nnScaler: Constraint-Guided Parallelization Plan Generation for Deep Learning Training Zhiqi Lin[†], Youshan Miao[‡], Quanlu Zhang[‡], Fan Yang[‡], Yi Zhu[‡], Cheng Li[†], Saeed Maleki[‡], Xu Cao[‡], Ning Shang[‡], Yilei Yang[‡], Weijiang Xu[‡], Mao Yang[‡], Lintao Zhang[‡], Lidong Zhou[‡] [†]University of Science and Technology of China, [‡]Microsoft Research, [♦]xAl, [△]BaseBit Technologies # Large Models Need Parallelization ## **Parallelization Plans Matter** #### **Graph partition** - Nodes: operators - Edges: tensors **Spatial-temporal schedule** (2) - Operator placement - Determine execution order Parallelization plans affect training performance greatly ## **Hard to Find Efficient Plans** #### Given a model and GPUs - Many operators - Many partition choices - Many placement choices - ☐ Different execution orders for independent operators in one GPU ### A combinatorial search space Worse when model and the cluster become larger # Large Space vs. Efficient Plan? **Current practice: limiting plan search within** a well-studied search space ## Solution Outline of nnScaler Parallelization Space Primitives to Compose Generic Search Spaces **Space Construction Constraints to Reduce Search Space** Conventional Search Algorithms Applicable to the Constrained Space Parallelization Space **Empowering developers to find their own plans** # **Space Construction Primitives** #### **Transformation** op-trans(op, algo, num) Choices of operator partitioning schemes #### **Placement** op-assign(op, device) Assign an operator to a device ### **Ordering** op-order(op1, op2) Order independent operators in a device ## **Constraints in the Primitives** **Constraints => reduce the search space** ## **Constraint as a Powerful Abstraction** #### **Constraints: the insights of domain experts** | Primitives | Constraints | |--|----------------------------| | 1 sub-ops = op-trans(op,algo,n) | $n = \mathbf{D} $ | | \bigcirc op-assign(sub-op _i ,d _i) | $d_i, d_j \in \mathbf{D},$ | | \bigcirc op-assign(sub-op _j ,d _j) | $d_i \neq d_j$ | #### Constraints of data/tensor parallelism | Primitives | Constraints | |---------------------------------------|----------------------------| | \bigcirc op-assign(G_i , d_i) | $d_i, d_j \in \mathbf{D},$ | | \bigcirc op-assign(G_j , d_j) | $d_i \neq d_j$ | | Primitives | Constraints | |---|-----------------------------| | \bigcirc op-order((fG _i ,m),(fG _i ,n)) | m < n | | \bigcirc op-order((bG _i ,m),(bG _i ,n)) | m < n | | \bigcirc op-order((fG _i ,m+ofst),(bG _i ,m)) | $ofst = \mathbf{D} - i$, | | 4 op-order((bG _i ,m),(fG _i ,m+ofst+1)) | $m \ge 0$ | Constraints of pipeline parallelism (1F1B) | Operators | Primitives | Constraints | |---------------------------|--|---| | $op \in \{Attn \cup FF\}$ | <pre>sub_ops = op-trans(op,algo,n)</pre> | $n = C \cdot \mathbf{D}_i $ | | | $op-assign(sub_op_i^j,d_i)$ | $0 \le j < C $ $d_i \in \mathbf{D}_i$ | #### **CoShard** | Primitives | Constraints | |---|-------------| | $\bigcirc \bigcirc $ | $m \ge 0$ | | \bigcirc op-order((f ₂ G _i ,m+1),(f ₃ G _i ,m)) | m > 0 | | \bigcirc op-order((f ₃ G _i ,m),(bG _i ,m-ofst)) | m > ofst | #### **3F1B** | Operators | Primitives | Constraints | |---------------------|---|----------------------| | | sub_ops = | $n = \mathbf{D} $ | | op $\in \mathbf{E}$ | op-trans(op,algo,n) | $d_i \in \mathbf{D}$ | | | op-assign(sub_op _i , d_i) | $0 \le i < D $ | | ops ∉ E | staged_spmd(ops, \mathbf{D}) | | #### **Interlaced Pipeline** **Existing Parallelism as Constraints** **New Constraints for Emerging Models** ## **Plan Search Policy** minimize $$\max_{d \in D} \sum_{\text{op} \in d_{op}} Comp_{op} + Comm_{op}$$ #### **Transformation & Placement** single micro-batch minimize device execution time <DP, ILP> search #### **Temporal Ordering** multiple micro-batches maximize device utilization <Tessel> search ## Plan Materialization for Execution #### **Additional Considerations** - Tensor lineage during transformation - Efficient communications for equivalency - Overall plan correctness - Executable: PyTorch code vTensor-pTensor abstraction (Section 6) ## **New Plan: CoShard** partitioned operators must be placed on **different** devices - Reduced peak memory usage - Lower communication cost - Beyond tensor parallelism #### Coshard partitioned operators can be co-located on a same device | Operators | Primitives | Constraints | |----------------------------------|-------------------------------|------------------------------| | on C | sub_ops = | $n = C \cdot \mathbf{D}_i $ | | $ op \in $ $ \{Attn \cup FF\} $ | op-trans(op,algo,n) | $ n-C\cdot \mathbf{D}_i $ | | {Aun O I I'} | on aggign (gub on j d) | $0 \le j < C $ | | ·
[| $op-assign(sub_op_i^J, d_i)$ | $d_i \in \mathbf{D}_i$ | ## **New Plan: 3F1B** AlphaFold: 3F1B Parallelization Plan | Primitives | Constraints | |---|-------------| | $\bigcirc \bigcirc $ | $m \ge 0$ | | \bigcirc op-order((f ₂ G _i ,m+1),(f ₃ G _i ,m)) | m > 0 | | \bigcirc op-order((f ₃ G _i ,m),(bG _i ,m-ofst)) | m > ofst | # **New Plan: Interlaced Pipeline** T5: Interlaced pipeline full-device tensor parallelism for embedding | Operators | Primitives | Constraints | |------------------------|---|----------------------| | | sub_ops = | $n = \mathbf{D} $ | | op $\in \mathbf{E}$ | op-trans(op,algo,n) | $d_i \in \mathbf{D}$ | | | op-assign(sub_op _i ,d _i) | $0 \le i < D $ | | ops $ otin \mathbf{E}$ | $staged_spmd(ops, D)$ | | ## **Evaluation: Performance** Swin-Transformer Model AlphaFold 2 Search Time - DGX-2 32x V100-32GB - Training Throughput Improvement: - 1.5-2.5x - Search Speed Improvement with Constraints: - 11.7x ## nnScaler in Practice #### **PreTrain and PostTrain (Finetune)** RetNet YOCO Phi-3 Graphormer Llama2 DGX-2, A100, H100 MI-200 #### **Deployment** **512x** GPUs (NV, AMD) 92B large model # Summary The primitives and constraints: abstractions for training flexibility and efficiency nnScaler: a powerful tool to facilitate model training # nnScaler: Constraint-Guided Parallelization Plan Generation for Deep Learning Training Thank you for listening Q & A