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Abstract
Large, pretrained model architectures have demonstrated

potential in a wide range of audio recognition and classifica-
tion tasks. These architectures are increasingly being used in
Speech Emotion Recognition (SER) as well, an area that con-
tinues to grapple with the scarcity of data, and especially of
labeled data for training. This study is motivated by the lim-
ited research available on the robustness and generalization ca-
pabilities of these models for SER and considers applicability
beyond a restricted dataset. We invoke the widely adopted net-
work architecture CNN14 and explore its ability to generalize
across different datasets. Our analysis demonstrates a poten-
tial domain gap between datasets after analyzing the acoustic
properties of each one. We bridge this gap with the introduc-
tion of acoustic and data variability, by invoking seven suitable
augmentation methods. Our approach leads to up to 8% im-
provement for unseen datasets. However, bridging the acoustic
mismatch seems to play a minor role only: an infelicitous find-
ing involving partially scrambled (swapped) annotation labels
hints to deeper domain mismatches during multi-dataset learn-
ing scenarios. Findings in this work are applicable to any large
or pretrained network and contribute to the ongoing research on
the robustness and generalization of SER models.
Index Terms: speech emotion recognition, human-computer
interaction, computational paralinguistics, data augmentation

1. Introduction
Speech emotion recognition (SER) aims to automatically dis-
cern the emotional state of a speaker from their speech signal
and is still considered as one of the big challenges in speech
processing [1]. Alongside human facial expressions, speech
emerges as a highly promising avenue for automated identifi-
cation of human emotions [2]. Increasing interest in this field
supports the pivotal importance of emotion recognition, partic-
ularly evident in safety monitoring, human-computer interac-
tion, personal well being, video games [3–5]. Nonetheless, to
achieve a robust and universally applicable approach to emo-
tion classification, it is important to consider model efficiency in
cross-dataset and cross-domain adaptation. It is beneficial to go
even further; conduct comprehensive examinations and provide
clarity in experimental findings along with limitations [6, 7].
This is the very motivation of this work, to go beyond report-
ing top performance on a dataset, while we focus on insightful
contributions to ongoing and future advancements in the field.

One of the main obstacles in speech emotion recognition
(SER) research is the shortage of data [8]. Common challenges
with SER datasets include limited annotated data, variability
across languages and dialects, and small-scale datasets [4,9,10].
Moreover, these datasets often lack comprehensive coverage of

emotional categories, languages, cultures, and speakers. They
vary significantly in several aspects, such as the presence of
real or acted emotions, annotation methods and sources, record-
ing conditions, but also when it comes to instructions given to
speakers and to annotators [5]. These differences pose a sig-
nificant challenge for SER model training, resulting in domain
mismatches and distribution shifts that ultimately harm model
performance and generalization, potentially leading to overfit-
ting across datasets [11]. Data augmentation shows promise
in addressing some of these challenges. It involves generating
new data samples from the original ones, through transforma-
tions like noise addition, masking, and time stretching. Though
widely used in computer vision and natural language process-
ing to enhance model performance and generalization, data aug-
mentation in SER has received less attention, often with contra-
dictory evidence. Prior work in this area has showed little or no
benefit, especially for larger or more diverse datasets [12–14].
Most existing studies have focused on augmenting individual,
single datasets with less attention on general trends that can go
beyond choosing a single point on the performance curve.

In this paper, we examine the challenges of recognizing
speech emotions across multiple datasets, and provide with a
series of ablation studies. Our analysis relates to the use of large
pre-trained models in SER, addressing two questions continu-
ing to riddle the community: (1) Is data augmentation an effec-
tive technique for bridging the domain mismatch gap in SER ?
(2) Does the model learn sufficiently generalizable features per
class in cross-dataset learning?

We address (1) by first analysing the acoustic mismatch
across datasets. We then bridge this gap by selecting suit-
able augmentation methods. We evaluate our approach across
three SER datasets and demonstrate cross-dataset performance
enhancement up to 8%. While significant, this improvement
still renders a performance far from the baseline (i.e. train and
test on single dataset), which illustrates the challenges of over-
coming domain mismatches between various SER datasets. For
question (2), we investigate the ability of the model to capture
generalizable, class-specific features. We do so by introduc-
ing artificial label confusion (scrambling) across the datasets, in
joined learning. Surprisingly, we find that model performance is
virtually unaffected by conflicting labels across datasets, illus-
trating a default inability to capture generalizable emotional fea-
tures, even with pretrained models. Overall, our findings show
evidence that domain mismatches run deep in SER datasets,
obscuring the capture of universal features and misleading the
model into per dataset class memorization. The rest of the paper
is organized as follows: section 2 reviews the datasets and eval-
uation metrics. Sections 3 and 4 describe the model architecture
and baselines. Section 5 presents the augmentation methods and
experiments, and discusses findings and limitations.



Figure 1: Depiction of the model, with the output layer predict-
ing the major emotion classes: Happy, Neutral, Sad, Angry.

2. Datasets and Metrics
2.1. Datasets

MSP-Podcast v1.10 [15]: This large speech emotion dataset
comprises of >100, 000 audio samples (∼ 165 hours), with an
average duration of 5.7 sec. Samples belong to podcast record-
ings of >600 speakers. We included all segments with reviewer
consensus within the four classes {Happy, Neutral, Sad, An-
gry}, a total of 67, 929 files. We used the standard split for
training, Test1 split for testing and Dev for validation.

IEMOCAP [16]: The Interactive Emotional Dyadic Mo-
tion Capture dataset is an acted dataset of scripted and impro-
vised dialogues by 10 speakers, with a duration of ∼ 12 hours,
and an average clip duration of 4.5 sec. We included all samples
with reviewer consensus for labels {Happy, Neutral, Sad, An-
gry}. We split the data by speaker (SP), keeping one speaker for
testing, one for validation, and the rest for training. We average
results over all 10 cross validations for the 10 speakers.

CREMA-D [17]: The Crowd-sourced Emotional Multi-
modal Actors Dataset contains 7,442 original clips spoken by
91 actors, while reciting 12 unique sentences. This ∼ 5-hour
dataset contains samples of average duration 2.5 sec. We only
considered the four emotional labels as before. We split data
randomly at 70-15-15% for training, testing, validating.

2.2. Evaluation Metrics

Model performance was evaluated by: wACC, the percent-
age of correctly classified samples over all samples (sample-
weighted accuracy); uACC, the average of individual class
accuracies, not affected by imbalanced classes (unweighted or
balanced accuracy); wF1, the weighted F1 score accounting
for both precision and recall while considering class imbal-
ances. We used wF1 to compare performances across the vari-
ous scenarios. All metrics were normalized to [0,1]. For IEMO-
CAP, metrics were averaged over the 10 per-speaker cross val-
idation folds. For the rest of the datasets, the splits were pre-
determined (Section 2.1). We further provide confidence inter-
vals for all metrics, by averaging over the last 20% of all training
iterations of the model; this corresponds, approximately, to av-
eraging the performance over the last 8 full epochs of training.
We ensured that these averages are meaningful, computed after
both the loss and performance curves start plateauing.

3. Model Architecture
The overall model architecture used for the speech emotion
classification task consists of a pre-trained audio encoder and
an additional classification layer on top, Figure 1. The audio
encoder f(a), where ai represents the raw audio, first produces
a log Mel Spectrogram from raw audio followed by a learnable
embedding function. The audio representation xa = {f(a)}
will be of dimension xa ∈ Rb×v , where b is the batch size, and
v the dimension of the audio representation. xa is then passed
through a linear projection layer with ReLU activation. For this
task, the predictions are passed through Softmax activation and

the choice of loss is Binary Cross Entropy.
We used CNN14 [18] as the audio encoder, chosen for its

wide use in SER. Transformer-based architectures, pre-trained
in a self-supervised manner, have shown great promise in many
machine learning tasks, including SER and leading to wide
adoption of alike architectures [7, 19–26]. The CNN14 encoder
was pretrained on large amounts of speech, specifically on Au-
dioSet [27], where already Speech represents about half of the
dataset. Data is sampled at 16 KHz, with a 64-bin Log Mel
Spectrogram as raw features; hop size of 320, window size 1024
and frequency range between 50 to 14000 Hz. We finetune the
CNN14 encoder along with the task linear layers in PyTorch,
with a batch size of 128 and learning rate of 10−4, over a max-
imum of 30 epochs. We fix the batch size and learning rate to
this commonly adopted configuration for ease of reproducibility
and future comparisons, without any hyper-parameter tuning.

4. Baseline Systems
In this section we showcase baseline model performance when
training and testing on the same dataset (i.e. in-domain scenar-
ios), Table 1. Pursuing extensive hyper-parameter tuning ex-
perimentation is not within the scope of this work. However,
we quickly want to illustrate that even light parameter tuning
achieves state-of-the-art equivalent performance. We select one
training scenario, training on IEMOCAP, and we perform a light
hyper parameter tuning (H-param tune). We only explore 4 dis-
crete values for the learning rate ∈ [0.0001, 0.01] and 4 val-
ues for batch size [16, 64, 128, 256]. Even on this small set
of hyper-parameters, we already see a substantial increase in
wF1 performance by up to 6%, comparing rows 2 and 1 in Ta-
ble 1. This evaluation was useful for validating that the network
reaches top, per-speaker, performance on IEMOCAP [28], and
that any lower baseline performance shown here does not affect
generalization of findings. The exercise of surpassing the state-
of-the-art is beyond the goal of this analytic study; we continue
the rest of this work while keeping all network parametrization
fixed, and focus our attention to the overall trends and findings.

5. Generalization to Unseen Datasets
The CNN14 architecture has been widely adopted in classifica-
tion tasks including speech emotion (SER). In this section we
look at the model’s classification generalization across the var-
ious emotion datasets. The model was pretrained on AudioSet,
and its architecture is quite large; we thus hypothesize that it
is possible for the model to capture the general, core features
corresponding to individual emotion classes, especially as we
allowed for brief model finetuning on each training scenario.

Figure 2 depicts results across corpora learning (columns A
to E), when testing on each dataset (subcolumns). For now, we
focus on row Augment 0%. Cell values depict relative change in
performance wF1, relative to baseline results of Table 1, with
green color emphasizing high, and red color low intensity. In
Column A, a value of -0.27 in the first cell signifies that training
on MSP-Podcast and testing on IEMOCAP brings a 27% drop
in performance compared to training and testing on IEMOCAP
(baseline wF1=0.63). In Column C, a value of -0.11 in the first
row, signifies 11% drop in CREMA-D test performance with
joined training on MSP-Podcast and IEMOCAP, compared to
training on CREMA-D alone (baseline wF1=0.79).

Looking across the whole first row, Augment 0%, in Fig-
ure 2, we immediately notice poor generalization capability
of the baseline systems to an unseen dataset. Let’s focus on



Table 1: Baseline performance evaluation averaged over the last 20% of model iterations (see Section 2.2). Confidence intervals (std)
are shown in parenthesis. Performance at chance level is at 0.25 (4-way classification). IEMOCAP dataset was split by speaker (SP).

Baseline System Augmented
0% Augmentation 20% 50% 70% 100%

Condition Train/Test uACC wACC wF1 wF1
H-param tune IEMOCAP .68 (5e-3) .67 (5e-3) .68 (6e-3)
No tuning IEMOCAP .64 (3e-3) .62 (4e-3) .63 (4e-3) .62 (4e-3) .62 (3e-3) .61 (4e-3) .59 (3e-3)
No tuning CREMA-D .80 (4e-3) .59 (2e-3) .79 (3e-3) .78 (1e-3) .78 (1e-3) 78 (1e-3) 76 (1e-3)
No tuning MSP-Podcast .54 (4e-3) .36 (2e-3) .53 (3e-3) .56 (2e-3) .58 (2e-3) .58 (2e-3) .58 (2e-3)

Figure 2: Change in wF1 performance relative to Table 1 baselines across learning scenarios (columns) and augmentation % (rows).

Figure 3: Change in wF1 relative to Table 1 baselines, after scrambling IEMOCAP labels (Neutral←→ Sad ; Happy←→ Angry).

columns A and B, subcolumn IEMOCAP: baseline wF1 per-
formance on IEMOCAP is 0.63 (Table1); this performance
drops to 0.36 (not shown) when training on MSP-Podcast and
testing on IEMOCAP, registering a drop value of -0.27 in Fig-
ure 2, first cell (0.36−0.63=-0.27). Considering that MSP-
Podcast is about 10x larger and contains many and more varied
speakers and spoken content, this result may come as a surprise.
Could it be that the acoustic conditions are so different among
the datasets, that generalization fails? We explore this question
in the following sub-sections.

Let us now compare the three training scenarios in columns
A, B, C, fixing the test set to (subcolumns) IEMOCAP. Rela-
tive wF1=-0.27 in column A, when training on MSP-Podcast.
Adding IEMOCAP for joined training in column C, increases
relative wF1 to -0.01, which is almost a ”full” performance
recovery compared to baseline IEMOCAP. In other words,
adding MSP-Podcast in training brings no performance benefit
to IEMOCAP. Considering that the size of IEMOCAP in joined
training is only a fraction of the total data (∼ 10%), this result
may be an indication that the network is unable to find common
patterns of the corresponding emotion labels across datasets.

If the acoustic conditions in the two datasets are highly mis-
matched, the network could be treating audio samples from the
two datasets separately, even when training jointly. Given these
findings, we hypothesize and investigate whether the observed
poor generalization can be a result of the mismatch in acoustic
conditions across datasets, or whether there may exist a deeper
bias in cross-domain learning in SER.

5.1. Acoustic Conditions and Data Augmentation

While prior studies have integrated data augmentation into net-
work training in SER, findings are generally analyzed on a per
dataset basis [22, 29], and have lead to conflicting findings in

the community. Here, we look into cross-domain data augmen-
tation, intended to bridge the gap of the acoustic conditions be-
tween datasets and promote joined learning. If the acoustic con-
ditions of the individual datasets are highly dissimilar, this fact
alone could prevent the model from achieving generalization
ability. For example, audio excerpts from IEMOCAP exhibit
increased background noise and reverberation, which is not of-
ten present in MSP-Podcast. IEMOCAP samples were recorded
using shotgun microphones pointed at two actors in a medium-
sized room filled with cameras and motion tracking equipment.
This recording setup may introduce more background noise and
reverberation than one would expect in a typical podcast setting.

We could argue that if we bridge the gap on the acoustic
conditions across datasets, this may help the model improve
generalization on unseen data. Figure 4, illustrates the domain
mismatch between IEMOCAP and MSP-Podcast in terms of the
quality and reverberance estimated from the audio samples us-
ing blind estimation methods for MOS, T60, C50 [30–32]. Top
row, raw, shows the statistics of the original audio samples. The
estimated parameters clearly depict high dissimilarity among
the two datasets. We carefully select a number of augmenta-
tion techniques to help mitigate the large difference in noise
and acoustic variability, and to bring the acoustic parameters of
MSP-Podcast closer to those present in IEMOCAP. After em-
ploying the augmentations proposed in the next section, we see
in Figure 4 bottom row, a clear shift in the distributions of the
acoustic parameters of the MSP-Podcast corpus, bridging the
acoustic gap of the two corpora.

5.2. Types of Augmentation

We augment the training samples using a set of methods suited
to enhance robustness of speech recognition models, can intro-
duce variations in speaking styles, and introduce variations in
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Figure 4: Distribution of estimated mean opinion score (MOS),
reverberation time (T60), and clarity (C50) for IEMOCAP and
MSP-Podcast, with and without data augmentation. Each sta-
tistical distribution shown is averaged over 10,000 random
samples. Notice how the application of the selected augmenta-
tions (row augm.) bridges the distribution gap across datasets.

recordings, acoustic conditions and ambient noise. Specaug-
ment [33], allowing for masking of both temporal and spectral
axis; TimeStretching, allowing for speech rate scaling, where
we limit the stretch factor within [0.9, 1.2] to prevent altering of
the emotional signature; TimeShifting, allowing for temporal
variations; Fading in no more than 10% of the signal; Equal-
ization, implemented via a series of high and low pass 9th order
Butterworth filters; pink noise, for ambient noise; and rever-
beration, implemented with the pedalboard python package,
room size factor up to 0.2, wet level factor up to 0.5, dry level
factor of 0.4. These augmentations are applied to each original
audio sample, with parameters randomly chosen within the al-
lowed ranges. We partially augment the training sets at increas-
ing rates of augmentation {0%, 20%, 50%, 70%, 100%},
corresponding to the percentage of the samples affected: 0%
means no augmentation; 50% means half the samples were aug-
mented in training, and so on. Augmentations were applied on
the fly, uniquely for each file in the training batch.

5.3. Findings on Augmentation

Effect on baseline scenarios, Table 1: increasing amounts of
augmentation improve wF1 by up to 5% for the large dataset
MSP-Podcast, but the effect is not apparent for the smaller or
less varied sets of IEMOCAP and CREMA-D. Effect on unseen
data, Figure 2: the figure summarizes relative wF1 change at
various rates of data augmentation during training (rows), and
across datasets (columns). See Section 5 on interpreting relative
wF1. Testing on unseen CREMA-D benefits from augmen-
tation by as much as 3% column A, and 8% column B: from
-0.36 wF1 drop to -0.28 drop. This is also evident in joint
training column C. We further notice deterioration on unseen
IEMOCAP column A, despite having bridged acoustic differ-
ences with augmentation. Additional exploration is needed to
interpret this bias, evident in joined training in column D too.

Overall, the addition of augmentation seems to allow for
performance improvement within a dataset and on unseen
dataset scenarios, but it doesn’t seem to drastically improve
cross-dataset generalization. The domain mismatches seem
more intricate, and may go beyond acoustic conditions. This
could be an indication that emotion manifestations in classes
with the same-name across datasets may be different or have a
different ”meaning” depending on labeling setting or the dataset
context (podcast vs actors). The ambiguous cross-dataset gen-
eralization also indicates that large pretrained networks like
CNN14 may be picking up on those differences and separating

datasets. Next, we look into this very hypothesis by introduc-
ing label confusion. What is the impact in joined training per-
formance when we swap (scramble) the labels of one dataset?
If class features are arguably learnt across datasets, does label
scrambling cause a drastic performance drop?

5.4. Introducing Label Confusion (Scrambling)

Now that mismatched acoustic variability has been addressed
with targeted augmentations in the previous section (Figure 4),
the goal here is to understand if learning across datasets pro-
duces generalizable features per class. For training, we utilize
MSP-Podcast and IEMOCAP, the largest datasets the model can
learn from. Then, we introduce confusion during cross-dataset
learning, via label scrambling: we swap the labels of Neutral
with Sad ; and the labels of Happy with Angry , but only for
the IEMOCAP dataset. Let us assume that the model is able to
capture good or generalizable emotional features. Then the in-
troduction of the SCRAMBLED IEMOCAP labels should con-
fuse the model and cause significantly low performance during
joined training. We compare results between Figures 2 and 3.

Looking at the interesting case of sub-Columns C, where
we combine MSP-Podcast and IEMOCAP-SCRAMBLED dur-
ing training, performance on the test set of IEMOCAP-
SCRAMBLED seems unaffected. This contradicts the earlier
assumption of achieving generalizable features, and illustrates
that the network fully separates the learning on the two datasets,
treating the data and the classes of the two datasets separately
during learning/training. This finding encapsulates the dangers
of using large models for datasets with moderate size or variety
(acoustical, setup, etc), and of interpreting multi-corpora train-
ing generalizations, when the same corpora appear in both train
and test sets. The catastrophic finding of the scrambled-labels
study highlights that learning mitigations are needed, either for
appropriate cross-corpora class-label unification or towards pro-
moting robust per-class features during cross-dataset learning.

Looking at the effect of augmentation in the case of
scrambled labels, we see that the performance on IEMOCAP-
SCRAMBLED decreases with higher rates of augmentation,
across all training scenarios. This is a positive indication that
the selected augmentations are meaningful, preventing the clas-
sifier from performing well after label scrambling, or in other
words, help promote generalizable learning on correct labels.

6. Conclusion
In this work, we explored the generalization ability of a widely
used pretrained network architecture in SER. While prior works
often focus on achieving high performance per specific dataset,
cross-dataset experimentation often remains under-explored.
We investigate various factors that can improve the general-
ization ability of the network, including training on multiple,
disjoint datasets and shifting the acoustic parameter distribu-
tion of the datasets to bring them (acoustically) closer together
via selected augmentations. We conclude that paying close at-
tention to the acoustic conditions of each dataset is an impor-
tant cue, that can lead to up to 8% of improvement for unseen
datasets, and it further allows for better feature generalization
(see scrambled experiment). While acoustic condition match-
ing, alone, yields a noticeable performance increase, it is still
far from reaching in-domain performance equivalence. Other
factors of domain mismatch across datasets still riddle gener-
alization, potentially including differences in instructions given
to speakers or to reviewers, and warrant continued exploration.
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