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ABSTRACT
When operating a software service on a cloud, the complex-
ity of keeping multiple distributed components responsive
is a significant challenge for engineering teams. Engineers
frequently rely on Troubleshooting Guides (TSGs) to navi-
gate how tomitigate performance or outage incidents. How-
ever, the effectiveness of TSGs is often hindered by their
length, implicit reliance on tribal knowledge, and the vari-
able quality of their content. This paper introduces LLexus,
an agent-basedAI system to automate the execution of TSGs.

LLexus employs Large Language Model (LLM) agents to
transform TSGs into precise, executable plans during a plan-
ning phase. Those plans are then executed when an inci-
dent occurs. LLexus primarily comprises of an interactive
planner and an executor. The planner aids engineers in re-
fining TSGs into detailed plans represented as flowcharts,
delineating tasks and decision points. The executor then au-
tonomously carries out these plans, requiring human assis-
tance only for tasks that require physical actions such as re-
placing equipment. Through a series of use cases, we demon-
strate the feasibility and preliminary effectiveness of LLexus,
showcasing its potential to streamline the incident manage-
ment process.

Our key findings highlight LLexus’s ability to improve
the readability of TSGs. The system’s use of LLMs in the
planning phase ensures a reduction in both LLM-related costs
and the impact of potential errors in execution.

1 INTRODUCTION
Operating large cloud systems is an extremely complex task.
Such systems have hundreds of components, built and oper-
ated at different layers, evolving independently by different
teams and even companies, and operate in multiple, chang-
ing environments. Despite communal best practices, and a
continuous effort to incorporate lessons from failures into
systems and processes, there is a constant stream of inci-
dents that have to be addressed by teams of on-call engi-
neers.

To reduce the time to mitigation (TTM) of incidents, it
is common practice for on-call engineers to rely on trou-
bleshooting guides (TSGs), which are documents that detail
steps to identify the causes and address the symptoms of
the problem.1 At Microsoft, for example, a recent study by
Shetty et al. [27] documented over 50,000 TSGs in use by
more than 60,000 engineers. The study also found that some
TSGs are used in hundreds of incidents, and that there is a

1Different organizations have different names for essentially equiva-
lent documents, such as run books, playbooks and MOPs.

strong correlation between incidents for which there is a
TSG and the TTM of those incidents.

TSGs are by their nature quite prescriptive, having the
structure of a flowchart that intersperses instructions, the
use of tools, examples, and decision points. They can also be
cross-referenced, with some TSGs referring to other TSGs as
sub-steps. Automating TSGs has been a long goal of many
research and commercial projects [27, 29, 30]. Some propos-
als try to extract programs directly from TSGs, while others
advocate writing TSGs as code (e.g., notebooks [27].) Writ-
ing TSGs directly as code could potentially work, but raises
the bar for writing, testing, and maintaining TSGs signifi-
cantly, to the point that understaffed teams of on-call engi-
neers might abandon the approach after all.

Automating TSGs also has significant problems, because
TSGs arewritten in natural language, and assume tribal knowl-
edge among the engineers that does not need to be explicitly
written. They are also frequently poorly written. Shetty et
al. [27] found that there was significant variation in qual-
ity among the more than 4,000 TSGs they examined in de-
tail, with problems including incomplete information, bro-
ken links, and incorrect or missing information. We found
similar problems in our own analysis of the complete set of
54 TSGs used by a particular team at Microsoft (§ 2), which
can severely limit their effectiveness in helping on-call en-
gineers mitigate incidents.

The recent advent of Large Language Models (LLMs) of-
fers a potential direction to tackle these problems, as they
have been very successful in natural language tasks [4], and,
to some extent, in simple reasoning and planning [32]. In
this paper we explore the use of LLMs to help engineers
improve existing TSGs and craft new ones, and take initial
steps in using LLMs to automate their execution.

An initial naïve approach to automate troubleshooting is
to simply prompt an LLM to solve a particular incident us-
ing a TSG. In our exploration, however, this did not work
reliably for a few different reasons. First, TSG quality posed
a significant barrier. Issues included imprecise language, too
much assumed knowledge (including ill-specified tools), in-
consistent or missing inputs and outputs to different steps,
and outdated information. In summary, even a technically
capable person, but not trained in the specifics of the service
in question, would probably fail in carrying out the instruc-
tions in the TSG.

Second, LLMs have variable outputs and are prone to hal-
lucinations. A team would be hard-pressed to trust them
to automatically attempt troubleshooting. A co-pilot [30],
or a chat-based approach may mitigate this concern, with
the LLM proposing investigative and remediation steps in-
dividually to an engineer and seeking their approval on each.

23

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689051.3689056&domain=pdf&date_stamp=2024-08-14


However, TTM remains limited by human attention. Lastly,
even if all of these problems are solved, there is another as-
pect to be taken into account, which is the cost of LLM calls,
which can increase significantly with increase in number of
incidents.

In this paper we describe a different approach, in a sys-
tem we call LLexus. LLexus aims to automate the execu-
tion of TSGs by using LLM agents to produce executable
plans from a source TSG. Instead of having the LLM read
and try to execute the TSG at the time of an incident, we
use the LLM in a planning phase where, in an iterative fash-
ion, the LLM agent assists a human to improve the TSG. The
goal of this phase is to have enough information in the TSG
such that it can be converted into a precise, executable plan.
This plan, represented as a flowchart, has nodes represent-
ing tasks (e.g., "obtain the IP address of the failed network
interface"), and edges representing execution flow and data
flow between tasks. Execution of this plan does not require
an LLM, as tasks are represented in sequences with sim-
ple branching instructions. The tasks themselves can still
be complex, and can be a combination of existing tools (e.g.,
shell scripts), non-planning LLM tasks (such as extracting
an identifier from a log), or even a human action, such as
replacing a network interface.

This approach has a few advantages. First, it results in im-
proved TSGs for both human use and automatic execution.
Second, by front-loading the use of LLMs, with a human in
the loop, it both reduces LLM costs and mitigates the impact
of hallucinations and non-deterministic execution.

In the remainder of the paper we describe LLexus’s ap-
proach and components in detail. The interactive planner
is a multi-step, LLM-based tool engineers use to both im-
prove a TSG and produce an executable plan. The execu-
tor then executes the plan with little to no supervision. We
demonstrate the feasibility and preliminary effectiveness of
LLexus through three use cases from real TSGs.

2 BACKGROUND: TSGS AND INCIDENT
MANAGEMENT

In most SaaS (Software-as-a-Service) engineering organiza-
tions, when an outage or performance regression occurs in
a production system, an incident is generated and registered
in an incident management system.

There are essentially two types of incidents: human-generated
incidents, which are reported by an engineer or customer,
and machine-generated incidents, which are created by au-
tomatic monitors that detect one or more metrics violating
specified thresholds.

Incidents are classified by severity, either automatically
by rules in machine-generated incidents, or manually by
the human generating an incident. The number of severity
classes varies, but is typically a few different classes.Machine-
generated incidents will typically include a lot of relevant
information and the metric(s) violating acceptable thresh-
olds. There is typically a direct correlation between a type

of machine-generated incident and the relevant TSG, such
as the same name of an issue being used in both the inci-
dent title and the TSG title (e.g., network interface down).
Human-generated incidents tend to be more unique, includ-
ing descriptions of specific scenarios and steps to reproduce
the problem, and an engineer may have an additional step
of having to find appropriate TSGs to help with the miti-
gation. Prior work [12] has explored mapping incidents to
TSGs. In our work we rely on existing mapping in machine-
generated incidents, and focus on the execution of these
TSGs.

A TSG (troubleshooting guide) is a human-readable doc-
ument that is followed by an engineer to investigate and
resolve an incident. It will typically contain multiple steps,
some of whichmay require executing commands (such as re-
trieving logs), and some of which may depend on the result
of a previous step (such as following one or the other path
of investigation based on results of a step). It is usually writ-
ten when repeated occurrences of a problem are observed
in a running system.

The goal of a TSG is to help the engineer reduce MTTM
(mean time tomitigate). As one set of examples, TSGs for the
Microsoft Azure Service Fabric are publicly available [21],
and prior work [27] describes TSGs inmore detail. There are
other documents that are similar in nature, such as MOPs
(management operation), run books, and playbooks [29, 30].
LLexus is agnostic to whether the input document is a TSG,
MOP, run book, or playbook, and hence for brevity we sim-
ply use the term TSG to refer to any such document.

A TSG may be followed by certain engineers, such as an
SRE (site reliability engineer), DRI (designated response in-
dividual), or on-call engineer. For brevity, we will simply re-
fer to them as engineers. The first priority of the engineer is
to mitigate the incident, restoring the systems to operating
conditions. Finding the root cause of the incident is usually
a separate process, that can take longer than mitigation, and
can result in deeper actions to correct the problem, such as
bug fixes and deployment changes. While an incident is be-
ing resolved, engineers will annotate the incident log with
notes onwhat diagnosis and resolutions stepswere followed
and what the outcomes of those steps where. Such notes aid
post-incident analysis, or even transfer responsibility from
one engineer to another for long-running incidents.

LLexus is being deployed for a Microsoft hybrid-cloud
SaaS (software-as-a-service) product. There are numerous
reasonswhy the engineering team for this SaaS product con-
siders LLexus to be useful, including:
(1) Their TSGs are lengthy, requiring significant time for

an engineer to mitigate incidents.
(2) Their TSGs undergo frequent changes, hence would

require too much engineering effort to write code to
automate.

(3) A high frequency of incidents is resulting in highMTTM,
stress for engineers, and increased spend on on-call
engineers.
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Figure 1: Length of 54 TSGs. Bar shows median value,
and error bars show 5th and 95th percentiles.
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Figure 2: Readability of 54 TSGs, as defined by com-
mon readabilitymetrics. Bar showsmedian value, and
error bars show 5th and 95th percentiles.

2.1 Examining TSGs
We characterized the 54 TSGs that the engineering team
relies on. Our observations are aligned with previous stud-
ies [27]. Figures 1, 2, and 3 shows our results. Figure 1 shows
that themedian length of a TSG is 815words, with the largest
is at over 5500words.When a live service has an outagewith
impacted customers, reading through a highly technical doc-
ument of 5000 words is time consuming and stressful.

Complicating the problem further is that these TSGs are
highly technical documents that are not easy to read. Fig-
ure 2 shows the distribution of these TSGs across a variety of
well known readability metrics. The graph shows that these
TSGs are far from casual reading, some requiring as much
as 20 years of education to understand as measured by the
Flesh-Kincaid Grade Level metric. Hence, it takes longer for
an engineer to read and understand a TSG, and requires a
more sophisticated language model to understand.

Figure 3 shows the frequency of edits to these TSGs as
measured by their Git commit history. The median num-
ber of updates is 8, but some have been updated over 60
times. At the median, TSGs are updated at a frequency of 19
days, but some are updated almost constantly as the prod-
uct improves and its behavior changes, or more reasons be-
hind a persistent problem are uncovered and documented.
In a stable product that is not undergoing any code change,
TSGs may not see any changes, and hence it may be worth
the engineering effort to automate TSGs by writing code to
replicate what an on-call engineer would do. However, in a
young SaaS product undergoing rapid innovation, updating
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Figure 3: Commit history of 54 TSGs. Bar shows me-
dian value, and error bars show 5th and 95th per-
centiles.
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Figure 4: Overview of LLexus.

a human-readable TSG multiple times a week is a lot easier
than writing new or updated code every week for it.

3 OVERVIEW OF LLEXUS
Figure 4 presents a high-level overview of LLexus. There
are two main components: an offline component called Plan
Extractor (or planner) and an online component called Plan
Executor (or executor). The Planner is an LLM-basedAI agent
that analyzes a TSG and produces an executable plan. This
process is triggered when a TSG is created or modified. It
requires as input the TSG and a set of tools available to ex-
ecute the plan.

The Executor then executes the plan produced by the Plan-
ner against an incident. It is activated everytime a new in-
cident occurs. It first fetches the plan relevant to the inci-
dent, then retrieves all the required information from the
incident and follows the steps described in the plan, taking
the required actions, executing the defined tools and makes
decisions until the investigation or mitigation of the inci-
dent is complete. It annotates the incident log with actions
taken and decisions made, which allows for post-incident
auditing.

In addition LLexus cosists of a Plan Compiler and a Plan
Validator that ensures that the generated plan is complete
and executable.

We made the following design choices in LLexus:
• Execution plans are generated at the time of TSG cre-
ation or update, not when resolving an incident. This
design choice supports two goals – (a) reduce LLM us-
age cost by generating a plan for a TSG once, instead
of every time a relevant incident occurs; and (b) re-
duce MTTM by relying on a pre-generated plan when
addressing an incident.
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• Plans are iteratively generated. The AI agent first pro-
vides a high level plan, and subsequently fills in the de-
tails of each step in the plan, such as what tool to use
and/or what inference to make (see § 4). This design
choice allows for a more detailed plan while limiting
LLM hallucinations.

• Engineers are expected to audit a plan when it is gen-
erated. The comprehensiveness and accuracy of a plan
are important for the correct mitigation of an incident.
Auditing such a plan the moment a TSG is authored
allows an engineer to correct inadvertent mistakes or
omissions in their TSG. This also limits the scope of
LLM hallucinations.

• The TSG is the source of truth. If there are issues with
the plan, the engineer edits the TSG and reruns the
planner, rather than editing the plan. This process can
happen multiple times, and results in consistently im-
proved TSGs for both human and LLexus consump-
tion.

• Plan execution relies on existing, specific tools that
the engineering team has. Typically, there will be sev-
eral tools, such as log retrieval or reboot a host. With-
out such specific tools, LLexus would have to rely on
generic tools such as SSH, which would give the sys-
tem unrestricted access to production systems. Rely-
ing on these existing, specific tools supports two goals
– (a) reduce LLM usage cost by not requiring an LLM
to manipulate SSH sessions to perform such actions;
and (b) reduce the scope for hallucinations by rely-
ing on such deterministic tools. Any actions for which
tools do not exist could be performed by an LLM, and
typically this would be analysis of a tool output that
an engineer would otherwise do.

We will use the following example to detail the function-
ing of the Planner and Executor and present the characteris-
tics of an executable plan. It is a simplified version of a TSG
that can be used to troubleshoot a web server with slow re-
sponse time. Here, we assume the existence of four tools:
retrieve application metrics, identify impacted server, retrieve
resource usage and scale up/down server. Note that this is a
toy example used only for didactic purposes to present the
concepts defined in LLexus, hence not intended to be a com-
plete TSG.

TSG: Investigating and Mitigating Latency Is-
sues in a Web Server

Users are experiencing slow response times when ac-
cessing the web server.
(1) Identify the web server

• Determine the specificweb server experienc-
ing latency issues in the description of the
incident.

(2) Fetch latency metrics for that web server
• Retrieve CPU usage in the server

(3) Check if the CPU usage is above 60%. If not,
and issue still persists escalate to check other
bugs/issues.

(4) If above 60%, scale up the number of servers.
(5) Wait for an hour and go back to step 2.

Available tools:
• Application metrics tool: Retrieve end-to-end
latency

• Identify impacted server tool: Extract server
details from app metrics

• Resource metrics tool: Retrieve CPU usage
• Admin tool: Scale up/down server

3.1 Planner
As described earlier, the quality of TSGs varies significantly
and hence even with the best LLM agent, it may not be pos-
sible to extract an executable plan. To improve quality, the
Planner is run in rounds with a “human in the loop”. Within
each round, the planner uses multi-step plan generation (de-
scribed in detail in §4), which defines the necessary steps for
the plan and the details required for execution of each step.
After each round, an engineer has the ability to update the
TSG based on the generated plan and the feedback from the
planner. This process helps not only to produce a compre-
hensive executable plan but also to improve the quality of
the TSG for human consumption.

Figure 5 shows the plan generated from the example TSG.

3.1.1 Plan. The plan is represented as a flowchart (in-
spired from BPMN [9]). It a directed graph where each node
represents a step and the solid edges represent the flow of
execution. It also consists of data flow edges that represent
the flow of data between steps (dashed edges). It consists of
three different types of steps: action, conditions, and events.

• Action steps involve the execution of a tool and are
always followed by only one next step. In Figure 5, the
rectangular nodes describe the action steps. As can be
seen, each node has an associated tool and receives
the required parameters (e.g., incident ID, incident de-
tails).

• Condition steps require a decision to be made to de-
termine the investigation path to follow. This step can
have two or more next steps, each with an expression
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Figure 5: Web server latency issue investigation plan.

that needs to be evaluated for plan execution to pro-
ceed along this path. They are represented as the dia-
mond shaped nodes in Figure 5. In this example, the
node has two possible next steps, based on the con-
dition to be evaluated during execution (CPU Usage
> 60 or CPU Usage ≤ 60).

• Event steps can be of two different types: external ac-
tions and timer. External actions are the ones in which
the step will wait for a manual action or the receipt
of a message before the plan is resumed, while timer
events pauses for certain time before it continues the
execution. The example plan (circle node) shows a timer
timer event. This step makes the execution wait for
one hour before resuming.

All steps must have at least one next step, with the excep-
tion of the final step (in this case it is Close Incident). Note
that cycles in the plan are allowed. In the example above, we
have a cycle in which after scaling up the server, we wait for
an hour and then go back to a previous step to re-fetch the
latency data and evaluate whether CPU usage has returned
to an acceptable level.

3.1.2 Tools. When extracting the details for each step,
the planner defines the tool that will be used for its execu-
tion as well as the inputs and outputs of that step. This is
essential for the executing the plan. The plan supports two
types of tools: (i) script tools and (ii) semantic tools.

(i) Script tools refer to conventional programs that can
be executed without the need for a language model. These
tools encompass a wide range of functionalities, including
but not limited to Python scripts, PowerShell scripts, Azure
commands, and Log queries. They can be executed directly

by the system without the need for additional interpreta-
tion. Script tools offer flexibility and efficiency in automat-
ing tasks, making them indispensable components in vari-
ous domains where precise execution of predefined actions
is required. Script tools are further categorized into two types:
(a) Retrieval tools that are used to fetch data from external
sources, and (b)Action tools that are used to perform actions
on the system.

(ii) Semantic tools relies on the understanding and gen-
eration capabilities large language models. These tools en-
compass a variety of tasks, from natural language process-
ing to complex reasoning and inference. For instance, they
can analyze the output from script tools and extract rele-
vant information from logs or help make routing decisions.
Semantic tools are key for handling tasks that involve ambi-
guity, context sensitivity, or require a deeper understanding
of language semantics.

In the previous example, Resourcemetrics,Admin and Inci-
dent are script tools, while Identify Web Server is a semantic
tool that will receive the incident description and metrics,
and use an LLM to extract the information about the server
that is presenting latency issues.

3.1.3 Plan Compiler. Plan compiler is responsible to vali-
date that the generated plan is complete and executable. The
compiler analyzes the plan and ensures that the plan follows
a set of predefined rules that are required for the execution.
For example, some of the rules are (i) ensure that all action
steps have a defined tool to execute the action; (ii) ensure
that all steps in the plan are reachable; (iii) validate each ex-
pression provided in the condition nodes and (iv) make sure
that the input required for execution of each step can be re-
trieved, either from a previous step, the incident or has a pre-
determined value. While these rules are essential to ensure
that the plan is executable, they also help provide feedback
to the engineer to improve the TSG as these same issues will
faced by the engineer following the TSG, even without au-
tomation. Hence the Plan Compiler plays a crucial role in
improving the quality of the TSGs.

3.2 Executor
The Executor is the online component of LLexus. This com-
ponent is triggered every time a new incident arrives. The
first step is to retrieve the plan related to the incident. Then,
the executor follows each step described in the plan. The
plan aims to extract the most deterministic set of steps pos-
sible to investigate and mitigate the incident. This removes
much of the responsibility of the Executor in terms of deci-
sion making when executing the plan. In the end, all it does
is to blindly follow each step defined by the plan.

The executor handles all the infrastructure and authenti-
cation aspects required. Asmentioned, we support tools like
Powershell scripts, Kusto queries, Python scripts, among oth-
ers. That requires different resources, which is all handled
by the executor.
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A key aspect of the executor is the ability to run seman-
tic tools for steps that require reasoning or understanding of
the context. These are tasks that would have otherwise been
completed by an engineer and require basic understanding
(e.g. understanding exceptions in logs, or interpreting the
results of a query). Given the complexity of these tasks, the
executor uses a large languagemodel to perform these tasks.
This is an important aspect of the executor, as it allows the
system to handle a wide range of tasks that would other-
wise require human intervention. The use of LLMs is limited
within a given step, and not across steps. This is to ensure
that the executor remains deterministic and does not intro-
duce non-determinism in the execution.

Further, it is important to note that some incident mitiga-
tions require manual intervention (external events) or take
long time to mitigate. Hence it is critical for the executor
to be stateful, and be able to pause the execution and re-
sume it later. We achieved this through use of Durable Func-
tions [17].

3.2.1 Deterministic execution of a plan. Previous works
[23] present approaches to investigate an incident and de-
termine its root-cause by using a ReAct [35] agent that rea-
sons about the incident and which tools to use during the in-
vestigation. While being an interesting and useful approach,
this comes with downsides. The nondeterministic execution
might lead to unexpected paths during the investigation,
which leads to incorrect answers and significantly increase
the cost of execution. Since it requires reasoning before each
action to be taken, including the context, which increases
as the investigation goes on, the costs needed might end
up reaching a prohibitive level when considering large and
complex services with large number of incidents.

In this work, we focus on extracting a deterministic exe-
cution plan, that will largely reduce the cost of executing it.
In that case, the majority of the cost will come from extract-
ing the plan from the TSG, since it requires multiple steps
and iterations to achieve an optimal and deterministic plan.
However, the cost during the execution phase is minimal,
since the actions to take are previously know. While great
for optimizing cost, it is important to note that this approach
can only be applied to known issues that have awell-defined
set of steps to be taken. Unexpected issues might still benefit
from approaches like the one proposed in [23].

4 MULTI-STEP PLAN GENERATION
Akey part of LLexus is the iterative plan generation process.
Figure 6 presents the architecture for this phase. The plan
generation benefits from the understanding and reasoning
abilities of large language models. It is composed by four
LLM-based components which we describe in this section,
including a validation component that is triggered after the
completion of each of the other steps.

Figure 6: Planner architecture

4.1 Tool Selection
Our experiments have shown that providing a set (or a su-
perset) of tools to the plan schema extractor step (see next
section) significantly improves the quality of the generated
plans. Hence, the first step in the plan generation process is
tool selection.

As the name suggests, this component is used to select
the tools that are required during the execution of the plan.
It analyzes the given TSG and a full set of available tools to
determine which tools are relevant for the task at hand. The
component is guided by a prompt that provides the LLM
with the necessary context to understand the TSG and the
tools. Here we leverage advance prompting techniques such
as chain-of-thought [34] to guide the LLM in selecting the
tools.

The prompt aims to guide the LLM’s comprehension of
the TSG and each associated tool. Based on this semantic
understanding, the prompt maps tools that are relevant to
the tasks proposed in the TSG. The result is a JSON object
parsed by the Planner and stored for downstream use.

Given that the LLM semantically evaluates the tools to
determine their relevance to the TSG, it is crucial to provide
detailed descriptions of each tool. Therefore, we expect the
description for each tool to include the following details. In
most cases, this can be obtained from the tool’s documenta-
tion.

• Descriptive Name
• Detailed description of tool and what is its purpose
• Input Parameters
– Parameter name
– Detailed description of the parameter
– If parameter is required

• Outputs
– Output name
– Detailed description of the output

Following tool selection, a validation step ensures the se-
lected tools are appropriate. This "validation" or "double-
checking your work" is key to avoid issues due to halluci-
nations from the large language models, as the LLMs have
been shown to be more accurate with validation and self-
improvement [11, 28] (arguably, this is still an open question
[31] and may not generalize, but we have found it to be ef-
fective in this case as the TSGs are fairly well-structured by
design). The validation steps checks the selected tools and
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confirms the completeness and correctness of the tool list,
returning a flag indicating the validity of the response from
the tool selector component. If the response is invalid, the
reasons for the failure and potential fixes are provided. The
component is then re-executed with this additional context,
continuing until a valid response is generated or the execu-
tion limit is reached. The feedback is then provided to the
TSG writer for further review and corrections to the TSG.

4.2 Plan Schema Extractor
After selecting the tools for executing the TSG, the next step
involves creating the plan. Initially, we construct the high-
level plan schema, outlining the plan’s structure with nodes
and their relationships. Detailed steps, including tool map-
ping and inputs, are defined in subsequent stages.

This process is iterative, leveraging the LLM to gener-
ate and validate the plan until a comprehensive version is
achieved. In the initial part of the prompt, we provide the
LLM with knowledge of the plan’s structure and character-
istics to ensure the generated response aligns with our spec-
ifications for an executable plan. This knowledge serves as
context for the prompt. In the second part, we specify in-
structions for extracting the plan from the TSG. These in-
structions guide the LLM to understand how the TSG ad-
dresses the incident and extract self-contained steps cover-
ing all possible paths for investigation and mitigation.

This initial version of the plan includes the description of
each step, the type of step (Action, Condition or Event), and
the subsequent steps. For conditional steps, each condition
expressions are also defined for deciding the execution after
evaluating the condition.

Following the plan schema generation, a validation stet
ensures that the specifications of the plan are correctly fol-
lowed. For example, action nodes should have only one next
step, and condition steps should have a valid expression for
each next step. Additionally, it ensures that the plan is com-
plete, following all the possible paths described in the TSG,
and that each step is self-sufficient and can be executed.

Similar to the previous process, the validation and up-
date is repeated until it gets a valid response or no further
updates can be made from available information, in which
case a set of feedback is shared with the TSG writer to make
improvements and retry. It is worth noticing that for each
re-execution, the previous plan, the reasons why it was re-
jected, and possible fixes are provided as context to the plan
schema extractor.

4.3 Step Details Extractor
Now that we have the high-level plan schema, the next step
is to extract the details for each step within the plan. These
details include specifying which tool to use for executing
the step, identifying the inputs required for that step and
their sources (whether from a previous step, the incident, or
pre-defined values from the TSG), as well as defining the
outputs of the step.

The process of extracting these details involves providing
the TSG, the list of available tools for executing the step, the
high-level description of the step extracted by the previous
component, and the path of the plan up to the current step.
Within this provided plan, all steps already have their details
such as tools, inputs, and outputs.

With this information provided, we guide the LLM to un-
derstand the requirements of each step, evaluate all avail-
able tools, and select the most relevant one. In cases where
a relevant tool cannot be retrieved from the provided list, the
LLM is instructed to propose a new tool for use in that step.
It can suggest both script-based tools and semantic tools.
When proposing a new tool, the LLM describes the tool’s
purpose, provides the list of inputs and outputs, and for se-
mantic tools, it already provides the required prompt.

The details generated for each step are also subject to val-
idation. During validation, we verify the relevance of the
selected tool for the step and, most importantly, ensure that
the inputs can be sourced from previous steps, the incident,
or have pre-defined values. This validation is critical for en-
suring plan is executable deterministically.

4.4 Validation
As mentioned, the validation component is crucial and uti-
lized in all three of the other components of the Planner.
Its purpose is to ensure that responses generated by each
component align with the expected goals, as described pre-
viously. To achieve this, we have developed a general ap-
proach of self-reflection and correction [28] that instructs
the LLM on how to validate a given response, against a set
of goals. This component takes as input the response being
validated and the specific set of goals for that validation,
as well as any additional context or hints. For example to
validate the plan generated by plan schema extractor, the
goals would be to ensure that all steps are self-contained
and that the plan is complete. It takes as input the original
tsg, the goals of the planner, the response generated by the
plan schema extractor, and the output of the plan compiler
(which is a set of predefined rules as described earlier) as the
context that guides the validation and self-improvement.

5 IMPLEMENTATION
LLexus is built on the Azure stack, with the core service de-
ployed usingAzure Functions and implemented using Python,
providing REST APIs as entry points for both the Planner
and Executor modules.

The Planner module comprises three Azure Functions,
forming an asynchronous process for plan generation. This
asynchronous design ensures scalability, allowing the gen-
eration process to scale without being limited by the size or
number of steps in the TSG. These functions handle initiat-
ing the generation process, executing the plan generation,
and retrieving the final plan. Orchestration between these
functions is managed using Azure Queue and Azure Cos-
mosDB.
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During plan generation, Semantic Kernel [20] serves as
the framework integrating models with the underlying code
needed to process the TSGs. For the LLM component, LLexus
uses the GPT-4-Turbomodel accessed via the Azure OpenAI
API. Each component of the Planner makes one request to
the LLM and processes it accordingly. The total number of
LLM requests for a Planner execution is directly related to
the number of steps in the plan.

The final output of the Planner is a JSON object that
defines each step, their relationships, and all the necessary
details for executing each step. Executor uses this object
along with the incident as input to execute the plan.

Executor is implemented usingAzureDurable Functions [17],
allowing for stateful execution, event handling and pause/resume,
which are essential for maintaining the state of each step, es-
pecially to account for cases where the incident resolution
depends on external events. One of the key goal of the execu-
tor is to seamlessly integrate automated and manual steps
and continue execution without human intervention. Fur-
ther, this state can be utilized in subsequent steps. Each step
in the plan triggers a function that processes by collecting
all the parameters required for the tool from a state store,
invoking the appropriate tool (such as Kusto queries [18],
Powershell scripts [19], Azure commands [16], among oth-
ers.) and storing the results back into the state store for sub-
sequent steps. For semantic tools (like understanding logs or
deriving certain parameters from previous steps outputs), it
leverages Semantic Kernel to execute LLMs with specified
prompts specific to those tools.

6 EVALUATION
LLexus is still in early phases of development and deploy-
ment, as as such we do not yet have a comprehensive eval-
uation. Ideally, we would demonstrate effective reduction
in MTTM and on-call engineer hours, and a substantial im-
provement in the quality of a large body of TSGs. These are
our longer-term evaluation goals.

In this section, instead, we demonstrate the effectiveness
and practical application of LLexus through three distinct
case studies. The first two case studies involve the gener-
ation of execution plans for public troubleshooting guides
fromAzure Service Fabric. The final example presents amore
intricate scenario from an internal Microsoft service. These
case studies offer insights into how LLexus can streamline
both the process of iterating and improving the troubleshoot-
ing guides and the process to automate the execution of
these guides. Additionally, we provide a cost analysis to eval-
uate the efficiency of the proposed approach of generating
executable plans using LLexus.
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Figure 7: Generated plan for Case study: Fabric Up-
grade fails.

6.1 Case study: Sevice Fabric - Fabric
runtime upgrade fails due to
BackupRestoreService

For our first case study, we used the troubleshooting guide
fromAzure Service Fabric, which offers guidance on address-
ing runtime upgrade failures in fabric clusters when Back-
upRestoreService is enabled2. This troubleshooting guide out-
lines a series of steps involving Powershell commands that
users can follow to resolve upgrade issues. In summary, it
describes the process of identifying a node to relocate Back-
upRestoreService’s replica so that it is the last node to be up-
graded, moving the service to that node, increasing the cost
of replica movement to prevent further movement, restart-
ing the upgrade, and then restoring the replica movement
cost. Despite its simplicity, this example serves to evaluate
the quality of the generated plans.

The process of generating this plan begins by inputting
the troubleshooting guide and specifying Powershell as the
tool. The resulting plan is depicted in Figure 7. This plan
was generated in a single pass, without the need of any user
intervention to modify or enhance the TSG. This is attrib-
uted to the well-written nature of the TSG, with clear and
well-defined steps.

In the original TSG ([22]), specific Powershell commands
are provided for step 2 (Move BackupRestoreService’s primary
replica), step 3 (Increase replica movement cost for BackupRe-
storeService), and step 5 (Restore replica movement cost for
BackupRestoreService). The extraction process for these steps

2https://github.com/Azure/Service-Fabric-Troubleshooting-Guides/b
lob/master/Known_Issues/Fabric6.4Upgradefails.md
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correctly identified these commands and incorporatedwhen
executing each step. However, steps 1 and 4 do not explicitly
mention any commands in the TSG. In such cases, the Step
Details Extractor proposed the usage of Powershell commands
to achieve the desired actions outlined in the steps. This
is possible because the large language model used (GPT-4)
possesses knowledge of Azure Service Fabric and Power-
shell commands, allowing it to recommend appropriate com-
mands. This process can be further enhanced by using a re-
trieval augmented generation [15] or fine-tunig process to
adapt to a specific domain. In instances where no clear ac-
tion or tool is available or inferred, LLexusmay prompt the
user to make changes to the TSG to ensure clarity and pro-
vide all the required information for execution.

6.2 Case study: Service Fabric - Periodic
backups stop for configured backup
policies

In the second case study, we again examine another pub-
lic troubleshooting guide from Azure Service Fabric 3. This
guide addresses issues encountered when periodic backup
ceases to function after a runtime upgrade to specific ver-
sions. Unlike the previous case study, this troubleshooting
guide presents some distinctions that allow us to showcase
additional capabilities of the executable plan.

While the preceding case study depicted a linear planwhere
each step follows sequentially without requiring decisions,
this example introduces the concept of potential divergent
outcomes based on the results of certain steps. Here, we find
not only conditional steps but also an event step. This partic-
ular one serves the function of waiting for 2 minutes for the
actions taken to fix the backup to take effect before closing
the incident.

Another distinction between the two case studies is that,
in the initial case, we required only one iteration to generate
the plan. However, in this case, an extra iteration was neces-
sary. After human-in-the-loop validated the generated plan,
we updated the TSG to cover missing scenarios, specifically
adding instructions on what to do when the investigation
was no longer needed (e.g., cluster version different than ex-
pected or no issue identified) to avoid wasted dev cycles on
false-positives.

During the initial plan generation, the LLM assumed the
issue persisted and included a step to escalate the problem,
though this was not expected in the specific TSG. To address
this, we updated the TSG to clarify this point. We changed
the TSG by adding a few lines to the text explicitly men-
tioning what to do after identifying that cluster version was
different than expected or no issue was identified. Conse-
quently, the planner removed the "Escalate issue" node (high-
lighted in red), and added the "Close the investigation" node

3https://github.com/Azure/Service-Fabric-Troubleshooting-Guides/b
lob/master/Known_Issues/BRS-stops-taking-backup-after-upgrading-to
-latest-runtime.md

(highlighted in green). However, a side-effect of regenerat-
ing the plan was the reordering of some steps because it was
not clear in the original TSG which should preceed, as seen
in Figure 9b (highlighted in blue). In this case, this reorder-
ing is not consequential, hence the TSG writer may accept
the plan as is. However, it is key to note that as the trou-
bleshooting steps in the TSG lacked a clear distinction on
the order in which these two steps should be executed, and
due the non-deterministic nature of large language models,
unrelated changes in the TSG can lead to alterations in the
generated plan. This highlights the importance of providing
clear and well-defined steps in the TSG to ensure the gener-
ated plan is accurate and efficient.

Structure of the plan:After observing structural changes
in the TSG following the updates, we decided to investi-
gate the determinism of plan structure for a given TSG. To
achieve this, we generated 10 plans for the updated TSG.
The goal was to compare potential variations in the plans
due to the non-deterministic nature of LLMs. Upon evalu-
ating the results, we found that all 10 generated plans ex-
hibited the same structure (as seen in Figure 9b). Although
the wording of each step’s description might differ between
plans, the fundamental concept of each step remained con-
sistent across all plans.

We observe, as expected, that the betterwritten and clearer
the TSG, the better the generated plan will be. In particular,
ambiguous situations or those that can be inferred based
on context may end up affecting the plan obtained by the
system. This is beneficial not only for the planner, but also
for human consumption. The goal of LLexus is to provide
a framework for improving TSGs and achieving better ver-
sions for both humans and automation.

6.3 Case study: Unexpected Behavior in
Network Link

The final case study refers to a troubleshooting guide used
for investigating issueswithin a specific service inMicrosoft
Azure. Since this is an internal TSG, the details cannot be
disclosed.

In essence, this TSG is employed to diagnose unexpected
behavior occurring in network links within that specific ser-
vice. During the investigation, engineers first check if the
involved resources are under maintenance, as this may be
the cause of the behavior. If not, they proceed by examining
metrics and logs to determine the affected resource and es-
calate the issue to the physical network team for mitigation.

It is worth noting that this particular service is relatively
new and continuously evolving. Consequently, its TSGs are
also a work in progress and can vary significantly in quality
depending on the evolution of the related system compo-
nents.

As we started our investigation of this scenario, we found
that this specific TSG exhibited low quality. The writing
quality was poor, and the descriptions and ordering of the
steps were unclear to someone without prior knowledge.
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Figure 8: Case Study: Backup failure.

Essentially, it required prior familiarity with the service to
comprehend and follow it.

Predictably, the plan generated from this initial version
was incomplete and lackedmajor paths. Essentially, the LLexus
Planner could only identify the maintenance checks, com-
pletely overlooking the crucial aspect of the investigation
when the resourceswere not undermaintenance. It only had
12 steps composing it. Based on this, the tool returned the
incomplete plan for evaluation by the responsible user. As
mentioned in Section 3, this is an iterative process in which
users will use LLexus feedback to update and improve the
TSG.

Aftermultiple rounds, we significantly improved the TSG,
with each step clearly described and having a clear execu-
tion order. The result was a complete plan produced by LLexus.
The new plan covers all possible paths and each step is clear,
self-contained, and contains all the necessary information
for execution. The final plan contains 21 steps, 9 more than
the initial version. Figure 9 shows a representation of the
incomplete plan and the final complete version.

In summary, the process of enhancing the TSG and gen-
erating the plan underscored the importance of having a
clear and well-written TSG. It also demonstrated the utility
of LLexus’s iterative process in assisting engineers in im-
proving troubleshooting guides. By providing guidance and
identifying possible improvements, LLexus proves to be a
valuable tool for refining troubleshooting procedures.

6.4 Cost Analysis
As discussed in Section 3, one of our key design considera-
tions was to generate a plan for the TSG to reduce the over-
all cost when addressing each incident. While this approach

Table 1: TSG: Upgrade Failure

Component Avg. Input Avg. Compl. # Exec. Cost
Tokens Tokens

Tool Selector 1,184 166 1 $0.02
Plan Schema 2,273 390 2 $0.07
Step Details 3,705 435 5 $0.25
Validator 1,520 568 8 $0.26
Total Cost - - - $0.60

significantly lowers the expenses associated with investigat-
ing and mitigating incidents, there are incurred costs dur-
ing the plan generation process. We adopted an iterative
methodology for generating the plan, which involves vali-
dating each step along theway.While this iterative approach
enhances the quality of the generated plan, it also incurs cor-
responding cost during the offline phase.

To better understand the costs associated with generat-
ing each plan and how each component of the LLexus Plan-
ner contributes to the overall cost, we conducted an analysis
on the costs of generating the public TSGs discussed earlier.
We extracted the number of input tokens and completion to-
kens required for the execution of each component. For our
experiments, we utilized theGPT-4-turbomodel provided by
Azure OpenAI. Current prices 4 stand at $0.01 per 1,000 in-
put tokens and $0.03 per 1,000 completion tokens.

Table 1 illustrates the token usage for each component
when generating the plan for the Case Study: Fabric upgrade
fails. The presented numbers represent the average obtained
for the number of executions of each component. Input to-
kens correspond to the prompt of each component, consist-
ing of a static part that provides instructions to the model
for that step, and a dynamic part composed of the TSG, the

4Checked on May 5, 2024
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Figure 9: Case Study: Unexpected Behavior in Network Link

Table 2: TSG: Backup Stopped

Component Avg. Input Avg. Compl. # Exec. Cost
Tokens Tokens

Tool Selector 1,388 182 1 $0.02
Plan Schema 2,477 904 1 $0.03
Step Details 4,423 461 16 $0.93
Validator 2,238 599 18 $0.73
Total Cost - - - $1.71

plan, and selected tools. Completion tokens refer to what is
generated by each component and are significantly smaller
than the input sizes. As shown in the table, the total cost
for generating the plan was $0.60, with the majority of the
cost attributed to extracting the details of each step and vali-
dating the responses of each component, accounting for ap-
proximately 85% of the total cost.

The second case study (Unexpected Behavior in Network
Link) presented in Table 2 incurred total costs almost three
times higher. This is due to the higher number of steps in
this plan (10 steps compared to 5 in the other case study)
and more frequent validation failures. While in the previ-
ous plan generation, only the Plan Schema component failed
once, in this case, there were six failures during step details
extraction. These failures were caused by missing informa-
tion in step descriptions (such as name or description) or
incorrect identification of the source of expected input. Con-
sequently, these steps were considered invalid and had to be
re-executed to obtain a valid response.

Through the evaluation of these two case studies, it be-
comes apparent that the cost of generating a plan is directly
influenced by the number of steps required to troubleshoot

the incident and the frequency of invalid component exe-
cutions. Although the number of steps required cannot be
easily altered, the validation process can be significantly im-
proved based on the quality of the TSG. Clear andwell-described
steps in the TSG can directly impact the planner’s ability to
extract a valid response in the first attempt for each compo-
nent.

However, compared to a fully online approach that analy-
ses and generates a plan at the time of the incident [23, 35],
the cost of generating a plan offline and handling incidents
using a deterministic execution, as proposed in LLexus, is
significantly lower, especially as the number of incidents in-
crease. Figure 10 illustrates the cost comparison between the
two approaches for a single TSG, and illustrates that LLexus
is more cost-effective as the number of incidents increases
and breaks even after very small number of incidents. This
is in addition to other advantages deterministic execution
provides, such as faster execution and reduced risk of errors.
Here, we assume a cost of $1.15 to process a TSG based on
the average cost of the two case studies. We assume simi-
lar cost for the online model, per incident processed since it
needs to process the TSG each time. Further, both LLexus
and the online approach use LLMs to process natural lan-
guage results, such as logs. We assume 500𝐾𝐵 of such data
being processed incident, and is common across both ap-
proaches. The cost of processing 500𝐾𝐵 of data ( 50K tokens)
using previously stated LLM model is about $0.5.

In conclusion, our analysis highlights that while gener-
ating executable plans from TSGs incurs costs, these costs
are reasonable considering the significant reduction in ex-
penses during incident execution. As demonstrated through
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our case studies, the cost of generating a plan may increase
depending on the number of steps required, as well as the
frequency of validation failures. However, these costs are
outweighed by the benefits, as the approach results in sig-
nificant reduction in costs for executing the plan. Therefore,
despite the initial investment in plan generation, the overall
cost-effectiveness of our approach makes it a valuable tool
for incident management.

6.5 Learnings
Through the exploration of the three case studies, several
key learnings and insights were gained regarding the gener-
ation of executable plans using LLexus and troubleshooting
guide improvement:
(1) The Importance of Clear andWell-Written TSGs:

The case studies emphasized the critical role of having
clear and well-written troubleshooting guides (TSGs).
Plans generated by LLexus were directly influenced
by the quality of the TSGs. In cases where the TSGs
were poorlywritten or ambiguous, the generated plans
were less effective and required more iterations to im-
prove.

(2) Iterative Process for TSG Improvement: LLexus’s
iterative process proved to be invaluable in improving
TSGs. By generating initial plans and receiving feed-
back, engineers could identify areas for improvement
in the TSGs, such as clarifying steps, adding missing
scenarios, or adjusting the order of operations. This
iterative approach allowed for continuous refinement
and enhancement of the troubleshooting process.

(3) Adaptability to Diverse Scenarios: The case stud-
ies highlighted LLexus’s adaptability to diverse trou-
bleshooting scenarios. Whether dealing with straight-
forward linear plans or more complex situations with
conditional steps and event triggers, LLexuswas able
to generate executable plans that addressed the spe-
cific issues outlined in the TSGs.

Overall, these learnings emphasize the importance of clear
communication in troubleshooting guides, the value of iter-
ative improvement processes, and the adaptability and reli-
ability of LLexus in generating effective plans for diverse
troubleshooting scenarios.

7 RELATEDWORK
Effective incident management is critical for maintaining re-
liable cloud operations. Traditionally, managing an incident
involves triaging the issues [5, 6, 8], diagnosing the prob-
lems [3], and thenmitigating the incident [12, 33]. Our work
contributes to both the diagnosis and mitigation aspects of
the incident lifecycle. Automated execution of a plan can
improve the investigation and help in the resolution of the
problem.

Previous research has explored mining structured knowl-
edge from various incident-related artifacts, including inci-
dent reports [14, 25, 26], root cause documentation [24], and
troubleshooting guides [12, 27]. Of particular relevance to
our work is the framework proposed by Shetty et al. [27],
which combines machine learning and program synthesis
to automate the creation of executable workflows extracted
from incident troubleshooting guides [27].

The advent of LLMs has significantly empowered new ap-
proaches to incidentmanagement [1, 2, 7, 13, 23]. Previously,
reasoning about the various artifacts produced in incident
management was challenging due to its human-driven na-
ture. However, recent advances in LLMs have greatly im-
proved this capability. For instance, Roy et al. [23]. explore
LLM-based agents for incident root-cause analysis, propos-
ing a ReAct agent that interacts with external tools to iden-
tify the root cause of an incident. Xpert [13] is another frame-
work that automates KQL (Kusto Query Language) recom-
mendation during incident investigation by leveraging his-
torical incidents.

More closely related to our work, An et al. [2] utilize TSGs
and historical incidents as a knowledge base to feed a Copi-
lot that assists engineers during incident investigations. Their
approach involves building an interactive tool that relies
on human input during the investigation. Similarly, Trans-
posit [30] also provides a chat-based interactive CoPilot for
incident management. In contrast, our approach interacts
with the engineer during the generation of an executable
plan (and improvement of the TSG), but once the incident is
created, the plan is automatically executed without human
intervention. We believe our approach reduces human bur-
den during incident management and reduces MTTM.

8 CONCLUSION
On the problem of mitigating live site incidents for SaaS
products, a variety of approaches have been proposed by
prior work. We believe we are taking a unique approach in
LLexus, in leveraging an LLM-based AI agent to generate a
plan from a TSG or equivalent document. Subsequently, the
plan can be automatically executed against an incident, with
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or without additional use of an LLM-based agent depending
on whether all the plans needs can be satisfied by existing
tools.

In this paper, we focus on theAI agent for plan generation.
It is that stage where two critical design challenges exist –
mitigating LLM hallucinations and the cost of LLM execu-
tion. We have plan execution also working in LLexus, but
more engineering effort is needed to generalize execution to
a variety of environments (on-prem and cloud, customer de-
ployments and engineering team deployments, access with
multiple levels of authentication, etc.).

There are multiple avenues of future work that we are
considering, and we encourage the research community to
investigate. Recently, SLMs (Small Language Models) have
been trained on curated input [10] and have been shown
to run faster, incur less cost, and yet be effective at basic
tasks. Perhaps an SLM could be a drop in replacement for the
LLM in LLexus. The current focus of LLexus is to address
machine-generated incidents, where there is a direct corre-
lation between the incident title or details and which TSG
should be followed.With customer-generated incidents, this
is less clear and a learning approach may be fruitful in min-
ing prior customer-generated incidents and resolution notes
to identify which TSG is relevant. For LLexus to succeed,
we still need engineers to maintain human-readable TSGs.
Perhaps TSGs can be learned from prior incidents that have
been resolved. Eventually, perhaps LLexus can be used ear-
lier in the lifecycle of an incident, such as when a metric is
trending towards bad but has not crossed a critical thresh-
old, some mitigation steps could be automatically applied to
avert an outage.
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