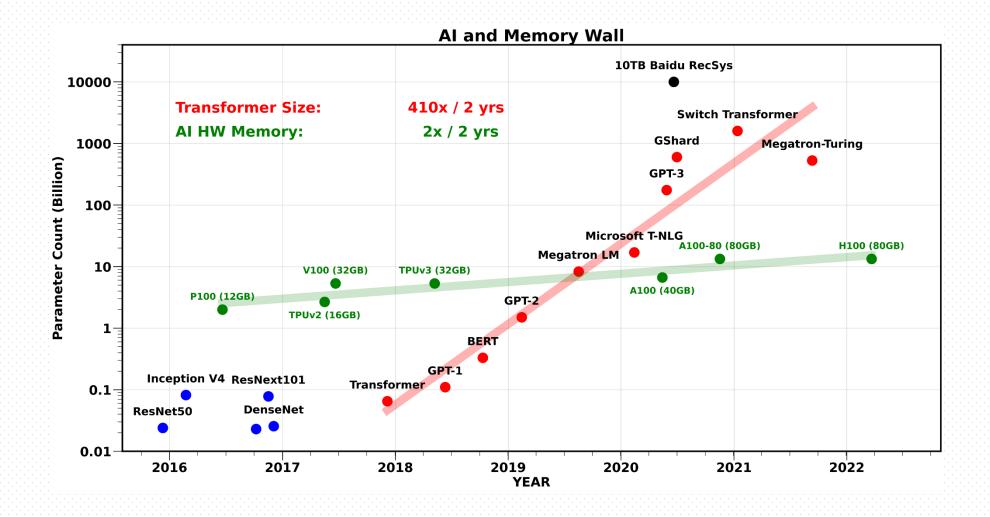


nnScaler: Constraint-Guided Parallelization Plan Generation for Deep Learning Training

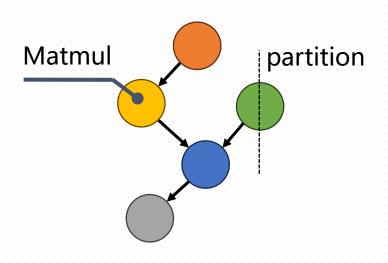
Zhiqi Lin[†], Youshan Miao[‡], Quanlu Zhang[‡], Fan Yang[‡], Yi Zhu[‡], Cheng Li[†], Saeed Maleki[‡], Xu Cao[‡], Ning Shang[‡], Yilei Yang[‡], Weijiang Xu[‡], Mao Yang[‡], Lintao Zhang[‡], Lidong Zhou[‡]

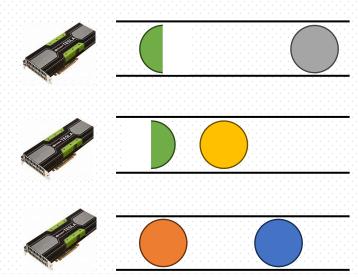
[†]University of Science and Technology of China, [‡]Microsoft Research, [♦]xAl, [△]BaseBit Technologies

Large Models Need Parallelization



Parallelization Plans Matter





Graph partition

- Nodes: operators
- Edges: tensors

Spatial-temporal schedule (2)

- Operator placement
- Determine execution order

Parallelization plans affect training performance greatly

Hard to Find Efficient Plans

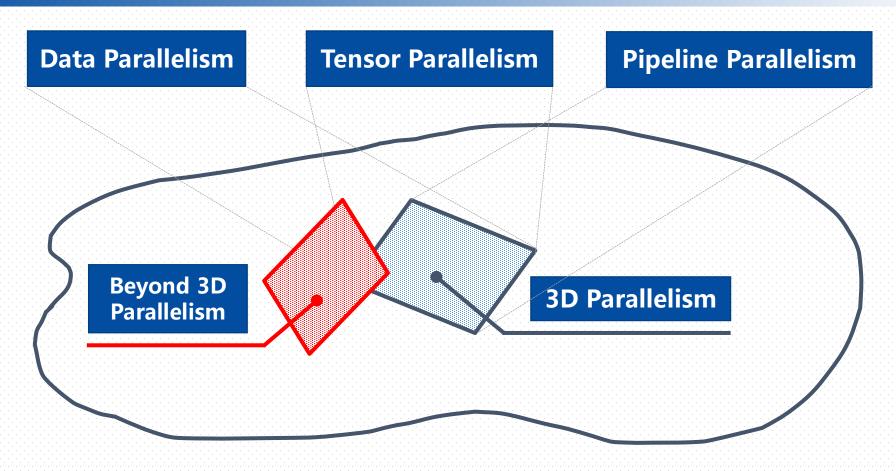
Given a model and GPUs

- Many operators
- Many partition choices
- Many placement choices
- ☐ Different execution orders for independent operators in one GPU

A combinatorial search space

Worse when model and the cluster become larger

Large Space vs. Efficient Plan?



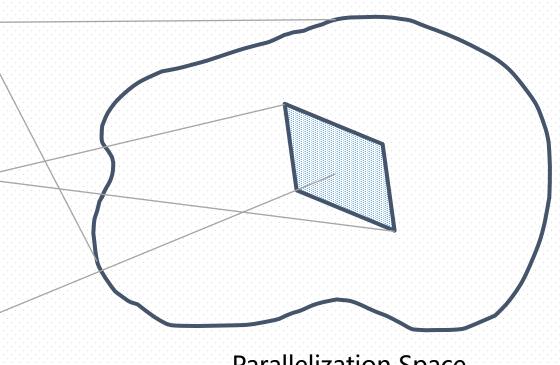
Current practice: limiting plan search within a well-studied search space

Solution Outline of nnScaler

Parallelization Space Primitives to Compose Generic Search Spaces

Space Construction Constraints to Reduce Search Space

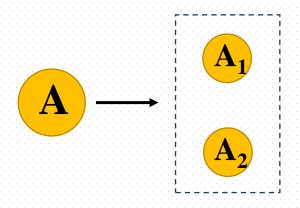
Conventional Search Algorithms
Applicable to the Constrained Space

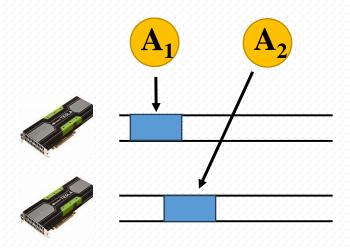


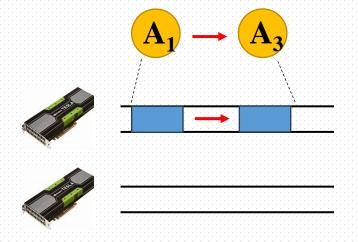
Parallelization Space

Empowering developers to find their own plans

Space Construction Primitives







Transformation

op-trans(op, algo, num)

Choices of operator partitioning schemes

Placement

op-assign(op, device)

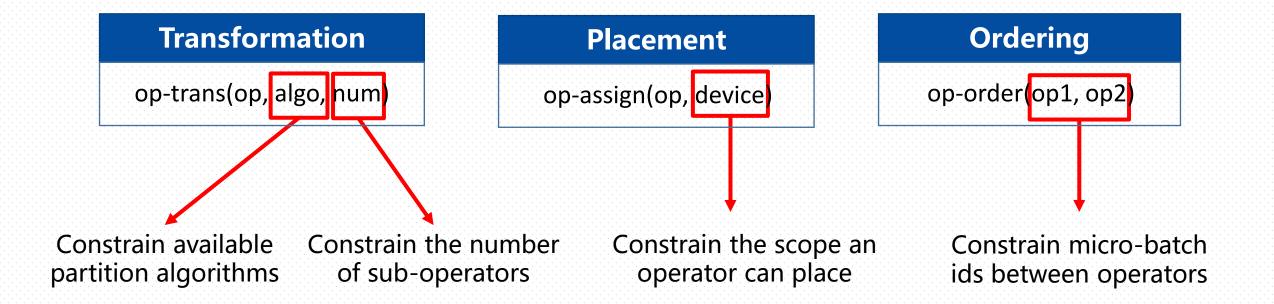
Assign an operator to a device

Ordering

op-order(op1, op2)

Order independent operators in a device

Constraints in the Primitives



Constraints => reduce the search space

Constraint as a Powerful Abstraction

Constraints: the insights of domain experts

Primitives	Constraints
1 sub-ops = op-trans(op,algo,n)	$n = \mathbf{D} $
\bigcirc op-assign(sub-op _i ,d _i)	$d_i, d_j \in \mathbf{D},$
\bigcirc op-assign(sub-op _j ,d _j)	$d_i \neq d_j$

Constraints of data/tensor parallelism

Primitives	Constraints
\bigcirc op-assign(G_i , d_i)	$d_i, d_j \in \mathbf{D},$
\bigcirc op-assign(G_j , d_j)	$d_i \neq d_j$

Primitives	Constraints
\bigcirc op-order((fG _i ,m),(fG _i ,n))	m < n
\bigcirc op-order((bG _i ,m),(bG _i ,n))	m < n
\bigcirc op-order((fG _i ,m+ofst),(bG _i ,m))	$ofst = \mathbf{D} - i$,
4 op-order((bG _i ,m),(fG _i ,m+ofst+1))	$m \ge 0$

Constraints of pipeline parallelism (1F1B)

Operators	Primitives	Constraints
$op \in \{Attn \cup FF\}$	<pre>sub_ops = op-trans(op,algo,n)</pre>	$n = C \cdot \mathbf{D}_i $
	$op-assign(sub_op_i^j,d_i)$	$0 \le j < C $ $d_i \in \mathbf{D}_i$

CoShard

Primitives	Constraints
$\bigcirc \bigcirc $	$m \ge 0$
\bigcirc op-order((f ₂ G _i ,m+1),(f ₃ G _i ,m))	m > 0
\bigcirc op-order((f ₃ G _i ,m),(bG _i ,m-ofst))	m > ofst

3F1B

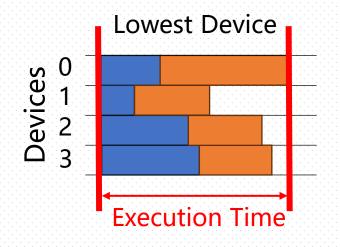
Operators	Primitives	Constraints
	sub_ops =	$n = \mathbf{D} $
op $\in \mathbf{E}$	op-trans(op,algo,n)	$d_i \in \mathbf{D}$
	op-assign(sub_op _i , d_i)	$0 \le i < D $
ops ∉ E	staged_spmd(ops, \mathbf{D})	

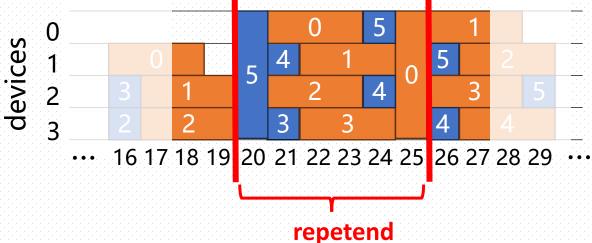
Interlaced Pipeline

Existing Parallelism as Constraints

New Constraints for Emerging Models

Plan Search Policy





minimize
$$\max_{d \in D} \sum_{\text{op} \in d_{op}} Comp_{op} + Comm_{op}$$

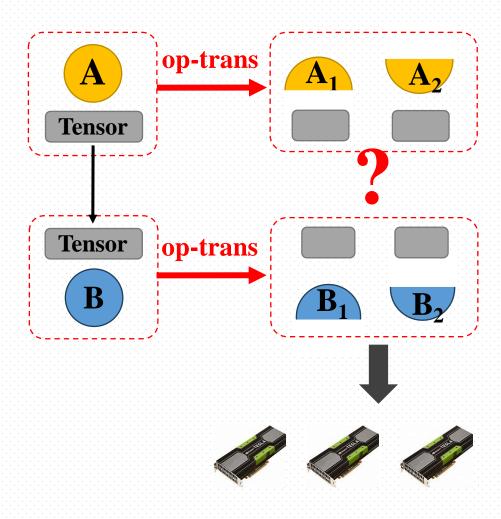
Transformation & Placement

single micro-batch minimize device execution time <DP, ILP> search

Temporal Ordering

multiple micro-batches maximize device utilization <Tessel> search

Plan Materialization for Execution

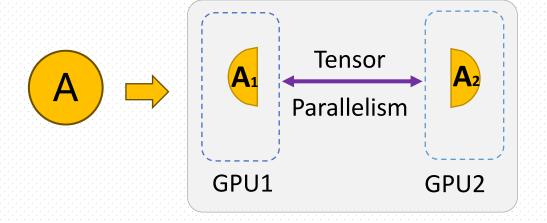


Additional Considerations

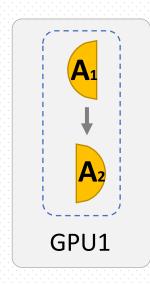
- Tensor lineage during transformation
- Efficient communications for equivalency
- Overall plan correctness
- Executable: PyTorch code

vTensor-pTensor abstraction (Section 6)

New Plan: CoShard



partitioned operators must be placed on **different** devices



- Reduced peak memory usage
- Lower communication cost
- Beyond tensor parallelism

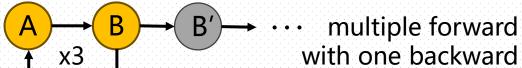
Coshard

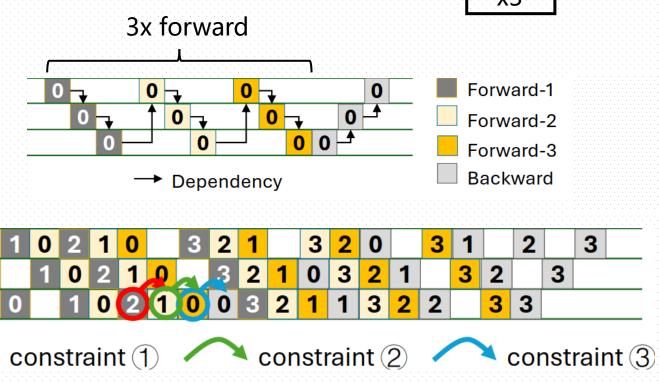
partitioned operators can be co-located on a same device

Operators	Primitives	Constraints
on C	sub_ops =	$n = C \cdot \mathbf{D}_i $
$ op \in $ $ \{Attn \cup FF\} $	op-trans(op,algo,n)	$ n-C\cdot \mathbf{D}_i $
{Aun O I I'}	on aggign (gub on j d)	$0 \le j < C $
· [$op-assign(sub_op_i^J, d_i)$	$d_i \in \mathbf{D}_i$

New Plan: 3F1B

AlphaFold: 3F1B Parallelization Plan

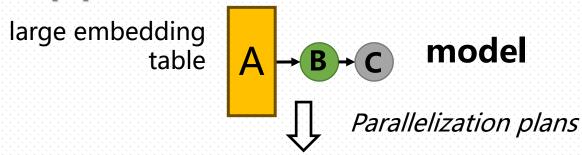


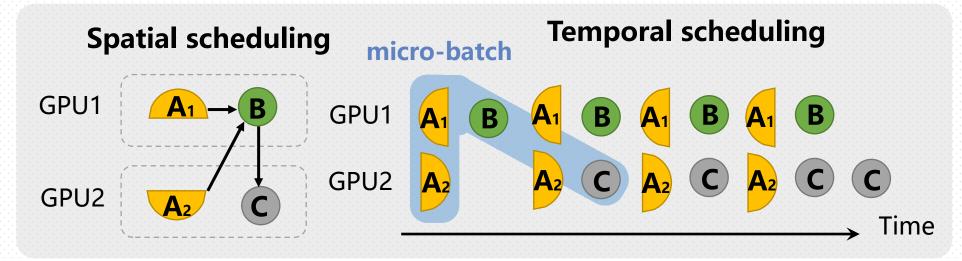


Primitives	Constraints
$\bigcirc \bigcirc $	$m \ge 0$
\bigcirc op-order((f ₂ G _i ,m+1),(f ₃ G _i ,m))	m > 0
\bigcirc op-order((f ₃ G _i ,m),(bG _i ,m-ofst))	m > ofst

New Plan: Interlaced Pipeline

T5: Interlaced pipeline

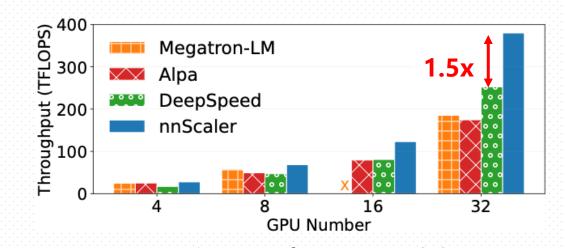




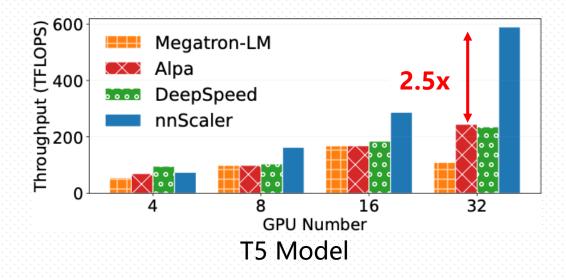
full-device tensor parallelism for embedding

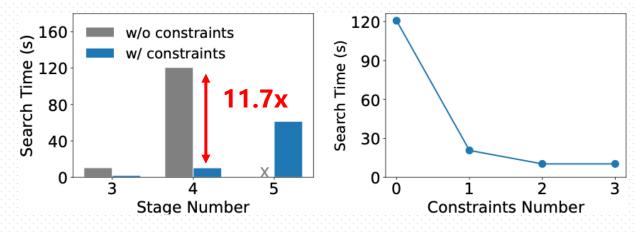
Operators	Primitives	Constraints
	sub_ops =	$n = \mathbf{D} $
op $\in \mathbf{E}$	op-trans(op,algo,n)	$d_i \in \mathbf{D}$
	op-assign(sub_op _i ,d _i)	$0 \le i < D $
ops $ otin \mathbf{E}$	$staged_spmd(ops, D)$	

Evaluation: Performance



Swin-Transformer Model



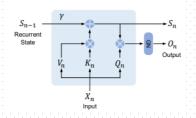


AlphaFold 2 Search Time

- DGX-2 32x V100-32GB
- Training Throughput Improvement:
 - 1.5-2.5x
- Search Speed Improvement with Constraints:
 - 11.7x

nnScaler in Practice

PreTrain and PostTrain (Finetune)



RetNet

YOCO

Phi-3

Graphormer Llama2

DGX-2, A100, H100 MI-200

Deployment

512x GPUs (NV, AMD) 92B large model

Summary

The primitives and constraints:

abstractions for training flexibility and efficiency

nnScaler:

a powerful tool to facilitate model training

nnScaler: Constraint-Guided Parallelization Plan Generation for Deep Learning Training

Thank you for listening Q & A

