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Abstract

The objective in eXtreme Multilabel Classifica-
tion (XMC) is to find relevant labels for a doc-
ument from an exceptionally large label space.
Most XMC application scenarios have rich auxil-
iary data associated with the input documents,
e.g., frequently clicked webpages for search
queries in sponsored search. Unfortunately, most
of the existing XMC methods do not use any aux-
iliary data. In this paper, we propose a novel
framework, Online Auxiliary Knowledge (OAK),
which harnesses auxiliary information linked to
the document to improve XMC accuracy. OAK
stores information learnt from the auxiliary data in
a knowledge bank and during a forward pass, re-
trieves relevant auxiliary knowledge embeddings
for a given document. An enriched embedding is
obtained by fusing these auxiliary knowledge em-
beddings with the document’s embedding, thereby
enabling much more precise candidate label se-
lection and final classification. OAK training in-
volves three stages. Stage 1 trains a linker mod-
ule to link documents to relevant auxiliary data
points. Stage 2 learns an embedding for docu-
ments enriched using linked auxiliary information.
Stage 3 uses the enriched document embeddings
to learn the final classifier. OAK outperforms
current state-of-the-art XMC methods by up to
~ 5% on academic datasets, by ~ 3% on an
auxiliary data-augmented variant of LF-ORCAS-
800K dataset in Precision@1. OAK also demon-
strates statistically significant improvements in
sponsored search metrics when deployed on a
large scale search engine.
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Document Plinth Assemblage

Auxiliary Mount Meager massif, Geologic formations of British
Knowledge Columbia, Volcanism of British Columbia, Pleistocene volcan-
(AK) ism, Beaufort Group, Paleontology in South Africa

NGAME (Ig- | Job Assemblage, Assemblage, Pylon Assemblage, Capricorn
nores AK) Assemblage, Assemblage (art)

OAK (Uses | Pylon Assemblage, Capricorn Assemblage, Job Assemblage,
AK) List of Cascade volcanoes, List of volcanoes in Canada

Table 1. OAK leverages auxiliary knowledge pieces for accurate
XMC. Example from WikiSeeAlsoTitles dataet. Given a Wikipedia
page title, auxiliary knowledge indicates relevant categories. The
related Wikipedia pages predicted by OAK are more accurate
than state-of-the-art XMC algorithm, NGAME. OAK was able
to predict labels related to volcanoes thanks to the information
from auxiliary knowledge. Black (correct), Red (incorrect), Green
(correct; unique to OAK)

1. Introduction

eXtreme Multilabel Classification (XMC) is the problem
of predicting the most relevant subset of labels for a data
point from an extremely large set of labels. XMC meth-
ods have proved to be effective for several applications
like product recommendation (Dahiya et al., 2021b; Medini
et al., 2019; Mittal et al., 2021a), document tagging (Bab-
bar & Scholkopf, 2017; Chang et al., 2020; You et al.,
2019), search and advertisement (Dahiya et al., 2021b; Jain
et al., 2016; Prabhu et al., 2018b), and query recommenda-
tion (Chang et al., 2020; Jain et al., 2019). Earlier methods
for XMC used sparse linear models (Babbar & Scholkopf,
2017; Prabhu et al., 2018b) while recent methods have been
deep learning based (You et al., 2019; Dahiya et al., 2021b;
Mittal et al., 2021a; Dahiya et al., 2021a; Kharbanda et al.,
2022; Dahiya et al., 2023a; Jain et al., 2023; Dahiya et al.,
2023b; Kharbanda et al., 2023).

For full-text XMC datasets such as LF-Wikipedia-
500K (Bhatia et al., 2016a), documents are represented
using a more detailed description. However, short-text tasks
abound in ranking and recommendation applications where
data points are user queries or products/webpages repre-
sented using only their titles. In such cases, e.g., in the
LF-WikiTitles-500K dataset, documents are represented by
a 3-5 word textual description such as the name of a product
or title of a webpage. The sparse document representation
adds to the complexity of XMC tasks on such short-text
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datasets. However, besides the document text, often, a vari-
ety of auxiliary information is available in many domains,
e.g., frequently clicked webpages for search queries in spon-
sored search, previously searched queries for web search
query auto-completion, etc. Auxiliary information available
from disparate but related tasks often have relevant diverse
information that the input document does not, which can be
leveraged to provide better predictions. Surprisingly, none
of the previous XMC methods have leveraged this rich aux-
iliary information. In this paper, our goal is to check how
much accuracy improvements can be obtained for XMC
tasks by harnessing rich auxiliary information. Table 1
shows an example where usage of auxiliary information
improves accuracy for the Wikipedia “See Also” prediction
XMC task.

Given a document x and a set of K related auxiliary knowl-
edge pieces {ax }[1..K], an obvious approach is to concate-
nate the document with each of the knowledge pieces and
compute embedding of this concatenated sequence as the
document representation. If the auxiliary knowledge pieces
(AKP) are not known for a document, popular methods from
retrieval augmented language modeling (Guu et al., 2020)
can be used to first discover relevant auxiliary knowledge
pieces from a large pool. However, such a method has a few
drawbacks: (1) accuracy may suffer if some AKPs are noisy,
and (2) inference latency may increase due to increased
length of the concatenated sequence. Another approach to
use graph neural network methods like GraphFormers (Yang
et al., 2021) and GraphSAGE (Hamilton et al., 2018) to en-
code the document-AKPs linkage information. However,
they involve high storage and computational costs, and can-
not leverage the auxiliary data sourced from disparate tasks
effectively as observed in our experiments.

In this paper, we propose the Online Auxiliary Knowledge
(OAK) classifier to enrich document representations using
auxiliary information. Fig. 1 shows the detailed OAK archi-
tecture. Training for OAK involves three stages: (1) Linker
training (2) OAK pretraining (which involves training the
augmentation block as shown in the figure) (3) OAK finetun-
ing. In the first stage, the linker module in OAK is trained to
link documents with relevant AKPs from a large pool using
an existing XMC method. In the second stage, we combine
the document embeddings with relevant AKP embeddings
via attention-based pooling to get an enriched document rep-
resentation. The second stage then trains the augmentation
block (detailed later) in a Siamese fashion. The goal is to
attain higher similarity between enriched document embed-
dings and relevant label embeddings as against non-relevant
label embeddings. The third fine-tuning stage freezes the
augmentation block parameters and learns a per-label refine-
ment vector to fine-tune the label embeddings to obtain the
final label classifiers.
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Figure 1. OAK model architecture. For a given document d;, doc-
ument representations x; are obtained using the encoder £ with
parameters 6. Linker R returns the indices corresponding to
relevant AKPs, A;, which correspond to the embeddings in AK
Bank. These embeddings are concatenated and passed through
the Combiner module C to obtain the auxiliary data enriched doc-
ument representation X;. We refer to the collection of the three
modules (Encoder £, AK Bank K and Combiner module C with
parameters g, Ok and ¢ resp) as the Augmentation Block, ).
Same encoder £ is also used to obtain label representations y; for a
label [;. Augmentation block parameters are frozen when learning
a per-label refinement vector Awy; to obtain final classifier w; for
label /;.

OAK uses trainable embeddings that are completely free
to move around to represent each AKP. These AKP repre-
sentations are learnt jointly with the document encoder to
optimize for the target XMC task.

This ensures that the OAK augmentation block can use
signals from AKPs to get an enriched representation of a
document while still adhering to the semantics imposed by
the XMC task. Further, to avoid large changes in encoder
embeddings in stage 2, we introduce encoder regulariza-
tion. Lastly, motivated by Direct Preference Optimization
(DPO) (Rafailov et al., 2023), we add an novel calibration
regularization term to the loss function to learn accurate
enriched document representations.

On public benchmark datasets for Wikipedia document tag-
ging, suggesting relevant Wikipedia titles and webpage
prediction, OAK provides a gain of up to ~ 5%, ~ 1%
and ~ 3% respectively in Precision@ 1 metric over strong
XMC baselines. On a sponsored search task of matching
user queries to advertiser keywords, OAK outperforms cur-
rent state-of-the-art dense retrievers by 5% in retrieval re-
call@100. OAK adds minimal computational overhead
during training. OAK’s inference is efficient leading to
an inference time of <10 milliseconds, enabling it to be
deployed for a sponsored search task to get enhanced repre-
sentation of a user query in real-time for online serving.

Opverall, the main contributions of this work are as follows.
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(1) We propose the usage of semantically rich auxiliary
information associated with documents for diverse and ac-
curate XMC. (2) We propose the modular OAK architecture
to leverage the AKPs. OAK can execute the joint training
of AKP representations on top of any encoder, and exploit
the signals from any auxiliary source. We also propose
a 3-stage training scheme for OAK which involves linker
training, OAK pre-training and OAK finetuning. (3) OAK’s
novel insight to efficiently increase model capacity by using
trainable embeddings to represent AKPs ensures optimal
document representation for the target XMC task. At the
same time, the novel mutual information calibration loss
term ensures that the potentially orders of magnitude more
parameters can be learnt tractably. (4) OAK leads to state-
of-the-art results on several XMC tasks including advertiser
keyword prediction for user queries, Wikipedia categories
and “See Also” prediction, and Webpage prediction by lever-
aging auxiliary information efficiently. The code will be
released publicly upon acceptance of this paper.

2. Related Work

XMC: XMC is a key paradigm in several areas such as rank-
ing and recommendation. The literature on XC methods is
vast (You et al., 2019; Guo et al., 2019; Dahiya et al., 2021b;
Mittal et al., 2021a; Saini et al., 2021; Gupta et al., 2023).
Early XC methods used fixed (bag-of-words) (Babbar &
Scholkopf, 2017; Prabhu et al., 2018b) or pre-trained (Jain
et al., 2019) features and focused on learning only a classi-
fier architecture. Recent advances have demonstrated sig-
nificant gains by using task-specific features obtained from
a variety of deep encoders (You et al., 2019; Jiang et al.,
2021; Dahiya et al., 2023a). Training is scaled to millions
of labels and training points (Dahiya et al., 2021b) by per-
forming encoder pre-training followed by classifier training.
A data point is trained only on its relevant labels and a se-
lect few irrelevant labels deemed most informative using
negative mining (Dahiya et al., 2023a). However, none of
the existing XMC methods make use of any auxiliary in-
formation associated with documents, except PINA (Chien
et al., 2023) which uses instance correlation signals to learn
neighborhood aggregated representations. Our experiments
show that OAK outperforms PINA by large margins.

Retrieval Augmented Language Models: REALM (Guu
et al., 2020) leverages external knowledge sources to en-
hance accuracy using Transformer encoders. Based on the
input text, first, a retriever selects relevant documents or
passages from a large corpus. Then, an encoder concate-
nates the input text and relevant documents and computes
an embedding for the sequence. Retrieval augmentation
has also been extended to generation (RAG (Lewis et al.,
2020)), but we do not discuss RAG in detail since XMC is a
classification problem.

Graph Neural Networks in Related Areas: A sizeable
body of work exists on using graph neural networks such as
graph convolutional networks (GCN) for recommendation.
GCN-based methods such as GraphSAGE (Hamilton et al.,
2018) and GraphFormers (Yang et al., 2021) learn node rep-
resentations as functions of node metadata e.g. textual de-
scriptions. This allows the methods to work in zero-shot set-
tings but they still incur the high storage and computational
cost of GCNs. Moreover, diminishing returns are observed
with an increasing number of layers of the GCN (Chiang
et al., 2019; Mittal et al., 2021b). As a baseline method, in
this work, we experiment with enriching document repre-
sentations using document-AKP graphs. Our experiments
show that the OAK method offers a far more scalable alter-
native to GCNs and other popular graph-based architectures
in XMC settings, significantly reducing the overheads of
graph-based learning, yet offering sustained and significant
performance boosts in prediction accuracies.

3. Preliminaries/Background

Notation. Consider a dataset containing a set of documents
D, Auxiliary Knowledge Pieces (AKPs) A and labels L.
Let d;,1; € X be the textual descriptions of the document ¢
and label j respectively. Thus, the training dataset can be
expressed as T' = {d;, [;}¥ ;. For each document d; € D,
there exists a positive label set £d+7, C L such that for every
l; € L’d+i, d; and 1; are relevant. Similarly, the positive
AKP set exists Ajﬂ_ for every document d; as well. Note
that AKP and label sets are the same across training and
testing, but document-AKP links are not available at test
time.

Task. Before discussing the details of our proposed OAK
framework, we recap the fundamentals of the XMC task at
hand. The objective of an XMC is, given a document d;,
retrieve a set of relevant labels E:L_ from a label set £ where

L5, < 1]

Siamese Networks. Several existing XMC methods fol-
low a Siamese architecture. Here, a (BERT-based) encoder,
denoted by £ : X — S D—1" with trainable parameters
6, is used to embed both data point and label text onto
the D-dimensional unit sphere S D—1j e., the encoder pro-
vides unit norm embeddings. During training, a contrastive
objective (triplet loss in our case) is used to pull the D-
dimensional encoder representations of related documents
and labels close as well as push unrelated documents and la-
bels away. Formally, if we have x; = £(d;) andy; = £(1;),
Triplet loss is defined as below.

N
ef 1
Luin@) = 5 DD [iey) —xiy +9],
i=1 j#i

where + is the margin. Typically training is done in a modu-
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lar fashion in 2 stages where encoder £ is trained in the first
stage and frozen. The second stage initializes |£| 1-vs-all
classifiers, each corresponding to a label, with the label text
encoder representations, and refines them using the triplet
loss objective described above. For more details on Siamese
architectures and training, please refer to (Dahiya et al.,
2023a).

Interestingly, there is an equivalence between Siamese train-
ing and the maximization of mutual information between
document and label encoder representations as described in
the theorem below. Please refer to Appendix D.1 for the
proof.

Theorem 1. Siamese training via triplet loss serves to max-
imize mutual information between the distributions cast by
the document and label encoder representations.

4. The OAK Approach for XMC

OAK Architecture: As depicted in Fig. 1, OAK consists of
four components as follows. (1) Anencoder £ : X — SP~1
with trainable parameters g embeds documents and la-
bels into SP~! using their textual descriptions. OAK uses
a DistilBERT-base (Sanh et al., 2019) encoder as £. (2)
A linker module R : X — P(A), where P(A) is the
power set of A, has parameters 0p,. It predicts K relevant
AKPs ftl for a document d;. (3) An auxiliary knowledge
bank K consists of |A] trainable embeddings with param-
eters 0. Formally, K € RMX*D ' where K; € RP cor-
responds to row j in /C for the j-th AKP. The AK bank
stores information learnt from the auxiliary data. It also
helps increase the model capacity via additional learnable
parameters for AKP representations. (4) A combiner mod-
ule C : RKHDXD _y §D—1 with trainable parameters ¢
fuses the encoder’s document representation x; = £(d;)
and AKP embeddings {K(a1),K(a1), ..., K(ax)} C K us-
ing cross attention. Here, K is a model hyperparameter that
corresponds to the maximum number of AKPs the module
can enrich the document representation with. The module
is expected to learn higher weights for relevant AKPs and
lower for noisy ones (see Figure 2). Overall, OAK training
involves learning the set of parameters 0 = {0, 0k, 0c}.

Auxiliary Data Enriched Document Representation: The
encoder, AK bank and combiner modules are jointly referred
to as the Augmentation Block 1 : X — SP~1, which aug-
ments the document representation using AKP embeddings
to enrich it. Augmented representations are obtained from
the combiner module which fuses the trainable embeddings
obtained from the AK Bank with the encoder’s document
representation. Since for document d; we have x; = £(d;)

and K(A;) = {K(a1),K(a1),...,K(ax)}, we obtain the
auxiliary data enriched document representation as

wid) = e (xi (e FT) - @)

Auxiliary Knowledge

Document Pieces (AKPs)

Geologic Formations
of British Columbia

Mount Meager Massif

Plinth Assemblage ) i
Pleistocene volcanism &k

Ethnic Groups in
South Africa

Figure 2. Cross Attention score visualization for the document
“Plinth Assemblage” (same as in Table 1). In Table 1, we showed
ground truth AKPs, while here we show 3 most relevant AKPs (all
of which match with the ground truth) as predicted by the linker
module. To demonstrate the combiner’s capacity to filter out noise,
we also add an incorrect AKP, “ethnic groups in south africa”, and
it is scored the lowest out of all AKPs.

4.1. Training OAK

Training of OAK is divided into three stages: (1) training
the Linker Module R, (2) training the Augmentation Block,
and (3) training the label classifiers.

Training the Linker Module. Treating the AKPs as labels,
predicting relevant AKPs for documents at test time can
be modeled as an XMC task. Hence, we use a performant
XMC method as the linker module, trained on the document
to AKP linkage training data.

Training the Augmentation Block using MI Maximiza-
tion. The Augmentation Block 7 consists of encoder &,
AK Bank K, combiner module C. To generate enriched
document representations optimized to maximize XMC task
accuracy, we need to ensure that both £ and v provide se-
mantically rich representations, predictive of the labels. This
implies that we need to maximize mutual information (1) be-
tween enriched document representations from ¢/ and label
representations using £, and (2) between document represen-
tations from £ and label representations using £. Formally,
we have random variables X ~ P[E(d)], X4 ~ Py(d)],
Y ~ P[&(1)] and we maximize I(X 4;Y) + I(X;Y). As
elaborated in Theorem 1, Triplet loss serves to maximize
mutual information between the distributions cast by the
two towers of the Siamese network. Hence, we leverage
triplet loss to define the MI maximization requirement.

For a document d;, we sample k,, ~ E;'i. We define L;L_
as the set of negative labels L; obtained using in-batch
sampling from the set of labels which are relevant for other
documents in the current batch but irrelevant to document
d;. The triplet loss formulation to maximize (X 4;Y") for
a batch of IV samples then naturally follows.

N
Luipy(0) =Y > [Kiyn —%i-y, +7],  ©

i=ly,ecy
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where for clarity, we denote (d;) using %;, and £(1;) us-
ing y;. Similarly, to maximize I(X;Y"), the triplet loss
formulation can be written as follows.

N
Lripe@p) = Y [xi-va—xi-y, +17], &

i=ll,ecy

where x; = £(d;). In addition to optimizing I(X;Y),
Lip,e(0r) also ensures that the Knowledge Bank param-
eters JC don’t overfit the objective and the encoder doesn’t
lose quality during joint training. Please refer to section 5.4
for ablations on this.

Combining Equations 3 and 4, to achieve MI maximization
I(X4;Y)+ I(X;Y), the loss is as follows.

Lyiimax (0) = Lvip, v (0) + Lrvip, £ (OE) ©)

Improving the Augmentation Block training using MI
Calibration. Since v represents AK-enriched document
representation, it is expected to have more information that
can predict accurate labels compared to £. That is, we want
to ensure I(X 4;Y) > I(X;Y). To achieve this, we define
a calibration loss Lcyip. Inspired by (Ma et al., 2023), we
define the calibration loss as expected confidence difference
CDij = 51‘3‘ (E(Clz) . g(lj)'l— - w(dz) . E(IJ)T) where 6ij is
+1if d; and 1; are related, —1 otherwise. This gives

L NN
Lanecain(0) = + > > ICDy; +A1, (©)

i=1j=1

where +y is a margin term and [V is the batch size. The intu-
ition is that the model is penalized for being less confident
when scoring a relevant pair with more (auxiliary) infor-
mation at input, thereby ensuring I(X4;Y) > I(X;Y).
It also ensures that the model is penalized for being more
confident when scoring a irrelevant pair with more (auxil-
iary) information at input. Please refer to Section 5.4 for
ablations on the contribution and design of this loss.

In the following Theorem 2, we show why using Lyy.caiib 18
meaningful for OAK training. Please refer to Appendix D.2
for the proof.

Theorem 2. Lc,, gradients specifically update the Knowl-
edge Bank parameters to ensure a higher likelihood of posi-
tive labels and a lower likelihood of negative labels.

Overall, Theorem 2 shows that whenever a set of parameters
1) encourages negative labels getting sampled, the calibra-
tion loss encourages the next update to move away from
those parameters. It is worth noting that recently popular
preference-based learning algorithms for conditional lan-
guage generation (see, e.g., Rafailov et al. (2023)) employ
a similar calibration strategy to train a language model pol-
icy. However, they work with binary cross entropy loss in
contrast to the triplet or hinge loss that we consider here.

Algorithm 1 Augmentation Module Training

Input: Init trainable 6 parameters for £, K and C and a
trained R. Additionally, batch size B.
for i = 0 to |D| step B do
Obtain di:i+B and li:i+B
x=&(diitB). X =9¥(dii4B), Yy = E(LiitB)
L= L:Trip(f(y y) + ETrip (Xa y) + AEMI—Calib(f{a X, y)
Update parameters 6 using L.
end for

The final loss for augmentation block training can be written
by combining Equations 5 and 6 as follows.

Loak (0) = Lairmax () + ALwrcain (6) (7

Please refer to algorithm 1 for a summary of the overall
training method.

Training the Label Classifiers After the augmentation
block is trained, we freeze its parameters 6. Then per-label
refinement vectors Aw; are learned to fine-tune the label
embeddings and obtain the final label classifiers w; for each
label I;. For this stage, we follow the same procedure as
module M2 training of NGAME (Dahiya et al., 2023a).

4.2. Inference using OAK

Serving label predictions for a given document d; is a four
step procedure. Firstly, the encoder network £ generates
the base embeddings x = £(d;). In parallel, the linker
R is used to predict the top-k relevant AKPs for d; and
the retrieved indices are used to obtain the AKP embed-
dings from K. Thirdly, the combiner module C takes as
input the encoder block embedding x and AKP embeddings
{K(a1),K(a1),...,K(ax)} obtained from the previous step
and generates the enriched representation X as shown in
Equation 2. Finally, X is used to query ANNS (Approximate
Nearest Neighbor Search) data structure over the one-vs-
all classifiers w;. This helps to retrieve set of labels with
high scores from the ANNS lookup. The final score F for
each label /; is computed as a multiplication of similarity
between X and y; and ANNS lookup score. Labels with a
high final score are returned as relevant labels.

For OAK, the augmentation adds <2ms per document dur-
ing serving. This enables leveraging rich auxiliary infor-
mation with marginal impact on latency, enabling the AK
enriched document representation being generated in aver-
age ~7ms and 99th percentile ~11ms end-to-end latency.

5. Experiments and Results

In this section, we evaluate the proposed OAK method
for the Auxiliary Data enhanced XMC task in three ways.
Firstly, through comparisons with other leading methods
which employ different ways to leverage auxiliary data we
demonstrate the superiority of OAK’s design choices. Sec-
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ondly, via ablations we detail how each component of our
architecture is crucial to OAK’s performance. Thirdly, we
analyse our method’s performance on tail data - rare docu-
ments and rare labels.

5.1. Datasets

There exist numerous datasets for XMC benchmarking, but
very few of them offer ground truth auxiliary data. To fix
this, we attach ground truth auxiliary data from the original
dumps to existing XMC datasets. For statistics on these
datasets, please refer to Table 10 in the Appendix.

Wikipedia Datasets. The Wikipedia datasets are created
from publicly available Wikipedia dumps'. The task in the
LF-WikiSeeAlsoTitles-320K and LF-WikiSeeAlso-320K
(full text version of the former) datasets is to, given a
Wikipedia article/page, predict the other Wikipedia articles
to be recommended in the ‘See Also’ section. The wikipedia
categories these articles are tagged with are used as auxil-
iary data in this case. Similarly, LF-WikiTitles-500K and
LF-Wikipedia-500K are datasets where the task is to, given
a Wikipedia article/page, predict the Wikipedia categories
the article should be tagged with. Other Wikipedia article
titles connected to the original page via hyperlinks in the
article are used as auxiliary data in this case.

ORCAS Dataset. An XMC benchmarking dataset LF-
ORCAS-800K is created from the ORCAS dump (Craswell
et al., 2020), which encapsulates the search query to web
URL prediction task. However, this dataset doesn’t have
ground truth auxiliary data attached. Hence, we use GPT-
4 (Achiam et al., 2023) to generate “related user queries”
given a particular search query, which forms the auxiliary
data for this dataset. This related queries dataset used to
train OAK’s linker will be released publicly upon accep-
tance of the paper.

Proprietary Dataset. Experiments are also conducted on
a proprietary large-scale SponsoredSearch-150M dataset
created by mining the logs of a popular search engine. The
central task in this dataset is to predict advertiser keywords
relevant for a user query. The auxiliary data is obtained
by mining the organic search webpages titles clicked in re-
sponse to the query on the search engine. User-typed queries
and the bid keyword corresponding to surfaced advertise-
ments yielded query-keyword training pairs. These pairs
were then passed through basic sanity filters based on click-
through rate (CTR), clicks, and impressions to create the
training dataset. Further, the same search engine logs were
mined for webpages clicked by users in response to a query
to obtain the query-webpage AK links. The dataset obtained
has around 500M, 30M, and 150M queries, webpages, and

'https://dumps.wikimedia.org/enwiki/
20220520/

advertiser keywords respectively.

5.2. Metrics, Baselines and Experimental Setup

In evaluating all methods, we compare on the basis of Pre-
cision@K, nDCG@K and Propensity Scored Precision@K
(to compare performance on tail labels). Detailed explana-
tions of these metrics are provided in Appendix E.

We compare the performance of OAK against exist-
ing competitive methods — ANCE (Xiong et al., 2021),
NGAME (Dahiya et al., 2023a) and PINA (Chien et al.,
2023), graph convolution based methods — GraphForm-
ers (Yang et al., 2021), which employs GNN-Nested trans-
formers layers to aggregate related AKP information within
transformer layers and GraphSAGE, where a GIN (Hamil-
ton et al., 2018) convolution performs node-aggregation
over documents and related AKP embeddings. To prove
the effectiveness of our architecture, we show significant
accuracy gains over NGAME, the current state-of-the-art
Siamese method for XMC.

5.3. Results

We clearly see that in Table 2, OAK outperforms every other
method. We see strong improvements of ~2% in P@1 over
NGAME, which is the closest competitor. This categorically
shows OAK’s benefits in improving the representation of
the documents via augmenting with auxiliary information.

Compared to GraphFormer, OAK demonstrates substantial
gains in accuracy, over 15-20% and compared to Graph-
SAGE, 5-7% higher P@1 across all relevant datasets. This
validates that directly aggregating neighboring AKP fea-
tures leads to intent dilution in other methods. However,
OAK’s jointly trained Augmentation Block with trainable
AKP embeddings mitigates this issue since our the AK
Bank increases the model capacity, allowing it to learn how
to avoid diluting the document’s intent during training to
deliver the best performance. Note that experiments with
GraphFormers and GraphSAGE are provided the ground
truth document-AKP linkages at train as well test time,
whereas our method uses predictions from the Linker Mod-
ule trained on the document-AKP linkages only in the train
set, without assuming they’re available at test time. This
gives the former methods an unfair advantage, which is
why OAK’s performance gains over them conveys an even
stronger argument for our design choices. The consistent
gains over various auxiliary data-based methods like PINA
prove OAK’s capability of effectively incorporating AKPs
to enrich document representations for improved XMC.

Similarly, results in Table 3 shows that OAK offers 5%
higher P@1 on LF-ORCAS-800K dataset.
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Table 2. Results on public benchmark datasets. OAK offers ~5% higher P@1 on standard XMC benchmark datasets. Metrics for PINA
couldn’t be reproduced, only values for those reported in the original paper are shown.

Method |P@1 P@5 N@5 PSP@1 PSP@5|P@1 P@5 N@5 PSP@1 PSP@5|P@1 P@5 N@5 PSP@1 PSP@5|P@1 P@5 N@5 PSP@1 PSP@5
| LF-WikiSeeAlsoTitles-320K | LF-WikiTitles-500K | LF-WikiSeeAlso-320K | LF-Wikipedia-500K

OAK (Ours) |33.71 17.12 34.35 25.83 30.83 (44.82 17.67 33.72 25.79 2490 |48.57 23.28 49.16 33.92 40.44 |85.23 50.79 77.26 45.28  60.80
NGAME 32.64 16.60 3321 24.41 29.87 [39.04 16.08 30.75 23.12 23.03 [46.40 18.05 46.64 28.18 33.33 |84.01 64.69 7597 4125 57.04
ANCE 30.79 1536 31.45 25.14  28.73 [29.68 12.51 25.10 23.18 21.18 [45.64 17.32 4543 29.60 32.83 |77.92 40.95 68.70 50.99 57.33
GraphFormers |21.94 11.79 24.02 19.24 2270 |24.53 11.33 20.35 22.04 19.53 |18.14 881 20.81 16.85 20.98 |31.10 14.00 24.87 25.16 21.83
GraphSAGE |23.13 8.26 25.12 17.84 18.73 |21.14 18.79 22.61 21.32 11.82 |19.30 10.82 22.67 17.56  23.50 |32.53 15.50 25.33 2234 19.14
PINA - - - - - - - - - - 4454 2292 - - - 82.83 50.11 - - -

Table 3. OAK offers 5% higher P@1 on LF-ORCAS-800K.

Method | P@1 P@5 N@5 | PSP@1 PSP@5

OAK (Ours) | 75.25 28.18 80.26 | 59.12  80.30

ANCE 7247 2660 7660 | 5870  76.68
5.4. Ablations

We show ablations on LF-WikiTitles-500K and LF-
WikiSeeAlsoTitles-320K. Models for ablation experiments
on LF-WikiTitles-500K are trained for only 100 epochs (to
save compute) resulting in slightly lower accuracies than
shown in Table 2, but remaining hyperparameters are the
same as before. We run 300 epochs on the other dataset.
Furthermore, ablations are done using label embeddings
from Stage 2.

AK Bank. We remove the AK Bank module and obtain
AKP embeddings using the encoder £. This not only results
in deteriorated performances, as can be seen in Table 4, but
also requires upto ~ 10x more GPU memory and takes
~ 4x as long to train.

Table 4. Ablation for AKP representation.

Method ‘ P@1 P@5 N@5 ‘ PSP@1 PSP@5
LF-WikiSeeAlsoTitles-320K
OAK 3275 16.64 33.65| 25.67 30.51
OAK-AK Bank | 31.88 1597 3245 | 2538 29.38
LF-WikiTitles-500K
OAK 43.80 17.23 3294 | 26.00 24.42
OAK-AK Bank | 42.64 16.25 31.60 | 26.39 23.59

Regularization. Our choice of loss function has three com-
ponents, Lrvip, v, Ltrip, ¢ and Lyrcaiib. Table 5 ablates over
this to demonstrate the importance of each loss component.

Table 5. Ablation for regularisation loss.

Method ‘ P@1 P@5 N@5 ‘ PSP@1 PSP@5
LF-WikiSeeAlsoTitles-320K
ACTn'p, ¢t LTrip, £+ )\LMI-Calib 32.75 16.64 33.65 25.67 30.51
Lriip, 3 + Lvip, £ 3191 16.16 32.70 | 24.83 29.48
Lrip, % 30.51  15.85 31.70 | 23.40 28.55
LF-WikiTitles-500K
[rTrip. ¢+ LTrip, &+ ALlmrcaib | 43.80 17.23  32.94 26.00 24.42
Lriip, o + Lvip, £ 42.16 1693 3232 | 2590 24.34
Liip, 40.57 1627 30.81 | 23.14 22.49

Combiner Module The Combiner module C uses cross-
attention to decide how much weight to give individual AKP

embeddings when fusing with the encoder’s document rep-
resentation to create an enriched representation. In Table 6,
we compare this combiner design against a simple mean
pooling strategy, where every AKP embedding is given the
same weight.

Table 6. Ablation for combiner architecture.
Method ‘ P@1 P@5 N@5 ‘ PSP@1 PSP@5

LF-WikiSeeAlsoTitles-320K

Cross Attention | 32.75 16.64 33.65 | 25.67 30.51

Mean Pooling 27.09 1449 28.82 19.12 25.49
LF-WikiTitles-500K

Cross Attention | 43.80 17.23 3294 | 26.00 2442

Mean Pooling 3491 1451 2734 | 2097 20.71

Early concatenation vs late attentive fusion. OAK broadly
does late attentive fusion of the input document and related
auxiliary information. Table 7 shows results on the LF-
WikiSeeAlsoTitles-320K dataset. In the “Early concatena-
tion” approach, similar to REALM, we simply concatenate
the AKP text directly to the document text. The table shows
that OAK provides significantly better results across all met-
rics because of careful fusion of auxiliary information that
helps it ignore noisy AKPs.

Table 7. Ablation for Early concatenation vs late attentive fusion
(LF-WikiSeeAlsoTitles-320K dataset).

Method | P@1 P@5 N@5 |PSP@1 PSP@5
OAK 3371 17.12 3435 | 2583 30.83
Early concatenation (simi- | 28.49 14.52 29.46 | 22.26 26.52
lar to REALM)

5.5. Further Analysis

Performance on tail. To check OAK’s predictions for rare
documents as well as rare labels, we compare OAK with
best Siamese baseline (NGAME) and best node aggregation
method (GraphFormers) to see their performances across
five document and label frequency quantiles. Firstly, we
take a look at tail documents, where in Figure 3 (left) we
can clearly see that OAK outperforms NGAME and Graph-
Formers across all quantiles consistently. This is possible
because rare documents have tokens that are uncommon
during training. OAK can effectively leverage associated
auxiliary data to make accurate predictions in such cases,
which NGAME and GraphFormers cannot. Secondly, we
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take a look at tail labels as well. Figure 3 (right) shows that
with the help of auxiliary data, OAK has a fuller understand-
ing of the undiluted document intent which enables it to
predict rare labels as well.
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Figure 3. Comparison of OAK, NGAME and GraphFormer P@5
across five document (left)/label (right) frequency quantiles at tail
on LF-WikiSeeAlsoTitles-320K. The leftmost column compares
overall P@5 and subsequent columns compare P@35 at increas-
ing document/label frequency quantiles. Along the x-axis, first
row of brackets denotes how many documents/labels fall into the
given quantile, and the second row denotes average number of la-
bels/documents they are linked to. OAK consistently outperforms
NGAME and GraphFormer, and is able to predict precisely for
rare documents as well as rare labels.

Generalized OAK Framework. Similar to how we built
OAK on top of NGAME, it is evident that incorporating
the OAK framework to a new Siamese XMC method in-
volves simply swapping out the encoder and using the
method’s training methodology, alongside loss functions
specific to OAK. In Table 8 we show how OAK improves
upon DPR (Karpukhin et al., 2020b) as well, a powerful
Siamese dense retrieval method.

Table 8. OAK’s performance over DPR on LF-WikiSeeAlsoTitles-
320K.

Method | P@1 P@5 N@5 |PSP@1 PSP@5

OAK+DPR | 2891 14.81 30.32 | 23.21 28.64
DPR 26.62 13773 2821 | 22.00 25.51

Oracle Linker. Table 9 shows results when we use ground
truth AKPs rather than those predicted by the linker. For
short text datasets, as expected, results are better when us-
ing ground truth AKPs. Surprisingly, for full text datasets,
where trained linker quality is better than for short-text
datasets, note that the results with ground truth AKPs are
indeed lower compared to ones with predicted AKPs. We
observe that this is because of missing AKPs in the ground
truth that the linker is able to retrieve.

Table 9. Results using Oracle Linker AKPs.
| P@1 | P@5 | N@5 | PSP@1 | PSP@5
LF-WikiSeeAlsoTitles-320K | 38.92 | 19.35 | 40.35 | 29.69 34.85

LF-WikiTitles-500K 52.53 | 24.25 | 41.98 | 30.62 32.26
LF-WikiSeeAlso-320K 47.73 | 23.04 | 48.62 | 33.62 40.06
LF-Wikipedia-500K 83.96 | 50.12 | 76.22 | 46.45 60.86

5.6. Application to Sponsored search

A key challenge in sponsored search is to accurately match
user queries to billions of bid keywords submitted by adver-
tisers to ensure semantic relevance. Furthermore, sponsored
search has strict matching criteria since advertisers bid vary-
ing amounts depending on the relevance and the semantic
relationship of their keyword to the user query>>. OAK
learns AKP representation as learnable embeddings opti-
mized for the target query to advertiser keyword matching
application, where auxiliary data is obtained from the seem-
ingly disparate application of organic webpages clicked in
response to a user query. We demonstrate OAK’s efficacy
for sponsored search by conducting offline experiments
and online A/B test on live search engine traffic. On the
SponsoredSearch-150M dataset, OAK outperforms the in-
production leading dense retrieval algorithms by at least
5% in terms of Recall@100. Further, Figure 4 shows the
improvements obtained in Click Yield and Impression Yield
(average number of clicks/impressions per query) during
A/B test on the search engine. A detailed discussion on
online metrics and offline evaluations can be found in Ap-
pendix F.

-CY

Al .

OII

Figure 4. Plotting I'Y and CY gains versus query frequency deciles.
Here we can clearly see that OAK brings diverse and accurate
predictions to the ensemble of algorithms it is deployed with,
thereby demonstrating gains in Impression Yields and Click Yields.
These statistics are calculated against a performant ensemble of
algorithms in an A/B testing scenario, after achieving p < 0.001
for statistical significance. OAK provides yield gains across all
frequency deciles and notably, disproportionately larger gains for
tail user queries.

Query Frequency DeC|Ies

Yield Gain (%)

6. Conclusion

We introduced OAK, a novel framework for enriching docu-
ment representations using relevant auxiliary information.
OAK strategically expands model capacity by learning an
AK Bank, while preserving the original document intent
preservation through joint training with the main XMC task.
OAK’s modular architecture enables seamlessly improving
existing XMC methods. The representations learned for
AKPs are optimized directly for the target XMC task, mak-

https://support.google.com/google-ads/
answer/7478529?hl=en

*https://help.ads.microsoft.com/$apex/
ads/en/50822/1
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ing OAK robust to noisy AKPs. The calibration loss ensures
that the AK bank adds useful information to the enriched
document representations. Through extensive experiments
on a leading sponsored search engine and public datasets,
we demonstrated OAK’s effectiveness in improving XMC
accuracy, especially for rare documents and labels.
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7. Ethical Considerations And Broader Impact

Our usage of data and terms of providing service to peo-
ple around the world has been approved by our legal and
ethical boards. In terms of social relevance, our research is
helping millions of people find the goods and services that
they are looking for online with increased efficiency and
a significantly improved user experience. This facilitates
purchase and delivery without any physical contact which
is important given today’s social constraints. Furthermore,
our research is increasing the revenue of many small and
medium businesses including mom and pop stores while
also helping them grow their market and reduce the cost of
reaching new customers.
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A. Dataset statistics

Table 10 shows summary of dataset statistics for benchmark datasets that we experiment with.

Table 10. Dataset statistics summary for benchmark datasets.

Dataset \ # Train Docs  # Labels (L) # Test Docs Avg. Docs/label ~ Avg. labels/Doc AK Types # AKPs (M) Avg. AKPs/Doc
LF-WikiSeeAlsoTitles-320K 693K 312K 177K 2.11 4.67 category 656K 4.89
LF-WikiSeeAlso-320K 693K 312K 177K 2.11 4.67 category 656K 4.89
LF-WikiTitles-500K 1.8M 501K 783K 4.74 17.15 hyper-link 2.1IM 15.95
LF-Wikipedia-500K 1.8M 501K 783K 4.74 17.15 hyper-link 2.1IM 15.95
LF-ORCAS-800K 7.4M 797K 2.5M 1.75 16.13 related-query 4.9M 15.76

B. Implementation details and Hyper-parameters

In this section we detail the training strategy used, important hyperparameters and experiment design for baselines. For our
Encoder Module, we use a DistiIBERT-base encoder and for the combiner module we use a single cross-attention layer with
pooling. For the AK Bank /C, we use a 768 dimensional trainable embedding for every AKP’s trainable embedding. We
jointly train everything together using AdamW (Kingma & Ba, 2014) for dense parameters and SparseAdam* for the AK
Bank. We train this model for 300 epochs on 2xNVidia A100-80GB GPUs for all datasets, with a batch size of 1024 and a
linear LR scheduler with warmup. We use top 3 predicted AKPs from the linker during inference. At train time, we use all
the ground truth AKPs. We use the same hyperparameters (wherever applicable) for training all other methods as well.

C. Detailed Related Work

XMC: XMC is a key paradigm in several areas such as ranking and recommendation. The literature on XC methods is
vast (Dahiya et al., 2021b; Guo et al., 2019; Wydmuch et al., 2018; Zhang et al., 2018; Medini et al., 2019; Mittal et al.,
2021a;b; Saini et al., 2021; Liu et al., 2017; You et al., 2019; Jiang et al., 2021; Chalkidis et al., 2019; Ye et al., 2020; Zhang
et al., 2021; Mineiro & Karampatziakis, 2015; Babbar & Scholkopf, 2017; Jasinska et al., 2016; Khandagale et al., 2020;
Jain et al., 2016; Prabhu et al., 2018b; Tagami, 2017; Yen et al., 2017; Wei et al., 2019; Siblini et al., 2018; Barezi et al.,
2019; Jain et al., 2019; Gupta et al., 2019; 2023). Early XC methods used fixed (bag-of-words) (Mineiro & Karampatziakis,
2015; Babbar & Scholkopf, 2017; Jasinska et al., 2016; Khandagale et al., 2020; Jain et al., 2016; Prabhu et al., 2018b;
Tagami, 2017; Yen et al., 2017; Wei et al., 2019; Siblini et al., 2018; Barezi et al., 2019) or pre-trained (Jain et al., 2019)
features and focused on learning only a classifier architecture. Recent advances have demonstrated significant gains by
using task-specific features obtained from a variety of deep encoders such as bag-of-embeddings (Dahiya et al., 2021b;
2023a), CNNs (Liu et al., 2017), LSTMs (You et al., 2019), and transformers (Jiang et al., 2021; Chalkidis et al., 2019;
Ye et al., 2020; Zhang et al., 2021). Training is scaled to millions of labels and training points (Dahiya et al., 2021b) by
performing encoder pre-training followed by classifier training. A data point is trained only on its relevant labels (that are
usually few in number) and a select few irrelevant labels deemed most informative using negative mining (Mikolov et al.,
2013; Dahiya et al., 2021a; Guo et al., 2019; Faghri et al., 2018; Chen et al., 2020; He et al., 2020a; Karpukhin et al., 2020a;
Lee et al., 2019; Luan et al., 2020; Hofstitter et al., 2021; Xiong et al., 2021; Qu et al., 2021; Dahiya et al., 2023a). None of
these XMC methods make use of any auxiliary information associated with documents, except PINA (Chien et al., 2023)
which uses instance correlation signals to learn neighborhood aggregated representations. Our experiments show that OAK
outperforms PINA by large margins.

Retrieval Augmented Language Models: Retrieval Augmented Language Models are a class of models that leverage
external knowledge sources to enhance accuracy using Transformer encoders (Guu et al., 2020). Such models typically
consist of two main components: a retriever and a knowledge-augmented encoder. The retriever selects relevant documents
or passages from a large corpus based on the input query. The encoder concatenates query and relevant documents and
computes an embedding for the sequence. Retrieval augmentation has also been extended to generation (RAG (Lewis et al.,
2020)), but we not discuss RAG in detail since XMC is a classification problem.

Graph Neural Networks in Related Areas: A sizeable body of work exists on using graph neural networks such as graph
convolutional networks (GCN) for recommendation (Hamilton et al., 2018; Chen et al., 2018; Zou et al., 2019; Huang et al.,
2018; Chiang et al., 2019; Zeng et al., 2020; Yang et al., 2021; Zhu et al., 2021; He et al., 2020b; Yang et al., 2022). Certain
methods e.g., FastGCN (Chen et al., 2018), KGCL (Yang et al., 2022), LightGCN (He et al., 2020b) learn label embeddings

*nttps://pytorch.org/docs/stable/generated/torch.optim.SparseAdam.html
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as (functions of) learnable parameter embeddings. This makes it difficult for these methods to ingest novel labels and
their use is restricted to warm-start scenarios. Other GCN-based methods such as GraphSAGE (Hamilton et al., 2018)
and GraphFormers (Yang et al., 2021) learn node representations as functions of node metadata e.g. textual descriptions.
This allows the methods to work in zero-shot settings but they still incur the high storage and computational cost of GCNs.
Moreover, diminishing returns are observed with increasing number of layers of the GCN (Chiang et al., 2019; Mittal et al.,
2021b). As a baseline method, in this work, we experiment with enriching document representations using document-AKP
graphs. Our experiments show that the OAK method offers a far more scalable alternative to GCNs and other popular
graph-based architectures in XMC settings, significantly reducing the overheads of graph-based learning, yet offering
sustained and significant performance boosts in prediction accuracies.

D. Theoretical Analyses
D.1. Equivalence between Siamese training and Triplet Loss

Theorem 3. Siamese training via triplet loss serves to maximize mutual information between the distributions cast by the
document and label encoder representations.

Proof. Formally, given random variables X ~ P[€(d)] and Y ~ P[E(1)], we observe that the Mutual Information between
X and Y is intractable. However, the InfoNCE (van den Oord et al., 2016) objective is a tractable lower bound on it, i.e.,
I(X;Y) > Ince (Tschannen et al., 2019). Here, for some scale parameter 7 > 0, the InfoNCE objective is defined as
follows:

1Y exp(x; ~y;r/7')

N Z log ,

N
i=1 % Zj:l eXP(Xi : Y;F/T)

def
Ince = E

where the expectation is over i.i.d. random draws of (x;,y;) from the joint distribution P[£(d)] x P[E(1)].

Simple algebra shows that maximizing InfoNCE is equivalent to minimizing the expected multi-class /N-pair loss (Sohn,
2016) L N-pair-me (7)), given by

N
%Zlog (1+ZGXP(X¢'YJT/T—X¢ 'YiT/T)) .
=1

J#i
Now, under the simple setting of only one negative label y; per document x; and also setting 7 = 1/2, the above N-pair
multi class loss can be approximated as follows (Bai et al., 2022).

N

1

N E log (1 + exp(2x; - y;r — 2%, - y;r))
i=1

N
1
~ N E (1+2Xi . ij—2xi y:) ,
i=1

It is easy to see that this is twice of the triplet loss (Eq. 1) where margin=1/2. Thus, under the above assumptions, one can
show that a Siamese encoder 6 minimizes the triplet loss for margin v = 1/2 iff it minimizes the N-pair-mc loss for N = 1,
i.e., the two loss functions are equivalent. O

D.2. Impact of Lcan gradients on the Knowledge Bank parameters

Theorem 4. L, gradients specifically update the Knowledge Bank parameters to ensure a higher likelihood of positive
labels and a lower likelihood of negative labels.

Proof. We analyse a degenerate case of Ly, for one positive and one negative label per document to prove this. Formally,
we have for our calibration loss:

Lcaib = Bay,u, [E(d)-E(1,)" —o(d)-£(1,) T
+1(d)-E(L,) " —E(d)-E1,)T],
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Under the softmax distribution on labels 1 given a document d, we have for a fixed function f : X — S D-1,

exp(f(d)-E(M)T)
>vecexp(f(d) SEW)T)

For a positive label 1, and a negative label 1,,, it holds that

Py(ljd] =

]Pf [lp‘d} T T
log —/——— = f(d)-&(1 —f(d)- &1, .
Then, the calibration loss can be rewritten as
Pg[l,|d] Py [1,|d]
Lcaip = Eq1,.1, {IOg P —log
Pell,|d] Py[ln|d] | |
Py [1,|d] Py [1,|d] }
=K lo —lo
ol { SPel,ld] P Pell, ]|,

=Eau, 1, [ry(n,d) =y (L, d)],

where 7 (1, d) = log gﬁ H “g} denotes the log-likelihood ratio between [P, and IP¢ for a label 1 given a document d. We omit

dependence on the encoder £ for brevity.

Now, we compute (sub)gradients of the calibration loss w.r.t. the knowledge bank paramteres (Augmentation Block)
parameters ¢ and keeping the encoder £ fixed. The gradients take the form:

Pyl |d
VQK Lcaip = E H{’r‘w (ln, d) >7‘1/,(1p, d)}V@K log M ,
Py [1p|d]
where I denotes the indicator function. Thus, the knowledge bank parameter updates (using negative gradients of the
calibration loss) increase likelihood of positive labels being sampled and decrease that of negative labels. Importantly,
the updates take place only when the likelihood ratio of negative labels are higher than that of positive labels at current
knowledge bank parameters. O

E. Evaluation metrics

Performance has been evaluated using propensity scored precision@k and nDCG@Fk, which are unbiased and more
suitable metric in the extreme multi-labels setting (Jain et al., 2016; Babbar & Schoélkopf, 2019; Prabhu et al., 2018a;b).
The propensity model and values available on The Extreme Classification Repository (Bhatia et al., 2016b) were used.
Performance has also been evaluated using vanilla precision@k and nDCG@F (with k£ = 1, 3 and 5) for extreme classification.

Let y € RL denote the predicted score vector and y € {0, 1} denote the ground truth vector (with {0, 1} entries this time
instead of £1 entries, for sake of convenience). The notation ranky(y) C [L] denotes the set of k labels with highest scores
in the prediction score vector y and ||y ||, denotes the number of relevant labels in the ground truth vector. Then we have:

P@k:% Y ow

leranky (y)

1 i
PSP@k:% Z Z

leranky(y) pi

Y
Z log(l+1)

leranky (y)

DCGQk =

I =

1 i
PSDCGQk =~ Y ——"—
l€'rankk(9)pl IOg(l + 1)

DCGQk

Zmin(k,HYHO) 1
=1 log(l+1)

nDCGQk =
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PSDCGQk

PSnDCG@k = — =~

=1 logl+1

ZZETankk(y)yl
vl

Here, p; is propensity score of the label [ calculated as described in Jain et al. (2016).

FNQk =1-—

F. Detailed Discussion on Sponsored Search

Sponsored search plays a critical role in providing free access to information for users while being a major source of
customer acquisition for businesses, especially small and medium enterprises. OAK learns AKP representation as learnable
embeddings optimized for the target query to advertiser keyword matching application, while making use of seemingly
disparate information from other applications inside the search engine. This allows OAK to avoid query intent dilution but
still be able to reformulate its representation with additional contextual information to enhance retrieval effectiveness. Here,
we discuss the results of offline and online A/B test results on a popular search engine.

Offline Results We compare OAK against several state-of-the-art dense retrieval encoders currently deployed in the
production system. OAK is trained on the SponsoredSearch-150M dataset. For a fair evaluation, we sample 1M user queries
at random from the search engine logs from a time period distinct from the one during which the train data was collected.
Since a vast majority of queries seen on the search engine are tail queries, this random sampling ensures that the test queries
in this experiment are tail in nature. The production dense retrieval baseline algorithms are anonymized due to intellectual
property restrictions. Results in Table 11 demonstrate that OAK outperforms the best production system by at least 5% in
terms of Recall@ 100 on this challenging large-scale setup. Performance is measured in terms of Recall along with Precision
because the retrieval algorithm can be followed by a separate re-ranker to optimize for precision in some pipelines.

Table 11. Results on offline evaluation for Sponsored Search. We see that OAK categorically performs better than proprietary variations
of leading dense retrieval algorithms deployed in production.
Method | P@1 P@5 | R@20 R@50 R@100

OAK 36.27 20.74 | 46.28 58.74  68.80
M1 3426 19.39 | 42.07 5262  60.98
M2 23.09 1232 | 25.76  31.96 36.88
M3 25.15 1457 | 37.61 51.21 63.16

Online Results We conduct extensive online A/B testing of OAK on live traffic sampled from the search engine. OAK is
thus not only compared to leading dense retrieval algorithms, but also leading XMC, graph-based, and generative language
models. The key metrics tracked are: (1) Click-Through Rate (CTR): Ratio of clicks to query impressions, indicates ad
relevance. (2) Impression Yield (IY) and Click Yield (CY): Average number of ad impressions and clicks per user query
search. (3) Keyword Density (KD): Fraction of predicted keywords passing relevance filters, assesses prediction quality.
All metrics are reported after reaching statistically significant p-value of < 0.001. During the A/B test, OAK led to a
0.84% increase in CTR demonstrating OAK’s ability to retrieve more relevant ads, thereby improving user experience. The
KD improved by 2.7% with OAK, validating the predictive power of AKP-enriched query representations. Additionally,
figure 4 shows the IY and CY improvements in different query quantiles, where it can be observed that OAK shows
disproportionately more gains for tail user queries. OAK could effectively use webpages as AKPs to retrieve keywords
like “genealogist services” for the user query “ancestry com”, which none of the previous ensemble of algorithms including
state-of-the-art dense retrievers could. Please refer to table 12 for more such examples obtained by infusing the query
with auxiliary knowledge in OAK. In labeling by expert judges, OAK was found to increase the percentage of excellent
predictions to 21.6% as against 19.7% for the leading in-production denser retriever (M1 in Table 11).

The gains on these key metrics clearly highlight OAK’s benefits in a real-world production setting. The large-scale live A/B
test provides strong statistically significant results, with metrics computed over millions of user searches and ad impressions.
Overall, OAK substantially improves sponsored search ad retrieval through enhanced query representations.

G. Qualitative Analysis

Table 13 shows a few sample predictions from OAK, NGAME and GraphFormer along with ground truth labels. OAK
provides more accurate and diverse label predictions.

17



OAK: Enriching Document Representations using Auxiliary Knowledge for Extreme Classification

Table 12. Advertiser keywords predicted for a user query by OAK which were missed by the production ensemble of leading dense
retrieval, graph-based, XMC, and generative language models. OAK can go beyond just text similarly by enriching the query representation
with auxiliary knowledge made available from webpages clicked when the query is asked by a representative user on the search engine.

User Query \ Adpvertiser Keyword

12 month online dnp programs
zoho
godaddy

nursing practical program
crm software
website builder

Table 13. Sample predictions from OAK, NGAME and GraphFormer along with ground truth labels. OAK provides more accurate and

diverse label predictions.

comcast internet
euro to dollar

deflector mower replacement

internet explorer

xfinity
oanda

ms browser

lawn mower parts

Document Predicted AKPs Ground truth labels OAK predictions NGAME predictions GraphFormer  Predic-
tions

Cerastes (genus) | Snake Genera, Viperi- | Snakebite, List of viper- | Viperinae by common | List of prehistoric car- | Penaeus monodon,

nae, Reptiles of Western | ine species and sub- | name, Viperinae by taxo- | tilaginous fish, List of | Chororapithecus, Her-

Sahara species, Viperinae by | nomic synonyms, List of | Greek mythological fig- | acleidae, Lituites,

common name, Viperi-
nae by taxonomic syn-
onyms

viperine species and sub-
species, Snakebite, List
of crambid genera

ures, Snakebite, List of
snake genera, List of pre-
historic echinoid genera

Pachyrhachis

Keelboats, Sailing
Yachts, Trailer Sailers

List of sailing boat
types, US Yachts US 25,
Catalina 250, Tanzer 25,
MacGregor 25, Bayfield
25, Cal 25, Cal 2-25,
Capri 25, Catalina 25,
Dufour 1800, Hunter
25.5, O’Day 25, Merit
25, Northern 25

Bayfield 25, List of sail-
ing boat types, O’Day
25, Cal 25, Cal 2-25

Mirage 25, Focke-Wulf
A 17, MacGregor 25,
Lock Crowther, Stout 2-
AT Pullman

Sea Sprite 27, Shark 24,
Bowman 48, San Juan
24, Searunner 34

Beachcomber 25
West  Nakdong
River

Nakdong River, Rivers
of North Gyeongsang,
Rivers of Busan

List of Korea-related top-
ics, Geography of South
Korea, List of rivers of
Asia, Nakdong River

Nakdong River, List of
rivers of Asia, List of
Korea-related topics, Ge-
ography of South Korea,
Han River

Nakdong River, List of
rivers of Asia, Stung Sen
River, River systems of
Thailand, Yellow Sea

Nakdong River, Rivers
of Korea, Yangjaecheon,
Seoraksan, List of rivers
of Korea

List of rap rock
bands

Lists of rock musicians
by subgenre, List of
bands, Lists of musicians
by genre, Lists of heavy
metal bands

List of nu metal bands,
List of funk rock bands,
List of alternative metal
artists, Rap rock, Rap
metal

Rap rock, Rap metal,
List of funk rock bands,
List of groove metal
bands, List of nu metal
bands

List of hip hop groups,
List of alternative-rock
bands, List of nu metal
bands, List of funk rock
bands, List of hip hop

musicians

Rap rock, List of hip
hop groups, Gangsta rap,
Rap metal, List of hard-
core punk bands
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