RAR: Retrieval Augmented Retrieval for Code Generation in Low
Resource Languages

Anonymous ACL submission

Abstract

Language models struggle in generating cor-
rect code for low resource programming lan-
guages, since these are underrepresented in
training data. Popular approaches use either
examples or documentation to improve the per-
formance of these models. Instead of consid-
ering the independent retrieval of this informa-
tion, we introduce retrieval augmented retrieval
(RAR) as a two-step retrieval method for se-
lecting relevant examples and documentation.
Extensive experiments on two low resource
languages (Power Query M and OfficeScript)
show that RAR outperforms example or gram-
mar retrieval techniques (2.81-26.14%).

1 Introduction

Large language models (LLMs) struggle to gen-
erate low-resource programming languages from
natural language due to limited pre-training knowl-
edge (Luo et al., 2023; Wang et al., 2023b; Singh
et al., 2023). Previous work improves code gen-
eration with language models with retrieval aug-
mented generation with relevant examples (Poesia
et al., 2022; Khatry et al., 2023b) and code snippets
(Nijkamp et al., 2023), programmatic reasoning
paths like tree-of-thought (Rosa et al., 2024) and
program-of-thought (Chen et al., 2023), and docu-
mentation (Zhou et al., 2022).

There are several challenges in using documenta-
tion as context for code generation. First, documen-
tation often does not include how the components
are actually pieced together in the form of real code,
which makes it difficult for models to understand
the syntax and usage for new languages. Second,
documentation is weakly correlated to the natural
language utterance and specific parts of documen-
tation might not be related at all to the utterance
but crucial for the code generation. For example,
the query, "Highlight top 5 projects based on sales"
requires a flag orderByDescending to be set, but this
is not related to the query. Third, documentation is

often dense and flat, and selecting the right subset
of documentation is both challenging and crucial
to the success of these systems.

To address these challenges, we propose Re-
trieval Augmented Retrieval (RAR) for code gener-
ation. This approach enhances the retrieval process
by leveraging the outputs of an initial retriever, the
driver retriever, to guide a secondary retriever, the
influenced retriever. This sequential retrieval mech-
anism aims to improve the quality of the retrieved
examples and grammar entities.

R AR addresses several challenges in code gener-
ation for low-resource languages. First, it addresses
data scarcity by utilizing publicly available docu-
mentation and examples, and shows that these are
often sufficient. Second, it leverages the strength
of few-shot learning by providing high-quality, rel-
evant examples that the model can learn from. Fi-
nally, it emphasizes the importance of leveraging
linked grammatical structure and examples in the
prompts, ensuring that the LLM generates correct
and syntactically sound programs.

We evaluate RAR on two low resource lan-
guages, (Power Query) M and OfficeScript (OS).
We compare individual context selection of RAR
to multiple existing documentation and example re-
trieval techniques, showing improvements of +25%
(OS) and +3% (M) for documentation and +1.28%
(OS) and +3.5% (M) for examples. When combin-
ing examples and grammar, RAR shows improve-
ments of +4% (OS) and +2% (M) over independent
retrieval. We also analyze the impact of using two-
step retrieval, including only relevant and irrelevant
context items in the prompt, and the token length.

We make the following contributions:

* We use a two-step retrieval method, where the
influenced retriever learns from the findings
and mistakes of the driver retriever.

* We demonstrate that publicly available docu-
mentation is sufficient for NL-to-code genera-

tion tasks, even for low-resource languages.

* We perform thorough experiments to highlight
the critical role of both documentation and
example prompts, to evaluate the impact of
token length, and to evaluate the embeddings
used for the driver retriever.

2 Related Work

Multiple techniques have been developed to im-
prove code generation from natural language with
LLMs, including (1) retrieval augmented gener-
ation for adding contextually relevant examples
to the prompt (Khatry et al., 2023b; Poesia et al.,
2022); (2) execution-guided refinement (Kroening
et al., 2004; Chen et al., 2019); and (3) reason-
ing involving chain-of-thought variants adapted to
programming tasks (Li et al., 2023; Le et al., 2024).

These techniques often struggle in generating ac-
curate generations for low-resource programming
languages. Recent work focused on code genera-
tion for low resource languages has leveraged doc-
umentation as context instead of examples (Bareif3
et al., 2022), (Zhou et al., 2022). CAPIR is one
such popular technique, which uses contextually
relevant parts of the documentation as inputs to
code models. Grammar prompting (Wang et al.,
2023a) also follows this paradigm. One drawback
of these techniques is that documentation, even
though complete, often does not provide the same
signals to the models as examples. Documentation
nodes that do not seem semantically aligned with
the task also tend to be ignored.

3 Documentation and examples

Documentation is the most comprehensive and
structured resource (Roehm et al., 2012) publicly
available (Forward and Lethbridge, 2002) for most
programming languages. The documentation con-
sists of a grammar (D) that describes how code
is built over entities (classes, methods, properties)
and examples (£) that depicts how to use and com-
bine elements from D. An example of grammar
and examples from a page of the OfficeScript doc-
umentation is shown in Figure 1.

The grammar (D) serves as a bank for gram-
mar elements over which retrieval is performed.
We consider each grammar element g; to be one
standalone function or class method. We can use
the path of each node in an abstract syntax tree
(AST) to extract elements € D from a snippet of

i

[
ExcelScript.CustomConditionalFormat
interface

Example corpus
Grammar corpus

- pq : <Page Title>

® |-qq: <NLquery>
cq: <code> S i—— +gq": <grammar entity>
= ~
® |- qp: <NL query> /’ . e \\
¢, : <code> P }
SR
x ’

+ gz' : <grammar entity>
-py : <Page Title>

+g42 : <grammar entity>

Figure 1: Illustrates how we extract the grammar (blue
marker) and examples (red marker) from the publicly
available documentation to build their respective cor-
pora for retrieval.

code. For example, even if multiple classes have a
method getFormat, then following a path up the
AST allows us to disambiguate which class this
method is from. A full example of code and the
associated grammar entities is shown in Figure 2.

The example corpus is composed of descrip-
tion (query) and code pairs (g;, ¢;). We only con-
sider examples present in the documentation, which
consists of sample code illustrating the usage of
grammar elements. If a textual description of an
example is not available, we use an LLM (gpt-4) to
generate it. More information on this augmentation
can be found in Appendix A.

4 Retrieval Augmented Retrieval

RAR uses a two-step retrieval where the driver
retriever (Rp) influences the influenced retriever
(Ry). There are two possible scenarios:

1. Example — Grammar: Rp retrieves from
FE and Rj retrieves from D.

2. Grammar — Example: Rp retrieves from
D and Rj retrieves from FE.

We first describe how to use and fine-tune embed-
dings for retrieval, and then show how this is ap-
plied in Rp and R; in both these scenarios.

4.1 Embeddings for retrieval
Retrieval commonly relies on a transformer embed-
ding cosine similarity

S(M, q1,¢2) = cos(M(q1), M(g2))

with M the embedding model used to compute
the similarity between strings ¢; and go. We write
M pr for a pre-trained embedding and M 7 for a
fine-tuned embedding.

Example code in Office Scripts

function (workbook: ExcelScript.Workbook) {
let selectedSheet = workbook.getActiveWorksheet();
let range = selectedSheet.getUsedRange();
let conditionalFormat = range.addConditional(Type.topBottom);
conditionalFormat.getTopBottom().getFormat()(;S
.setColor("green")
conditionalFormat.getTopBottom().setRule({
H
: ExcelScript.Criterion.topPercent});(Z)
}

Grammar entities extracted

(:)ExcelScript.workbook.getActiveWorksheet
(:)ExcelScript.ConditionalRangeFill.setcalor
(:)ExcelScript.ConditionalTopBottomCriterionType
(:)ExcelScript.TopBottomConditionalFormat.setRule

...@ ExcelScript.TopBottomConditionalFormat.getFormat

i

1

Chart !
getAxes() :
getFormat() 1
1

1

1

1

1

1

1

' Documentation

Image
- getId()
- getFormat()

TopBottomConditionalFormat

ConditionalFormatType

- iconSet
- presetCriteria
topBottom

- getFormat()
1| - getRule()
1

Figure 2: Example code entities (1 to 5) extracted from
a sample OfficeScript program. The extracted enti-
ties are mapped to grammar nodes using the abstract
syntax tree of the node. (5) in figure is mapped to
TopBottomConditionalFormat despite the same property
being present in Image and Chart.

Oft-the-shelf embedding models struggle to gen-
erate accurate representations of code for low re-
source languages. To counter this, we fine tune
the embedding model. We use a Siamese network
architecture (Reimers and Gurevych, 2019a) with
triplets (¢, J(g), L(c, g)) forming the training set.
J(g) maps the grammar entity to a textual represen-
tation (see Appendix B). L(c, g) evaluates to 1 if ¢
is used in code c and —1 otherwise. To select nega-
tive labels, we find grammar entities g that are not
used in code ¢, but which are closer to the decision
boundary according to similarity S(Mpr, q, J(g))
when compared with the test query, as well as an
equal number of grammar entities which have the
lowest similarities. More details on fine-tuning can
be found in Appendix C.

4.2 Example — Grammar

In this setup, we retrieve examples first and then
use it to retrieve the grammar elements.

First, Rp extracts top-k examples (F) based on
S(Mpr, g, q;) with g, the target query.

Second, Ry uses Ej to select relevant n gram-
mar entities D,,. We extract grammar entities from
each code snippet ¢; in an example (g;, ¢;) € FEj,

along with other similar entities from their respec-
tive documentation pages using S(M g7, ¢, J(g)).
This set extracted forms the good grammar en-
tities Dyooq. We also consider the possibility
that irrelevant examples were retrieved. We thus
want grammar element g that are similar to ¢
(St = S(Mpr,q:,J(g)) is high) but dissimilar
to the selected examples (S; = S(Mpr, gi, J(g))
is low for (g;, ¢;) € E)). We combine this in a sin-
gle score (1 — S;) + Ap—p(1 + S;) that we want
to maximize for each example i, where Ag_,p is a
hyper-parameter that marks the relative importance
of similarity to the query compared to dissimilarity
between the example. This set is called Dyqq. The
final set of grammar entities is D = D404 + Dpad-

4.3 Grammar — Example

In this setup, we first retrieve the grammar entities
and then use them to select examples.

First, Rp extracts top-n grammar entities (D,)
using S(Mpr, i, J(g)) with ¢ the target query.

Similar to R; for E — (G, we consider suc-
cessful (Ey004) and unsuccessful (Fpqq) retrieval
of grammar. To ensure that we pay more atten-
tion to unique grammar entities, we compute the
inverse-document frequency of such an entity as
idf (g). Let G; be the grammar entities extracted
from code ¢;. The score of a good example is then
computed as the average similarity of its entities,
weighted by their idf

1
Gl 2

g€G;NDy,

idf(g) - SIMpr, a1, J(9)). (1)

For building Ey,4, we assume that D,, does not con-
tain the grammar entities which would be relevant
to answer ¢; and compute the above score over D \
D,asS léa ¢+ Similar to before, the bad examples are
selected according to S}, ;+ Ap—rS(Mpr, g, ¢i)
with Ap_, i the importance factor of relevance of
query to examples versus irrelevance of query to
selected grammar.

S Experimental Setup

We describe the experimental setup and the con-
ditions set for a fair comparison between our ap-
proach and the baseline.

5.1 Datasets and metrics

We focus our experiments on two sets of program-
ming languages: OfficeScript and (Power Query)
M. We use sketch and execution match as metrics

Code Generation Prompt

D—E S(M, a4, az) E—D
- M Tine-tuned sbert
............. - qy: Test Query patianmaii;
- q,: Grammar Entity ipt.Conditi ‘matType :

@ Influenced

etriever
N
|| o)

|

|

|

|

o - cellValue, custom, containsText, ...
Driver

Retriever ExcelScript.CustomConditionalFormat : Represents[YA ssuming Ej

1 3a custom conditional format type.
Methods-->
- getFormat(): Returns a format object ...

- getRule(): Specifies the "Rule’ object ...

is good R

Assuming Ey is bad

Augmented)
by D, ## Examples ## Augmented
) . . . N by Ey
L: Fill cells with light green if they ...
@ code: .
Inﬂu?nced nction main(workbook: ExcelScript.Workbook) { Driver
Example Ret;leyer Assuming D, is go H E Retriever Examol
corpus > ek ExcelScript.ConditionalFormatType.custom; k < Xample

| Assuming D, is ba) corpus

|

|

NL: Fill the selected cells with different colors ...
code: ...
\

SM. q;, 92)
- M: pre-traine
- qy: Test Query

@I ®

nfluenced Retriever

Driver Retriever Working ## Test Query ## - le Query
Output: D, /Ey \ How to apply red font and fill to any ... ‘ By St T
Comus ! Driver Retriever
Tpus Working
[Retrieving entities — Good
most common with ¥
X LLM :
Driver output !) .
e Influenced t . d-dimensional
—— | Retriever :
emb(M,
e Output M. 9)
/| Scoring function: i embedding
| 1. Deviates away / del
/ Dri out, | noct
olgm Driver quipit. - —»| Bad </>
| test query intention. |
Test Query: How to apply red font and fill to ‘ Code output

Figure 3: The top-left section demonstrates the scenarios where Driver retriever operates on the Grammar corpus
and influenced retriever operates on the Example corpus. Similar for the top-right section where Driver operates
on Examples and Influenced operates on Grammar. Towards the bottom right we demonstrate the working of
Driver retriever which uses a simple transformer embedding similarity for extracting context. To the bottom left we
define the Influenced retriever working which takes input from the Driver output and passes through a good and
bad assumption of extracted context to generate its own retrieved context. The extracted context is fed into code
generation prompt to pass onto the LLM.

for both datasets, details of which have been out- Dataset n |E| |D|
lined in Appendix E. :
Office Scripts 589 17 275
Power Query M 77 144 746
OfficeScript We obtain (g,) pairs from the In-

Table 1: Summary of the datasets: n implies dataset
size, |E| implies #examples, |D| implies #doc pages.
We extract £ and D from documentation which forms
the corpora for our approach.

structExcel benchmark (Payan et al., 2023) and
filter them for conditional formatting specific tasks,
as we can compute execution match for them
(Singh et al., 2022). Examples and grammar are
scraped from its documentation.

5.2 Baselines and Versions

Power Query M We use the test split of the
benchmark release in (Khatry et al., 2023a). Be-
sides g and ¢, each test contains a table to execute
the code over, which is also provided in the prompt.
We scrape the examples and grammar from the
official documentation.”

"https://github.com/0OfficeDev/
office-scripts-docs-reference

2https://github.com/OfficeDev/
office-js-docs-reference

We define the symbols representing the specifica-
tions of RAR and baselines.

* Retp: uses M pr embeddings to retrieve D,
from D. Only D, is included in the prompt.

* Retg: uses M pr embeddings to retrieve Fj
from E. Only Ej is included in the prompt.

* Retp | p: uses Mpr embedding to retrieve
D,, from D and M pr embedding to retrieve

https://github.com/OfficeDev/office-scripts-docs-reference
https://github.com/OfficeDev/office-scripts-docs-reference
https://github.com/OfficeDev/office-js-docs-reference
https://github.com/OfficeDev/office-js-docs-reference

E), from E. Both D,, and E}, are included in
the prompt.

* RARp: Rp operates on E to give Ej, and Ry
on D to give D,,. Only D,, is included in the
prompt.

* RARE: Rp operates on D to give D, and Ry
on F to give Fj. Only E is included in the
prompt.

* RARg_,p: Rp operates on F to give E}, and
Ry on D to give D,,. Both E} and D,, are
included in the prompt.

* RARp_,g: Rp operates on D to give D,, and
Ry on E to give Fy. Both D,, and Ej are
included in the prompt.

5.3 Models

We use text-embedding-ada-002 as the pre-trained
embedding model Mpr and SentenceBERT
(Reimers and Gurevych, 2019b) for Mppr. We
use GPT-4 (Brown et al., 2020) as the base LLM.

6 Evaluation

We aim to answer the following research questions:

RQ1 How does RAR compare against existing
grammar and example retrieval methods?

RQ2 Does a two-step dependent approach extract
better context than stand-alone retrieval tech-
niques independent of one another?

RQ3 Does the adaptive strategy of including Bad
context entities, along with Good, help in in-
creasing the performance?

RQ4 How does the performance vary as a function
of increasing context token length?

RQ5 Is RAR reliant on the Driver retriever for its
performance gain over independent retrievers?

6.1 Compared with other SOTA (RQ1)

We evaluate RAR against other state-of-the-art
retrieval methods over both examples and gram-
mar. We use a fixed number of retrieved examples
and grammar for each task, which are eventually
prompted to GPT-4 for code generation. For Of-
ficeScript, we extract 3 examples and 66 grammar
entities. For M, we extract 10 examples and 20
grammar entities.

6.1.1 Baselines

For grammar retrieval, we consider (1) retrieval
by calculating cosine similarity of pre-trained em-
bedding model (M pr), (2) retrieval by calcu-
lating cosine similarity of fine-tuned embedding
model (M pr), (3) DocPrompting (Zhou et al.,
2022), which uses BM25 retriever, (4) CAPIR
(Ma et al., 2024), which is a divide-and-conquer
and re-ranking based strategy for retrieval.

For example retrieval, we consider (1) M pr,
(2) TST (Poesia et al., 2022) and TST? (Khatry
et al., 2023b), which fine-tunes SentenceBERT and
a small dense network on top of M pr to make NL
intents reflect their respective code similarities.

Model Office Scripts M
Sketch Exec Sketch Exec
Mpr 5228 40.81 6534 4528
Mpr 5599 4435 5643 4340
DocPrompting 50.17 38.68 73.64 50.94
CAPIR 51.69 41.06 71.07 55.68
RARD 86.68 70.49 74.27 58.49

Table 2: Comparing RAR against other Grammar re-
trieval techniques.

Models Office Scripts M
Sketch Exec Sketch Exec
Mpr 83.42 69.04 7424 5094
TST 6476 5295 70.21 51.16
TST# 73.86 60.37 6990 4535
RARE 85.67 7032 76.29 54.72

Table 3: Comparing RAR against other Example re-
trieval techniques.

6.1.2 Results

Table 2 and Table 3 show that RAR outperform the
baselines for both grammar and example retrieval.
RARp shows significant gain in grammar extrac-
tion for OfficeScript. It has an execution match
gain of 26.14% against the best performing base-
line (M pr with SentenceBERT). For M, we see
an execution match gain of 2.81% over CAPIR.
We find RARE to retrieve better examples to aid
code generation. The respective baselines cover
both pre-trained and fine-tuned (TST and TSTE)
versions of retrieval. Our dependent retrieval strat-
egy performs better than either case. For M, we
find the improvement in both sketch and execu-
tion match to be marginal. This implies that the
grammar entities retrieved by Rp is able to guide

the extraction of relevant examples for those NL
queries, which were difficult to extract using direct
similarity of embeddings.

We note that the fine-tuned models TST and
TST# perform worse than the unsupervised embed-
ding model M pr. We attribute this to the fact that
our training set is only scraped from documentation
and thus smaller with low variations of the same
function, and fine-tuning can more easily overfit.

6.2 Dependence vs Independence (RQ2)

To answer this question, we compare our depen-
dent approach with baselines which operate inde-
pendently on the two corpora.

6.2.1 Setup

For OfficeScript, we extract n ~ 66 grammar en-
tities and k£ = 3 examples. For RARg_,p, we
extract k = 3 examples first using Rp (which
matches the output from Retg). We extract D go04
and Dy,q with equal proportion such that the fi-
nal average count across all tests ~ 66. We tune
hyper-parameter Ag_.p = 20 (see Appendix F).

RARp is composed of the same D, retrieved by
influenced above. RARp_. i uses the D,, extracted
by driver (same as Retp) to augment the retrieval
on E. We again choose E,,4 to be in the same
proportion as Ep,q. We set Ap_,g = 10. This
retrieved E is the same set used by RARE in its
prompt. Retg | p uses both example retrieved by
Retg and grammar retrieved by Retp in its prompt.

For M, we extract n ~ 20 grammar entities and
k = 10 examples. RARg_.p uses the same 10
examples retrieved by Retg through Rp. Dg0q 18
obtained by taking the grammars extracted from
each code snippet retrieved. To get Dpqq, We
set Az = 100 and extract 10 grammar for each
example. The final de-duplicated version yields
|D,,| =~ 20. For RARp_, g, we extract F}, using
D,, obtained from driver (same as Retp). We get
| Egood| = 5 and set Ap_, g=10 to obtain Ep,q.

6.2.2 Results

Table 4 shows that dependent retrieval (RAR) con-
sistently performs better than independent retrieval
(Ret) even if only a single type of context is pro-
vided.

Grammar Independent retrieval of grammar per-
forms significantly worse than retrieving grammar
through relevant examples (-25% for OfficeScript
and -15% for M). This shows that RAR is able to

Office Scripts M
Context Method Sk. Ex. Sk. Ex.
G Retp 5599 4435 5643 4340
RARp 86.68 7049 7427 58.49
E Retg 8342 69.04 7424 5094
RARg 85.67 70.32 76.29 54.72
Retg1p 87.18 72.34 73.40 58.49
G+E RARg,p 9236 7640 72.87 58.49
RARp_Ee 90.71 76.01 7486 60.38

Table 4: Comparison of RAR with independent retrieval
techniques. Context implies whether only grammar (G),
or examples (E), or both (G+E) have been included in
the prompt for LLM. Methods with Ret are the indepen-
dent retrievers with the subscript defining their corpus.
The values denote match accuracy in %. RAR outper-
forms its Ret counterpart for all context scenarios.

pick more relevant documentation, without requir-
ing examples to show how they should be used in
the context of a program.

Examples When independently retrieving exam-
ples, the difference between RAR and independent
retrieval is smaller. Still, RAR consistently per-
forms better. On M, retrieving only examples using
RAR achieves the highest sketch match, indicating
the similarity of the retrieved examples.

Grammar and examples Grammar + examples
together yields better results than separate (+6%
for OfficeScript and +2% for M). The examples
help the model in figuring out the general program
structure, and the documentation helps in figuring
out how to adapt these examples (see Appendix
G). This is highlighted in M where sketch match
is highest when only using examples (+1.5% over
RARp_,), but execution match is significantly
higher for the latter (+5%).

Recall in grammar Table 5 reports the recall
of retrieving relevant grammar entities for Retp
and RAR p. RAR beats independent retrieval again
with a considerable margin (+25% for OfficeScript
and +46% for M). The relevance of grammar ex-
tracted using RARp further explains the jump in
performance in Table 4.

6.3 Ablation (RQ3)

We evaluate whether the good and bad assump-
tion of the driver retriever output actually helps
the LLM to obtain relevant context or not. In this
setting, for influenced retriever, we consider includ-
ing only good or only bad extracted entities in the

Method OfficeScript Power Query M
Retp 50.04 24.83
RARp 76.36 67.16

Table 5: Comparison of retrieval quality when grammar
is extracted either independently or with RAR. We eval-
uate quality by taking average of recall Rate (in %) for
the occurrence of the retrieved grammar entity in the
actual code for comparison.

prompt. We compare them with our proposed ap-
proach where we use an equivalent count of good
and bad. The number of examples and grammar
used in the prompt is kept constant across all sce-
narios for a fair comparison. Table 6 depicts the
results for the ablation study.

Retp ® Rete Rete 1 p 4+ RARe.p
+ RARp + RARge + RARp.£
Office Scripts
+ +
201 4 . . ® - "' + . *
o P F * 0i{g¥e ¥+ *
o 80 + ®
B)
g 2 60 *
5 g
=270 D
@ i
50
60
2000 4000 6000 2000 4000 6000
Token size Token size
Power Query M
|+ s * 2 g + P 65 +
75 o+ 7 +*
+ '# + 60 + + +

70 + o |* *
2 < + ¥+ + +
s 255 °+
S6s * 2
2 * 8 ° +
w1 "

o

2000

4000
Token size

6000

2000

4000
Token size

6000

RAR R, Office Scripts M
Sk. Ex. Sk. Ex.
Dgood 79.80 64.01 7238 58.49
E—D Dped 8347 6998 7422 52.83
Dgyood+Dpaa 9236 7640 72.87 58.49
Ego0d 88.87 73.19 7272 64.15
D —FE FEpad 72.51 58.68 75770 58.49
Egooat+Epea 90.71 76.01 74.86 60.38

Table 6: Ablation to show importance of assuming Rp
output to be both Good and Bad while retrieving for
R;. We find clear majority for Office Scripts. For
PQ, we need both Good and Bad to attain a balanced
performance improvement in both metrics.

We find that combining good and bad examples
based on the result of the driver retriever output
helps in obtaining better context. The retrieval
of Dpyyq or Epqq is able to catch some important
context which get missed when we trust the driver
output to be good. For OfficeScript, we see a clear
improvement in performance. However, for M,
we find that sketch match is better for Dy,q and
Epqq, while execution is better for Dy0q and Eyooq.
Using both in equal proportion helps us attain a
balance when trying to improve both metrics.

6.4 Variation with token size (RQ4)

We vary the token size by changing the number
of retrieved examples and grammar entities in the
prompt. We use independent retrievers with the
same context count as RAR as baseline.

Figure 4 shows that RAR performs better at most
token counts. The only exception remains with
Retg for M, where we find both sketch and exe-
cution below baseline for larger token sizes This
happens because M has a larger example corpus

Figure 4: Shows a detailed comparison of RAR with the
baseline independent retrievers as a function of increas-
ing prompt token length. Plots on the left show sketch
match accuracy and on the right show execution match
accuracy. RAR outperforms its baseline even for large
token sizes. We find lower token lengths are enough for
accurate code generation.

compared to OfficeScript. The influenced, even
while considering retriever output to be bad, might
be extracting functions from the same pool of in-
correct intent. As a result, the performance is low.
Moreover, even though the context size increases,
the performance remains steady and does not in-
crease further. This removes the notion of models
trying to populate the prompt with more content
rather than including only the relevant ones. We
find that the best context is achieved around the
~3000 token size mark. Further additions simply
confuse (can be seen by a slight drop) or play no
role in improving the quality of generation.

6.5 Reliance on Driver (RQ5)

In this section, we consider evaluating code based
on a prompt containing both documentation and
example. We compare independent retrievers
Retg | p with RARp_. g and RARg_. p, by alter-
ing the driver retrieval (1) output size, and (2)
method. This helps us understand how R; be-
haves as Rp changes. Including Rp’s output in the
prompt also enables us to understand the impact
of Ry alone as we compare with the baseline, con-
taining the same Rp output. This provides a clear

view on the impact R has towards performance
improvement.

Increasing Driver output We find in Figure 5
that RAR is better than its baseline when both ex-
ample and grammar retrieved from the driver is
increased. There is a general trend of the match
accuracy declining as we increase the output size.
This implies that R; is unable to infer a specific
topic from Rp’s output to make a Good or Bad
assumption. So the retrieval becomes free and ran-
domized, and it fails to converge to a particular
topic for a candidate solution. We also find the
match accuracy for RAR going below its baseline
for M in £ — D setting. The reason is again

—== Rete;p —— RAR @® Sketch Execution

Office Scripts

Match %
»
5
Match %
»
g

70 70

log(# grammar) # examples

(a) Influence of n T (D,) on (b) Influence of k& 1 (E%) on
RARp_ g andRetp | g RARg and Retp | g

Power Query M

2 4 5 10 15 20

3
log(# grammar) # examples

(c) Influence of n 1 (Dy) on (d) Influence of k 1 (E%) on
RARp_ g and Retp | g RARE and Retp |

Figure 5: Shows an impact on performance compared
with baseline when the retrieved context size from driver
is increased. Both the baseline and RAR in each setting
have the same R output. The only thing which brings a
performance difference is the output from R;. Through
this we show that R; is not entirely reliant on Rp. It
adapts itself to keep the performance above baseline
with increasing context length.

similar to what we discussed in section 6.4. Addi-
tionally, when Ry tries to retrieve grammar from
the extracted examples, the LLM receives some
very relevant entities. It now has to decide a gram-
mar from a list which has function descriptions
very similar to the query, which causes confusion
while choosing the exact grammar. On the other

hand, independent retrieval extract grammar which
is diverse. This makes identifying the right gram-
mar from the available lot easy and hence results in
a better match numbers when compared with RAR.

Altering retrieval method We compare Retg) p
with RARp_, g for two different settings. One
where we use pre-trained embeddings M pr and
the other where we use fine-tuned embeddings
M g1 (SentenceBERT) for retrieval. Table 7 de-
picts that RAR still holds its ground and performs
better than the baselines even when the retrieval
style for Rp is changed. The Good and Bad re-
trieval assumption helps influenced retriever to
adapt to the changing driver, and eventually fetches
context which is relevant to the solution. This
proves that our approach is not stringent in terms
of the retrieval being used and it can adapt and
perform well even with other retrieval techniques.

Method Office Scripts M
Sk. Ex. Sk. Ex.
Pre-trained embed. model
Retg.p 87.86 71.67 7429 54.72
RARpr 88.17 7348 7552 54.72
Fine-tuned embed. model
Reteip 87.18 7234 734 5849
RARpr 90.71 76.01 74.86 60.38

Table 7: Shows that our approach performs better than
the baseline even when different embeddings for re-
trieval is used. This further consolidates that R; is
independent of Rp and can even improve performance
with other retrieval styles.

7 Conclusion

We introduce RAR, a two-step retrieval technique
used to extract relevant context for code generation
over low-resource programming languages. Our
approach claims that off-the-shelf documentation
for a language is enough to help an LLM generate
syntactically and semantically correct programs.
We also show how grammar and example work
better together. Our approach establishes a work-
ing relationship between the two, capable of gen-
erating sound and reliable programs. The results
we outline opens gates for future research, where
grammar and example complement each other to
formulate unseen programming languages.

8 Limitations and Ethical Considerations

Despite showing that RAR performs best at dif-
ferent token counts, combining both grammar and
examples significantly increases the number of to-
kens and thus cost. Our method relies on extensive
documentation, which might not be available for
all low-resource languages.

We only scrape public documentation that is
openly accessible. We do not use any unethical
methods to extract data from sources that are pro-
tected by privacy policies.

References

Patrick Bareif}, Beatriz Souza, Marcelo d’ Amorim, and
Michael Pradel. 2022. Code generation tools (almost)
for free? a study of few-shot, pre-trained language
models on code. Preprint, arXiv:2206.01335.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. Preprint,
arXiv:2211.12588.

Xinyun Chen, Chang Liu, and Dawn Song. 2019.
Execution-guided neural program synthesis. In Inter-
national Conference on Learning Representations.

Andrew Forward and Timothy C. Lethbridge. 2002. The
relevance of software documentation, tools and tech-
nologies: a survey. In Proceedings of the 2002 ACM
Symposium on Document Engineering, DocEng ’02,
page 26-33, New York, NY, USA. Association for
Computing Machinery.

Anirudh Khatry, Joyce Cahoon, Jordan Henkel, Shaleen
Deep, Venkatesh Emani, Avrilia Floratou, Sumit Gul-
wani, Vu Le, Mohammad Raza, Sherry Shi, Mukul
Singh, and Ashish Tiwari. 2023a. From words to
code: Harnessing data for program synthesis from
natural language. Preprint, arXiv:2305.01598.

Anirudh Khatry, Sumit Gulwani, Priyanshu Gupta,
Vu Le, Ananya Singha, Mukul Singh, and Gust Ver-
bruggen. 2023b. Tstr: Target similarity tuning meets

the real world. In Findings of EMNLP 2023. Associ-
ation for Computational Linguistics.

Daniel Kroening, Alex Groce, and Edmund Clarke.
2004. Counterexample guided abstraction refine-
ment via program execution. In Formal Methods
and Software Engineering, pages 224-238, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul,
Doyen Sahoo, and Shafiq Joty. 2024. Codechain: To-
wards modular code generation through chain of self-

revisions with representative sub-modules. Preprint,
arXiv:2310.08992.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023. Struc-
tured chain-of-thought prompting for code genera-
tion. arXiv preprint arXiv:2305.06599.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. Preprint, arXiv:2306.08568.

Zexiong Ma, Shengnan An, Bing Xie, and Zeqi Lin.
2024. Compositional api recommendation for library-
oriented code generation. ArXiv, abs/2402.19431.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis.
Preprint, arXiv:2203.13474.

Justin Payan, Swaroop Mishra, Mukul Singh, Carina
Negreanu, Christian Poelitz, Chitta Baral, Subhro
Roy, Rasika Chakravarthy, Benjamin Van Durme,
and Elnaz Nouri. 2023. Instructexcel: A benchmark
for natural language instruction in excel. Preprint,
arXiv:2310.14495.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Ti-
wari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. 2022. Synchromesh: Reliable code gen-
eration from pre-trained language models. ArXiv,
abs/2201.11227.

Nils Reimers and Iryna Gurevych. 2019a. Sentence-
bert: Sentence embeddings using siamese bert-
networks. Preprint, arXiv:1908.10084.

Nils Reimers and Iryna Gurevych. 2019b. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and
Walid Maalej. 2012. How do professional developers
comprehend software? In 2012 34th International
Conference on Software Engineering (ICSE), pages
255-265.

https://arxiv.org/abs/2206.01335
https://arxiv.org/abs/2206.01335
https://arxiv.org/abs/2206.01335
https://arxiv.org/abs/2206.01335
https://arxiv.org/abs/2206.01335
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://openreview.net/forum?id=H1gfOiAqYm
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/585058.585065
https://arxiv.org/abs/2305.01598
https://arxiv.org/abs/2305.01598
https://arxiv.org/abs/2305.01598
https://arxiv.org/abs/2305.01598
https://arxiv.org/abs/2305.01598
https://www.microsoft.com/en-us/research/publication/tstr-target-similarity-tuning-meets-the-real-world/
https://www.microsoft.com/en-us/research/publication/tstr-target-similarity-tuning-meets-the-real-world/
https://www.microsoft.com/en-us/research/publication/tstr-target-similarity-tuning-meets-the-real-world/
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2310.08992
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://api.semanticscholar.org/CorpusID:268091217
https://api.semanticscholar.org/CorpusID:268091217
https://api.semanticscholar.org/CorpusID:268091217
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2310.14495
https://arxiv.org/abs/2310.14495
https://arxiv.org/abs/2310.14495
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1109/ICSE.2012.6227188
https://doi.org/10.1109/ICSE.2012.6227188
https://doi.org/10.1109/ICSE.2012.6227188

Ricardo La Rosa, Corey Hulse, and Bangdi Liu. 2024.
Can github issues be solved with tree of thoughts?
Preprint, arXiv:2405.13057.

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le,
Carina Negreanu, Mohammad Raza, and Gust Ver-
bruggen. 2022. Cornet: A neurosymbolic approach
to learning conditional table formatting rules by ex-
ample. arXiv preprint arXiv:2208.06032.

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le,
Carina Negreanu, and Gust Verbruggen. 2023. Code-
fusion: A pre-trained diffusion model for code gener-
ation. Preprint, arXiv:2310.17680.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif
A. Saurous, and Yoon Kim. 2023a. Grammar prompt-
ing for domain-specific language generation with
large language models. In Advances in Neural Infor-
mation Processing Systems, volume 36, pages 65030—
65055. Curran Associates, Inc.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi
D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
2023b. Codet5+: Open code large language mod-
els for code understanding and generation. Preprint,
arXiv:2305.07922.

Shuyan Zhou, Uri Alon, Frank F Xu, Zhiruo
Wang, Zhengbao Jiang, and Graham Neubig. 2022.
Docprompting: Generating code by retrieving the
docs. arXiv preprint arXiv:2207.05987.

10

https://arxiv.org/abs/2405.13057
https://arxiv.org/abs/2310.17680
https://arxiv.org/abs/2310.17680
https://arxiv.org/abs/2310.17680
https://arxiv.org/abs/2310.17680
https://arxiv.org/abs/2310.17680
https://proceedings.neurips.cc/paper_files/paper/2023/file/cd40d0d65bfebb894ccc9ea822b47fa8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/cd40d0d65bfebb894ccc9ea822b47fa8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/cd40d0d65bfebb894ccc9ea822b47fa8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/cd40d0d65bfebb894ccc9ea822b47fa8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/cd40d0d65bfebb894ccc9ea822b47fa8-Paper-Conference.pdf
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2305.07922

A Generating NL queries for code
examples

We obtain the code examples from the documen-
tation which is easily scraped using regex expres-
sions. However, NL queries accompanying the
code examples are not provided for Office Scripts.
Hence we generate them using an LLM (GPT-4).
We use the prompt in Figure 6 to obtain queries
which resemble a human as much as possible. For
PQ, the NL queries are already available along with
the code examples in the documentation and we
directly use them to build the (g, ¢) pair for E.

B Grammar Representation used during
retrieval

To calculate the transformer embeddings, we need
to convert grammar entities to a suitable form. We
use the representation function J(.) for this conver-
sion. We use the form:

<page>.<grammar>: <description>

An example for the representation used for gram-
mar entities in office scripts:

ExcelScript.Range.setFormulaLocal: set the
formula in local A1 style...

An example for grammar entities in PQ:
Table.FromColumns: creates a table of type
“columns™ from a list “lists™ containing...

We use this representation when using trans-

former embedding for any form of retrieval done
in the paper.

C Sentence-BERT Fine-tuning

For both the datasets, we build the training set as
described in section 4.1. The train set has a ratio of
1:2 for positive and negative labels. The validation
set is built by sampling data from the benchmark
itself. We maintain a train-validation split of 80%-
20%. Refer to Table 8 for more details on training
and evaluation after training. We also include rele-

Parameter Office Scripts PQ
training size 3390 3522
epochs 3 5
batch size 32 32
warmup steps 50 50
eval accuracy 54.08% 64.00%
ROC AUC 0.084 0.025

Table 8: Parameter details for fine-tuning S-BERT on
Office scripts and PQ. We also include the final valida-
tion set accuracy and ROC AUC value as a measure for
evaluating the training process.

vant graphs for further analysing the performance
of our fine-tuning. Refer to Figure 7 for office
scripts and Figure 8 for PQ.

D Code Generation Prompt

We provide sample prompt structures used for
generating code in Office Scripts and PQ, for ease
in replication of our results. Refer to the figures 9
and 10 for an example prompt we generate using
RAR. More details about the representation is
provided in the respective captions of the figures.

*Note The sample data, table names and column
header names used in the prompt for PQ have been
parsed and extracted from the documentation it-
self. All examples in the documentation contain the
Table.From function which enlists data on which
the operation is performed. We extract data from
these function arguments and replace them with the
table or column names in the final version of the
example program.

E Evaluation metric

In this section, we delve into more details about
the techniques used for performing sketch and ex-
ecution match on the code generated for the two
datasets.

Office Scripts For Sketch match, we compare the
LLM generated code with the ground truth to see if
their functionalities match. We build a customized
parser which is able to map functions in the code
to create a symbolic mapping between them and
the conditional format type (whose count is finite).
This type of comparison ignores constants, variable
values or function arguments. However, when do-
ing execution match, we consider comparing all of
the above fields. We compare the generated code
with what we call revision records of the actual
code. These records are Json representations which
are obtained as a result of executing the ground
truth code in Microsoft Excel. They contain infor-
mation about the changes that happen in an Excel
workbook after a code gets executed (in terms of
target and type of impact). We draw heuristics
to check if the code matches the changes in the
revision records for execution accuracy.

PQ We perform sketch match by masking the
constants, identifiers and other user-defined entities
in the code and calculate the SequenceMatcher

<|im_start[>system

You are an expert in writing user queries. For a code given in Typescript (Office Scripts), write a query in natural language which
is similar in style to a query written by a human. Do not mention all the details as is present in the code and consciously try to miss
some information to make it appear more human-like. Keep the queries short and subtle and the content should be based on the

impact you want and not how it is accomplished using the code.
<|im_end>
<|im_start[>user
function main(workbook: ExcelScript. Workbook) {
let selectedSheet = workbook.getActiveWorksheet();

selectedSheet.getRange("14:14").insert(ExcelScript.InsertShiftDirection.down);
selectedSheet.getRange("C14").setFormulaLocal("=average(C9:C13)");

}

<|im_end|>

<|im_start[>assistant

Add row and calculate the Average.

<|im_end[>

<|im_start[>user

function main(workbook: ExcelScript.Workbook) {
let conditionalFormatting: ExcelScript.ConditionalFormat;
let selectedSheet = workbook.getActiveWorksheet();

conditionalFormatting = selectedSheet.getRange("F3:F71").addConditionalFormat(ExcelScript. ConditionalFormatType.cell Value);
conditionalFormatting.getCell Value().getFormat().getFont().setColor("#9C0006");
conditionalFormatting.getCell Value().getFormat().getFill().setColor("#FFC7CE");

conditionalFormatting.getCellValue().setRule({formulal:"=1",

formula2:undefined,operator:ExcelScript. ConditionalCell ValueOperator.greaterThan, });

}

<|im_end>

<|im_start[>assistant

Highlight values greater than one in the range F3-F71.
<|im_end>

<|im_start|>user

<code_example>

<|im_end[>

<|im_start[>assistant

Figure 6: Prompt used for generation of human-like NL queries for Office Scripts. The <code_example> highlighted
in green is where the code examples extracted from the documentation goes for which the NL query needs to be
generated. We design a few-shot setting for more similarity with the test query.

ratio of the two programs. For execution match, we
obtain results by actually executing the programs
in the data table that is already provided. We then
compare the output to check for equality.

F Hyperparameter Tuning

We run different simulations of the experiment by
altering the hyperparameter Ag_,p and Ap_, . For
the sake of brevity, we show the variation in perfor-
mance for only £ — D scenario for Office Scripts.
For other, we do a similar sweep across different
values and record that which gives us the best exe-
cution match.

Figure 11 shows the increase in code match ac-
curacy as we increase Ag_,p and the drop and final
stability for larger values. Lower values of impact
factor implies that the deviation from the examples
retrieved by R p is favoured more. Hence grammar
elements we include in the prompt are completely
opposite in intent to the retrieved examples. As we
increase A\gp_,p, the impact of query intent comes
in and the search becomes more organized towards
looking for relevant grammar, rather than deviating

12

blindly from the examples. A sweet-spot is reached
near 20 which we use in our experiments. Further
rise of A\p_,p results in more impact from the query
intent and the retrieved examples from Rp plays
no role here. Hence we find the performance sta-
bilising as we go higher. This shows that a balance
between both search technique is required to iden-
tify the best and most relevant grammar with the
help of driver retriever.

G Motivating example

We showcase one motivating example which argues
in favour towards including grammar along with
examples in the prompt for code generation.

0.8

06
Acc %
04

0.2

0 02 04 06 08 1 12 14 16 18 2
epoch

(a) Evaluation accuracy computed on the validation set as a
function of increasing epoch. The training was terminated as
we achieved maximum eval accuracy.

shert - choice 0

0.40 4

0.35 1

0.30 4

0.254

0.20 4

Precision

0.15 A

0.10

0.05 4

0.00 4

0.2 0.4 0.6 0.8 10
Recall

(c) Precision Recall curve obtained by varying the retrieval
of top-n grammars from the documentation and calculating
precision and recall by comparing with the grammar in the
code. Each point in the plot corresponds to the average
precision and recall across the entire benchmark.

Probability Density Curve

— Good
0.006 -

0.005

0.004

Density

0.003 1
0.002

0.001 -

L

0.000

T T
0.00 0.25

Value

T T T T
—-1.00 -0.75 —-0.50 -0.25

(b) The distribution of actual good and bad labels after train-
ing along the similarity score with their query in x-axis. This
shows the demarcation on cosine-similarity score we are able
to attain after fine-tuning s-bert.

Peak at n=3 (sbert- choice 0)

0.12

0.10

0.08

jaccard index

0.06

0.04 4

T T T
0 20 40 60 80 100
num of top apis extracted

(d) Plot of jaccard index calculated against increasing num-
ber of grammar n retrieved from documentation, in order
of decreasing cosine-similariy score with test query. Each
point denotes the average value calculated across the entire
benchmark. The best and condensed grammar is shown to
be obtained for lower retrieval size.

Figure 7: Analytical significance and performance upon fine-tuning s-bert on Office Scripts. The similarity scores
are computed by taking the cosine of the trained embeddings of the query and the grammar elements.

13

Probability Density Curve

— Good
0.0025 Bad
o 0.0020 4
u./
z 0.0015 +
0.6 2
8
Acc% 0.0010 |
0.5
0.0005 /\
04 0.0000 -
0 05 1 15 2 25 3 35 4 ~100 -075 -050 -025 000 025 050 075 100
epoch similarity score
(a) Evaluation accuracy computed on the validation set as a (b) The distribution of actual good and bad labels after train-
function of increasing epoch. The training was terminated as ing along the similarity score with their query in x-axis. This
we achieved maximum eval accuracy. shows the demarcation on cosine-similarity score we are able
to attain after fine-tuning s-bert.
sbert Peak at n=1 (sbert)
0.10 -
0.16
0.14 4
0.08
0.12 4
0.10 A b
E E 0.06 -
2 0.08 E
-5 e}
0.06 = 0.04 1
0.04 4
0.02 0.02 4
0.00 4
O.IZ 0:4 0.‘6 0.‘8 1.‘0 (I) ZIU 4‘0 Bb Bb 160
Recall num of top apis extracted
(c) Precision Recall curve obtained by varying the retrieval (d) Plot of jaccard index calculated against increasing num-
of top-n grammars from the documentation and calculating ber of grammar n retrieved from documentation, in order of
precision and recall by comparing with the grammar in the decreasing cosine-similariy score with test query. Each point
code. Each point in the plot corresponds to the average denotes the average value calculated across the entire bench-
precision and recall across the entire benchmark. mark. The best quality grammar is shown to be obtained for

lower retrieved size.

Figure 8: Analytical significance and performance upon fine-tuning s-bert on Power Query M. The similarity
scores are computed by taking the cosine of the trained embeddings of the query and the grammar elements.

14

<|im_start[>system

You are an assistant that generates programs in typescripts using Office Scripts APIs. The program you generated will help solve a query
provided by the user. The Office Script you generate will be run directly in Microsoft Excel and the effect it has on the workbook will be
checked to confirm if the code you generated matches the user content or not. If target where the change is applied on the sheet is not
mentioned in the user query, assume a target range or column of your own and complete the program. Your code should be complete and not
have any placeholders. In case of ambiguity in terms of which color or formatting style to use, use your best judgement and make assumptions
at the same time mentioning your assumptions as comments. Your code must be syntactically and semantically correct. To help you generate
correct and quality programs, a list of methods, properties and enums are provided from the official Office Scripts documentation along with
some examples of their usage.

<[im_end|>

Documentation

ExcelScript.IconSetConditionalFormat: Represents an icon set criteria for conditional formatting.
Methods-->

- getCriteria() : ConditionallconCriterion[]

- setCriteria(criteria: ConditionallconCriterion[]) : void

ExcelScript.ConditionallconCriterion: Represents an icon criterion which contains a type, value, an operator, and an optional custom icon ...
Properties-->

- customlcon (ExcelScript.Icon): The custom icon for the current criterion, if different ...

- type (ExcelScript.ConditionalFormatIconRuleType): What the icon conditional format should be based on.

ExcelScript.ConditionalFormatlconRuleType: Represents the types of icon conditional format.
- formula, invalid, number, percent, percentile

Examples
<|im_start[>user
Apply traffic light icons to the range A1-AS based on percentage values.
<|im_end[>
<[im_start[>assistant
function main(workbook: ExcelScript. Workbook) {
const sheet = workbook.getActiveWorksheet();
const range = sheet.getRange("A1:A5");

const conditionalFormatting = range.addConditionalFormat(ExcelScript.ConditionalFormatType.iconSet);
conditionalFormatting.getlconSet().setStyle(ExcelScript.IconSet.threeTrafficLights1);

const criteria: ExcelScript.ConditionallconCriterion[] = [

{
formula: '=0', operator: ExcelScript.ConditionallconCriterionOperator.greaterThanOrEqual,
type: ExcelScript.ConditionalFormatIconRuleType.percent

b

{
formula: '=33', operator: ExcelScript.ConditionallconCriterionOperator.greater ThanOrEqual,
type: ExcelScript.ConditionalFormatIconRuleType.percent

3

{
formula: '=67', operator: ExcelScript.ConditionallconCriterionOperator.greaterThanOrEqual,
type: ExcelScript.ConditionalFormatIconRuleType.percent

s

conditionalFormatting.getIconSet().setCriteria(criteria);

<|im_end[>

<[im_start>user

How do I add a three-arrow icon set to the range M8-M14 on the 7a sheet based on percentage criteria?
<|im_end[>

<|im_start[>assistant

Figure 9: Shows the following prompt stucture which is passed to the LLM for code generation. The above prompt
example is for Office Scripts generation. We highlight the representation used for grammar in the prompt. The
green and yellow highlighted represents the match between the code and grammar and on how the return type of a
grammar element is mapped to its definition in the same prompt. This helps the LLM establish an understanding of
the function chaining strategy used in the example program so that it is able to use the right function in the right
place where it’s return type matches.

15

<|im_start/>system

You are an assistant that answers questions from a table by converting them to Power Query M queries.

For your reference, you are also provided relevant functions form documentation to assist you in generating the queries.
<|im_end[>

Documentation

Replacer.ReplaceText : Replaces the “old" text in the original ‘text” with the ‘'new’ text. This replacer function can be used in
"List.ReplaceValue™ and “Table.ReplaceValue'.

Replacer.ReplaceValue : Replaces the “old’ value in the original ‘value® with the ‘new" value. This replacer function can be used in
‘List.ReplaceValue' and "Table.ReplaceValue'.

Table.ReplaceErrorValues : Replaces the error values in the specified columns of the “table’ with the new values in the “errorReplacement’
list. The format of the list is {{columnl, valuel}, ...}. There may only be one replacement value per column, specifying the column more
than once will result in an error.

Table.ReplaceValue : Replaces ‘oldValue' with ‘newValue® in the specified columns of the “table".

Examples

<|im_start|>user

Columns: A, B

Sample Data: [[1, "hello"], [2, "wurld"]]

Table Name: Tablel

Question: Replace the text "ur" with "or" in column B, matching any part of the value.
<|im_end[>

<|im start/>assistant

M: Table.ReplaceValue(Tablel,"ur", "or", Replacer.ReplaceText, {"B"})

<|im_end[>

<|im_start[>user

Columns: A, B

Sample Data: [[Error, Error], [1, 2]]

Table Name: Tablel

Question: Replace the error value in column A with the text "hello" and in column B with the text "world" in the table.
<|im_end[>

<|im start/>assistant

M: Table.ReplaceErrorValues(

Tablel,
{{"A" "hello"}, {"B", "world"}}

<|im_end[>

<|im_start[>user

Columns: Columnl

Sample Data: [['aaa bbb ccc ddd eee fff'], ['aaa bbb ccc ddd'], ['aaa cce ddd eee fff'], ['aaa bbb ccc fif'], ['aaa bbb ddd fff1],
['aaa bbb ccc ddd eee ftf'], ['aaa bbb ccc ddd eee fif'], ['aaa ccc ddd eee fif'], ['aaa bbb ccc ddd fff'], ['bbb ccc ddd eee fff']]
Table Name: Source

Question: replace only "eee" with "xxx-eee", in Columnl in table Source

<Jim_start[>assistant

M:

Figure 10: Shows the prompt structure used with grammar and examples for PQ generation. The code requires
he sample data from table, the table name and its column headers to write specific code, which is executable and
also easy to match with the ground truth. We also provide this table metadata for the test query for complete code
generation without any assumptions. The documentation structure is uniform throughout and contains only the
grammar name and its description. The same colored highlights represent the common functionalities between the
grammar and the example which gets retrieved during RAR.

16

907 /"i\
% 851 i —— Sketch
= i Execution
= 80 i
751 i
0 25 50 75 100

impact factor

Figure 11: Shows the variation of performance (sketch
and execution) as a function of increasing impact factor
Ag—p for influenced retriever. We find a rise and a drop
beyond the green marker where impact factor is 20. We
use this value in our experiments for RAR. This shows
that the factor needs to strike a balance between the
deviation from retrieved examples and while remaining
close to the test query intent.

Examples are rarely exactly right. But how to make changes?

Remove 1 character from the Remove characters from the text value
text value "ABEFC" at position 2. ABEFC" starting at position 2 until position 4.

Text.RemoveRange ("ABEFC", Text.RemoveRange("ABEFC", 2, 2)
2)

Look upin
documentation.

Need to know that second
argument is count.

Figure 12: Provides an explanation on how adding gram-
mar to the prompt helps an LLM understand variations
to code structure better. A subtle difference in the NL
query like "until position 4" does not confuse the LLM
to look for a new function or hallucinate something
which is incorrect. It is able to understand from the
function description that using the third argument value
of the same function in the example will generate the
correct solution.

17

	Introduction
	Related Work
	Documentation and examples
	Retrieval Augmented Retrieval
	Embeddings for retrieval
	Example Grammar
	Grammar Example

	Experimental Setup
	Datasets and metrics
	Baselines and Versions
	Models

	Evaluation
	Compared with other SOTA (RQ1)
	Baselines
	Results

	Dependence vs Independence (RQ2)
	Setup
	Results

	Ablation (RQ3)
	Variation with token size (RQ4)
	Reliance on Driver (RQ5)

	Conclusion
	Limitations and Ethical Considerations
	Generating NL queries for code examples
	Grammar Representation used during retrieval
	Sentence-BERT Fine-tuning
	Code Generation Prompt
	Evaluation metric
	Hyperparameter Tuning
	Motivating example

