iSLIP scheduler can then be calculated as
log2(N)T . Therefore, the latency of SMiSLIP in clock cycles
can be given by:

DSMiSLIP = TCMBS + log2(N)T (6)

where CMBS is the number of clock cycles that are required
for the cell to pass through the shared memory architecture.

2) GCQ latency model: The cross clock domain logic
and the pipeline stages in the GCQ design introduce latency
overhead to the design. The latency model for the GCQ switch
with N port in clock cycles is shown below:

DGCQ = TsCwr + TsCrd + TfCMBS + TsCp (7)

where Ts and Tf are the clock period of slow and fast clock
region respectively. Cwr and Crd are the write and read delay
in terms of clock cycles. Additionally, Cp is the number of
pipeline stages inserted to break the long wire connections
within the switch and it is equal to the number of memory
based switches in a row.

C. Case study: Resource model use case

As an example of how our model could be used in practice,
we sketch a possible workflow in Fig. 8. While we do not
expect our model to give us the exact number of memory
resources that end up being used on the FPGA by each archi-
tecture, we can use that to answer the following questiones.

1. Is an SMiSLIP or GCQ switch implementation likely to
fail due to insufficient memory resources on a target board?

We answer this question by computing the expected memory
resource requirements for the points at the boundary conditions
where the first design fails implementation due to insufficient
memory resources. This corresponds to a 64-port design with
a line rate of 50 Gb/s as can be seen in Table IV. Based on
our model, we estimate that 356.515 Mb and 368.738 Mb are
required for the SMiSLIP and GCQ architectures respectively.
Considering that the target board has a total of 382 Mb
of cumulative memory resources (LUTRAM, BRAMs, and
UltraRAM), our estimates are within a threshold (6%) for
SM-SILP and (3.4%) for GCQ from the overall memory

Common Parameter Selection
Port Number (N)
Data width (W)

Queue depth (D)

Structure selection

Specific Parameter Selection
Speed up (S)

VOQ Depth (Dvoq)

Substitute Parameters in
Equation 5

Substitute Parameters in
Equation 2

Result

GCQ SMiSLIP

Fig. 8: Memory model usage flow diagram. Note common
parameters are parameters shared by both architectures and
specific parameters are exclusive to GCQ only

capacity. Based on those numbers, we hypothesize that designs
are likely to fail due to insufficient memory resources when
the model-based memory resource estimations are within
close proximity of the determined thresholds. To verify our
hypothesis, we ran a number of tests for designs sets that start
to fail implementation, indicated by the first red cross under
the green check in table Table IV. The results indicate that
on average, the design fails with memory variation of 7.98%
over for SM-iSLIP and 2.75% over for GCQ of the overall
memory capacity. This implies that the synthesis tools might
end up using more memory than actually needed. Therefore,
while the model does not provide an exact matching number
of resources, it can be used to predict the likelihood of
failing implementation due to memory constraints, although
more work is needed for rigorous statistical validation of the
determined thresholds.

Next, we use our model to predict the lower bound of FPGA
memory resource requirements for extrapolating the memory
requirements of FPGA switches at various scales. An example
is as follows.
2. What is the minimum memory requirement for imple-
menting a 128-port SMiSLIP or GCQ switch operating at a
line rate of 50 Gb/s ?

Based on our model, we determine that SMiSLIP and GCQ
need 1503.65 Mb and 1474.9 Mb memory respectively for a
switch of such a scale. Considering this, and the amount of on-
chip memory resources available on FPGAs, we observe that
the memory requirements of both designs cannot be supported
by the current generation of UltraScale+ FPGAs.

VI. CONCLUSION

In this paper we study the feasibility for FPGA-based
switches to answer our primary question of whether such
architectures can be used to implement FPGA based switches
that can match the performance of commodity switches used
today. We conclude that with today’s FPGA chip, there is still
an evident gap between them and commodity switches. The
best achieved aggregate bandwidth on our target FPGA is 1.6
Tb/s using the GCQ switch architecture for a 64-port switch



with a port line rate of 25 Gb/s. This makes FPGAs today
more suitable for implementing medium scale switches with
lower port count requirements. We further determine the trade-
offs of each proposed architecture in terms of performance and
scalability. Though the SMiSLIP architecture has lower port-
port latency than the GCQ switch, it exhibits limited scalabil-
ity. This is due to its higher resource utilization as shown by
the target independent model, as well as to the difficulty in
achieving higher operating frequencies due to its centralized
architecture. The GCQ switch, instead, demonstrates better
scalability in terms of memory resource requirements and
consistency in supported link capacity, although scaling it
further is currently limited by routing resource congestion.
Further, we observe that achieving timing closure became
more challenging as the size of the switch increases since it
is possible for a switch fabric to cross two super logic regions
(in Xilinx FPGAs) to connect with the transceiver.

Nonetheless, the rapid growth in the size of FPGAs and
their performance can help circumvent these challenges and
enable larger and faster FPGA based switches that do not rely
on a centralized scheduling architecture. Also, with hardened
Networks-on-Chips (NoCs) finding their way into FPGAs, the
challenges of meeting timing closure can be alleviated, thus
enabling even lower latency and resource area usage, which
in turn could help bring the performance of FPGA-based
switches closer to commercial switches.
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