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Abstract—In this paper we present a workload estimator based
on biological signals - electroencephalographic and eye-tracking.
The workload estimator is person- and session- independent,
designed to work in a virtual reality flight simulator environment
and is a part of our adaptive training system. The novel
component is using objective evaluation of the workload, based
on the flight logs, as labels for training the regression neural
network. As evaluation parameter is selected the correlation with
the objective labels. The paper contains the results from using
several feature sets and estimators, where the best estimator
achieves correlation with objective labels of 0.84.

Index Terms—workload estimation, electroencephalography,
eye-tracking, adaptive training system

I. INTRODUCTION

Mental workload is a subjective measure of the cognitive
demands imposed by a task on an individual. It can affect
performance, safety, and well-being in various domains, such
as aviation, education, and health care. Therefore, it is impor-
tant to develop reliable and valid methods to assess mental
workload in real-time and in natural settings. One promising
approach is to use physiological signals, such as electroen-
cephalographic (EEG) and eye-tracking, that can reflect the
cognitive state of the user [1].

EEG and eye-tracking can provide complementary informa-
tion about mental workload, as they capture different aspects
of cognitive processing [2]. EEG signals reflect the electrical
activity of the brain, which can be analyzed in terms of
frequency bands, such as alpha, beta, theta, and gamma. These
bands are associated with different cognitive functions, such as
attention, memory, and problem-solving [3]. Additionally, eye-
tracking features such as fixation duration, saccade amplitude,
and blink rate, can indicate relevant changes in attention,
engagement, and workload based on task demands [2], [3].

However, estimating mental workload using EEG and eye-
tracking also poses several challenges, such as individual
variability, session-to-session variability, and task specificity.
In many cases, the labels used for training the estimators
are noisy – either based on self-evaluation or based on the
task performed, which can cause different workload based
of the person’s experience. In many cases, the process of
mental workload measurement requires individual calibration

and a strictly controlled environment. Also, the output of the
estimator is very granular, frequently limited to low, medium,
and high mental workload.

In this paper, we propose a mental workload estimator
for the flight simulator environment that produces mental
workload estimations in the form of a score from 0 to 100,
where 0 is very high workload and 100 is very low workload.
The estimators are trained using an objective performance
measurement, derived from the flight logs of the simulator.
Using these objective low noise labels allow training of neural-
network-based estimators that outperform the traditional linear
regression and Support Vector Machine (SVM) estimators.

II. EXPERIMENTAL SETUP

A. Adaptive training system

The adaptive training system (ATS) [4] is a human-in-
the-loop system aiming to accelerate the training process for
pilots using virtual reality (VR) flight simulators, as shown
in Fig. 1. The training process is assumed to go through
short, indivisible, scenario runs, called trials, that end with
a score – a number describing how successful the run was.
Based on the model of the training process [5] and the past
scores the system determines the parameters describing the
trainee (initial absolute skill level and the learning speed) and
recommends the scenario difficulty for the next run, optimal
in sense of maximal increase of the absolute skill level.
Then a scenario with the closest difficulty is selected from
a larger library of scenarios. In this model, each scenario is
characterized by its difficulty and the maximum achievable
score. The scenario difficulty is increased by adding wind,
thermals, wind gusts, and decreasing the visibility from clear
to fog resulting in fully instrumental flight. The total number of
scenarios with different difficulties was eleven. The simulation
analysis, using statistical models of the subjects, showed up
to a 25% reduction of the training time. If the training time is
fixed, then ATS leads to maximizing the final average absolute
skill level.



Fig. 1. Block diagram of the Adaptive Training System (ATS).

B. Scoring as critical component of ATS

Proper assessment of the workload is critical for an efficient
adaptive training system. In this context, the workload is
represented by the score. Note that the score aggregates both
the scenario difficulty and the subject’s skill level. Presumably
when they match the subject will receive a score somewhere
in the middle of the range 0-100. If the scenario is more
difficult than the skills of the subjects then ATS produces a
lower score, representing higher workload. In the other case,
when the scenario is easier than the skill level of the subject,
ATS produces a higher score, representing lower workload.

In this specific data collection, the general scenario is a
straight-line flight in two cases: a) straight and level flight;
b) glideslope flight. In the first case, the subject is expected
to maintain at a constant altitude, speed, and course. In the
second case, the subject is expected to maintain at a constant
course and speed while flying the plane towards the beginning
of the runway. In both cases, we can retrieve from the logs of
the flight simulator the position of the plane at any moment
of the flight. Each trial has a duration of 2-3 minutes. Then
we can estimate the root mean squared error (RMSE) between
the desired and the actual trajectory of the plane and use it
as a score after normalization between 0 and 100. This way
of scoring has its own problems and has been improved [6].
Still, this way of scoring is applicable only for simple tasks
when we know the “right” trajectory of the plane.

Using biological signals to estimate the workload is appli-
cable for a much broader range of tasks and is the subject of
this paper.

C. Experimental hardware system

The experimental hardware system consists of flight sim-
ulator Prepar3D running in virtual reality (VR) mode. The
subject is sitting on a 6 degree of freedom (DoF) motion
platform, wearing Varjo VR3 VR glasses. The VR glasses
are equipped with custom-made 32 dry EEG electrodes, plus

a ground and reference. These electrodes are connected to
the BrainVision LiveAmp pre-amplifier with a 24 bits ADC
and 500 Hz sampling rate. Eye-tracking is integrated into the
Varjo VR3 headset. In addition, from the subject one channel
electrocardiographic, galvanic skin resistance, and breathing
signals are collected.

III. DATA COLLECTION AND FEATURE EXTRACTION

A. Data collection

Each subject participates in the data collection process over
five consecutive days within one work week. In the first
day, the subject is instructed to sign the IRB (reviewed and
approved by the ethical committees at Microsoft Research
and the Air Force Research Lab (AFRL)) and answer pre-
experiment questionnaires, followed by ten trials. In the next
four days, the subject runs twenty trials per day. The maximum
number of trials per subject is 90, some of these might be
disqualified due to various reasons – signal quality being the
main of them. There were several days when the subject did
not show up as well.

The data collection was conducted in three waves. The first
was following the protocol above with 6 participants using
only the two easiest scenarios for straight-and-level flight and
glideslope. The second wave involved 10 subjects without
flying experience running all 11 scenarios in random order.
All 10 subjects were asked every day before the sessions to
sit and relax in the chair with open eyes for two minutes
doing nothing. Their physiological signals (EEG and eye-
tracking) were recorded and treated as a regular scenario run
with an assigned score of 100 (no mental workload). During
the preliminary data processing, we noticed that the subjects
have predominantly zero scores on the most difficult scenarios.
To obtain better information about these scenarios, the third
wave of data collection was with 9 subjects with a valid pilot
license. They were invited only for one day and executed 20



TABLE I
COMBINING ELECTRODES IN GROUPS.

Group Electrodes
F L AF7, F3, F5
C L C5, C3, C1
P L CP5, CP3, CP1
F R AF8, F4, F6
C R C2, C4, C6
P R CP2, CP4, CP6
PO P5, Poz, P6

runs each. The number of scenarios recorded and used for
further processing is 1223 from total of 25 different subjects.

The data collection process, questionnaires, and restrictions
on participants were reviewed and approved by the ethical
committees at Microsoft Research and the Air Force Research
Lab (AFRL).

B. Data pre-processing and feature extraction

All the flight logs were processed and the scores for each
run computed. Then we ran the modeling of the training
process, according to [5] and determined the parameters of
the scenarios (difficulty level and maximum achievable score)
and of the trainees (initial absolute skill level and learning
rate). Using the final subjects and scenarios parameters was
conducted a simulation for each subjects and simulated scores
estimated. These scores are much smoother, as they are based
on all scores from all subject from all scenarios. We used these
scores as labels for training the estimators.

The raw EEG data was processed using MNE [7] to re-
reference and bandpass filter between 1 - 55 Hz to remove
drift and powerline noise was applied. Then, each channel was
epoched into one second long frames, and multiple statistical
measures (mean, range, kurtosis) of the signal were computed.
The epochs with severe interference due to eye-blinking, high
noise, or motion artifacts were removed. Then for the clean
signals, the power of the delta (1-4 Hz), theta (4-8 Hz), alpha
(8-12 Hz), beta (12-30 Hz), and gamma (30-60 Hz) bands
were estimated at 5 second increments. Then, we reduced the
number of the extracted power features by averaging across
channels. The electrodes used to form the frontal (F), central
(C) and parietal (P) groups on the left and right side and the
reference group are shown in Table I. For each session this
leads to a vector with variable length with 35 features in each
element (5 bands x 7 channel groups). The length of the vector
depends on the duration of the session and the number of
frames rejects and is typically 80-120 elements.

The eye-tracking data was processed in a similar manner.
After converting the Varjo data to PyTrack [8] format, the data
was processed to extract various oculomotor features over 30
second epochs (e.g. fixation duration, fixation dispersion, gaze
entropy, and blink rate), forming another variable length vector
with 39 features for each epoch. Both EEG and eye-tracking
data were cropped to align with the start and end of the trial.
However, due to modality specific pre-processing steps, the

Fig. 2. Simulated vs. estimated results.

Fig. 3. Ablation study results.

length of the eye-tracking feature vector is similar to the length
of the EEG features vector, but not necessarily identical.

Most of the estimators are expecting a fixed number of
features. We have one label per session and two vectors
with variable and different length features from EEG and eye
tracker. To overcome this problem, we do average across the
timeline and compute the mean, the deviation, the maximal
and the minimal values of each feature. This means that for
EEG we have 7 channels x 5 bands x 4 stats = 140 features
for each session. For the eye tracker data, we have 39 features
x 4 stats = 156 features for each session. The total number of
features is 296 for each session and one label – the estimated
score.

IV. ESTIMATORS AND TRAINING PROCESS

We treated the scoring problem as a regression machine learn-
ing problem – for each session we have a set of features and
a label. As an evaluation criterion, we selected the correlation
coefficient between the simulated scores (i.e. the labels) and
estimated by the regression engine scores. As we target person-
and session- independent estimator, we remove one subject
to be used for testing, one subject to be used for validation,
and use the rest of the subjects for training. For more reliable
verification and testing we used only subjects with full number



TABLE II
RESULTS, CORRELATION WITH THE SYNTHETIC SCORES

Validation set Test set
Features LIN SVM ELM DNN LSTM LIN SVM ELM DNN LSTM

EEG 0.1471 0.1204 0.1469 0.1375 0.1471 0.1204 0.1381 0.1332
mean of EYE 0.4592 0.1615 0.2509 0.4816 0.4592 0.1615 0.2437 0.4693
original Fusion 0.7207 0.7240 0.7359 0.7560 0.7207 0.7240 0.7331 0.7403

feature set Early fusion 0.4392 0.1596 0.1488 0.4814 0.4391 0.1496 0.1414 0.4511
mean, max EEG 0.1143 0.1250 0.1182 0.1290 0.1143 0.1250 0.1058 0.1186
min, std of EYE 0.4243 0.3262 0.2909 0.5449 0.4233 0.3263 0.2790 0.5417
the original Fusion 0.8093 0.8073 0.8394 0.8402 0.8093 0.8073 0.8397 0.8376
feature set Early fusion 0.2816 0.3417 0.3399 0.4688 0.3786 0.3253 0.2743 0.5087

EEG 0.3173 0.2986
Sequence EYE 0.5613 0.5499

Fusion 0.8390 0.8464 0.8384 0.8489 0.8390 0.8464 0.8384 0.8371

TABLE III
ABLATION STUDY, PER GROUP OF EEG FEATURES: BAND AND ELECTRODES

Bands Electrodes groups
Algorithm Baseline Delta Theta Alpha Beta Gamma F L C L P L F R C R P R PO

LIN 0.0544 0.0285 0.0321 0.0216 0.0607 0.0644 0.0628 0.0288 0.0494 0.0448 0.0999 0.1142 0.0733
SVM 0.1078 0.148 0.0754 0.0995 0.1204 0.1155 0.1023 0.1111 0.1174 0.1024 0.1083 0.1214 0.1245
ELM 0.0724 0.0603 0.061 0.0659 0.0983 0.0558 0.0787 0.0348 0.0963 0.0749 0.1234 0.1391 0.0978

DNN-FC 0.0920 0.1094 0.0848 0.0708 0.1112 0.1087 0.0567 0.0726 0.072 0.0556 0.0832 0.1264 0.0414
Average 0.0816 0.0865 0.0633 0.0644 0.0976 0.0861 0.0751 0.0618 0.0838 0.0694 0.1037 0.1253 0.0842

TABLE IV
ABLATION STUDY, PER GROUP OF EEG FEATURES: STATISTICS

Algorithm Baseline Mean Std Min Max
LIN 0.0544 0.0747 0.0559 0.0737 0.0304

SVM 0.1078 0.1274 0.1149 0.1128 0.0896
ELM 0.1078 0.1000 0.0896 0.0576 0.0212

DNN-FC 0.0920 0.0929 0.0953 0.0709 0.0583
Average 0.0816 0.0987 0.0889 0.0787 0.0499

of scenarios and scores – 90. In our data set there are five.
This means that we have 20 combinations of subjects used
for testing and validation. All results provided further in this
paper, are average correlation coefficients from all 20 training
and evaluation combinations.

We have two groups of features – from EEG and from the
eye-tracking. We can have two approaches for estimation of
the score: a) early fusion, when all features are combined into
one feature vector and one estimator is trained; b) late fusion,
when we train one estimator for each group of features and
one for fusing the outputs of these estimators for the final
score estimation.

In both approaches we have experimented with the follow-
ing estimators:

• Linear regression, which is the straightforward estimation
using least squares method [9].

• Support Vector Machine (SVM) in regression mode [10].
• Deep Neural Network (DNN) with a given number of

layers and nodes in each layer [11].
• Extreme Learning Machine (ELM) in regression mode,

which is a shallow and wide neural network with one
hidden layer and analytic solution for the training [12].

In addition to these estimators, we used a neural network

that preserves a state, like long-short term memory neural
network (LSTM). Then each element of the variable length
feature vector is turned into a feature, and we take the output
after the final element. Because of the different length of the
feature vectors from EEG and eye-tracking for the sessions
only late fusion is a feasible option here.

The training of the DNN and LSTM was limited to 150
iterations with forced stopping if the results on the validation
data set did not improve for five epochs. The stochastic
gradient descent algorithm was used for training with an initial
learning rate of 0.001. The hyper-parameters of each estimator
(number of layers, number of nodes, etc.) were optimized for
each regression strategy using the average correlation on the
validation datasets. This resulted in 64 nodes in the ELM
hidden layer with sigmoid activation, three layers of 32 nodes
for the regression DNN, 128 nodes for the LSTM. To ensure
repetitiveness of the results and reliable optimization of the
hyper-parameters we start each training and evaluation run
with a fixed seed of the random number generator.

V. RESULTS

The results from all approaches for the validation and test
sets are shown in Table II. The first group of the lines
shows the results from using only the means for each feature,



the second group of lines are the results from using mean,
deviation, min and max values. The last group of lines show
the results from the LSTM network. Notably, in all cases
the late fusion approach outperforms by far the early fusion
approach. In majority of the cases DNN structure outperforms
the linear regression, SVM and ELM. Notable also is that
the EEG and eye tracker estimators, based on LSTM, show
better individual results, but after the final fusion we have
practically the same correlation with the simulated labels
as with the DNN-based estimators. Based on these results
and the stability and repetitiveness of the results from the
various combinations of validation and test sets we would
recommend using the late fusion approach with DDN for EEG,
eye tracker, and late fusion estimators. The results from all data
(train+validation+test) are illustrated in Fig. 2.

VI. ABLATION STUDY

We applied an ablation study to investigate the impact of
various EEG and eye-tracking features on the recommended
above approach for late fusion with DNN for all three es-
timators. Therefore, we systematically removed each feature
to identify the primary drivers of the model (see Fig. 3).
For EEG the primary features are in the Delta band, which
may be associated with attention. For eye-tracking the primary
features are related to the frequency of eye movements and
blinking, which could be associated with attention and fatigue.
For predicting performance, the eye-tracking measures have a
larger effect on the prediction compared to the EEG. This may
be because the eye-tracking data is less person- and session-
dependent compared to the EEG signals.

Another point of view provided the ablation study per
EEG feature groups: bands, electrodes groups (Table III), and
feature groups (Table IV). By removing the features from each
group, we found that the most useful bands are alpha and
theta, while beta and delta reduce the results least, which is
consistent with previous finding of cognitive workload [13].
The most useful electrodes are in the frontal and central parts
(F L, F R), while parietal electrodes on the right are less
useful (P R, C R, PO). The results from the processed groups
show that max and min are most useful, followed by deviation
and mean.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed and evaluated a model for predicting
simulated scores based on brain and eyes tracking signals. The
model is person- and session- independent and does not require
a calibration process. The correlation with the simulated scores
is above 0.83, which is sufficient for practical applications of
the ATS. The main reason for these results is using objective
low noise scores as a labels for training the estimators.

Future work includes further refining of the model, based on
further feature set analysis to identify key features across all
participants. We intend to explore more sophisticated neural
networks, CNN and LSTM as examples. We will add the other
bio-signals collected (ECG, breathing, GSR) and study their
importance in mental workload estimation. It will be very
interesting how this trained model will estimate the mental
workload outside of the flight simulator environment.
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