
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Tabularis Revilio: Converting Text to Tables
Mukul Singh

Microsoft
Redmond, USA

singhmukul@microsoft.com

Sumit Gulwani
Microsoft

Redmond, USA
sumitg@microsoft.com

Vu Le
Microsoft

Redmond, USA
levu@microsoft.com

Gust Verbruggen
Microsoft

Keerbergen, Belgium
gverbruggen@microsoft.com

ABSTRACT

Copying tables from documents and applications without proper
tabular support, like PDF documents, web pages or images, surpris-
ingly remains a challenge. In this paper, we present Revilio, a novel
neurosymbolic system for reconstructing tables when their column
boundaries have been lost. Revilio addresses this task by detecting
headers, generating an initial table sketch using a large language
model, and using that sketch as a guiding representation during an
enumerate-and-test strategy that evaluates syntactic and semantic
table structures. We evaluate Revilio on a diverse set of datasets,
demonstrating significant improvements over existing table pars-
ing methods. Revilio outperforms traditional techniques in both
accuracy and scalability, handling large tables with over 100,000
rows. Our experiments find an increase in reconstruction accuracy
by 5.8–11.3% over both neural and symbolic baseline systems.

CCS CONCEPTS

• Information systems → Document structure; Information ex-

traction; • Computing methodologies → Information extrac-

tion; • Applied computing→ Document management.

KEYWORDS

Table Construction, Data Extraction, Language Models for Tables

ACM Reference Format:

Mukul Singh, Sumit Gulwani, Vu Le, and Gust Verbruggen. 2024. Tabu-
laris Revilio: Converting Text to Tables. In Proceedings of the 33rd ACM

International Conference on Information and Knowledge Management (CIKM

’24), October 21–25, 2024, Boise, ID, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3627673.3680000

1 INTRODUCTION

Tables are commonly used to store and present data. Surprisingly,
these tables are often moved as free-form text, for example, when
copying tables from rendered documents like PDF and websites.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’24, October 21–25, 2024, Boise, ID, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0436-9/24/10
https://doi.org/10.1145/3627673.3680000

Figure 1: Example showing the text representation of tables.

(1) Original table on tallest towers in the world; (2) Text rep-

resentation of the table without any structural information.

Users are then dependent onmanual effort or programming abilities
to parse this free-form text back into structured tables.

We introduce Revilio, a system that leverages large language
models (LLMs) for table construction from free-form text. Unlike
previous methods, which primarily rely on syntactic cues, Revilio
uses the semantic knowledge of the language model to ensure that
the reconstructed tables are both accurate and natural.

Converting text to tables poses several challenges concerning the
semantics and consistency of the table, as well as its scale. Revilio
leverages an LLM to detect headers and to build a table sketch
from a small subset of the data. Through multi-step reasoning, the
language model ensures consistent cell boundaries over a natural
granularity. Given this table sketch, Revilio then explores and
ranks potential cell boundaries for all the remaining rows. This
ranker combines both syntactic and semantic information (based
on cell value embeddings) to evaluate consistency of cells across
the entire columns, and alignment of rows to the table sketch.

We evaluate Revilio against neural (prompted and fine-tuned)
and symbolic baselines on three different datasets, and show an
increase in reconstruction accuracy of 5.8–11.3% compared to these
baselines.We show that it is able to handle large tables (> 100K rows)
and analyze the impact of our design decisions on this performance.

In short, we make the following contributions:
1

https://doi.org/10.1145/3627673.3680000
https://doi.org/10.1145/3627673.3680000


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

CIKM ’24, October 21–25, 2024, Boise, ID, USA Singh et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 2: Summary of Revilio on a sample table. (1) A table with 100+ rows; (2) Revilio first performs header and subheader

detection to understand the table structure; (3) The header and 2 more sample rows are then prompted to the LLM to generate a

preliminary table sketch; (4) The remaining rows are split based on common delimiters to generate candidate column splits; (5)

The LLM generated sketch is used to rank the split based on column and row level consistency of the resulting table; (6) The

ranker is used to perform a guided beam search over the row candidates to generate the final table (7).

• We combine the semantic knowledge of LLMs with the
speed of a generate-and-rank strategy to accurately and
quickly convert text to (large) tables.

• We evaluate Revilio on three datasets and show that it
achieves higher table reconstruction accuracy at a fraction
of the cost of different neural and symbolic baselines.

2 RELATEDWORK

The detection of tables from various formats has been extensively
studied, particularly in the context of images, PDF, and web data.

Text to table. Generating tables from textual descriptions and
online sources is another active research area. This involves trans-
forming unstructured text into structured tabular formats. Tech-
niques in this domain focus on understanding natural language
descriptions and generating corresponding tables. Methods like
InfoTab [9], Text2Table [1] and Text-to-Table [28] employ natural
language processing (NLP) and template-based approaches to map
textual content to table structures. However, these methods often
struggle with diverse and unstructured text inputs.

Web to table. The detection of tables from web pages leverages
the HTML structure and CSS styles to identify and extract tables
directly from the source. Early approaches used rule-based systems
to parse HTML tags [7], while recent methods employ dedicated
models to enhance accuracy and generalization [24].

Image to table. Early work focused on extracting tables from
scanned images use computer vision techniques. These approaches
typically involve detecting table boundaries and cell divisions using
edge detection and contour analysis [18, 23, 26] or (convolutional)
neural neural networks to improve the accuracy and robustness
of table detection from images [17, 20, 22]. Extracting tables from
OCR text and PDF documents presents unique challenges due to the
lack of explicit structural information. Methods such as Tabula [29]
and Camelot [3] employ heuristic-based approaches to detect table
structures by analyzing spatial relationships between text blocks.
More recent techniques utilize neural models to classify text blocks
and infer table structures [5, 6, 11]. These methods struggle with
complex tables that lack boundaries or contain nested structures.

3 PRELIMINARIES

Let T = [𝑡 𝑗
𝑖
] 𝑗=1→𝑚

𝑖=1→𝑛
be a table with 𝑛 rows and𝑚 columns. We write

𝑇𝑖 and 𝑇 𝑗 to denote row 𝑖 and column 𝑗 , respectively. The header
H = [ℎ 𝑗

𝑖
] 𝑗=1→𝑘

𝑖=1→𝑛
of a table are special cells that define the semantic

structure of the table by assigning one or more names 𝐻𝑖 to each
column 𝑖 . A text-form table R is a deconstructed representation of a
table T obtained by concatenating the values in each row (including
headers) with a single space character to obtain𝑚 + 𝑘 text rows 𝑅𝑖 .
An example of a table and its text form are shown in Figure 1. In
this work, we tackle the task of converting a text-form table R to
a structured table T without loss of information, and where each
header 𝐻𝑖 correctly describes the data in its column.

4 METHOD

Figure 2 summarizes the architecture of Revilio with an example.
The example shown is one where GPT-4 (best baseline) fails. The
following sections describe each component in more detail.

4.1 Detecting headers

We train a simple embedding based classifier to predict if a row 𝑅𝑖 is
header or not. The input to the model is the embedding of the cells
in the row. We use SentenceBERT [19]. If no rows are classified as
header then Revilio assumes that the table does not have headers.

4.2 Generating table sketches

In this step, we leverage a single LLM prompt to generate initial
sketch𝑇d. We use an off-the-shelf string profiler FlashProfile [16]
to learn a pattern for each row and use these patterns to sample the
five most diverse rows 𝑅d. The header rows (if any) and these five
rows are used as input to the LLM. We use a three-step reasoning
prompt and instruct the model to describe the number of rows and
columns, the header, and the final table. For the table, we use a
program-of-thought prompt [4] where the model is instructed to
generate a pandas DataFrame using comments and assertions to
guide its thoughts. We can then use the answers to these reasoning
step to validate the predicted table: the number of rows, columns
and the header are all expected to align. We obtain five completions
from the model and select the first one that satisfies the validation.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Tabularis Revilio: Converting Text to Tables CIKM ’24, October 21–25, 2024, Boise, ID, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Properties of benchmark tasks for different sources.

We report the number of tasks (# Tasks), average number of

rows (# Rows), columns (# Columns), and headers (#Headers).

Benchmark # Tasks # Rows # Columns # Headers

Wikipedia Tables 1000 84.7 8.3 1.2
PubTabNet 1000 14.5 4.9 1.6
CleverCSV 1000 45131.4 87.0 1.1
Total 3000 15076.8 33.4 1.3

4.3 Enumerating candidate rows

For each row 𝑅𝑖 ∈ R \𝑅d we enumerate candidate𝑇 ′
𝑖
by identifying

𝑚 − 1 splits. We use 4 heuristics for this: (1) analyzing delimiters
the LLM assumed to generate 𝑇d from 𝑅d, (2) non-alphanumeric
characters, (3) letter to number change, (4) case change.

4.4 Ranking candidate rows

We compute consistency 𝛿 (𝑇 ′
𝑖
,T) of a new row 𝑇 ′

𝑖
with respect to

a current table T by combining one symbolic and two neural met-
rics. The symbolic metric involves learning a pattern over columns
(again using FlashProfile) and computing a weighted (by pattern
frequency) pattern edit distance deviation over the column. The
neural metrics compute the average embedding similarity within
each column, as well as over whole rows. These three metrics are
aggregated as a linear combination with learned weights.

4.5 Reconstructing tables

Starting from the sketch 𝑇d, for each row 𝑇𝑖 , we greedily select the
candidate𝑇 ′

𝑖
that maximizes the consistency 𝛿 (𝑇 ′

𝑖
,𝑇d∪𝑇 ′

<𝑖
) over𝑇d

and the selected candidates for all previous rows. Starting from this
seed table, Revilio picks the row with the lowest consistency, and
performs a beam search (width 5) over alternative candidates for
each row until the consistency does not increase for a few iterations
(3) or a maximum number of iterations have been reached (100).

4.6 Training data

We train the header detector and neural ranker on the CSV dataset
introduced with CleverCSV [25]. This dataset contains 100K noisy
CSV files from data.gov.uk and github.com that we parse into 95K
clean CSV files using CleverCSV. We further augment this dataset
by shuffling columns. To train the ranker, we use the candidate
row enumeration (Section 4.3) and sample one wrong candidate (−
example) per row (+ example).

5 EVALUATION SETUP

In this section we describe the benchmarks, metrics and baselines.

5.1 Benchmarks

To evaluate Revilio, we consider benchmarks from a diverse set of
sources. Table 1 summarizes properties of these datasets.

(1) Wikipedia Tables: We use the WikiTables dataset [2]
which contains tables from Wikipedia. These are usually

short tables with rich formatting and structure with signifi-
cant semantic content. We generate the text-form represen-
tation by manually concatenating values with whitespaces.
We sample 1000 tables to create benchmark tasks.

(2) PubTabNet: Since Optical Character Recognition (OCR)
is a huge area for tables, we use the image table recogni-
tion dataset PubTabNet [30] which contains tables found in
scientific open source articles along with their OCR annota-
tion. We sample 1000 tables from this and create benchmark
tasks by considering the OCR text as the text-form table.

(3) CleverCSV [25]: This is a dataset of noisy CSV tables. We
sample 1000 tables that were held out from the training set
and use the noisy version of the table as input.

5.2 Metrics

We use three metrics to evaluate Revilio. (1) Table match: A
table is considered exactly reconstructed when all values in the
table matches ground truth values. (2) Column match: Average
percentage of columns that are exactly matched, micro-averaged
per table and then averaged across tables. (3)Valuematch: Average
percentage of values correctly reconstructed across all tasks.

5.3 Baselines

We compare Revilio to a set of diverse symbolic and neural systems
dedicated to table recognition and parsing, and also adapt other
popular language and tabular domain techniques on this task.

Symbolic TableLabs is an interactive tool to extract tables from
PDFs and raw text. TableLabs detects tables with similar struc-
tures (templates) by clustering embeddings from the extraction
model. Since, our task does not have user feedback, we do not allow
TableLabs to iterate with human feedback.

Language models We fine-tune CodeT5+ [27], StarCoder [12],
CodeLlama [21] and Phi-2 [8] on text-to-text objectives where
the model has to output valid CSV. Each model is pre-trained on
delimiter reconstruction—where 25% of delimiters in a row are
removed—and fine-tuned on partial table reconstruction (first three
rows + 𝑘 random rows)→ table with 𝑘 ∈ {1, 5, 10, . . . , 50}.

Vision techniques We use image-to-table approaches by convert-
ing all text-form tables to images using matplotlib. We also con-
sider multi-modal techniques, MuTabNet [10] which achieves SOTA
results on 2 of the 4 image-to-text benchmarks. MuTabNet uses a
multi-layer cross-attention architecture for table structure detec-
tion and OCR mapping. We also use GPT-4V [15] (prompted) and
Llava [13, 14] (fine-tuned) for this task as they are SOTA in other
visual table tasks for inference and fine tuned respectively.

6 RESULTS

Weperform experiments to answer the following research questions.
RQ1: How accurately does Revilio reconstruct tables compared to
baselines? RQ2: How well does Revilio handle large tables? RQ3:
What is the impact of different components of Revilio?

6.1 Performance

Table 2 shows the table, column and value match of Revilio and
other baseline systems on reconstructed tables. We find that Re-
vilio outperforms all baselines across all metrics. We find that

3

data.gov.uk
github.com


349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

CIKM ’24, October 21–25, 2024, Boise, ID, USA Singh et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 2: Comparison of Revilio and baselines on three benchmark datasets using table, column and value match metrics.

Technique indicates the base architecture type of the system. Revilio outperforms baselines across all benchmarks.

System description Wikipedia PubTabNet Broken CSV

Name Technique Table Column Value Table Column Value Table Column Value

TableLabs Symbolic 50.4 73.2 80.1 50.8 66.5 78.2 40.0 62.2 75.3
CodeT5+ 16B Language 57.1 81.7 85.6 57.8 73.6 84.1 47.1 67.1 79.2
StarCoder-15B Language 52.4 76.0 83.6 56.8 71.2 82.4 46.8 65.3 75.4
CodeLlama-13B Language 52.8 74.0 82.1 55.6 69.3 80.5 44.3 64.1 74.2
GPT-4 Language 60.5 86.5 89.4 60.2 75.5 93.4 50.6 72.4 88.3
GPT-4-vision Multimodal 58.5 84.4 86.1 57.5 70.7 90.1 48.5 69.3 84.5
Llava Multimodal 50.4 71.1 77.5 52.2 67.7 79.2 43.1 66.9 78.1
MuTabNet Multimodal 57.7 83.2 85.8 56.9 70.1 88.6 47.3 68.6 82.3
Revilio Neurosymbolic 67.4 91.3 98.8 66.4 83.8 97.7 55.2 79.2 95.0

50 10K 50K 100K
Rows in Table Sample (%)

40

50

60

70

80

To
p-

3 
Ex

ec
ut

io
n 

M
at

ch

Revilio CodeT5+ GPT-4V Symbolic

Ta
bl

e 
M

at
ch

 (%
)

Figure 3: Table match for Revilio and best baselines for each

category, across all benchmarks for increasing table sizes.

Revilio outperforms all baselines with the performance

differential being much more significant in larger tables.

symbolic systems are great at numerical and data summary tables,
since these have a clear pattern, but these techniques fail to gener-
alize to semantic tables as they do not have semantic knowledge.
Fine-tuned systems like CodeT5+ and CodeLlama suffer from over-
specialization, where they split columns and also have inconsistent
values in each row. Furthermore, these adapt very poorly to tables
with blank values as they tend to hallucinate values. Vision based
and multi-modal systems handle empty values and other visual and
structural semantics much better due to their additional modality
however these struggle to generalize to larger tables.

6.2 Large Tables

A big gap in table parsing systems has been the limitations with
the size of tables. Language models are constrained by token limits
and vision models are constrained by image sizes. This is further
compounded by the cost of larger token counts. Furthermore, even
with ever increasing context lengths, it becomes more difficult for
these models to maintain performance with increasing table sizes.

Figure 3 shows the top-1 table match performance of Revilio
and the best baseline from each category (CodeT5+, GPT4-V and
TableLabs) against increasing table sizes. We find that Revilio
outperforms baselines across all table sizes, but the performance
differential keeps increasing as the table sizes go from 50 rows
(+5.1%) to 10K rows (+) and to 100K rows (+25.3%). Further, the

Table 3: Table match for condition learning for different

ablations of Revilio. Each ablated component is denoted by

‘–’. Sketch generation has the highest impact to performance.

System Wiki PubTabNet CleverCSV

Revilio – header detection 62.1% 61.0% 50.9%
Revilio – sketch generation 57.5% 56.2% 46.1%
Revilio – ranker 64.8% 60.2% 53.5%
Revilio – beam search 60.3% 58.5% 49.3%
Revilio 67.4% 66.4% 55.0%

average cost for a 10K row table with GPT-4-vision is over 1$ per
table, while Revilio is much cheaper and inexpensive due to its
short LLM call and symbolic reconstruction engine.

6.3 Design Decisions

We analyze the impact of various components of Revilio. Table 3
shows the top-1 table match over all benchmarks for Revilio and
ablated versions created by removing components.We ablate header
detection, by always treating the first row as the only header row in
the table, sketch generation by not generating the initial sketch via
LLM and directly using the symbolic system without signals from
the initial sketch, ranker by only using row embedding similarity
directly, and beam search by performing a greedy search instead.

We find that all components contribute to its performance, with
sketch generation having the biggest impact on performance (–
10.1%) followed by beam search (–7.8%). This is expected, since the
sketch requires semantic knowledge which is provided by the LLM
and leveraged by Revilio to extend the sketch to the full table.

7 CONCLUSION

We introduce Revilio, a neuro-symbolic system to reconstruct
tables without column boundaries. Revilio detects headers and
uses these to generate a table sketch using an LLM. Revilio then
does a guided search for the remaining rows to reconstruct the
table. We evaluate Revilio on a diverse set of benchmark datasets,
demonstrating significant improvements over existing table parsing
methods. Furthermore, all the components of Revilio contribute
to its overall performance. This work opens up future work in
designing neuro-symbolic systems for semantic tabular tasks.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Tabularis Revilio: Converting Text to Tables CIKM ’24, October 21–25, 2024, Boise, ID, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

REFERENCES

[1] Eiji Aramaki, Yasuhide Miura, Masatsugu Tonoike, Tomoko Ohkuma, Hiroshi
Mashuichi, and Kazuhiko Ohe. 2009. TEXT2TABLE: Medical Text Summarization
System Based on Named Entity Recognition and Modality Identification. In
Proceedings of the BioNLP 2009 Workshop, K. Bretonnel Cohen, Dina Demner-
Fushman, Sophia Ananiadou, John Pestian, Jun’ichi Tsujii, and Bonnie Webber
(Eds.). Association for Computational Linguistics, Boulder, Colorado, 185–192.
https://aclanthology.org/W09-1324

[2] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. 2013. Meth-
ods for exploring and mining tables on wikipedia. In Proceedings of the ACM

SIGKDD workshop on interactive data exploration and analytics. 18–26.
[3] Camelot. 2023. PDF Table Extraction for Humans. https://github.com/camelot-

dev/camelot. [Online; accessed May-2024].
[4] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. 2023. Pro-

gram of Thoughts Prompting: Disentangling Computation from Reasoning for
Numerical Reasoning Tasks. Transactions on Machine Learning Research (2023).

[5] Zewen Chi, Heyan Huang, Heng-Da Xu, Houjin Yu, Wanxuan Yin, and Xian-Ling
Mao. 2019. Complicated Table Structure Recognition. arXiv:1908.04729 [cs.IR]

[6] Waleed Farrukh, Antonio Foncubierta-Rodriguez, Anca-Nicoleta Ciubotaru,
Guillaume Jaume, Costas Bejas, Orcun Goksel, and Maria Gabrani. 2017. In-
terpreting Data from Scanned Tables. In 2017 14th IAPR International Con-

ference on Document Analysis and Recognition (ICDAR), Vol. 02. 5–6. https:
//doi.org/10.1109/ICDAR.2017.250

[7] Wolfgang Gatterbauer, Paul Bohunsky, Marcus Herzog, Bernhard Krüpl, and
Bernhard Pollak. 2007. Towards domain-independent information extraction
from web tables. In Proceedings of the 16th international conference on World Wide

Web. 71–80.
[8] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie

Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de
Rosa, Olli Saarikivi, et al. 2023. Textbooks are all you need. arXiv preprint

arXiv:2306.11644 (2023).
[9] Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek Srikumar. 2020. IN-

FOTABS: Inference on Tables as Semi-structured Data. arXiv:2005.06117 [cs.CL]
[10] Takaya Kawakatsu. 2024. Multi-Cell Decoder and Mutual Learning for Table

Structure and Character Recognition. arXiv preprint arXiv:2404.13268 (2024).
[11] Thomas Kieninger and Andreas R. Dengel. 1998. The T-Recs Table Recognition

and Analysis System. In International Workshop on Document Analysis Systems.
https://api.semanticscholar.org/CorpusID:38477730

[12] Raymond Li, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, LI Jia, Jenny Chim, Qian Liu, et al. 2023. Star-
Coder: may the source be with you! Transactions on Machine Learning Research

(2023).
[13] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. 2023. Improved Baselines

with Visual Instruction Tuning.
[14] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual In-

struction Tuning. In NeurIPS.
[15] OpenAI. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[16] Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani,

and ToddMillstein. 2018. FlashProfile: a framework for synthesizing data profiles.
Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1–28.

[17] Shubham Paliwal, Vishwanath D, Rohit Rahul, Monika Sharma, and Lovekesh Vig.
2020. TableNet: Deep Learning model for end-to-end Table detection and Tabular
data extraction from Scanned Document Images. arXiv:2001.01469 [cs.CV]

[18] P. Pyreddy and W. B. Croft. 1997. TINTI: A System for Retrieval in Text Tables

TITLE2:. Technical Report. USA.
[19] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks. arXiv:1908.10084 [cs.CL]
[20] Mohammad Mohsin Reza, Syed Saqib Bukhari, Martin Jenckel, and Andreas R.

Dengel. 2019. Table Localization and Segmentation using GAN and CNN. 2019
International Conference on Document Analysis and Recognition Workshops (IC-

DARW) 5 (2019), 152–157. https://api.semanticscholar.org/CorpusID:207950574
[21] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-

qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cris-
tian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. 2024. Code Llama: Open Foundation Models for
Code. arXiv:2308.12950 [cs.CL]

[22] Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas Dengel, and Sheraz Ahmed.
2017. DeepDeSRT: Deep Learning for Detection and Structure Recognition
of Tables in Document Images. In 2017 14th IAPR International Conference on

Document Analysis and Recognition (ICDAR), Vol. 01. 1162–1167. https://doi.org/
10.1109/ICDAR.2017.192

[23] Wonkyo Seo, Hyung Il Koo, and Nam Ik Cho. 2014. Junction-based table detec-
tion in camera-captured document images. International Journal on Document

Analysis and Recognition (IJDAR) 18 (2014), 47 – 57. https://api.semanticscholar.
org/CorpusID:254106700

[24] Brandon Smock, Rohith Pesala, and Robin Abraham. 2021. PubTables-
1M: Towards comprehensive table extraction from unstructured documents.
arXiv:2110.00061 [cs.LG]

[25] G. J. J. van den Burg, A. Nazábal, and C. Sutton. 2019. Wrangling Messy CSV
Files by Detecting Row and Type Patterns. Data Mining and Knowledge Discovery

33, 6 (2019), 1799–1820. https://doi.org/10.1007/s10618-019-00646-y
[26] JingdongWang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao,

Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao.
2020. Deep High-Resolution Representation Learning for Visual Recognition.
arXiv:1908.07919 [cs.CV]

[27] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and
Steven C. H. Hoi. 2023. CodeT5+: Open Code Large Language Models for Code
Understanding and Generation. arXiv:2305.07922 [cs.CL]

[28] Xueqing Wu, Jiacheng Zhang, and Hang Li. 2022. Text-to-Table: A New Way of
Information Extraction. arXiv:2109.02707 [cs.CL]

[29] Zilong Zhao, Robert Birke, and Lydia Chen. 2023. TabuLa: Harnessing Language
Models for Tabular Data Synthesis. arXiv:2310.12746 [cs.LG]

[30] Xu Zhong, Elaheh ShafieiBavani, and Antonio Jimeno Yepes. 2019. Image-based
table recognition: data, model, and evaluation. arXiv preprint arXiv:1911.10683
(2019).

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

5

https://aclanthology.org/W09-1324
https://github.com/camelot-dev/camelot
https://github.com/camelot-dev/camelot
https://arxiv.org/abs/1908.04729
https://doi.org/10.1109/ICDAR.2017.250
https://doi.org/10.1109/ICDAR.2017.250
https://arxiv.org/abs/2005.06117
https://api.semanticscholar.org/CorpusID:38477730
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2001.01469
https://arxiv.org/abs/1908.10084
https://api.semanticscholar.org/CorpusID:207950574
https://arxiv.org/abs/2308.12950
https://doi.org/10.1109/ICDAR.2017.192
https://doi.org/10.1109/ICDAR.2017.192
https://api.semanticscholar.org/CorpusID:254106700
https://api.semanticscholar.org/CorpusID:254106700
https://arxiv.org/abs/2110.00061
https://doi.org/10.1007/s10618-019-00646-y
https://arxiv.org/abs/1908.07919
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2109.02707
https://arxiv.org/abs/2310.12746

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Method
	4.1 Detecting headers
	4.2 Generating table sketches
	4.3 Enumerating candidate rows
	4.4 Ranking candidate rows
	4.5 Reconstructing tables
	4.6 Training data

	5 Evaluation Setup
	5.1 Benchmarks
	5.2 Metrics
	5.3 Baselines

	6 Results
	6.1 Performance
	6.2 Large Tables
	6.3 Design Decisions

	7 Conclusion
	References

