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Abstract

The Confidential Consortium Framework (CCF) is an open-
source platform for developing trustworthy and reliable cloud
applications. CCF powers Microsoft’s Azure Confidential
Ledger service and as such it is vital to build confidence in the
correctness of CCF’s design and implementation. This paper
reports our experiences applying smart casual verification
to validate the correctness of CCF’s novel distributed proto-
cols, focusing on its unique distributed consensus protocol
and its custom client consistency model. We use the term
smart casual verification to describe our hybrid approach,
which combines the rigor of formal specification and model
checking with the pragmatism of automated testing, in our
case binding the formal specification in TLA+ to the C++ im-
plementation. While traditional formal methods approaches
require substantial buy-in and are often one-off efforts by
domain experts, we have integrated our smart casual verifica-
tion approach into CCF’s CI pipeline, allowing contributors
to continuously validate CCF as it evolves. We describe the
challenges we faced in applying smart casual verification to
a complex existing codebase and how we overcame them to
find six subtle bugs in the design and implementation before
they could impact production.

1 Introduction
The Confidential Consortium Framework (CCF) [28, 61] is
a general-purpose platform for developing trustworthy and
highly available cloud applications. CCF combines central-
ized compute with decentralized trust, supporting deploy-
ment on untrusted cloud infrastructure and transparent gov-
ernance by mutually untrusted parties. CCF achieves this by
leveraging hardware-based trusted execution environments
(TEEs) for remotely verifiable confidentiality and code in-
tegrity [77,78], coupled with state machine replication backed
by an auditable immutable ledger for data integrity and high
availability. CCF is trusted in production by services such as
Azure Confidential Ledger [57], a tamper-proof append-only
ledger, which is utilized for storing critical data like digests

for integrity-protection with SQL Server [3,63] and Azure Im-
mutable Blob Storage [35]. Open source applications of CCF
range from code transparency [17,58] and mediation of multi-
party data sharing [43], to decentralized identity [59], privacy-
preserving ad auctions [62], and confidential storage [32, 56].
This paper summarizes our experience with verifying

the correctness guarantees of the distributed protocols in
CCF, a large-scale, production distributed system, using
TLA+ [45, 47]. We have five primary requirements that
guided our approach to verification:
(1) Verify high-level distributed safety properties. We

aim to check the correctness of our custom distributed
consensus protocol, including its dynamic reconfiguration
logic. CCF’s consensus logic, though based on Raft [74]
has been sufficiently modified such that it is now based
on an unproven algorithm. This is a common problem:
the Chubby authors [8] similarly note that the additional
requirements imposed by a real-world system over a vanilla
Paxos [46] implementation require significant changes.
Moreover, distributed consensus protocols are notoriously
hard to get right, and even well-known protocols, including
PBFT [9], Egalitarian Paxos [66], and Zyzzyva [39], as well
as the previously mentioned Raft and Chubby, have been
found to contain subtle bugs [1, 2, 4, 55, 72, 82, 90]. The
chosen verification strategy must therefore be able to check
properties across distributed nodes, handling asynchrony,
concurrency, and non-determinism in the order that events,
such as timeouts and message delivery, occur as well as
expected failures, like nodes crashing and message loss.
(2) Document and communicate the behavior of the

system. A formal specification can act as compact and unam-
biguous documentation of system behavior for potential users.
This gives developers and users clarity about the guarantees
they can expect and rely on. The existence of such a spec also
offers a succinct mechanism to communicate changes to these
guarantees. Due to resource constraints on early TEEs [14],
the consistency guarantees offered by CCF to clients can
be subtle, confusing users and paper reviewers alike. In fact,
even when consistency guarantees are seemingly simple, they



can still be famously difficult to reason about [36]. We thus
wish to formally define these guarantees, communicate them
clearly, and check that these hold, even as failures occur.

(3) Increased confidence in the implementation & design.
While many verification efforts focus solely on checking
the design via reference specs, we also wish to validate
that our concrete implementation corresponds to our specs.
If, in the future, there were to be variants or even multiple
implementations of CCF, we would like to verify that they
are functionally equivalent in key areas.
(4) Integrates with the existing codebase. We do not

wish, however, to rewrite CCF for the purpose of verification.
At the time of writing, the implementation is already
63 kLoC in C++. Our support for Intel SGX [14] (via
OpenEnclave SDK [19]) constrains us to C++. Moreover,
since the project started seven years ago, we have invested
significantly in adding functionality, improving performance,
and supporting new hardware (AMD SEV-SNP [31]). We
want our verification efforts to improve upon that existing
investment, rather than impose a fresh implementation.

(5) Pragmatic and evolves with the implementation over
time. CCF is an ongoing project which is continuously grow-
ing and evolving, with an average 16 pull requests merged
every week. Since 1.0, the first release to be deployed to
production, there have been four further major versions, with
minor versions and patches released every 11 days on average.
Any verification effort must thus be continuous, automatic,
and sufficiently lightweight to integrate into the existing CI
pipelines and software engineering workloads. The approach
should also be approachable and pragmatic such that anyone
contributing to the project can update the specs and debug
discrepancies between the implementation and specs.

1.1 Approach
Full formal verification of distributed systems has been suc-
cessfully applied in various research projects [21, 23, 24, 91],
for instance, by synthesizing an executable implementation
from a formally proven spec. Unfortunately, while formal
verification is a powerful tool, it requires a significant upfront
investment in time and expertise. We thus chose a different
approach. We already used traditional testing techniques
(casual verification), but wanted to augment them with an
approach that was more rigorous and complete. We thus
chose to adopt smart casual verification1, a pragmatic yet
systematic approach to verification that combines the rigor of
formal methods with the easy-of-use and flexibility of more
casual methods. We combine a rigorous TLA+ specification
which we tie to our existing production implementation using
trace validation.
We chose TLA+ for several reasons. TLA+ has been

successfully utilized to verify the design of a number of
1Smart casual refers to a style of dress that is neat and stylish, without

the expense and discomfort associated with formal attire such as a business
suit. Smart casual dress can easily be made more/less formal, for instance,
with the addition/removal of a blazer or tie. [18]

production distributed systems [7,68,81,85,92]. Most notably
for us, TLA+ has been used to describe both consistency
guarantees [22, 26, 86], and distributed consensus protocols,
namely Paxos [46,87] and Raft [73]. The existence of the last
of these was a significant factor in our decision, as it allowed
us to start from a complete spec of Raft and adapt it to our
protocol’s specificities, rather than from scratch. Finally, the
maturity of TLA+ and its tools [15, 37, 42, 93], the extensive
examples available [51], and its active community [12]
assured us of ongoing support and resources. Our increased
investment in TLA+, following initial successes, was
supported by the availability of a recurring, two-day TLA+

workshop [40] to train our team.
However, achieving our goals is not simply a matter of

writing some high-level specs as this would not provide any
guarantees about the production code itself. We bridged this
gap by applying trace validation to validate implementation
traces against the formal specs. In this paper, we describe our
experience applying smart casual verification to CCF using
TLA+, focusing on the challenges we faced and how we over-
came them. First, we present our TLA+ specs of CCF from
the perspective of its nodes (§4) and its clients (§5). Next, we
present how we validate traces generated from the CCF im-
plementation against our TLA+ specs (§6). Finally, we reflect
on our experiences applying smart casual verification to CCF
(§7), documenting the six bugs we prevented, and the lessons
learned along the way (§8). Both our specifications and
implementation are open source and actively maintained [64].

2 CCF
This section provides an overview of the distributed archi-
tecture of CCF, focusing on the components that are relevant
to our verification efforts. Interested readers can find a more
comprehensive description of CCF in [28].

At its core, CCF uses state-machine-replication (SMR) [79]
and trusted execution to offer the abstraction of an always
available application that remains robust to attacks, including
from the nodes themselves. CCF assumes that neither node
operators nor other applications running on the hardware
can be trusted. The host, the OS, the hypervisor, the network
and persistent storage are all assumed to be corruptible.
Intuitively, SMR provides clients with the illusion that there
is a single server that will, sequentially, execute individual
application requests. SMR achieves this by replicating
application logic on a set of nodes, a fraction of which may
fail. The system maintains consistency across nodes by
deciding on a totally ordered transaction log. Formally, SMR
guarantees the following (def. from [74, Fig. 3]):

Property 1 (State Machine Safety) If a node has applied a
log entry at a given index to its state machine, no other node
will ever apply a different log entry for the same index.

Most SMR systems further ensure that the agreed-upon set of
transactions will be applied in a way that guarantees lineariz-
ability [25] (or strict serializability): the resulting execution



will be equivalent (equal read and write sets) to an execution in
which each transaction was executed in sequence, and in an or-
der that matches the order in which they were issued. Though
appealing, strict serializability can be costly to enforce. SMR
systems thus often relax this guarantee to read-only transac-
tions specifically. They offer only serializability and allow
read-only transactions to read stale state. CCF is no different:
it offers strict serializability for committed read-write transac-
tions and serializability for committed read-only transactions.
Serializability is a gold standard in system design, but is

fairly pessimistic: a client must wait until a transaction has
committed to learn any information about that transaction
and its effects. This design was unfortunately at odds with
CCF’s initial SGX-related design constraint, which precluded
keeping potentially large amounts of application-defined
responses in the limited amount of in-enclave memory (128
MB). CCF thus provides configuration settings that clients
can use to achieve good performance. They are useful in
practice, but make it more challenging to formalize the
consistency guarantees that users can expect.
In CCF, the leader node executes transactions as soon as

they are received, and prior to them being replicated to other
nodes. The leader then directly replies to the client with the
result of the transaction without waiting for confirmation
that the request has been replicated. As a consequence, a
leader failure can cause the transaction to fail, even after a
response has been returned to the client. Clients can then, on
a per-response basis, decide whether they wish to wait for the
transaction to be committed before proceeding or not. Either
way, this cuts down the number of open client connections and
pending responses, reducing memory footprint significantly.
Transactions in CCF can be in one of the following client-

observable states: COMMITTED, PENDING, or INVALID.
A transaction is COMMITTED if it has been replicated by
the leader to a majority of nodes in its current term. A
transaction is PENDING if it has been executed but not yet
replicated. If the leader fails before replication is complete,
CCF will mark the transaction as INVALID.

PENDING transactions, can eventually become INVALID, but
cannot return arbitrary results. They provide a guarantee akin
to fork-linearizability [52] (or fork sequential consistency [6]
when considering read-only transactions). A pending
transaction observes a prefix of committed transactions and
a sequence of pending transactions. Leader failures may
cause the system to fork and generate multiple (locally
linearizable) sequences of pending transactions. Only one
forked sequence will eventually commit, thus ensuring that
the set of committed transactions remains linearizable. All
other sequences will be marked as invalid. In other words,
if a pending transaction commits, the result it returned to
clients is guaranteed to have been linearizable.
CCF makes extensive use of timestamps to help clients

understand when transactions transition from PENDING to
COMMITTED or INVALID. Each transaction is associated with

a unique transaction identifier, consisting of a lexicographi-
cally ordered pair ⟨t .i⟩ of term t and log index i . The client
can use this ID to quickly understand the system state. CCF,
for instance, enforces timestamp ordering: if txid < txid ′ and
the two transactions are committed, then the transaction with
txid executed before txid ′. Clients can further use this ID to
learn the state of not only this transaction, but its ancestors.
For instance, CCF guarantees that:

Property 2 (Ancestor Commit) If ⟨t .i⟩ is committed then
any transaction ⟨t .j ⟩ where j ≤ i is also committed.

Ensuring that CCF does indeed provide these specific guaran-
tees requires care and adapting existing linearizability specs,
which only reason about committed operations. They support
neither reasoning about forks nor timestamp properties.
To tolerate node crashes and network asynchrony, SMR

requires a crash fault-tolerant distributed consensus protocol
or equivalent [10], such as Multi-Paxos [46] or Raft [74],
to agree on a total-ordered transaction log. While the
terminology varies, such protocols are typically leader-based
and operate by electing one of the nodes to be the leader
while the other nodes are followers. The leader is responsible
for proposing new transactions for the log and the followers
are responsible for replicating them. The leader will only
consider a transaction to be committed once a strict majority
of nodes have replicated the transaction at the same position
in the log. When the leader fails, a new leader is elected
from the remaining nodes and the protocol continues. We
use terms to distinguish between the different periods of
leadership and there should be at most one leader per term.

It is the responsibility of the leader-based consensus protocol
to ensure that the new leader has knowledge of all previously
committed transactions. In Raft, this is achieved by requiring
followers to become candidates (transition 1⃝ in Fig. 1) be-
fore they can become leaders. A candidate will only become a
leader (transition 2⃝ in Fig. 1) if it can obtain a strict majority
of votes from the other nodes. A node will only vote for a can-
didate if it has not already voted in the candidate’s term and
the candidate’s log is at least as up-to-date as its own log. The
former ensures that at most one leader can be elected per term
and the latter ensures that the new leader has knowledge of
all committed transactions from previous terms. A more com-
prehensive description of Raft can be found elsewhere [74].

2.1 What makes CCF’s distributed consensus
protocol interesting?

CCF uses a custom consensus protocol, which evolved
from Raft. Now we will outline some of the ways that the
consensus protocol in CCF today differs from the description
of the Raft protocol given the original paper. While some of
these modifications may seem small, the combined effect is
significant and the interactions between them have proven
complex and subtle, leading to the bugs we later describe (§7).



Signature transactions Offline log integrity and trans-
action provenance are key requirements for CCF, neither of
which is provided by Raft, nor by the AEAD mechanism
used inside the CCF network. The offline guarantees crucially
enable external audit, and disaster recovery. To implement
them efficiently, CCF utilizes signature transactions, which
include the root of a Merkle tree [54] over the whole log thus
far, signed by the current leader. A transaction in the log is
not considered committed unless a subsequent signature has
been committed.
Messaging not RPCs CCF does not use RPCs to commu-

nicate between nodes, and instead it uses a uni-directional
messaging layer. When a node receives a response to a
message it has sent, it does not know which message the
response corresponds to as we do not assume reliable
or in-order delivery. Raft uses two main message types:
APPENDENTRIES (AE) and REQUESTVOTE (RV). AE
messages are used to replicate transactions and RV messages
are used to elect a leader. In the case of RVs, the term in the
response is sufficient to handle the reply. In the case of AEs,
the response in CCF contains an additional field, LASTINDEX.
For positive responses to AE messages (AE-ACK), this is
the index of the last transaction in the follower’s log.

Optimistic acknowledgement In Raft, the leader replicates
transactions to its followers using AE requests. The leader
maintains a NEXTINDEX for each node to record which log
entry to send next to the follower. This index is updated when
a follower responds positively to an AE request (AE-ACK). If
a leader receives a new transaction from a client, before it has
received a response from a follower, it must either (1) wait for
the reply for the previous transaction, potentially impacting
liveness and performance as AEs cannot be pipelined, or (2)
send both transactions in the next AE request, even though
the follower is likely to already have the first transaction.
CCF avoids this problem by allowing the leader to update
the index, known in CCF as the SENTINDEX, as soon the
AE message is sent. This therefore means that if the leader
receives a negative response to its AE request (AE-NACK),
it might need to rollback the SENTINDEX.
Express node catch up AE messages include a previous

log index and term, which allows a follower to determine if it
diverged from the leader. If a follower does not have the previ-
ous log index and term, either because it does not have, or has
a different transaction at that index, it then responds with an
AE-NACK. CCF uses an express catch up mechanism, where
a leader makes a conservative estimate of how far behind a
follower is, and sends a batch of transactions to the follower.

Partition leader step down A known limitation of the base
Raft protocol is that partial/asymmetric network partitions
can cause a loss of liveness [27, 33]. For instance, if a leader
can no longer make progress because it cannot receive
messages from the other nodes, it continues to send AE
heartbeats to followers, preventing them from timing out
and from electing a new leader who can make progress.
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Figure 1: State transitions for CCF’s consensus protocol. Solid
boxes and lines show Raft’s original states and transitions, CCF’s
additional states and transitions are shown with dashed lines.

CCF implements a known extension [71, pg. 69] to the Raft
protocol, referred to as CheckQuorum, where a leader steps
down if it does not hear back from a quorum of nodes within
a specified time period (transition 3⃝ in Fig. 1).

Bootstrapping to retirement Reconfiguration is the process
by which the set of nodes participating in consensus can be
changed. Raft support two reconfiguration protocols: joint
consensus, described in the original paper [74], and single-
server reconfiguration, subsequently described in [71]. CCF’s
reconfiguration protocol is more similar to the former. Re-
configurations are recorded in CCF’s log with configuration
transactions, and are therefore ordered in the same total order.
Logs always begin with an initial singleton configuration
transaction followed by a signature transaction. To change
the configuration, the leader proposes a new configuration
transaction specifying the new set of nodes, which may be dif-
ferent in cardinality to the current set of nodes and may or may
not be disjoint. To commit this transaction, the leader must
obtain a quorum of AE-ACKs from both the previous and new
configurations. Once the transaction is committed, the leader
no longer needs quorum agreement from the previous config-
uration. If a node has been removed from the configuration,
we refer to it as retiring. In order to complete its retirement
and permanently switch off the node, a retirement transaction
must be committed to ensure that any future leader will know
that the reconfiguration which removed the node has been
committed, and thus the node will never be needed. CCF also
adds a message to the protocol, ProposeVote which is utilized
by a retiring leader to nominate a successor, fast-tracking the
usual leader election process (transition 4⃝ in Fig. 1).

3 Primer on TLA+

TLA+ [45, 47] is a formal modeling language widely used
to verify concurrent and distributed systems. It is easy to
learn and use, as well as agnostic about system frameworks
or implementation languages.
TLA+ is a variant of linear temporal time logic with only

two operators, Always (2) and Eventually (⋄). A system
is defined by a set of behaviors, each a sequence of pairs
of states called actions, beginning at one of the system’s
initial states. A state is an assignment of values to variables.



Syntactically, TLA+ describes a system’s state machine using
a canonical (temporal) formula Init∧2[Next ]vars∧L. Here,
Init is a predicate defining the system’s set of initial states.
The system’s next-state relation Next is a first-order logic
formula that is usually decomposed into a disjunct of actions
which relates the values of the variables in the current state to
the ones in the successor state. CHECKQUORUM (Listing 3),
for instance, states that a node i can abdicate as a leader and
become a follower; we change the value of the variable role to
Follower in the successor state, while the values of the other
variables remain unchanged.2 The tuple, vars , represents the
spec’s variables, and [Next ]vars stipulates that either Next
is true, or the variable in vars do not change. This asserts
that TLA+ specs are stuttering-insensitive, allowing a spec
to always be refined by a more detailed, low-level one. The
optional formula L is used to assert fairness, i.e., constraints
on the system’s behavior that ensure that certain actions
eventually occur. Composition of actions allows us to change
the grain of atomicity by defining more coarse-grained
behaviors [47, §7.3]. Concretely, the composition A·B states
that the two actions happen atomically; the intermediate state
between A and B is not observable.

We also state desired safety (something bad never happens)
and liveness (something good eventually happens) properties
in TLA+. For example, the safety properties LOGINV, AP-
PENDONLYPROP, and MONOLOGINV (Listing 3, described
in §4) assert properties of the log. Properties are checked and
verified using, random state space exploration (simulation),
model checking, or theorem proving. TLC [93], an explicit-
state model checker, verifies that a finite model of a spec
satisfies its properties by enumerating all reachable states.
A symbolic model-checker [37] is especially well-suited
for the verification of inductive invariants of finite systems.
The TLA+ Proof System [15, 88] mechanically verifies a
deductive proof of the properties of an infinite system. These
tools complement each other, enabling a combination of
model-checking and deductive proofs to verify specs. This
approach allows for varying levels of verification depth,
from push-button model checking to fully mechanized safety
and liveness proofs [38]. Our companion paper [11, §2.1]
provides a more detailed summary of TLA+.

4 Distributed Consensus Specification
Fig. 2 summarizes our consensus verification architecture.
The consensus specification, shown as 1⃝ in Fig. 2, consists
of 17 actions to describe the transitions over 13 variables.
The first 12 variables are local and track consensus state
(CURRENTTERM, LOG, COMMITINDEX, . . . ). The last
variable instead tracks the set of in-transit messages, allowing
support for different network abstractions (ordered/unordered
delivery, etc.) and is shown as 2⃝ in Fig. 2. Each action mod-
els a node taking a single step within the protocol, updating its

2The value of the variable role is a mapping from all node identifiers to
their roles such as leader, follower, and candidate.
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Figure 2: Components of our verification architecture for consensus

CheckQuorum(i) ∆

=
∧role[i ]=Leader
∧role ′=[role EXCEPT ! [i ]=Follower ]
∧UNCHANGED ⟨currentTerm,log ,votedFor ,...⟩

LogInv ∆

= ∀i ,j ∈Nodes :
∨IsPrefix (Committed(i),Committed(j ))
∨IsPrefix (Committed(j ),Committed(i))

AppendOnlyProp ∆

=
2[∀i ∈Nodes :
IsPrefix (Committed(i),Committed(i)′)]vars

MonoLogInv ∆

= ∀i ∈Nodes : log [i ] ̸=⟨⟩⇒
∀k ∈ 1 ..Len(log [i ])−1:
∨log [i ][k ].term= log [i ][k+1].term
∨ ∧log [i ][k ].term< log [i ][k+1].term

∧log [i ][k ].contentType=Signature
Listing 3: Excerpt of our consensus spec.

local state and optionally the collection of in-transit messages,
(i.e. CHECKQUORUM in Listing 3). Actions can either be
initiated from a message receipt or by a node itself. Actions
in the latter class include adding a signature transaction,
stepping up as a candidate or stepping down as a leader. Such
actions are always enabled, to model the fact that we make no
assumptions about clock synchrony; each node’s opinion of
the progression of time is independent. Later we discuss how
action-weighted simulation enabled us to find bugs in the
prototype despite the state space explosion inherent with such
an approach. The spec is parameterized by the set of nodes
available in the service. The initial states of the spec include
every non-empty subset of nodes in the initial configuration
with any node in that initial configuration as an initial leader.

Our key correctness property is State Machine Safety
(Property 1) which we check with invariant LOGINV and
action property APPENDONLYPROP (Listing 3). LOGINV
states that all pairs of committed logs must be consistent and
APPENDONLYPROP states that each node can only extend its
committed log. LOGINV checks for safety violations across
nodes (in space) and APPENDONLYPROP checks for safety
violations within a node (in time). We also checked a further
27 invariants/properties to ensure the correctness of our con-
sensus protocol and of our understanding (see [64]). One such
example is MONOLOGINV (Listing 3), which is a stronger



variant of the property that log terms are monotonically in-
creasing which we depend upon extensively. More concretely,
MONOLOGINV states that terms in the log can only increase
after a signature and remains the same otherwise.
Our consensus spec is unbounded, there is always the

possibility of a new transaction being proposed or a timeout
triggering a new election. To exhaustively model check our
spec, we extend our consensus spec, shown as 3⃝ in Fig. 2, to
restrict the state space by adding additional constraints to the
actions limiting the max term, number of client requests, and
the sequence of reconfigurations. We found exhaustive model
checking too time-consuming to run with all but the strongest
state constraints in our CI pipeline, particularly after the spec
was updated to describe reconfiguration accurately (discussed
further in §8). We therefore developed an extension to our
spec for simulation as a lightweight alternative to exhaustive
state exploration. Our simulation spec, shown as 4⃝ in Fig. 2,
takes a time quota and explores as many behaviors as possible,
up to a given depth, within that time. To expand the coverage
of simulation, specifically to explore behaviors where the sys-
tem exhibits more forward progress, we manually weighted
failure actions to reduce the likelihood of them being chosen.
We also implemented Q-Learning proposed by [67] in TLC
to automatically weight actions to increase coverage of
simulation. However, we were unable to find the right set of
variables as input to Q-Learning’s state hash function H that
achieved better coverage than manual weighting.

5 Client Consistency Specification
Following our success with the consensus spec and a
discussion regarding the linearizability of read-only trans-
actions [60], we decided to formalize the possible externally
visible behaviors of a CCF service in TLA+ to better
understand the guarantees provided. Our aim with this spec
was to keep it as high-level as possible, focusing solely on
the possible safe interactions between clients and the service.
By design this spec does not model the internal details of
the service itself such as the state of individual nodes or the
messages exchanged between nodes as such low level details
are already modeled by our consensus spec.

Our consistency spec uses just two variables. The first is HIS-
TORY, an append-only sequence which records the messages
exchanges between clients and the services. Five messages
are supported, read-only/read-write transaction requests and
responses as well as a transaction status messages. Note
that since we are focused on safety, we omit messages that
cannot impact correctness but can increase the state space, for
instance, we do not track when a client requested a transaction
status, nor do we track status responses of PENDING. In
order to stress the consistency guarantees, we modelled an
application where all transactions operate on a simple value,
reading the current value, appending a new identifier to
the value and writing back the new value. All transactions
conflict and each transaction observes every transaction that

PrevCommittedInv ∆

=
∀i ,j ∈{x ∈ DOMAIN history :history [x ].type=Status} :
∧history [i ].status=Committed
∧history [i ].term=history [j ].term
∧history [j ].index ≤history [i ].index
⇒history [j ].status=Committed

ObservedRoInv ∆

=
∀i ∈RwResCommitIndexes :
∀j ∈RoReqCommitIndexes :
∀k ∈RoResCommitIndexes :
history [k ].tx =history [j ].tx∧i< j
⇒Contains(history [k ].observed ,history [i ].tx )

Listing 4: Two properties over histories checked by our consistency
spec.

has been executed before it. To succinctly record the current
state of the service we use LOGBRANCHES, an append-only
two-dimensional sequence, where the sequence at index i
corresponds with the local log of the leader of term i if such
a node still exists. This representation does not therefore
need to be parameterized over the number of nodes in the
service and usefully models the fact that there can be multiple
leaders at one time (although they will have different terms).

To populate these histories, we defined a set of actions to
describe how the history can be extended depending on the
log branches. Initially, the history and log branches are empty.
The possible actions are: append a transaction request or
response to the history, execute a transaction by appending it
to any log branches, append a transaction status to the history,
or starting a new log branch to simulate leader election. Note
that when a transaction is executed, it can be appended to any
log branch, this simulates the fact that a transaction can be
handled by any node that believes itself to be the leader, even
if it is not the latest leader. At any time, a new log branch
can be started. This new log branch can be any prefix of any
existing log branches, provided it includes the last committed
transaction. Having established an approach to generate
histories, we formalized in TLA+ the properties that we
expect to hold over these histories and check them with TLC.
For instance, PREVCOMMITTEDINV (Listings 4) formalizes
Property 2 by stating that for any pair of transaction status
responses from the same term, if the one with the greater (or
equal) index is COMMITTED, then the other status response
must also be COMMITTED (as PENDING states are not
modelled). OBSERVEDROINV (Listings 4) states that if a
committed read-write transaction received an initial response
(event i ), before a committed read-only transaction was
started (event j ) then the read-only transaction response
(event k ) must observe the read-write transaction. Note
that RWRESCOMMITINDEXES is the set of indexes for all
read-write transaction response events, filtered to include only
transactions that were subsequently committed. ROREQCOM-
MITINDEXES and RORESCOMMITINDEXES are similarly
defined for read-only transaction requests and responses.



6 Trace Validation
Conceptually, trace validation checks that every observed
implementation trace matches a behavior of the system’s
high-level specification. We must therefore first collect imple-
mentation traces before validating them against our high-level
consensus TLA+ specification. A more formal discussion
of trace validation, including insights from applying trace
validation to systems other than CCF, is provided in [11].

6.1 Trace Collection
When we began the trace validation work, CCF already had
extensive unit, functional, and end-to-end testing. Unit testing
of CCF’s consensus layer consisted of approximately 1.6
kLoC. End-to-end testing covered complex scenarios such as
reconfigurations, node failover, and network partitions, spread
over more than 2 kLoC of Python tests and infrastructure code.
Consensus functional testing was done through a scenario
driver, shown as 5⃝ in Fig. 2, that serialized execution de-
terministically across nodes, and isolated the consensus layer
by mocking unrelated CCF components, such as governance,
networking etc. This driver allowed the injection of network
faults such as partitions, delays, reorderings, and message
loss, and provides observability. Core correctness invariants
and properties were checked at designated execution steps
in 13 manually written scenario tests exercising replication,
election, and reconfiguration under controlled fault conditions.
Additionally, an initial prototype to fuzz-test the consensus
layer through generated inputs and faults was developed but
ultimately abandoned since it failed to generate interesting
behaviors that would achieve satisfactory coverage.

The driver allows us to replace the node’s wall clocks with a
single global clock. If this global clock had not been possible,
a distributed clock, such as a Lamport or vector clock, would
have also provided the necessary event ordering to establish
the happen-before relationships. However, a distributed clock
would have required changes to the network message format.
We enhanced system observability by incorporating an ad-
ditional 15 log statements to capture consistent system states
at well-defined, side-effect-free linearization points including
(i) the sending and receipt of network messages, and (ii)
transitions in a node’s high-level state, such as moving from
candidate to leader3. It is important to note that the driver logs
only those values that remain constant in space. For instance,
the driver records the length of the logs but not the log entries
themselves, which would become impractically large. Still,
the logging is disabled at compile time for production builds,
and thus does not impact CCF’s performance.

Before validation, implementation traces, shown as 6⃝ in
Fig. 2, are preprocessed to exclude and de-duplicate events
from the initial bootstrapping phase of a CCF network, as
this phase is not modeled in our consensus spec.

3State changes are logged immediately after acquiring a global lock.

VARIABLE ln

IsSendAppendEntries ∆

=
Enablement conditions on current state.
∧IsEvent(ln,“sndAE”)
∧commitIndex [ln.snd ]= ln.commit idx
∧...

High-level spec actions.
∧AppendEntries(ln.snd ,ln.rcv)

Assertions on successor states.
∧∃m ∈Network !Messages ′ :
∧Network !OneMoreMessage(m)
∧IsAppendEntriesRequest(m,ln)
∧...

IsRcvAppendEntries ∆

=
Enablement conditions on current state.
∧IsEvent(ln,“recvAE”) ∧ ...

High-level spec actions.
∧∃m ∈Network !MessagesToFrom(ln.rcv ,ln.snd) :
IsAppendEntriesRequest(m,ln)∧
∨HandleAppendEntriesReq(ln.rcv ,ln.snd ,m)

Impl optimization: Piggyback term on AppendEntries.
∨UpdateTerm(ln.rcv ,ln.snd ,m)·

HandleAppendEntriesReq(ln.rcv ,ln.snd ,m)
∨...
Assertions on successor states.
∧...

IsSendAppendEntriesResponse ∆

=
Enablement conditions on current and successor state.
∧IsEvent(ln,“sndAER”) ∧ ...

High-level spec actions.
∧UNCHANGED vars

IsFault ∆

= ∃s ∈MultiPowerset(network) :
network ′=s∧UNCHANGED AllVarsExceptNetwork

Spec ∆

= Init∧2[IsFault ·Next ]⟨vars,ln⟩
Listing 5: Excerpt of the Trace spec for trace validation.

6.2 Consensus Trace Validation
Trace validation, shown as 7⃝ in Fig. 2, ensures that an im-
plementation trace is consistent with the specification. More
formally, it verifies whether the set of behaviors T , which
encapsulates the values and events from a trace, intersects
with the set of behaviors S derived from the high-level spec,
thereby checking that T ∩S ̸= /0. While TLC can construct
S , it cannot directly generate T from the trace. Thus, we
write a new TLA+ spec, Trace, reusing many actions of the
definitions from the high-level spec. However, the actions
are only enabled iff the current event in the trace matches an
action. Likewise, the actions are parameterized by the values
taken from the trace, effectively constraining successor states.

Consider for example IsSendAppendEntries (Listing 5). This
action is enabled iff the current line of the trace, denoted by ln,



is a sndAE event, and the commitIndex of the sending node (de-
noted by ln.snd) matches the trace’s commit idx. The action
then reuses the definition of the AppendEntries action from
the consensus spec, parameterized by ln.snd and ln.rcv from
the trace. Given that the number of entries in the high-level
action AppendEntries is chosen nondeterministically within
defined limits, IsSendAppendEntries determines the successor
state by asserting the existence of an additional AppendEn-
triesRequest in the network with a matching number of entries.
Note that while the consensus spec modeled the network as
a set of messages, thereby leaving the variable upon a resend
of an AppendEntriesRequest unchanged, Trace redefines the
value of the variable to be a multi-set. This allowed the spec
to account for the addition of messages in the network, even
during resend events. Subsequently, this approach to address
the impedance mismatch was expanded to verify, with TLC,
the impact of various message delivery guarantees, such as
ordering, duplication, and other message loss patterns.

6.2.1 Aligning Grains Of Atomicity
The granularity of some actions in the consensus spec did

not align with the granularity of events in the traces. The
action IsRcvAppendEntries outlines the alignment of such dif-
ferent grains of atomicity. Like many Raft implementations,
CCF minimize network round trips by piggybacking term
updates on AppendEntries messages. This optimization was
not reflected in the consensus spec. Instead, the spec modeled
term updates with an action that increases the term upon a
pending AppendEntriesRequest, while leaving the variable
unchanged. In effect, a term update might nondeterministi-
cally occur before the receipt of the AppendEntriesRequest.
To reconcile these different grains of atomicity, we composed
the actions UpdateTerm and HandleAppendEntriesReq,
allowing them to occur atomically, i.e., in a single action.
Another important application of action composition ad-

dresses events that are omitted from the trace, such as losing
messages. Although our consensus specs explicitly modeled
losing messages, message loss was not recorded in the trace.
Therefore, to account for faults at any step of a behavior, we
composed an IsFault action with Trace’s next-state relation.
Conversely, aligning a single high-level action with multiple
implementation events is addressed by introducing finite
stuttering that does not change the high-level variables. For
instance, the action IsSendAppendEntriesResponse is enabled
iff ln is a sndAER event. However, it leaves the high-level
variables unchanged.

6.2.2 Deriving Consensus Trace Validation
We began to derive Trace by mapping the trace of a straight-

forward happy-path test line by line to the consensus spec. To
proactively catch discrepancies, we added as many assertions
as possible to Trace. Whenever we discovered discrepancies,
we investigated them by examining relevant sections of
the implementation’s source code. Adding cross-references
between the implementation and the spec proved useful,

particularly when the terminology—–such as variable and
function names—–differed between the two. We further
debugged the Trace using the TLA+ debugger [41] in tandem
with implementation debugging. Upon detecting discrep-
ancies, we corrected either the implementation or the spec,
subsequently rerunning verification on the revised consensus
spec, and executing tests on the updated implementation.

6.3 Debugging Discrepancies
Bogus logging, incorrect mappings from implementation
to spec state, or true discrepancies between the spec and the
implementation, resulted in T ∩S = /0, i.e., the verdict that
a trace is invalid. In either case, contrary to ordinary model
checking, a failure to validate a trace had no counterexample.
However, the behaviors within T helped explain why a trace
failed to validate. We typically compared the final state of the
longest behaviors and the corresponding line in the trace to
identify the source of the mismatch. The TLA+ debugger was
instrumental in this process, as it allowed us to step through
the evaluation of formulas and compare variables at the cur-
rent and successor states with the trace values. To determine if
Trace is overly restrictive, we implemented a new unsatisfied
breakpoint. It triggers for each state in T that is found to be
unreachable. Furthermore, T can be visualized as a graph that
not only includes all unreachable states but also references
the subformula responsible for each state being unreachable.

6.4 Scalability of Trace Validation
The cardinality of T , the set of potential system behaviors,
can become prohibitively large due to nondeterminism
resulting from incomplete traces. Recognizing that it suffices
to find a single behavior in the intersection of T and S to
check the validity of a trace, we implemented depth-first
search (DFS) in TLC. This method mitigated the issue of
state-space explosion, making trace validation orders of
magnitude faster compared to enumerating all behaviors with
breadth-first search (BFS). For instance, validating a trace
against our consistency spec started to take less than a second
using DFS, compared to about an hour with BFS.

6.5 Trace Validation Effort
The enhancements to the test driver and the addition of
detailed logging were completed in approximately one day.
The effort to derive a version of the Trace spec that validated
the majority of the traces required approximately two
engineer-months, spread over four months. The primary tasks
included enhancing the TLC model checker to support trace
validation, which involved implementing support for action
composition, DFS, improved debugging support, and visualiz-
ing the state graph. The second major tasks was diagnosing if
the root cause of discrepancies arose from bugs in the reverse-
engineered spec, the implementation, or both. This frequently
required consulting the original Raft paper and discussions
with the CCF experts to elucidate differences between Raft



and CCF. In this context, the shared vocabulary developed dur-
ing the TLA+ workshops, along with TLA+ counterexamples
from trace validation, simulation, and model checking proved
invaluable. The third major task involved finding modeling
patterns to bridge impedance mismatches between the high-
level TLA+ design and low-level implementation. Writing the
400 LoC Trace spec itself was a minor task. The introduction
of trace validation resulted in 88 fine-grained commits to the
Trace spec, while the consensus spec underwent 107 changes.

The discovery of a serious safety bug through trace
validation (Commit advance on AE-NACK §7) led to
increased investment in trace validation. Substantial changes
were made to the consensus spec to accurately reflect the
implementation. For example, the bootstrapping of a CCF
network was modeled with greater fidelity. Additionally, the
spec was expanded to include all node states, especially those
related to node retirement. These comprehensive changes
necessitated substantial revisions to the test driver and the
development of new tests. This uncovered a serious liveness
bug (Premature node retirement §7). Once the consensus spec
was validated to accurately mirror the implementation, we
transitioned to a spec-driven development, wherein the spec
served as the source of truth. Notably, this phase included
the integration of the ProposeVote messages (described in
§4; used for transition 4⃝ in Fig. 1).
Later, trace validation was also applied to the consistency

spec, requiring significantly less effort. The consistency spec
was considerably less complex, written with the implementa-
tion in mind, and we had already gained experience validating
our consensus spec. Moreover, TLC had already been
enhanced to support trace validation. No instrumentation
of the CCF source code was required for consistency trace
validation. Instead, the implementation state was observed by
making calls to the system’s REST API. As with consensus
specification, we had to address impedance mismatches. For
instance, the consistency spec assumed knowledge of the
transactions of all clients, whereas a trace is limited to the
transactions of a single client. This required defining a TLA+
action in the specification to reconstruct all transactions based
on observed transaction IDs. Yet, applying trace validation
to consistency was almost entirely carried out by the CCF
experts, with minimal involvement from the formal methods
expert. The effort required to apply trace validation to the
consistency spec was approximately one engineer-week,
spread over a two-week period.4

7 Results
This section summarizes the core results of our efforts,
focusing on state coverage as well as the bugs found. Table 1
compares the sizes of the TLA+ specs against the implemen-
tation and test infra, to give a sense of scale and illustrate the
level of detail necessary to execute trace validation. We find

4The work on trace validation has been tracked in milestones 18 and 20
at https://github.com/microsoft/CCF/milestones/.

Table 1: Scale of specifications and state coverage.

Approx states
Item LoC Vars /min Total

C
on

se
ns

us

Specification 1134 13
Model Checking 158 106 108

Simulation 69 106 108

Trace Validation 369
Implementation 2174 25
Functional Tests 2579 105 103

End-to-end Tests 2815 103 104

C
on

si
st

en
cy Specification 375 2

Model Checking 70 106 105

Simulation 0 105 103

Trace Validation 111
Functional Tests 123

All numbers measured on an Azure DC8s v3 VM.

that verification of our TLA+ specs is an extremely efficient
way to achieve state coverage. Comparing state exploration
between implementation and specs is straightforward,
because traces can also be collected in end-to-end tests,
and one log line is largely equivalent to a spec action. It is
immediately apparent that verification of our consensus spec
explores orders of magnitude more states at a higher rate
than implementation testing. While code size is not a direct
measure of cost, the overall size of the spec and its models
are not out of proportion compared to the tests. Importantly,
the consistency spec required very little infrastructure to
verify, and to validate traces against the implementation. The
cost of writing formal documentation of the log’s consistency
guarantee was thus low, and validating it and keeping it in
sync with the implementation is equally affordable.
Table 2 lists the most serious bugs found in our consensus

protocol as part of the verification work. These bugs
affected both the safety and the liveness of CCF, and were
uncovered at several stages of the process by each tool in our
verification wardrobe. In the rest of this section we describe
the bugs which were found and corrected during this process,
explaining how they were uncovered by our combination of
smart casual and classical testing methods. All these bugs
were fixed before they affected any end-users or resulted
in customer bug reports. Thus, although this formalization
work took place after the system was initially developed
and deployed, it still provided a core benefit of spec-driven
development; the identification and removal of critical bugs
before they impact production, proving that it is never too
late to benefit from smart casual verification.
Incorrect election quorum tally 48 hours of exhaustive

model checking of the consensus spec on a 128 core machine
revealed that CCF was tallying election quorums against the
union of active configurations (the current configuration plus
any pending reconfigurations), rather than against each indi-

https://github.com/microsoft/CCF/milestones/.


Table 2: Bugs found in CCF’s consensus protocol before they could impact production.

Name Violation High-Level Description (Issues)

Incorrect election quorum tally Safety Quorum was tallied against union of active configurations, rather than against each
individual active configuration. (#3837, #3948, #4018)

Commit advance for previous term Safety Leaders could advance commit for historical terms without extending log in the
current term. (#3828, #3950, #3971, #5674)

Commit advance on AE-NACK Safety Variable reuse could cause the leader’s commit index to advance when receiving
an AE-NACK (#5324, #5325)

Truncation from early AE Safety Followers could roll back committed entries, after a sequence triggered by stale
AE-NACK messages. (#5927, #5991, #6016)

Inaccurate AE-ACK Safety AE-ACK could report an index beyond the end index of AE received, despite the
suffix potentially being incompatible. (#6001, #6016)

Premature node retirement Liveness Nodes could stop participating in consensus too early during retirement, leading
to diminished fault tolerance. (#5919, #5973)

vidual active configuration (compare §2.1). The initial imple-
mentation had correctly used the majority in each term, as
described in [74, §5.2], but had not been updated appropri-
ately when reconfiguration was implemented. This meant that
a node could be elected leader in a term without having a quo-
rum in one of the active configurations, potentially allowing
two leaders being elected in the same term, violating a core
safety property. The issue was reproduced with functional and
end-to-end testing, a fix was applied, and resolved the problem
in both tests and model checking. This was the first bug iden-
tified by TLC and motivated our further investment in TLA+.

Commit advance for previous term While assessing the
work required to align the implementation and the spec,
we discovered that the implementation omitted a check
described in Raft. Our implementation allowed a leader
to advance its commit index based solely on receiving a
quorum of AE-ACKs confirming a given log entry, and
missed the additional requirement that this entry must have
been appended by the current leader. This restriction is
fully explained in [74, §5.4.2], along with the corresponding
risk to safety, but had been accidentally omitted in the
implementation. We added a scenario test based on [74, Fig.
9] to confirm that the implementation was faulty. An initial
fix emptied the node’s set of indices eligible for commit
(because they are signature transactions) when becoming
a leader. This fix passed all existing and amended tests and
was thus integrated into the codebase. Our work on trace
validation, several months later, required us to revise the
spec to represent committable indices accurately. Subsequent
simulation revealed a safety violation caused by the initial fix;
the fix broke an implicit property that committable indices
contains all signatures. A second fix was implemented and
tested as well as verified with TLC. This bug illustrated that
even deterministic testing (compare §6.1) is insufficient to
guarantee the correctness of changes. Moreover, it confirmed
that trace validation is effective at guiding the alignment of
the spec and the implementation to enable verification.

Commit advance on AE-NACK Trace validation discov-
ered that the spec defined a leader’s matchIndex to remain
unchanged after receiving a follower’s AE-NACK, whereas
the implementation allowed it to decrease. This difference
was due to an aggressive implementation of an optimization
proposed in [74, §5.3, last paragraph]. After a single LoC
change to align the spec with the implementation, subsequent
simulation found a 34-state counterexample violating one of
the spec’s main correctness properties. This counterexample
was manually translated into a 150 LoC functional test,
confirming that the implementation could incorrectly advance
its commit index. We also noted that [74, fig. 2, p. 4]
implicitly states that matchIndex should never decrease,
except after a leader election. Adding this property to the spec
allowed model checking to find a shorter counterexample.
The combination of functional testing and model checking
allowed us to fix this bug quickly and confidently.
Truncation from early AE Once a subset of our initial

scenarios passed trace validation, investigating why the
remaining scenarios failed trace validation uncovered a
safety violation. Log entries necessary to the persistence of
committed transactions could be rolled back by a follower.
This bug was introduced by an optimization, and existed
in the implementation for some time. When the suffix of a
follower’s log is incompatible with that of the leader, there
is a need to find the last agreement point. The Raft paper
describes an iterative reverse search of the sequence numbers,
but we instead implemented a suggested optimization to skip
entire terms of divergence. CCF thus finds an agreement
point after a sequence of round trips bounded by the number
of divergent terms, rather than sequence numbers. We
implemented this optimization by changing the semantics
of the AE-NACK message, in which followers now include
a safe best-estimate of an agreement point communicated
using existing fields in the AE-NACK message.
Because the leader cannot distinguish these estimate

messages from stale AE-NACKs emitted in previous terms,

https://github.com/microsoft/CCF/issues/3837
https://github.com/microsoft/CCF/issues/3948
https://github.com/microsoft/CCF/issues/4018
https://github.com/microsoft/CCF/issues/3828
https://github.com/microsoft/CCF/issues/3950
https://github.com/microsoft/CCF/issues/3971
https://github.com/microsoft/CCF/issues/5674
https://github.com/microsoft/CCF/issues/5324
https://github.com/microsoft/CCF/issues/5325
https://github.com/microsoft/CCF/issues/5927
https://github.com/microsoft/CCF/issues/5991
https://github.com/microsoft/CCF/issues/6016
https://github.com/microsoft/CCF/issues/6001
https://github.com/microsoft/CCF/issues/6016
https://github.com/microsoft/CCF/issues/5919
https://github.com/microsoft/CCF/issues/5973


it may respond with an AE starting before the end of the
follower’s log. This, coupled with an insufficiently defensive
code path in the follower’s code, would cause the AE to be
treated as a conflicting suffix, and trigger a roll back preced-
ing the application of the AE, potentially violating Leader
Completeness (defined in [74, Figure 3]). The fix proved
simple: rather than rolling back optimistically on an AE in
a new term, the follower should only do so on true conflicts.
Notably, this bug was triggered by existing functional tests,

producing output that did not pass trace validation, but the
tests’ assertions were not strong enough. The reproduction
scenario we wrote produced a trace 305 events long at the
point the bug manifests itself. This bug showed the important
benefit of trace validation to check the invariants in every
state, compared to the traditional approach of manually
inserting assertions in scenarios at specific points.
Inaccurate AE-ACK Fixing this bug directly led to the

discovery of the AE-ACK index issue. Because CCF uses
unidirectional messages rather than RPCs (§2.1), the code
responsible for responding to messages sends values from
local state where possible, rather than values specific to the
message they responded to. The AE-ACK handler did so for
the LASTINDEX field, which is the index of the last entry in
the appended entries, without correctly checking that the log
was also compatible. This was discovered while conducting
trace validation on the previous issue, and a specific scenario
was added to test it in isolation. Here too, the fix was simple,
and involved constraining the LASTINDEX in AE-ACKs to
the last index contained within the received AE.
Premature node retirement Network configuration in

CCF is stored in a map (compare §2.1). Adding or removing
nodes happens through updates to this map, which produce
write sets that are also replicated and handled like any other
transaction, and are therefore part of the totally ordered log.
The consensus logic is notified through hooks, which can be
called when a transaction is ordered and/or committed. As
a result, the reconfiguration logic is not isolated from the
consensus code, and was initially mocked with low fidelity
in the scenario driver, and correspondingly simplified in the
TLA+ spec. This was known to be a significant discrepancy
between the implementation and the spec, which we decided
to address by making the driver more realistic, and by
improving the scenario coverage used for trace validation. As
the spec was aligned, simulation produced counterexamples
where a reconfiguration would leave the CCF network
permanently unable to make progress; a retiring node
stopped responding before all future leaders were aware of
its retirement. We translated the counterexamples into new
functional tests to reproduce the issue. A fix, leveraging an
existing mechanism to shut down retired nodes safely, was
proposed, verified, and implemented together.

Non-linearizability of read-only transactions Thus far we
have described bugs founds in our consensus protocol. In this
last example we describe how we identify an ambiguity in

CCF’s docs, aided by the consistency spec. Recall that lin-
earizability requires that transaction execution is consistent
with the real-time ordering of client requests and responses.
Recall that OBSERVEDROINV (Listings 4) specifies that any
committed read-only transaction must observe any previously
committed read-write transactions. Model checking found a
12-step counterexample to OBSERVEDROINV in four seconds.
A read-only transaction is handled by an old, yet active leader
that has not added a read-write transaction to its log since the
new leader was elected. This is rare in practice, a leader has
to be falsely replaced when it is still active. The leader’s logs
must be identical, then, in the short window of time before the
old leader retires, it needs to handle a read-only transaction.5

Currently, we have no plans to change this behavior, as serial-
izability for read-only transactions is sufficient for most appli-
cations, however, we hope that our consistency spec will help
us to more clearly communicate this guarantee to developers.

8 Lessons Learned
We were surprised that, despite our extensive testing, many
bugs were first spotted during the development of the spec and
subsequent alignment with the implementation. The develop-
ment and refinement of the consensus and consistency specs
forced us to think deeply about our protocol and its invariants.
During the process of spec development, the implementation
was very closely scrutinized (with the target invariants in
mind) and many bugs were first identified. In some cases,
someone would become suspicious of a particular part of the
code but would be unable to confirm that the current behavior
led to a violation. This was particularly true for situations
including multiple reconfigurations and failure handling (see
Incorrect election quorum tally §7 and Commit advance for
previous term §7), where counterexamples require many steps
and were no longer feasible to work through on a whiteboard.
This is where verification was invaluable, as it allowed us to
quickly check the behavior against the expected invariants.

While finding implementation bugs by gradually and
manually aligning a formal spec with its implementation is
possible, we found that trace validation is a more systematic
and efficient approach. Prior to our trace validation efforts,
which began in Spring 2023, we were not confident that our
consensus spec matched the implementation. Different team
members worked on the spec and the implementation, and
as such, they reflected different understandings of how the
consensus worked. Moreover, we corrected safety violations
present only in the spec, while the implementation contained
bugs that spec verification could not find. Trace validation,
and its inclusion in our CI pipeline, proved to be a turning
point in our verification efforts, as it finally allowed us to
systematically identify and fix these discrepancies.

Our results show that that software verification is bene-
ficial even for systems that have already been “proven in

5The counterexample can be found and interactively explored online [65].



production”. During the time that the incorrect election
quorum tally (§7) was present in CCF, the operators added
and removed nodes one at time. This meant that the bug did
not lead to a safety violation and thus remained undiscovered,
but could have surfaced if the operators had changed their
reconfiguration strategy. Similarly, that the incorrect fix for
the commit advance for previous term bug (§7) did not lead
to a production incident can be attributed to chance.

Despite modern hardware and advances in tooling, we found
that exhaustive model checking, at our level of abstraction,
took significant time to complete. This led us to limit the state
space more than we would have liked. We could have used
a proof system, such as the TLA+ Proof System, instead of
a model checker. By opting for model checking, we chose to
prioritize developer time and accessibility over compute time.
As interactive theorem provers continue to advance [13, 75],
along with AI-assisted verification [44], this trade-off may no
longer be necessary. However, simulation proved effective at
quickly finding bugs, especially when combined with action
weighting (described in §4).

9 Related Work
Validating the correctness of distributed systems is a widely
studied problem with approaches ranging from rigorously
verified implementations, formal verification, to the many
flavors of software testing, casual verification, including
smart casual verification which sits between the two.
Formal verification of distributed systems provides the

strongest guarantees of correctness, but is often impractical
for real-world systems due to the high cost of development
and expertise required. For example, IronFleet [24] and
Verdi [91] both proved implementations of Raft correct, but,
to the best of our knowledge, have not been used outside of
an academic setting. Moreover, they are not easily amenable
to systems already implemented in a general-purpose
programming language. PGo [21] follows a related approach
in which one could prove the correctness of a TLA+ spec, and
then extract a Go implementation using their PGo compiler.
Again, an approach that works best for greenfield projects.

On the other hand, there is a broad spectrum of approaches
to testing distributed systems (casual verification) [7, 34, 53],
which tend to follow the same pattern: (i) orchestrate the
creation of one or more configurations of the system, (ii)
schedule workloads, and (iii) inject faults, such as network
partitions, node failures, clock skew etc. As the extent of
the system and its dependencies being orchestrated increases,
it becomes more difficult to maintain determinism and
repeatability. Test times for equivalent scenarios also tend to
grow longer, and the likelihood of spurious failures goes up.
CCF’s consensus spec is the latest addition in a recent

tradition of modeling consensus in TLA+. This began with
Lamport’s description of Paxos [46] in TLA+, as a refinement
of higher-level specs [87]. This was followed by the formal-
ization in TLA+ of other consensus algorithms [81, 85, 92]
including Paxos variants [20, 29, 30, 48–50] and Raft [73, 80].

Tasiran et al. [84] were the first to extract and validate traces
obtained from a hardware simulator against a TLA+ spec,
demonstrating the practical applicability of trace validation.
The adoption of TLA+ among distributed system practition-
ers, spurred by Newcombe et al. [69], and the formalization
of trace validation as a refinement check by Pressler [76],
caused trace validation to be applied to real-world distributed
systems. For instance, Davis et al. [16] applied the technique
to MongoDB, discovering a non-trivial implementation
bug. However, they faced challenges in consistently logging
implementation state, and aligning different grains of
atomicity, which we attribute to them not leveraging TLA+’s
non-determinism to infer implementation state, and action
composition to align atomicity. Niu et al. [70] also validated
traces of Zookeeper, ensuring that its implementation corre-
sponds to its spec. Similarly, Wang et al. [89] revealed several
implementation bugs by replaying TLA+ behaviors against in-
strumented implementations. Likewise, SandTable is capable
of replaying behaviors but, additionally, provides a generic
testing framework for distributed systems [83]. SandTable in-
tercepts network communication at the POSIX layer, making
it incompatible with systems like CCF that encrypt communi-
cations at the application layer. Furthermore, Wang et al. and
SandTable serve as examples of the challenges of aligning the
grains of atomicity, illustrated by the authors identifying two
bugs in Ongaro’s well-established Raft [73] spec. We contend
that these are, in fact, common TLA+ modeling patterns
and can be handled with action composition. Nevertheless,
all efforts found non-trivial bugs in real-world systems
by comparing implementation traces to high-level TLA+

behaviors; a testament to the effectiveness of this approach.

More pragmatic verification efforts are not limited to TLA+;
Amazon’s S3 ShardStore service was recently augmented
with lightweight verification [5] using reference models
written in Rust, which are simplified instantiations of program
components that can be used to track program state under
different input conditions. Like CCF, the primary goals are
usability, and the ability to ensure correctness as both the
implementation and the spec evolve over time. Unlike the
CCF approach however, state exploration is limited to what
the test harness is able to reach.

10 Conclusion

This paper details our journey with smart casual verification of
the distributed protocols in CCF using TLA+. Our experience
demonstrates that TLA+ can be used in industrial settings to
verify extensive and nuanced distributed protocols, and that
the verification process can be integrated into the development
workflow of a production codebase. We have seen that TLA+

can be effectively utilized to find bugs in both the design and
implementation of these protocols and to communicate under-
standing of complex and subtle distributed systems like CCF.
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