18th USENIX Symposium on Operating Systems Design and Implementation ARTIFACT (ARTIFACT (ARTIFACT

SSSSSSSSSSSSSSSSSSSSSS

AVAILABLE REPRODUCED

& Parrot: Efficient Serving of LLM-based
. Applications with Semantic Variable

Chaofan Lin, Zhenhua Han, Chengruidong Zhang
Yuqing Yang, Fan Yang, Chen Chen, Lili Qiu

https://github.com/microsoft/ParrotServe

Microsoft:

v - : \\\\
by Y EL LA eal’C
’L& w7 }\ }) =
Nmm€ss/ SHANGHAI JIAO TONG UNIVERSITY
1

I Paradigm Shift of Computer Programs

* A novel type of program (LLM + Code) are shaping the future
 Ability of understanding semantics beyond bits
 Complex planning

Gartner Trending Questions
About Generative Al 2024

M Sept 2023 M Jan 2024
50%
45%

42%

+11% points
(since Sept 2023)

Increased Adoption of GenAl in
production

25%

0%
Investigation Piloting/experimenting Production mode (gone None of the above
(exploration) mode mode live with GenAl solutions) or not applicable

I Paradigm Shift of Computer Programs

* A novel type of program (LLM + Code) are shaping the future
* Ability of understanding semantics beyond bits

* Complex planning

@ |angchain-ai/langchain
N @ Build cgutext-aware reasoning applications
@ Python Updated 9 minutes ago

e microsoft/autogen

A programming framework for agentic Al. Discord: http
https://aka.ms/autogen-roadmap

agent-be

chat chatbot gpt chat-application
@ Jupyter Notebookpdated 24 minutes ago

=' microsoft/semantic-kernel
Integrate cutting-edge LLM technology quickly and e:

sdk ai artificial-intelligence openai llm

@ C# Updated 2 hours ago

9 geekan/MetaGPT

$%& The Multi-Agent Framework: First Al Software Company,
Programming

agent multi-agent gpt hacktoberfest lIm

L Python Updated yesterday

I Diverse Workflows of LLM Apps (or Agents)

* High-quality LLM apps often need multiple LLM requests to
collaborate in different workflows

[Chunk1 }»[LLM }={ s, [Chunk 1 }-»{ |_I|_M) » LLM Request
— M Passi
[Chunk2 }»{ LLM }={ s, [—l—l—l—l—] [Chunk?2 J+(s, }»{ LLM] essage Passing
% Final
; : = LLM 3
i i i Summary i
~ ~ Final
(ChunicN J>{ LLM J~{ sy (Chunk N+ (5,)+)~ (o) (M
(1) Map-Reduce Summary (2) Chain Summary

User Query Rewriter], ﬁ [Product Manger L
Query v - i
[Architect v ™.

[LLM-powered Search]v

. .,
ey, e
“~

‘ ,.-".': LLM 1 . * ."":‘
[QA w/ searchresult J4™ Engineer Pm
T [o

0
g
.,

Code Reviewer J*

Final

(3) Chat Search (4) Multi-agent Coding

I From the view of Multi-tenant LLM Services

* Face alot of independent prompt requests through OpenAl-style APIs

[Prompt] [Prompt]
[Prompt] @ | @
[Prompt] [Prompt] —] h

[Prompt]

[Prompt] [Prompt] Public LLM Services
(e.g., Azure, OpenAl)

[Prompt] [Prompt]

[Prompt]

I From the view of Multi-tenant LLM Services

* Face alot of independent prompt requests through OpenAl-style APIs

b

rﬁ@
ZAG

o Public LLM Services
(e.g., Azure, OpenAl)

prompt prompt
B No knowledge about

Type of Applications

I From the view of Multi-tenant LLM Services

* Face alot of independent prompt requests through OpenAl-style APIs

Prompt
t'i-
L Prompt Prompt

Prompt

-/'- o Public LLM Services
(e.g., Azure, OpenAl)
prompt — L Prompt
B No knowledge about

Request Dependencies

I Problems of Lacking Application Knowledge
Internet Multi-Request App has to use chatty submission

High Excessive Latency
* 50770% Non-GPU Time

 High Internet Latency
 Excessive Queuing Delay

| Stepl |

Step 2

Step 3
Public LLM Services

(e.g., Azure, OpenAl)

| Stepd |

I Problems of Request-centric LLM APIs

' Minimize Latency ~ Latency=1100 ms

InputDoc }—{ Agent1 || s,
Input Doc }—{ Agent2 || s,
LLM Final Answer] . .
InputDoc _ }—{ Agent3 }-(s; Misaligned
BT oE) (AGERETE Scheduling Objectives
4+ Maximize Throughput
Map Stage
foo) Agent 8 Agent 16
1 Agent 7 Agent 15
N4 Map Stage Latency=2700 ms S : :
\ + . .
< [Agent2 | Agent4 | Agent6) Agent16 | | coucgstaoe &S |FAgests T Agercig | "educe Stage
+ [Agent1 | Agent3 | Agent5 | = Agent15 | Final Answer | 9 J Ty w— 3
é'g 9 > Agent 1 Agent 9 Final Answer |

(1) Per-request latency optimized

Time

Small Batch Size for Low Per-Request Latency

» Time

(2) End-to-end latency optimized

Large Batch Size for Map Stage

I Problem of Unknown Prompt Structure

* Existing LLM services receive “rendered” prompt without structure info

Some apps use same prompt prefix for different user queries

(Prompt | Role Definition . - ¢ .
‘ ’ ame for all user

" prompt | 4 Few-shot Examples queries b

|_Prompt User Query

Public LLM Services
(e.g., Azure, OpenAl)

No knowledge about
Shared Prompt Structure

10

Many Optimizations Not Applicable in Public LLM Services

* Public LLM Services face diverse applications

e Although there have some system optimizations
* Sticky routing, DAG Scheduling, Prefix Sharing,

e But lacking essential information about applications
* Have to blindly use a universal treatment for all requests

11

I Our Goals in Parrot

* A unified abstraction to expose application-level knowledge
* Uncover correlation of multiple requests

* End-to-end optimization of LLM applications

L.\

12

I Insight from Prompt Engineering

* Developers usually use prompt template to program LLM apps
* {{Placeholders}} are often used for inputs/outputs

You are an expert software engineer
Write the python code of {{input:task}}
Your Code: {{output:code}}

You are expert QA engineer, given code for {{input:task}}
{{input:code}}
Your write test cases: {{output:test}}

13

Key Abstraction: Semantic Variables

@P.,SemanticFunction

def WritePythonCode (task: P.SemanticVariable):

NN WV mgr mm o mwrmmd omErrrmsm o e o
10U are all eXpert Sollware endglneer.
Iri1te pytnoen code of {{ 1nput:ta sk}l

Code: {{output:code}}

mmn

@P.SemanticFunction

def WriteTestCode (
task: P.SemanticVariable,
code: P.SemanticVariable):

""" You are an experienced QA engineer.
You write test code for {{input:task}}
Code: {{input:code}}.

Your test code: {{output:test
mmn

def WriteSnakeGame():
task = P.SemanticVariable("a snake game")
code = WritePythonCode (task)
test WriteTestCode (task, code)

return code.get (perf=LATENCY), test.get (perf=LATENCY)

Semantic Variables

Data pipe that connects
multiple LLM calls

14

Semantic Variables in Parrot Front-end

@P.SemanticFunction
def lritePythonCode(task: P.SemanticVariable):

""" You are an expert software engineer. i
: Write ovihon code of i Input: task ' Prompt
i le:i Output: code i
;'fsiﬁitelfe?:n;;;;? w/ Semantic Variables as Placeholders
task: P.SemanticVariable,
——___code: P.SemanticVariable): __________________
[""" You are an experienced JA engineer. _____]
: You write test code for i Input: task !
i ‘i _Inputicode . . Prompt
E Y test code: + Output: test i
NriteSnakel : . . .
Ntk o Sl e e onake ame) Data pipeline by connecting LLM Requests
Ecode = WritePythonCode (task) : using Semantic Variables
\test = WriteTestCode(task, code) ______________)

--- a— Performance Criteria

15

I Exposing Semantic Variable to Parrot LLM Service

(\ WritePythonCode
APls w/ :

Semantic Variable Cloud

code

LLM requests — LLM |
Service y
! WriteTestCode
—_ |

Semantic Variable brings:

- DAG construction between requests
- Prompt structure analysis

- Data pipelining between requests

Parrot Overview

16

I Optimization: App-centric Scheduling

e With DAG of application requests & E2F requirement

* Derive the performance requirement of each LLM call

Task Task

Gr_oEp_o G_ _p_1
6 J+ a \
I /i |
(7 il 5

7l 7

3 b 2

| 1 > x.get(perf=LATENCY)

| y.get(perf=LATENCY)

From the DAG, derive requests can be executed in parallel

17

I Evaluation: Chain/Map-Reduce Summary

Chain Summary Map-Reduce Summary
5250- —e— Parrot ,bqﬂ‘ E40' BN Parrot ,,;\+
> | —v— Baseline (VLLM) v >, | W Baseline (v.LM) .V
O U 'V
- c 30
Q Q
= B
C (V]
- —1 20
W)
o o
© © 10¢
> >
< <<

o

25 50 75 100
Request Rate (reqs/s) Output Length (# tokens)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

I Optimization: Multi-app Serving

 Public LLM Service w/ apps with different performance criteria

Chatbot: Low Latency Data Analytics: High Throughput

Batch Size Small Large

Conflict when scheduled to the same GPU engine

19

I Optimization: Multi-app Serving

 Public LLM Service w/ apps with different performance criteria

(- - - - - -=-="==-==-======== N\
|
. [Chat Prompt] | [Chunk 1] [Chunk 2] [Chunk 3] : High Throughput
Application N N F
DAG [Response] [Response]
response.get(perf=LATENCY) response.get(perf=LATENCY)
Chatbot: Low Latency Data Analytics: High Throughput
Batch Size Small Large

Parrot can derive request-level scheduling goal
from end-to-end requirement

20

I Evaluation: Scheduling Mixed Workloads

* Mixed workloads

* Map-reduce Summary Slow JCT of both Tasks!

Slow Chat Decode!

* Latency-sensitive Chat

Average Chat

Normalized Latency (ms

Average Chat
Decode Time (m

erage
Map-Reduce JCT (s)

827.6 10{}
800 Chat w g0fChat 77.8 Summary 86.4
E2E Latency Per-token Latency 80¢ JCT
600} 60}
60
41.4
400¢ 40¢ 40\
24.5
200 1401 1840 20t 20i
Jl 1 I 1 |
B Parrot Baseline (Throughput) Baseline (Latency)

21

I Evaluation: Scheduling Mixed Workloads

* Mixed workloads

* Map-reduce Summary
* Latency-sensitive Chat

Average Chat

Normalized Latency (ms)

800;

600;

400

827.6

Chat
E2E Latency

184.6

80

Parrot achieves low latency and high-

throughput for both apps

Average
Decode Time

at
S)

17,

Latency

41.4

100

80}

60}

40}

20

Average
ap-Reduce |CT (s)

ummary 86.4
JICT

22

I Optimization: Sharing Prompt Prefix

* With prompt structure, Parrot can automatically detect shared prefix

Prefix 1 Prefix 2
I I

v
Your are expert of {task}, here are some examples: {example}, your
response: {response}

* Optimized CUDA Kernel

* Two-phase attention: avoid recomputing and reloading shared prefix

Step 1: FlashAttention Step 2: PagedAttention

)

Key Value Tokens

— > < S
Q
%| |%| J 2%
Our Algorithm

Standard Attention .

Evaluation: Popular Apps (Bing Copilot, GPTs)

Parrot w/ PagedAttention
Parrot w/o Scheduling
—#— Baseline (vLLM)

16 32 64 % 12345678 910111213141516
Batch Size Request rate (req/s)

Synthesized requests following Bing Synthesized requests from 4 different popular
Copilot length distribution GPTs applications
. 40 1"5 o 300 - 24X -
)]
— B Parrot 5 "“f\ E
> |\ " Baseline w/ Sharing 8 —_ «—
g 30 7" Baseline w/o Sharing '\? {;" \ © 5 200 12
3] X ﬁv’/ ~ 5 o X
5200 &3 200 N S5
2 ~ . = c1 —e— Parrot
& 0 / N X X g

u

24

ARTIFACT ARTIFACT ARTIFACT

S u m m a r EVALUATED EVALUATED EVALUATED
y Fusenix rusenix cusenix

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

AVAILABLE REPRODUCED

* Multi-tenant cloud LLM services running diverse apps
e Lacking app knowledge misses many optimization opportunities

* Parrot: uses a unified abstraction Semantic Variable
* To expose essential application-level information
* End-to-end optimizations with dataflow analysis

* Evaluation shows order-of-magnitude efficiency improvement for practical use-
cases

25

Microsoft Research Asia is hiring

Beijing, Shanghai, Vancouver, Singapore, Hong Kong, Tokyo, Seoul

Thanks

Zhenhua Han
hzhua201@gmail.com

Microsoft®

Research

	Slide 1: Parrot: Efficient Serving of LLM-based Applications with Semantic Variable
	Slide 2: Paradigm Shift of Computer Programs
	Slide 3: Paradigm Shift of Computer Programs
	Slide 4: Diverse Workflows of LLM Apps (or Agents)
	Slide 5: From the view of Multi-tenant LLM Services
	Slide 6: From the view of Multi-tenant LLM Services
	Slide 7: From the view of Multi-tenant LLM Services
	Slide 8: Problems of Lacking Application Knowledge
	Slide 9: Problems of Request-centric LLM APIs
	Slide 10: Problem of Unknown Prompt Structure
	Slide 11: Many Optimizations Not Applicable in Public LLM Services
	Slide 12: Our Goals in Parrot
	Slide 13: Insight from Prompt Engineering
	Slide 14: Key Abstraction: Semantic Variables
	Slide 15: Semantic Variables in Parrot Front-end
	Slide 16: Exposing Semantic Variable to Parrot LLM Service
	Slide 17: Optimization: App-centric Scheduling
	Slide 18: Evaluation: Chain/Map-Reduce Summary
	Slide 19: Optimization: Multi-app Serving
	Slide 20: Optimization: Multi-app Serving
	Slide 21: Evaluation: Scheduling Mixed Workloads
	Slide 22: Evaluation: Scheduling Mixed Workloads
	Slide 23: Optimization: Sharing Prompt Prefix
	Slide 24: Evaluation: Popular Apps (Bing Copilot, GPTs)
	Slide 25: Summary
	Slide 26: Microsoft Research Asia is hiring Beijing, Shanghai, Vancouver, Singapore, Hong Kong, Tokyo, Seoul Thanks Zhenhua Han hzhua201@gmail.com

