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ABSTRACT

We propose a novel training scheme using self-label correction and
data augmentation methods designed to deal with noisy labels and
improve real-world accuracy on a polyphonic audio content detec-
tion task. The augmentation method reduces label noise by mixing
multiple audio clips and joining their labels, while being compatible
with multiple active labels. We additionally show that performance
can be improved by a self-label correction method using the same
pretrained model. Finally, we show that it is feasible to use a strong
zero-shot model such as CLAP to generate labels for unlabeled data
and improve the results using the proposed training and label en-
hancement methods. The resulting model performs similar to CLAP
while being an efficient mobile device friendly architecture and can
be quickly adapted to unlabeled sound classes.

Index Terms— Audio tagging, noisy label training, polyphonic
sound detection

1. INTRODUCTION

Audio content detection (ACD) is an important problem for stream-
ing platforms, operating systems and playback devices. The task
is similar to audio tagging, i.e., labeling sounds present in a given
audio segment of typically several seconds length or longer. In con-
trast to general audio tagging, ACD may consist of a small number
of higher level labels or super-classes, e.g. speech, music, traffic,
machines, animals, etc., where each label can include a multitude of
specific sounds. For example, the category music includes countless
genres and styles; voice includes different languages, types (spoken,
singing, whispering, emotional variations), demographic attributes
etc. Applications include automatic content sorting or retrieval, in-
forming hearing impaired users, scenarios where no audio playback
is possible, awareness augmentation or assistance on wearable de-
vices, and content-adaptive sound tuning on playback devices.
Audio event detection, scene classification, tagging and caption-
ing [1] have been researched thoroughly in the recent years with
large success using deep learning. The DCASE research challenges
with already 10 editions [2] contributed substantially to the research
progress. However, a remaining gap between existing work and
practical applications is that most methods assume a single active
or dominant class per audio clip or segment, i.e., monophonic sound
events, which is unrealistic for many real-world polyphonic scenar-
ios: Only one of seven tasks in DCASE considers polyphonic events.
While there is some work addressing multi-label sound classifica-
tion [3], many advanced solutions are developed for the single ex-
clusively active label case and cannot be applied easily to the gen-
eral multi-label problem. Another rarely addressed problem is that
large-scale datasets usually have noisy labels due to human anno-
tation errors, design flaws, re-purposed data from different tasks, or

erroneous machine labels. Therefore, when real-world designing de-
tection systems, noisy labels have to be expected and should be ac-
counted or mitigated to obtain a high confidence prediction system.

The authors in [4] argue that multi-label fits the reality better but
often multi-class, i.e., only one active sound type per clip, seems to
perform better due to learning more class interactions, resulting in a
cumbersome handling for practical systems. They propose to handle
the problem by creating combinatorial polyphonic classes and use
a divide and conquer group splitting to keep the exploding number
of classes tractable. The Mixup [5] training augmentation method
proposed for the multi-class detection in the image domain is often
adapted without modification to the audio domain and other tasks.
However, a potential shortcoming of this approach is again the in-
herent assumption of a multi-class classification problem by weak-
ening the binary labels through weighted mixing. The second issue
is applying the same linear mixing factor to both data (audio) and
label domain. In this work, we investigate methods to better model
this multi-label problem by proposing a modified multi-label mixup,
which decouples the data mixing from the label joining.

[6] states the problem of noisy and missing labels in popular
large-scale training sets like Audioset [7] and proposes a method
to learn from noisy labels for sound event detection by modifying
the cost function to a smooth version. The follow-up work [8, 9]
both propose a teacher-student framework to enhance labels. First, a
teacher model is used to obtain label predictions for the whole train-
ing set. In [8] false negatives (FN), missing labels, are flagged and
masked out. It was found to work best to sort the label predictions
and mask out the upper percentage ( 5%) of missing labels from the
loss. In contrast, Gong et al. [9] propose to correct the missing labels
by setting FN to true when the teacher predictions exceed a per-class
confidence threshold. In this work, we propose a simpler false label
detection based on the absolute performance of the teacher per class.
We show that distinct treatment by correcting high confidence false
labels, and masking out lower confidence false labels can improve
the performance of the student model.

The contributions in this work are summarized as follows: 1) We
introduce a modified mixup with label-joining instead of weighted
mixing, which is more suited to the multi-label classification assum-
ing full presence of polyphonic sound classes. 2) We propose a novel
label correction and masking approach that treats as false detected
labels with high confidence different than false labels detected with
lower confidence: The first type is corrected while the second type
is masked out. In contrast to existing literature addressing only the
more prevalent missing label problem, we also investigate general-
ization to correct or mask false positives (FP) labels. 3) We show
how these approaches can be used to enhance labels from a large
zero-shot sound classifier to train a small efficient model and still
obtain state-of-the-art performance. This enables the use of zero-
shot models to define new sound classes, train on unlabeled data,
and still obtain high accuracy with small models on real-world data.
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Fig. 1. Acoustic content detection architecture

2. SYSTEM OVERVIEW

2.1. System design and problem formulation

The widely used property of classifiers that all class probabilities p.
have to sum to one > _p. = 1, a property imposed by the widely
used Softmax function, poses a serious limitation to practical in gen-
eral polyphonic scenarios. While often assumed, typical classifica-
tion losses such as cross-entropy do not produce probabilities with
guaranteed relation to the relative level or activity between the active
classes. This inter-class interaction complicates the use for detection
tasks, where a simple threshold on the probabilities is used to detect
sound presence. In this case the optimal threshold would depend on
the number of active classes, which is unknown in advance, and ab-
sence of all classes is not in the design. We therefore resort to the
multi-label problem design, allowing consistent detection of multi-
ple simultaneously present classes with a global threshold.

We address the problem of multi-label audio content detection
or tagging: We define C' classes of sounds of interest that we want to
detect in a given audio sequence of several seconds length given by
vector x. Multi-label classification means that we assume multiple
classes can be active simultaneously. We want the classifier to indi-
cate the presence of each active class ¢ € {1,. .., C} independently
with high probability y..

2.2. Proposed ACDnet architecture

Our proposed network operates on complex compressed spectral fea-
tures, obtained from a short-time Fourier transform (STFT) with
50% overlapping 32 ms windows and applying a ¢ = 0.3 compres-
sion exponent to the magnitudes [10] . For a 10 s sequence in 16 kHz,
this results in a feature map of 624 x 257 time-frequency bins and
2 channels for real and imaginary part as network input. We design
our network as a modified version of the MobileVisionTransformer
(MViT) [11] using alternating blocks of inverted residual convolu-
tion layers [12] and attention layers. We utilize linear attention to re-
duce complexity. After each block we apply 2 x 2 downsampling by
max-pooling. Each convolution is followed by batch normalization
and parametric ReLU. To increase the receptive field, every other
block, we use dilation (2,2) in the convolutional block. We use 7
blocks with filter sizes [32, 64, 128, 256, 128, 64, 32] and 3 x 3
convolution kernels. For sequences of 10 s, this leaves 32 feature
maps of size (62,2), where we reduce the temporal dimension by av-
erage pooling, resulting in a feature map of 32 x 2 = 64. This is
mapped via a dense layer to the number of classes and a sigmoid ac-
tivation. The network architecture is shown in Fig. 1. The resulting
network has 248.54K trainable parameters and 1.40G MACs per 10 s
of audio including feature extraction. While our architecture slightly
exceeds the constraints in the DCASE challenge Track 1 by a factor
of 2 and 4.6 for parameters and MACs, the computational and mem-
ory burden is still reasonably low for deployment on consumer and

Algorithm 1 Modified mixup augmentation

Require: Sample class ¢, number of sources I, sequence length L

x=0,y=0
fori < I do
xi=[,y:i=0

while len(x;) < L do
Sample Xraw, Yraw With active sampled class ¢
x; = cat(Xi, Xraw)
Yi =Y U Yraw

gi ~ N(Ov JS)

Xi = Gi fsrc (Xz)

X =X+ X;

> join sequence labels
> Sample source gain
> source augmentation
> add sources

y=yUy: > join source labels
X = fmic(x) B> mic augmentation
return x,y

mobile devices. We call this architecture Acoustic Content Detection
network (ACDnet).

The network is trained on a binary cross-entropy (BCE) loss us-
ing AdamW optimizer. We use average precision (AP) as the vali-
dation metric and define one epoch as 10 k training sequences. The
initial learning rate of 1e* is halved after 150 epochs of the valida-
tion metric plateauing.

3. PROPOSED DATA AUGMENTATION

We use the 11 classes shown in Tab. 1. All classes are super-classes
encompassing several of the 632 Audioset classes. The grouping
of Audioset classes to our super-classes is available as supplemen-
tary material athttps://github.com/sebraun-msr/acd_
class_mapping.

3.1. Data generation

We use Audioset [7], a large audio dataset with noisy labels similar
to what might be found in practice. We train on audio sequences
of 10 s length. However, one sequence is sampled with a random
start and end time with a minimum length of 5 s. Data from addi-
tional audio files is concatenated until the training sequence length
is reached.

Mixup [5] is a commonly used technique to increase perfor-
mance of classifiers by mixing two data samples of index ¢, j and
their labels:

x = ax; + (1 — a)x; (1)
y=ayi+ (1 - a)y; 2

where « € [0, 1] is the mixup factor. We generalize this principle
by generating each training sequence as a combination of a random
number of sources I = [1, Inax].

Each source clip is augmented by various techniques to increase
the source diversity, such as random spectral and bandpass filtering,
reverberation, random source levels with A/ (0, 2) dB and pitch shift-
ing and time stretching. After adding multiple tracks together, we
apply typical post-microphone modifications such as audio codecs,
non-linear distortion functions and varying signal levels.

3.2. Label combination

In vanilla mixup (1),(2), data and labels are mixed with the same lin-
ear factor av. We argue this to be ill-posed targets for the multi-label



detection problem at hand, and therefore propose to use a more data
representative mixing, €.g., Qdaa ~ N (0, 0) in dB and the labels are
combined with an O R operation

y=y1Uyz,... 3

This results in true binary labels for mixed class training samples,
and avoids fractional target probabilities, which matches the multi-
label problem formulation. The resulting data generation and aug-
mentation procedure is outlined in Algorithm 1.

3.3. Label enhancement

Similarly as proposed in [8, 9], we use a label correction or en-
hancement method relying on a teacher model. The teacher model
is trained on the initially available labels, e.g. raw Audioset labels.
Then, the teacher is used to obtain new predictions on the entire
training data. We find that in many cases, the teacher models pro-
vides very confident probabilities for many sounds and often detects
missing (FN) or even wrongly set labels (FP) in the Audioset labels.
This motivates us to distinguish two steps:

1. When the teacher model contradicts the original label with
high confidence, we correct this label. The corrected label .
is given when the prediction §. contradicts the original label
y. with very high confidence:

if ye=0Nge>1-T ©)
if ye=1Nge<T (5)

Je =1
Ye =0

where T is a low positive threshold of a few percent. The first
equation (4) corrects FP and (5) corrects FN.

2. When the teacher contradicts the original label with weaker
confidence, this may be an ambiguous sample, difficult case
or wrong label. Similar to [8], we propose to simply remove
those labels from training, i.e., mask the labels out from par-
ticipating in the loss. For less confident contradictions of the
teacher model, the label is replaced with a flag (NaN), indi-
cating that this label should be masked:

Jo = NaN if
jo = NaN if

(Ye=0) N (0.5< g <1-T) (6)
(ye =1) N (T < §e < 0.5) €

When computing the BCE loss, NaN labels are masked with
a zero weight.

3.4. CLAP as a baseline and zero-shot teacher

The Contrastive Audio Language Pretraining (CLAP) model [13,14]
trains an audio-text encoder pair that maps paired audio-text data
to close points in the embedding space. This trained encoder pair
can then be used in a zero-shot manner for unseen tasks, such as
audio classification, by computing the embedding similarity between
an audio sample and various text prompts. It has been shown that
CLAP has an astounding zero-shot performance for a wide variety
of tasks, and can even outperform most state-of-the-art supervised
models by supervised finetuning on the dedicated tasks. We utilize
CLAP both as a baseline and teacher model. As a proof of concept,
we show that it is possible to generate training labels for ACDnet for
an unlabeled audio dataset with CLAP for any sound class, and then
use the proposed label correction to further improve the performance
of ACDnet. As Large Language Model (LLM) type text encoders
are more accurate with more verbose prompts, we use the pre-fix

Table 1. Class short names and CLAP prompts

class ‘ CLAP prompt

voice speech or singing

music music

cat cat meow

dog dog barking

clapping clapping or applause

urban an urban environment like traffic and city noise
machinery | machines, tools and industrial sounds
nature nature sounds like wind, water, fire, animals
windnoise | wind noise distorting the microphone

alarm alarms and sirens

gunshot gunshots and explosions

”This is a sound of”, as suggested in [13], with the class-specific
prompts given in Tab. 1. This gave us reasonably good results on the
validation set, obviating the need for further prompt tuning.

Using CLAP to generate binary teacher labels is not straight-
forward for the multi-label case. Class-wise similarity scores are
obtained by cosine similarity between the audio and per-class text
embeddings. However, those scores can not be interpreted directly
as probabilities. Typically, a softmax is applied, which implies a
single active class at a time, i.e., monophony. However, as alterna-
tive normalization techniques resulted in worse performance for our
multi-label validation and test sets, we use softmax normalization.

4. EXPERIMENTS

4.1. Metrics and experimental parameters

We evaluate with AP, which measures the area under precision-recall
curve, [15] as threshold independent and data imbalance-agnostic
evaluation metric. We show AP per class and total average over all
classes to obtain a balanced ranking. The threshold for label en-
hancement is chosen with 7" = 0.05. We use a threshold of 0.2 to
detect sound presence for CLAP with softmax, which was tuned on
the validation set.

4.2. Evaluation data

To asssess the effect of training schemes using noisy training labels
on real-world performance, we use FSD50k [16] as validation and
test set, which have high quality polyphonic labels, so we can assume
no label noise in the test sets. We merge the training and validation
sets of FSD50k [16] as our validation set, and use the test set files for
testing. To best match the receptive field of our network, we select
files with a minimum length of 8 or 5 seconds, for validation and
test sets, respectively. We sample 200 and 140 files, respectively,
per active class to ensure a balanced evaluation. These choices were
determined to strike a balance between having enough files per class
and the longest possible minimum file length.

5. RESULTS

5.1. Proposed mixup and label correction

Fig. 2 shows the AP metric on the test set curated from FSD50k
for no mixup, the proposed mixup with label joining with maxi-
mum mixup clips Imsx = {2, 3}, the original mixup interpolating
the labels (red) with (2), and the zero-shot CLAP (version 2023) [14]
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Fig. 2. Test results for training with different mixup methods.

Table 2. Prior and proposed label correction strategies.

labels | Accuracy ~mAP
raw labels | 0.899 0.741
percentile label masking (Fonseca2020) 0.897 0.750
percentile label corr (Fonseca2020%*) 0.864 0.720
meanthresh label corr (Gong2021) 0.892 0.754
label corr FN 0.902 0.751
label corr FN+FP 0.900 0.756
label corr+masking FN 0.899 0.767
label corr+masking FN+FP 0.905 0.762

* modification of the baseline using correction instead of masking

model as a baseline. Looking at the overall AP averaged across all
classes, the proposed mixup with I = 2 slightly outperforms no
mixup, but Inix = 3 decreases AP again. The differences are how-
ever surprisingly small. The proposed multi-label mixup with label
joining shows improvements over the original mixup with weighted
mixing of the labels via (2). This original mixup even shows a small
detrimental overall effect compared to no mixup here. A reason for
the low contribution of proposed multi-label mixup and detrimental
original mixup may be that its effect becomes negligible when train-
ing on already polyphonic data, the large dataset size, and increased
variety through augmentation.

As a second experiment, we train ACDnet with the proposed
mixup Imax = 2 on original and enhanced labels for Audioset to as-
sess the contribution of the label correction and masking described
in Sec. 3.3. The class-average Accuracy and AP (known as mAP)
are shown in Table 2. We verify that for the baseline method [8] and
their proposed missing label detection (percentile), correcting the la-
bels is detrimental, while masking out wrong labels from training
improves results. The second baseline [9] using the average predic-
tion over true positives as class-wise threshold to detect missing la-
bels shows improvement over the raw noisy labels and the percentile
label masking baseline. We evaluate our proposed label enhance-
ment step-by-step: correcting high confidence FN (missing labels)
or both FN and FP yield improvements. When, in addition to the la-
bel correction, labels deemed FN by the teacher with low confidence
are masked out, we observe an additional AP boost. Correcting and
masking both FN and FP does not yield a further improvement, and

mmm ACDnet on CLAP-labels
EEm ACDnet on CLAP-labels + label-corr

I CLAP (zero-shot)
m ACDnet on Audioset-labels

Fig. 3. Training on unlabeled data: ACDnet trained on original Au-
dioset labels as reference (orange), and ACDnet trained on Audioset
with noisy teacher labels and with (red) or without (green) proposed
label correction.

the difference between correcting FN vs. FN+FP is minor. There-
fore, the results for correcting FP are somewhat inconclusive, pos-
sibly due to the fact that the percentage of FPs in Audioset is much
lower than FN.

5.2. Training on unlabeled data

Finally, as a proof of concept, we evaluate the feasibility of using
an unlabeled dataset and generating noisy labels with the zero-shot
CLAP model as a teacher. This is interesting as it can potentially be
used to detect sound classes not available in labeled datasets. Fig. 3
shows as reference again the zero-shot CLAP predictions on the test
set (blue), and as second reference ACDnet trained on raw Audioset
labels (orange). While training ACDnet on labels generated from
CLAP (green) is feasible, it performs significantly worse compared
to the two baselines. However, the performance can be greatly im-
proved by using the proposed label correction (red), which increases
the performance closer to the baseline trained on original Audioset
labels (orange) and the initial teacher CLAP (blue). Note that ACD-
net trained this way on unlabeled data (red) even outperforms CLAP
for some classes while being computationally significantly more ef-
ficient and with a model size over 2 orders of magnitude smaller.

6. CONCLUSION

We proposed a multi-label model and training scheme for prevalent
polyphonic sound detection tasks from noisy labels. The proposed
model has a small compute footprint while achieving state-of-the-art
detection precision on a real recorded test dataset with high qual-
ity labels. A new method to correct missing or wrong labels and
mask out unreliable labels from training is shown to further improve
the classification performance. Finally, we show that the proposed
model can be trained on unlabeled data using teacher labels from a
much larger zero-shot model, and that the proposed label enhance-
ments can further improve model performance in this case.
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