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I Paradigm Shift of Computer Programs

* A novel type of program (LLM + Code) are shaping the future
 Ability of understanding semantics beyond bits
 Complex planning

Gartner Trending Questions
About Generative Al 2024
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+11% points
(since Sept 2023)

Increased Adoption of GenAl in
production
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0%
Investigation Piloting/experimenting  Production mode (gone None of the above
(exploration) mode mode live with GenAl solutions) or not applicable



I Paradigm Shift of Computer Programs

* A novel type of program (LLM + Code) are shaping the future
* Ability of understanding semantics beyond bits

* Complex planning
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I Diverse Workflows of LLM Apps (or Agents)

* High-quality LLM apps often need multiple LLM requests to
collaborate in different workflows
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I From the view of Multi-tenant LLM Services

* Face alot of independent prompt requests through OpenAl-style APIs

[ Prompt ] [ Prompt ]
[ Prompt ] @ | @
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[ Prompt ] [ Prompt ] Public LLM Services
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I From the view of Multi-tenant LLM Services

* Face alot of independent prompt requests through OpenAl-style APIs
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I From the view of Multi-tenant LLM Services

* Face alot of independent prompt requests through OpenAl-style APIs

Prompt
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Prompt

-/'- o Public LLM Services
(e.g., Azure, OpenAl)
prompt — L Prompt
B No knowledge about

Request Dependencies




I Problems of Lacking Application Knowledge
Internet Multi-Request App has to use chatty submission

High Excessive Latency
* 50770% Non-GPU Time

 High Internet Latency
 Excessive Queuing Delay

| Stepl |

Step 2

Step 3
Public LLM Services

(e.g., Azure, OpenAl)

| Stepd |




I Problems of Request-centric LLM APIs

' Minimize Latency ~ Latency=1100 ms

InputDoc }—{ Agent1 || s,
Input Doc  }—{ Agent2 || s,
LLM Final Answer ] . .
InputDoc _ }—{ Agent3 }-(s; Misaligned
BT oE ) (AGERETE Scheduling Objectives
4+ Maximize Throughput
Map Stage
foo) Agent 8 Agent 16
1 Agent 7 Agent 15
N4 Map Stage Latency=2700 ms S : :
\ + . .
< [Agent2 | Agent4 | Agent6 ) Agent16 | | coucgstaoe &S |FAgests T Agercig | "educe Stage
+ [Agent1 | Agent3 | Agent5 | = Agent15 | Final Answer | 9 J Ty w— 3
é'g 9 > Agent 1 Agent 9 Final Answer |

(1) Per-request latency optimized

Time

Small Batch Size for Low Per-Request Latency

» Time

(2) End-to-end latency optimized

Large Batch Size for Map Stage



I Problem of Unknown Prompt Structure

* Existing LLM services receive “rendered” prompt without structure info

Some apps use same prompt prefix for different user queries

( Prompt |  Role Definition . - ¢ .
‘ ’ ame for all user

" prompt | 4 Few-shot Examples queries b

|_Prompt User Query

Public LLM Services
(e.g., Azure, OpenAl)

No knowledge about
Shared Prompt Structure
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Many Optimizations Not Applicable in Public LLM Services

* Public LLM Services face diverse applications

e Although there have some system optimizations
* Sticky routing, DAG Scheduling, Prefix Sharing, ......

e But lacking essential information about applications
* Have to blindly use a universal treatment for all requests
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I Our Goals in Parrot

* A unified abstraction to expose application-level knowledge
* Uncover correlation of multiple requests

* End-to-end optimization of LLM applications

L.\
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I Insight from Prompt Engineering

* Developers usually use prompt template to program LLM apps
* {{Placeholders}} are often used for inputs/outputs

You are an expert software engineer
Write the python code of {{input:task}}
Your Code: {{output:code}}

You are expert QA engineer, given code for {{input:task}}
{{input:code}}
Your write test cases: {{output:test}}
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Key Abstraction: Semantic Variables

@P.,SemanticFunction

def WritePythonCode (task: P.SemanticVariable):

NN WV mgr mm o mwrmmd  omErrrmsm o e o
10U are all eXpert Sollware endglneer.
Iri1te pytnoen code of {{ 1nput:ta sk}l

Code: {{output:code}}

mmn

@P.SemanticFunction

def WriteTestCode (
task: P.SemanticVariable,
code: P.SemanticVariable):

""" You are an experienced QA engineer.
You write test code for {{input:task}}
Code: {{input:code}}.

Your test code: {{output:test
mmn

def WriteSnakeGame():
task = P.SemanticVariable("a snake game")
code = WritePythonCode (task)
test WriteTestCode (task, code)

return code.get (perf=LATENCY), test.get (perf=LATENCY)

Semantic Variables

Data pipe that connects
multiple LLM calls
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Semantic Variables in Parrot Front-end

@P.SemanticFunction
def lritePythonCode(task: P.SemanticVariable):

""" You are an expert software engineer. i
: Write ovihon code of i Input: task ' Prompt
i le:i Output: code i
;'fsiﬁitelfe?:n;;;;? w/ Semantic Variables as Placeholders
task: P.SemanticVariable,
——___code: P.SemanticVariable): __________________
[ """ You are an experienced JA engineer. _____ ]
: You write test code for i Input: task !
i ‘i _Inputicode . . Prompt
E Y test code: +  Output: test i
NriteSnakel : . . .
Ntk o Sl e e onake ame ) Data pipeline by connecting LLM Requests
Ecode = WritePythonCode (task) : using Semantic Variables
\test = WriteTestCode(task, code) ______________ )

------------------------------------------------------- a— Performance Criteria
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I Exposing Semantic Variable to Parrot LLM Service

( \ WritePythonCode
APls w/ :

Semantic Variable Cloud

code

LLM requests — LLM |
Service y
! WriteTestCode
—_ |

_______________________________________________

Semantic Variable brings:

- DAG construction between requests
- Prompt structure analysis

- Data pipelining between requests

Parrot Overview
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I Optimization: App-centric Scheduling

e With DAG of application requests & E2F requirement

* Derive the performance requirement of each LLM call

Task Task

Gr_oEp_o G_ _p_1
6 J+ a \
I /i |
(7 il 5

7l 7

3 b 2

| 1 > x.get(perf=LATENCY)

| y.get(perf=LATENCY)

_________

From the DAG, derive requests can be executed in parallel
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I Evaluation: Chain/Map-Reduce Summary
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I Optimization: Multi-app Serving

 Public LLM Service w/ apps with different performance criteria

Chatbot: Low Latency Data Analytics: High Throughput

Batch Size Small Large

Conflict when scheduled to the same GPU engine
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I Optimization: Multi-app Serving

 Public LLM Service w/ apps with different performance criteria

(- - - - - -=-="==-==-======== N\
|
. [ Chat Prompt ] | [ Chunk 1 ] [ Chunk 2 ] [ Chunk 3 ] : High Throughput
Application N N F
DAG [ Response ] [ Response ]
response.get(perf=LATENCY) response.get(perf=LATENCY)
Chatbot: Low Latency Data Analytics: High Throughput
Batch Size Small Large

Parrot can derive request-level scheduling goal
from end-to-end requirement
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I Evaluation: Scheduling Mixed Workloads

* Mixed workloads

* Map-reduce Summary Slow JCT of both Tasks!

Slow Chat Decode!

* Latency-sensitive Chat

Average Chat

Normalized Latency (ms

Average Chat
Decode Time (m

erage
Map-Reduce JCT (s)

827.6 10{}
800 Chat w g0fChat 77.8 Summary 86.4
E2E Latency Per-token Latency 80¢ JCT
600} 60}
60
41.4
400¢ 40¢ 40\
24.5
200 1401 1840 20t 20i
Jl 1 I 1 |
B Parrot Baseline (Throughput) Baseline (Latency)
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I Evaluation: Scheduling Mixed Workloads

* Mixed workloads

* Map-reduce Summary
* Latency-sensitive Chat

Average Chat

Normalized Latency (ms)

800;

600;

400

827.6

Chat
E2E Latency

184.6

80

Parrot achieves low latency and high-

throughput for both apps
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17,
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I Optimization: Sharing Prompt Prefix

* With prompt structure, Parrot can automatically detect shared prefix

Prefix 1 Prefix 2
I I

v
Your are expert of {task}, here are some examples: {example}, your
response: {response}

* Optimized CUDA Kernel

* Two-phase attention: avoid recomputing and reloading shared prefix

Step 1: FlashAttention Step 2: PagedAttention

)

Key Value Tokens

— > < S
Q
%| |%| J 2%
Our Algorithm

Standard Attention .



Evaluation: Popular Apps (Bing Copilot, GPTs)

Parrot w/ PagedAttention
Parrot w/o Scheduling
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AVAILABLE REPRODUCED

* Multi-tenant cloud LLM services running diverse apps
e Lacking app knowledge misses many optimization opportunities

* Parrot: uses a unified abstraction Semantic Variable
* To expose essential application-level information
* End-to-end optimizations with dataflow analysis

* Evaluation shows order-of-magnitude efficiency improvement for practical use-
cases
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