
nnScaler: Constraint-Guided Parallelization 

Plan Generation for Deep Learning Training



2

Large Models Need Parallelization

https://github.com/amirgholami/ai_and_memory_wall



3

Parallelization Plans Matter

Matmul

Graph partition

• Nodes: operators
• Edges: tensors

Spatial-temporal schedule

• Operator placement
• Determine execution order

Parallelization plans affect training performance greatly

1 2

partition



4

Given a model and GPUs

❑ Many operators

❑ Many partition choices

❑ Many placement choices

❑ Different execution orders for independent operators in one GPU

A combinatorial search space

Worse when model and the cluster become larger

Hard to Find Efficient Plans



5

Large Space vs. Efficient Plan?

Pipeline Parallelism

3D Parallelism
Beyond 3D 
Parallelism

Data Parallelism Tensor Parallelism

Current practice: limiting plan search within 
a well-studied search space



6

Solution Outline of nnScaler

Parallelization Space

Parallelization Space Primitives to 
Compose Generic Search Spaces

Space Construction 
Constraints to Reduce Search Space

Conventional Search Algorithms
Applicable to the Constrained Space

Empowering developers to find their own plans



7

Space Construction Primitives

Placement

op-assign(op, device)

Ordering

op-order(op1, op2)

Transformation

op-trans(op, algo, num)

A

A1

A2

A1 A2 A1 A3

Choices of operator 
partitioning schemes

Assign an operator
to a device

Order independent 
operators in a device



8

Constraints in the Primitives

Constraints => reduce the search space

Constrain available 
partition algorithms

Constrain the number 
of sub-operators

Constrain the scope an 
operator can place

Constrain micro-batch 
ids between operators

Transformation

op-trans(op, algo, num)

Placement

op-assign(op, device)

Ordering

op-order(op1, op2)



9

Constraint as a Powerful Abstraction

Constraints of data/tensor parallelism

Constraints of pipeline parallelism (1F1B)

CoShard

3F1B

Interlaced Pipeline

Existing Parallelism as Constraints New Constraints for Emerging Models

Constraints: the insights of domain experts



10

Plan Search Policy

Transformation & Placement

single micro-batch
minimize device execution time

<DP, ILP> search

Temporal Ordering

multiple micro-batches
maximize device utilization 

<Tessel> search

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 max
𝑑∈𝐷

෍

op∈𝑑𝑜𝑝

𝐶𝑜𝑚𝑝𝑜𝑝 + 𝐶𝑜𝑚𝑚𝑜𝑝

0
1
2

3D
e
vi

ce
s

Execution Time

Lowest Device

4

3 3

20

1

2

0

5 0
4

5

0

13

2 2

1

25

3

4 4

5

21 22 23 24 2516 17 18 19 26 27 28 29… …

0

1

2

3d
e
vi

ce
s

repetend



11

Plan Materialization for Execution

A

B

Tensor

A2

Tensor

op-trans
A1

B1 B2

op-trans

Additional Considerations

• Tensor lineage during transformation

• Efficient communications for equivalency

• Overall plan correctness

• Executable: PyTorch code

?

vTensor-pTensor abstraction (Section 6)



12

New Plan: CoShard

Coshard

partitioned operators can be 
co-located on a same device

A A1 A2

GPU1 GPU2

Tensor

Parallelism

GPU1

A1

A2

Tensor Parallelism

partitioned operators must be 
placed on different devices

• Reduced peak memory usage

• Lower communication cost

• Beyond tensor parallelism



13

New Plan: 3F1B

• AlphaFold: 3F1B Parallelization Plan BA B’ …
x3

multiple forward
with one backward

3x forward



14

New Plan: Interlaced Pipeline

• T5：Interlaced pipeline

large embedding
table model

Spatial scheduling

Parallelization plans

Temporal scheduling

GPU1

GPU2

A1

A2

A1

A2

Time

B B

C

A1

A2

B

C

A1

A2

B

C C

B C

A2

A1 B

C

GPU1

GPU2

micro-batch

A

full-device tensor parallelism
for embedding



15

Evaluation: Performance

T5 Model

Swin-Transformer Model AlphaFold 2 Search Time

• DGX-2 32x V100-32GB

• Training Throughput Improvement：

• 1.5-2.5x

• Search Speed Improvement with Constraints：

• 11.7x

1.5x

2.5x

11.7x



16

nnScaler in Practice

Deployment

512x GPUs（NV, AMD）
92B large model

RetNet Graphormer Llama2

…

DGX-2, A100, H100 MI-200

PreTrain and PostTrain (Finetune)

Phi-3YOCO



17

The primitives and constraints: 

abstractions for training flexibility and efficiency

nnScaler: 

a powerful tool to facilitate model training

Summary



nnScaler: Constraint-Guided Parallelization 

Plan Generation for Deep Learning Training


	OSDI24nnScaler
	Slide 1
	Slide 2: Large Models Need Parallelization
	Slide 3: Parallelization Plans Matter
	Slide 4: Hard to Find Efficient Plans
	Slide 5: Large Space vs. Efficient Plan?
	Slide 6: Solution Outline of nnScaler
	Slide 7: Space Construction Primitives
	Slide 8: Constraints in the Primitives
	Slide 9: Constraint as a Powerful Abstraction
	Slide 10: Plan Search Policy
	Slide 11: Plan Materialization for Execution
	Slide 12: New Plan: CoShard
	Slide 13: New Plan: 3F1B
	Slide 14: New Plan: Interlaced Pipeline
	Slide 15: Evaluation: Performance
	Slide 16: nnScaler in Practice
	Slide 17: Summary
	Slide 18


