
FW – Log Par;;ons

Sets per Log

10 2

0

1

Flash EU

ParAAon in Buffer 1
> 50 %?

…

… … …

Log Par88ons

Log Buffers

EU EU EU …

FairyWREN: A Sustainable Cache for
Emerging Write-Read-Erase Flash Interfaces

Sara McAllister Yucong “Sherry” Wang Benjamin Berg* Daniel S. Berger†

George Amvrosiadis Nathan Beckmann Gregory R. Ganger

Carnegie Mellon University *UNC Chapel Hill †Microsoft Azure and University of Washington

Abstract

Datacenters need to reduce embodied carbon emissions,
particularly for flash, which accounts for 40% of embodied
carbon in servers. However, decreasing flash’s embodied emis-
sions is challenging due to flash’s limited write endurance,
which more than halves with each generation of denser flash.
Reducing embodied emissions requires extending flash life-
time, stressing its limited write endurance even further. The
legacy Logical Block-Addressable Device (LBAD) inter-
face exacerbates the problem by forcing devices to perform
garbage collection, leading to even more writes.

Flash-based caches in particular write frequently, limiting
the lifetimes and densities of the devices they use. These
flash caches illustrate the need to break away from LBAD
and switch to the new Write-Read-Erase iNterfaces (WREN)
now coming to market. WREN affords applications con-
trol over data placement and garbage collection. We present
FairyWREN1, a flash cache designed for WREN. FairyWREN
reduces writes by co-designing caching policies and flash
garbage collection. FairyWREN provides a 12.5× write re-
duction over state-of-the-art LBAD caches. This decrease in
writes allows flash devices to last longer, decreasing flash cost
by 35% and flash carbon emissions by 33%.

1 Introduction

DATACENTER CARBON EMISSIONS are a topic of grow-
ing concern. At current emission rates, datacenters’

share of global emissions are projected to rise to 20% by
2038 [48] and 33% by 2050 [53]. In the next few decades,
many companies — including Amazon [1], Google [2],
Meta [11], Microsoft [71] — are looking to achieve Net Zero,
i.e., greenhouse gas emissions close to zero. To achieve this
goal, many datacenters are adopting renewable energy sources
such as solar and wind [11, 39, 64, 71]. Google, AWS, and
Microsoft are expected to complete their transition to renew-
able energy by 2030 [30, 49, 59]. However, this switch in

1Fairywrens (

FW – Log Par;;ons

Sets per Log

10 2

0

1

Flash EU

ParAAon in Buffer 1
> 50 %?

…

… … …

Log Par88ons

Log Buffers

EU EU EU …

) are vibrant birds native to Australia. Common varieties
include Superb Fairywrens, Splendid Fairywrens, and Lovely Fairywrens.

� 
 �� �


���������������
	������

��

��

��

���� ���� ���� ��	� ����
����
������
���
������

��
��
��

Intro emoji figures

!

✨

!

✨
� 
 �� �


���������������
	������

��

��

��

���� ���� ���� ��	� ����
����
������
���
������

��
��
��

Intro emoji figures

!

✨

!

✨

Fig. 1: Carbon emissions and cost for flash in Kangaroo ( ),
FairyWREN (

FW – Log Par;;ons

Sets per Log

10 2

0

1

Flash EU

ParAAon in Buffer 1
> 50 %?

…

… … …

Log Par88ons

Log Buffers

EU EU EU …

), and “minimum writes” ( )—an idealized cache
with no extra writes—over a 6-year lifetime for a production Twit-
ter trace and a target 30% miss ratio. Compared to Kangaroo,
FairyWREN reduces carbon emissions by 33% and cost by 35%.

energy source does not reduce datacenters’ embodied emis-
sions, the emissions produced by the manufacture, transport,
and disposal of datacenter components. Embodied emissions
will account for more than 80% of datacenter emissions once
datacenters move to renewable energy [39].

Embodied emissions are produced by one-time lifecycle
events. Datacenters can reduce these emissions by: (i) re-
placing hardware with less carbon-intensive alternatives, and
(ii) extending the lifetime of components to amortize embod-
ied emissions over a longer period. Recent work has studied
embodied emissions in processor design [24, 38, 39, 85], but
considerably less attention has been paid to memory and
storage, even though they constitute 46% and 40% of server
emissions, respectively [64]. It is therefore crucial to both
move from carbon-intensive technologies like DRAM to flash,
which has 12× less embodied carbon per bit [38], and to ex-
tend flash lifetimes to amortize flash’s embodied carbon.

However, flash introduces a new challenge: limited write en-
durance. A flash device can only be written a limited number
of times before it wears out. Each new generation of flash has
lower write endurance as a result of manufacturers packing
more bits into each cell. This packing, however, does improve
sustainability by storing more capacity in the same silicon
(i.e., less carbon per bit). To realize the benefits of denser
flash, applications must write to flash much less frequently.
The write-rate budgets that applications must operate under to
achieve longer lifetimes are tiny: to achieve a six-year lifetime
on a 2 TB QLC drive, the application can write only 14 MB/s,



or 0.09% of available write bandwidth (Sec. 2).

Reducing carbon from caching. Hence, write-intensive
flash applications present a major challenge in reducing over-
all datacenter emissions. This paper focuses on reducing car-
bon from flash caching, an increasingly popular use of flash in
the datacenter [3,16,21,22,35,36,83]. We aim to demonstrate,
through caching, how to leverage emerging flash interfaces
to reduce writes, in particular by re-purposing garbage col-
lection to do useful work.

Caching is fundamentally write-intensive, as new objects
must be frequently admitted to maintain hit rates [15,18]. Dat-
acenter caches also store many small objects [16,67], which is
particularly problematic because flash can only be written at a
coarse granularity. Because of this mismatch, admitting small
objects to the cache can lead to significant write amplification:
i.e., more bytes are written to the underlying flash device than
requested by the application.

Most current flash devices are Logical Block-Addressable
Devices (LBAD) that present the same block device abstrac-
tion used by hard disks. This abstraction hides significant
details about how SSDs work. In particular, while the inter-
face allows reading and writing 4KB blocks, the underlying
flash device can only erase large (MB to GB) regions. To
implement the LBAD interface, the flash firmware performs
garbage collection, copying blocks of valid data and erasing
entire regions to make room for new writes. Current flash
caches have a limited ability to optimize these internal writes,
which can amplify the total bytes written by 2× to 10× [67].

Opportunity: WREN. New flash SSD interfaces, such as
ZNS [19] and FDP [66], allow closer integration of host-level
software and flash management. The key difference between
these interfaces and LBAD is that these interfaces include
Erase as a first-order operation, allowing the cache to con-
trol garbage collection. We use the name Write-Read-Erase
iNterfaces (WREN) to collectively refer to such interfaces,
and we describe the necessary and sufficient operations for
flash caches to minimize write rate. However, we also show
that merely porting existing flash caches to WREN does not
reduce flash writes. Flash caches must be re-designed to lever-
age the additional control provided by WREN.

Our solution: FairyWREN. We design and implement
FairyWREN, a flash cache that harnesses WREN to reduce
writes. The main insight in FairyWREN is that every flash
write, whether from the application or from garbage collec-
tion, is an opportunity to admit objects to the cache. When
flash is written during garbage collection, FairyWREN can ad-
mit objects “for free”. This idea cannot be realized on LBAD,
since these devices offer no control over garbage collection.
FairyWREN uses the features of WREN to perform a “nest
packing” algorithm on every write, unifying cache admission
and garbage collection in a single algorithm. FairyWREN
also leverages WREN to enable large-small object separation
and hot-cold set-partitioning, further reducing writes.

Summary of results. We find that, without major changes to
flash interfaces and cache designs, deploying denser flash will
not reduce the carbon emissions of flash caches. For current
caching systems, the reduced write endurance of denser flash
outweighs the gains in density. Only by changing the flash
interface and optimizing the cache to this new interface can
we realize the significant emissions savings of denser flash.

To illustrate this point, we implement FairyWREN as a flash
cache module within CacheLib [16]. We evaluate FairyWREN
on production traces from Meta and Twitter using both simula-
tion and a real ZNS SSD. FairyWREN reduces flash writes by
12.5× vs. the research state-of-the-art. By enabling caching
on denser flash, FairyWREN reduces flash’s carbon emissions
by 33% vs. the research state-of-the-art (Fig. 1). FairyWREN
performs close to an idealized, minimum-write cache on both
carbon emissions and cost.

Contributions. This paper contributes the following:
• Flash trends (Sec. 2): By studying flash trends, we identify

opportunities for more sustainable flash caching as well as
challenges that prevent current flash caches from realizing
these benefits (Sec. 3).

• Critical elements of flash interfaces (Sec. 4): We identify the
Erase operation and control over garbage collection as the
essential features of emerging flash interfaces. We describe
tradeoffs and fundamental constraints of flash interfaces,
showing that some features are, contrary to prior work,
unhelpful for caching.

• FairyWREN (Sec. 5): FairyWREN’s key insight is to lever-
age emerging flash interfaces to unify garbage collection
and cache admission as one operation, greatly reducing
overall flash writes. FairyWREN further reduces writes by
partitioning objects by size and popularity (hot vs. cold).

• Analysis of flash emissions (Sec. 6): We develop a model
to analyze carbon emissions from flash. We show that
FairyWREN’s write reduction allows flash caches to im-
prove sustainability using denser flash for longer lifetimes.

2 Opportunities in flash caching
Flash is an increasingly attractive option for caching [16,

21,22,35,57,67,68,83]. In this section, we discuss how trends
in the design of flash devices present growing opportunities
to reduce the cost and carbon emissions of caching.

Opportunity 1: Flash is less carbon-intensive than DRAM,
so caches are more sustainable with less DRAM.

DRAM often makes up 40% to 50% of server cost [58,
79, 82] and is no longer scaling (Fig. 2). DRAM also has a
large embodied carbon footprint and has large operational
emissions due to requiring up to half of system power [38].

Flash is cheaper per-bit, embodies 12× less carbon, and re-
quires less power per-bit than DRAM [38]. Thus, datacenters
should use flash over DRAM whenever possible [37], even
for traditionally DRAM workloads, such as caching [16, 35,
67, 68] or machine learning [95].

2



0.01

0.10

1.00

10.00

2013 2015 2017 2019 2021 2023

Pr
ic

e 
($

/G
B)

Year

DRAM
Flash

Fig. 2: Cost for flash and DRAM over the last 10 years [4, 6]. Flash
prices have decreased over 14×, while DRAM prices have only
decreased by ≈2×.

Opportunity 2: Flash caches should use denser flash where
possible to reduce emissions.

Flash is becoming denser, moving from single-level cells
(SLC), which store 1 bit/cell, to tri-level cells (TLC), which
store 3 bits/cell. Flash SSDs will soon use quad-level cells
(QLC) and penta-level cells (PLC) [73]. Denser flash is
cheaper; e.g., PLC is forecast to be 40% cheaper per-bit than
TLC [9]. Denser flash also reduces carbon emissions, since
more bits are packed onto roughly the same silicon.

Opportunity 3: Lengthening device lifetime is an effective
way to improve datacenter sustainability.

Traditionally, datacenter hardware replacement cycles have
been around three years [64] due to the rate of improvement
in hardware performance and energy efficiency. Today, data-
centers deploy devices for longer. Longer replacement cycles
have become common due to their cost advantages and the
slowing of Moore’s Law. For example, Microsoft Azure in-
creased the depreciable lifetime of servers from four to six
years [42, 65], and Meta recently started planning for servers
to last 5.5 years [12]. Additionally, hyperscalers are finding
that servers do not fail quickly: failure rates at Azure have
little evidence of increasing before eight years [17, 64].

Moving to longer lifetimes amortizes both cost and em-
bodied carbon. As datacenters shift to renewable energy,
they are rapidly reducing operational carbon. As a result,
embodied carbon now dominates datacenter carbon emis-
sions [12, 38, 39, 84]. The major challenge, though, is how to
extend flash lifetime, given its limited write endurance.

3 Challenges in flash caching
Flash SSDs have limited write endurance and are war-

rantied only for a stated write budget [10]. Exceeding this
write budget can cause the device to fail. Hence, while flash
caching presents carbon-saving opportunities (Sec. 2), caches
must severely limit the amount they write. Here, we discuss
the challenges of flash caching in detail and describe how
current systems fail to address these challenges.

3.1 Wherefore device write amplification?
Flash devices cannot write new values without first eras-

ing a large region of the device. To support random writes,
devices must read all live data in a region, erase the region,

and then write the live data back to the drive along with any
new data. As a result, flash SSDs perform more writes than
requested by the application. The device-level write amplifi-
cation (DLWA) [23, 35, 41, 54, 57, 62, 83] captures this relative
increase in bytes actually written to flash vs. bytes written by
an application. (If an SSD writes 3GB to serve 1GB of appli-
cation writes, then DLWA is 3×.) DLWA can be large: a factor
of 2× to 10× is common [67]. DLWA causes write-intensive
applications to quickly wear out flash devices, increasing their
replacement frequency and embodied emissions over time.

EU N

EU 1

EU 0

Background – Flash devices

…

Block
…

Block
…

Block
…

…

Block
…

Block
…

Block
…

…

Block
…

Block
…

Block
……

…

Empty Page Live Page

…

…

Fig. 3: The internal arrangement of flash devices into planes, blocks,
pages, and EUs. Each EU has blocks in multiple pages. EU 0 is a
partially full, EU 1 is entirely full, and EU N has just been erased.

DLWA is primarily caused by the physical limitations of
flash storage. Flash devices are organized in a physical hier-
archy (Fig. 3). The smallest unit is the page, usually 4 KB.
Flash can be written at page granularity, but a page must be
erased before it can be rewritten. To avoid electrical inter-
ference during erasure, pages are grouped into flash blocks
[13, 19, 20, 41, 63]. A flash block is the minimum erase size.
In practice, however, flash drives stripe writes across blocks
to improve bandwidth and error correction. Striping increases
the effective erase unit (EU) size to gigabytes [19].

The mismatch between the granularity of writes and erases
is the root cause of DLWA. To maintain the 4 KB read/write
block interface, flash devices garbage collect (GC), moving
live pages from partially empty EUs (such as EU 0 in Fig. 3)
to a writable EU (such as EU N) before erasing the EU and
freeing dead pages. The less the available capacity on the
device, the more frequently it has to GC, introducing a tradeoff
between flash utilization and flash writes.

One might hope that technological advances would de-
crease EU sizes, closing the gap between write and erase
granularities. However, flash EU sizes have gotten larger as
flash has gotten denser. Effective block sizes on an SLC flash
device were 128 KB [86], MLC and TLC flash devices are
around 20 MB [81], and QLC devices will be 48 MB [80].
Striping these blocks with hundreds of 3D-stacked layers [80]
results EUs in the gigabyte range [19, 69].

Lesson for flash caches: Write amplification is caused by
the size mismatch between writes and erases in flash. This
mismatch will keep increasing.

3



3.2 Denser flash has lower write endurance
As flash becomes denser, its write endurance drops signifi-

cantly. For example, while PLC flash is up to 40% denser than
TLC, PLC is forecast to have only 16% of TLC’s writes [9].
Additionally, because denser flash has to differentiate between
more voltage levels, even small voltage changes can make
data unreadable. TLC uses two-phase writes and more fre-
quent refresh to prevent data loss [70]. Two-phase writes
require the device to have enough RAM and capacitance to
remember all in-flight writes, limiting the number of EUs that
can be “active” (i.e., writable) at any point in time, often to
less than ten. Writing to more EUs than this requires closing
an active EU, incurring more internal device writes.

Fig. 4 models how write rate affects both emissions and cost
when varying lifetimes and flash density. Each line shows a
device of a different lifetime, and shaded regions show which
flash density is best for a given write rate. The model calcu-
lates how much capacity must be provisioned for each tech-
nology to achieve the desired lifetime at a given write rate.
For example, a device lasting 7 years (green) has lower annu-
alized carbon emissions than one lasting 3 or 5 years, and it
should use dense flash (e.g., TLC) only at write rates below
two device-writes-per-day.Motivation Graphs

PLC QLC TLC

MLC

PLC QLC TLC

MLC

(a) Carbon emissions.

Motivation Graphs

PLC QLC TLC

MLC

PLC QLC TLC

MLC

(b) Cost.

Fig. 4: The annual carbon emissions and cost of flash depending on
the required average write rate and desired lifetime.

Lesson for flash caches: Device lifetime is the most impor-
tant factor in reducing carbon emissions. Moreover, denser
flash can improve sustainability, but only if flash write rate is
very small — much less than one device-write per day.

3.3 Shortcomings of existing solutions
To limit embodied emissions, sustainable flash caches must

minimize (i) idle flash space — which incurs emissions for
no benefit; (ii) DRAM usage for object metadata — which
can add up to tens of GBs [35, 67]; and (iii) flash write rates
— which wear out the device, reducing lifetime. No prior
flash-cache design meets these criteria (Table 1). In particular,
although caches must admit new objects to maintain hit rates,
flash caches must be designed to minimize application- and
device-level write amplification to extend device lifetime.

Flash caches 6= DRAM caches. Both flash caches and
DRAM caches try to reduce misses, but flash caches must also
contend with flash’s limited write endurance, leading to much

Flash caches should minimize ...
Unused flash DRAM ALWA DLWA

Key-value stores 7 3 3 3
Log-structured caches 3 7 3 3
Set-associative caches 7 3 7 7
Kangaroo [67] 3 3 3 7
FairyWREN 3 3 3 3

Table 1: Comparison of FairyWREN vs. prior cache designs.
FairyWREN is the only design to minimize all important overheads.

different designs. Flash caches are designed to achieve low
end-to-end write amplification, i.e., the product of application-
level write amplification (ALWA) (e.g., from having to write
4KB to flash to admit a 100B object) and DLWA.

Flash caches 6= key-value stores. KV stores [5,7,33,55,60,
75, 90] support a similar read-write interface as caches and
likewise minimize flash writes and DRAM overhead. How-
ever, flash caches have significantly different design goals.

The main difference is that delete operations are uncom-
mon in KV stores, but very frequent in caches. Caches fre-
quently evict objects and must reclaim space immediately
to admit new objects [67]. Most KV stores do not support
deleting objects quickly enough to implement cache eviction
policies. Specifically, standard KV store data structures like
LSM trees [5, 7, 31, 32, 60, 75, 90] will not work well for
caching unless the KV store is massively overprovisioned,
often by more than 2× the cache capacity [21, 22, 83].

Moreover, KV stores do not exploit a cache’s biggest advan-
tage: caches are free to evict objects whenever it is convenient.
Evicting objects opportunistically can greatly reduce writes
and maximize space utilization, but KV stores are not built to
exploit this cache-specific optimization.

Existing flash caches do not address DLWA. Because of
the unique challenges of flash caching, there is a growing
body of work devoted to improving flash cache designs. Prior
flash caches generally fall under three categories (Fig. 5):
log-structured, set-associative, and hierarchical.

Log-structured caches. To minimize writes, many flash
caches are log-structured [16,27,35,83]. These caches append
objects to an on-flash log (Fig. 5a), locating objects through a
DRAM index and evicting objects in large groups. The log
allows large sequential writes to flash and thus achieves nearly
ideal write amplification.

While log-structured caches work well for larger objects,
the DRAM index becomes prohibitively large for small ob-
jects, even if it is highly optimized [67], significantly increas-
ing overall emissions and cost (see Fig. 11). Flash caches are
thus often partitioned, using a log-structured cache for large
objects and a different design for small objects [16].

Set-associative caches. Set-associative caches, such as the
Small Object Cache in Meta’s CacheLib [16], replace the
DRAM index with a hash function that maps each object to a
unique set (usually a 4 KB page) on flash (Fig. 5b).

4



Background – Flash caches

Set

Hash(key)

...
Flash

SegmentSegment
Flash

Segment

Buffer

Log
Flash

Sets

Buffer

Segment

Set Set Set Set Set

…

Index

Index

Object

Object

Object (a) Log-structured

Background – Flash caches

Set

Hash(key)

...
Flash

SegmentSegment
Flash

Segment

Buffer

Log
Flash

Sets

Buffer

Segment

Set Set Set Set Set

…

Index

Index

Object

Object

Object

(b) Set-associative

Background – Flash caches

Set

Hash(key)

...
Flash

SegmentSegment
Flash

Segment

Buffer

Log
Flash

Sets

Buffer

Segment

Set Set Set Set Set

…

Index

Index

Object

Object

Object

(c) Kangaroo

Fig. 5: Designs of prior flash caches: (a) Log-structured caches write objects segments to flash sequentially, (b) Set-associative cache write
objects to a set based on the key’s hash, and (c) Kangaroo is a hierarchical design that combines a log-structured and a set-associative cache.

The downside of these caches is that they cause signifi-
cantly more writes. When a set-associative cache admits a
small object (say, 100 B), it must write at least one flash page
(4 KB), resulting in large ALWA (40×). Even worse, these
caches perform random writes, leading to DLWA of 2× to
10× [67]. Since write amplification (WA) is the product of
ALWA and DLWA, a set-associative cache’s WA easily exceeds
100×. To mitigate this, Meta’s flash caches use only 50% of
the drive [16], increasing miss ratio and carbon emissions.

Hierarchical. FairyWREN builds on Kangaroo [67, 68], a
hierarchical flash cache for small objects that combines a
small log-structured cache (KLog) and a large set-associative
cache (KSet) (Fig. 5c). Kangaroo uses KLog to reduce ALWA
and KSet to reduce DRAM. Objects are first buffered in KLog
and then admitted in batches to KSet, amortizing its ALWA
across several admitted objects. KSet comprises more than
90% of the cache capacity, limiting the DRAM needed to
index KLog. Kangaroo also includes a selective admission
policy to reduce flash writes and a partitioned index data
structure to reduce DRAM. Due to its low DRAM overhead,
Kangaroo achieves large emission reductions over a memory-
optimized log-structured cache, Flashield [35], for workloads
with many small objects (Fig. 11 in Sec. 6.2).

While Kangaroo optimizes both DRAM and ALWA, it still
has too many writes because Kangaroo does not address
device-level write amplification. KSet performs random 4 KB
writes, the worst case for DLWA. As a result, Kangaroo’s emis-
sions do not reduce with denser flash. Fig. 4 shows that, for a
10-year lifetime, QLC requires fewer than 0.37 device-writes
per day (DWPD) and PLC requires fewer than 0.16 DWPD,
whereas Kangaroo performs 1.46 DWPD in our evaluation.

4 Write-Read-Erase iNterfaces (WREN)
Prior flash caches incur excessive DLWA (Sec. 3). The root

causes are the mismatch between write and erase granularities
and a legacy LBAD interface that hides this mismatch from
software. This section discusses recent Write-Read-Erase iN-
terfaces (WREN), such as ZNS [19] and FDP [66], that include
Erase as a first-order operation. We show that WREN is nec-
essary but insufficient: a new flash interface does not reduce
writes by itself, changes to the cache design are required.

4.1 Today’s interface is LBAD
Most flash SSDs today are logical block addressable de-

vices (LBAD), sharing the same interface as disks. LBAD
presents the flash device as a linear address space of fixed-

size blocks2 that can be independently read or written.
LBAD eased the transition from HDDs to SSDs, but does

not expose the erase granularity of flash (Sec. 3). As a result,
the LBAD device firmware must perform garbage collection
(GC) that can cause high DLWA and tail latency. Although
there has been work to decrease DLWA [40, 41, 44, 56, 89, 91],
LBAD devices still hide erase units and GC from applications,
preventing co-optimization to minimize overall flash writes.

4.2 Challenges of new interface design
While a variety of flash interfaces have been proposed [20,

44, 51, 52, 72, 78, 88, 96], none have gained widespread adop-
tion. Two proposals, Multi-streamed SSDs and Open-Channel
SSDs, illustrate the pitfalls of designing a new flash interface.

Multi-streamed SSDs [51, 52] allow users to direct writes
to different streams. Streams provide isolation between work-
loads: different streams write to different EUs. When objects
with similar lifetimes are grouped into the same stream, GC
is more efficient. However, because the application does not
control GC directly, DLWA remains a significant issue.

Open-Channel SSDs [20] remove all flash-device logic and
force applications to handle all of flash’s complexities, even
beyond those described in Sec. 3. While the hope was to
develop layers of abstraction in software to hide some of this
complexity, this software was never widely deployed.

Lesson for flash caches: An ideal flash interface for caching
would allow the cache to control all writes, including GC, but
still present a simple abstraction to application developers.

4.3 What makes an interface WREN?
We call interfaces that delegate Erase commands and

garbage collection to the host Write-Read-Erase iNterfaces
(WREN). WREN is defined by three main features:

1) WREN operations. WREN devices must let applications
control which EU their data is placed in and when that EU
is erased. Specifically, WREN devices must, at least, have
Write, Read, and Erase operations.

These operations can be implemented differently. For ex-
ample, Zoned Namespaces (ZNS) [19] and Flexible Data
Placement (FDP) [66] are both WREN. Both interfaces are
NVMe standards with strong support from industry and pro-
vide an abstraction for writing to an EU3. However, they have
different philosophies, which can be seen, for instance, in their
Write operations. ZNS provides either sequential writes to
an EU or nameless writes through Zone Append [96]. FDP

2These fixed-size blocks correspond to pages, not flash blocks (Sec. 3)
3This abstraction is called a zone in ZNS and a reclaim unit in FDP.

5



provides random writes within an EU as long as the applica-
tion tracks that the number of pages written is less than the
EU size. Despite these differences, both provide the control
over data placement into EUs required by WREN.

Moreover, the aforementioned Open-Channel interface is
also WREN. But Open-Channel SSDs expose the full com-
plexity of the device to the host, which is additional complex-
ity not required to reduce a cache’s DLWA.

2) The Erase requirement. Unlike LBAD, WREN devices
do not move live data from an EU before erasing it. Applica-
tions are responsible for implementing GC to track and move
live data before calling Erase. Erase is different from a tra-
ditional trim because Erase targets an entire EU rather than
individual pages. Failure to perform correct and timely GC
is subject to implementation-specific error handling by the
device. A major difference between FDP and ZNS is how they
treat violations of Erase semantics, but this error behavior is
inessential to reducing DLWA and thus beyond WREN.

3) Multiple, but limited, active EUs. An active EU is one
that can be written to without being erased. WREN devices
support a few active EUs at one time. Since an active EU typi-
cally requires a device buffer for the EU’s data, the maximum
number of active EUs is implementation-specific. FairyWREN
requires four simultaneously active EUs, which we expect will
be supported in the vast majority of WREN devices.

4.4 WREN alone is not a cure for WA

WREN devices make it easy to perform large, sequential
writes with no WA. When writing sequentially, the user can
maintain a single active EU and fill the EU completely before
activating the next EU. Furthermore, if all writes are large
and sequential, it is generally easy to find an EU consisting
of invalid data when GC is required, resulting in low WA.

Set-associative flash caches also want low WA for small, ran-
dom writes, which incur high DLWA on LBAD devices. One
might hope that WREN devices can achieve lower WA. A rea-
sonable first attempt at implementing a set-associative cache
on WREN is to treat each set as an object in a log-structured
store, allowing the cache to write updates sequentially to a
single active EU. We find that this naive approach does not
reduce WA because it just moves the GC from the device to
the cache.

The impact of smaller EUs. One idea for mitigating WA un-
der small, random writes is to reduce the EU size, e.g., from
a GB to tens of MB, by removing error correction between
flash blocks, which caches can tolerate. Prior systems liter-
ature uses smaller EUs to minimize GC [14, 69] because,
intuitively, lowering the number of sets per EU creates more
EUs that are either mostly invalid (good candidates for GC)
or mostly valid (bad candidates for GC that are skipped).
However, other prior work that analyzes the WA of FIFO GC
policies [34, 46] has largely ignored the effect of EU size. In
fact, this modeling work assumes that changing the EU size

will not change the WA from GC. To remedy this discrepancy
in prior work, we model the WA of a FIFO GC policy for a
set-associative cache, capturing the effect of EU size.

Following the approach of [46], we approximate the dis-
tribution of the number of live pages in the EU at the tail
of a log-structured store (see Appendix A for details). Our
approximation shows that when EU sizes are small, FIFO is
more likely to find EUs that are mostly invalid or completely
valid. To quantify this effect, we approximate the long-run
average WA under FIFO. Our approximation (Fig. 6) matches
simulation results, with a R2 value of 0.9996.

16KB 256KB 4MB 64MB 1GB
Size of EU

0

2

4

6

8

W
A

Simulation
Model

Fig. 6: The DLWA for a set-
associative cache running
on WREN with 7% overpro-
visioning. EUs have to be
less than 128 KB to signifi-
cantly reduce DLWA.

Lesson for flash caches: We find that reducing EU size only
improves WA for very small EU sizes. To realize a significant
reduction in WA, the EU size must be tens of KBs, but that is
unachievable in current devices (Sec. 3). Hence, we conclude
that WREN alone does not reduce WA for caches. To reduce
WA, we must also re-design the cache.

5 FairyWREN Overview and Design
FairyWREN uses WREN to substantially reduce WA by uni-

fying cache admission with garbage collection. The resulting
reduction in overall writes lets FairyWREN use denser flash
while extending device lifetime to improve sustainability.

5.1 Overview
How FairyWREN reduces writes. FairyWREN uses
WREN’s control over data placement and garbage collection
to reduce writes in two main ways. First, FairyWREN
introduces nest packing to combine garbage collection with
cache admission and eviction. When live data is rewritten
during GC, FairyWREN has an opportunity to evict unpopular
objects and admit new objects in their place. In LBAD, by
contrast, these objects would have to be rewritten separately
for GC and admission/eviction.

Second, FairyWREN groups data with similar lifetimes into
the same EU, separating data that in prior caching systems
would have been in the same page. If all of the data in each EU
has roughly the same lifetime, EUs will either consist mostly
of live data or mostly of dead data. FairyWREN can then GC
the mostly dead EUs with few additional writes. FairyWREN
leverages two main techniques to enable this grouping: large-
small object separation and hot-cold set partitioning.

Architecture of FairyWREN. FairyWREN partitions its ca-
pacity into a large-object cache (LOC) and a small-object
cache (SOC), as seen in Fig. 7. Incoming requests first check
the LOC and then check the SOC.

6



WREN

DRAM

Fw
overview

Large Object Cache

Region Index

EU EUEU …

Logical
Erase

Write
2c

3

2b

2a

WREN ImplementationLogical
LO

C
Fw

Lo
g

Fw
Se

ts

Log-Structured CacheLog

Hot-Cold Sets
Sliced Log-Structured Store

…

Sliced Log-Structured Cache
Segment

SO
C

Log

Fig. 7: The components of FairyWREN.

The large-object cache (Sec. 5.2) stores objects larger than
2 KB and uses a simple log-structured design, since it can
tolerate higher per-object DRAM overhead.

The small-object cache (Sec. 5.3) uses a hierarchical de-
sign based on Kangaroo [67]. The SOC contains two levels:
FWLog and FWSets. FWLog is a log-structured cache with a
relatively high per-object DRAM overhead. The main func-
tion of FWLog is to buffer objects so they can be written effi-
ciently to FWSets. Therefore, FWLog can have a fairly low
capacity (≈ 5%), keeping its DRAM overhead low. FWSets
is a set-associative cache, but, since WREN does not sup-
port random writes, the sets are kept in a log-structured store.
FWSets stores sets, not individual objects, in the log to mini-
mize DRAM. When this log-structured store is garbage col-
lected, objects are opportunistically moved from FWLog into
FWSets. Finally, each set in FWSets is further partitioned
into hot (frequently accessed, long-lived) objects and cold
(recently admitted, short-lived) objects (Sec. 5.4).

5.2 The LOC

The LOC is a log-structured cache. Adapting log-structured
caches to WREN is straightforward, since they only perform
large, sequential writes. The LOC is broken into large seg-
ments, each the size of an EU. Segments can then be evicted in
LRU or FIFO order with minimal WA. The LOC uses DRAM
in two ways: (i) an in-memory, EU-sized buffer for log inser-
tions, and (ii) an in-memory index tracking object locations
on flash. Because the LOC stores large objects, it contains
relatively few objects and needs little DRAM. Besides the
segment buffer, all LOC objects are stored on flash.

Insertions. Objects are first inserted into an in-memory seg-
ment buffer and added to the in-memory log index. Once the
segment buffer is full, it is written to an empty EU in the log.

Lookup. Reads look up the object’s key in the log index. If
found, the cache reads the object from the indicated EU.

Eviction. Eventually, the log will fill up and LOC will evict a
log segment based on the eviction policy. Since log segments
are aligned to EUs, eviction simply Erases an EU, evicting
those objects from the cache. This design does not rewrite
any objects, incurring minimum WA of 1×.

5.3 The SOC
The focus of FairyWREN is the SOC. Log-structured

caches are impractical for caching small objects because a
large flash cache can fit billions of small objects, requiring a
large DRAM index to track them all (Sec. 3.3). FairyWREN’s
SOC is based on Kangaroo [67], a recent flash cache designed
for small objects with low DRAM overhead and low ALWA.
The SOC is a hierarchy of two levels: FWLog, a small log-
structured cache, and FWSets, a large set-associative cache.
FWLog contains about 5% of the SOC’s capacity, with the
remaining 95% for FWSets. We describe FWLog and FWSets
individually, and then how they work together.

FWLog design. FWLog’s goal is to buffer new small objects
for insertion into FWSets. Like the LOC, FWLog is a log-
structured cache that uses an in-memory segment buffer and
an in-memory index to track objects in the FWLog. All other
objects in the FWLog are stored on flash.

FWSets design. FWSets is a set-associative cache that maps
each object to a unique set by hashing its key. When admitting
an object, FWSets evicts old objects from the object’s set then
overwrites it. However, overwriting is impossible in WREN,
so FWSets stores the sets themselves as objects in a log-
structured store. FWSets uses an in-memory index to track the
location of each set on flash, but, unlike prior work [56,61,78],
it does not track individual objects, since this would incur too
much DRAM overhead. The index’s DRAM overhead is low
because a set is at least 4 KB, whereas objects can be just 10s
of bytes. (Larger sets reduce the size of FWSets’s DRAM
index, but increase average read latency.)

When FWSets’s log-structured store is close to full, it must
garbage collect in order to admit new objects to the cache.
The simplest scheme would be to erase the EU at the tail of
the log, evicting all sets — and thus their objects — mapped
to this segment4. However, since each set contains a mix-
ture of popular and unpopular objects, throwing away entire
sets would significantly increase miss ratio. Instead, FWSets
rewrites live sets during GC before erasing the EU.

SOC operation. FWLog and FWSets operate as a hierarchy:

Lookup. Lookups first check FWLog for the object. If not
found, FWSets hashes the object’s id and looks up the set’s
location. The set is read and scanned for the object.

Insertion. FairyWREN first inserts objects into FWLog. When
FWLog is full, objects are evicted from FWLog and in-
serted into FWSets, as described next. Similarly, inserting
into FWSets can cause cascading eviction from FWSets.

Eviction (nest packing). If either FWLog or FWSets is run-
ning out of space, FairyWREN needs to perform nest packing
(Fig. 8). FairyWREN’s SOC chooses an EU for eviction from
FWLog or FWSets, depending on which is full. If both logs
are full, FWSets is chosen because FWSets must have space

4In this scenario, FWSets would be on a log-structured cache.

7



Erase

Small-object FW Cache

EU 0

EU L-1

EU L

WRENDRAM

Buffer

Index

…

Logical

Log

Sets

EU N

EU L + 1

EU L + 2
……

2a

2c

3
Erase

Write

Read

Read
2b

Garbage Collection 

VicKm EU …

FWLog Flush

VicKm Segment

VicKm Set

FWLog

Free EU
4

1
Update

2

Write
3

Fig. 8: Nest packing in FairyWREN’s small-object cache.

to receive objects evicted from FWLog.
The victim EU is first read into memory. If evicting from

FWLog, each object in the EU hashes to a victim set. Oth-
erwise, when evicting from FWSets, each set in the EU is
a victim set. Then, 1 FairyWREN rewrites each victim set
by: 2 finding all objects in FWLog that map to a given set,
forming a new set containing these objects (evicting objects
as necessary), and 3 rewriting the set by appending it to
FWSets’s log. Finally, 4 FairyWREN erases the victim EU.

SOC design rationale. Prior flash caches relied on LBAD
GC to reclaim flash space from evicted sets, causing DLWA.
The key difference of FairyWREN from prior flash caches is its
coordination of cache insertion and eviction with flash GC.

FairyWREN’s nest packing algorithm combines previously
distinct processes. LBAD caches pay for eviction as ALWA
and for garbage collection as DLWA. In the worst case, a set is
copied by garbage collection and then is immediately rewrit-
ten to admit objects from FWLog. It is impossible to merge
these flash writes in LBAD. FairyWREN leverages WREN
to eliminate unnecessary writes by aligning the eviction and
garbage collection cadences of FWLog and FWSets.

5.4 Optimizing the SOC
The SOC is the main source of DRAM overhead and WA in

FairyWREN. We employ a variety of optimizations to improve
the memory and write efficiency of the SOC.

Reducing flash writes by separating hot and cold objects.
Even after using nesting to decrease writes, FWSets is still the
primary source of flash writes in FairyWREN. FairyWREN
further reduces writes by separating objects by popularity, as
determined by a modified RRIP algorithm [45,67]. Instead of
a set being one unit that is written every insertion, each set in
FWSets is split in twain, into a subset for popular objects and
a subset for unpopular objects, each backed by its own log-
structured store. Each subset is at least a page. Paradoxically,
since the unpopular objects are most likely to be evicted,
the subsets with unpopular objects correspond to hot (i.e.,
frequently written) pages on flash. Hence, we refer to the
subsets with unpopular objects as hot subsets and we refer to
the subsets with popular objects as cold subsets.

With hot and cold subsets enabled, objects evicted from
FWLog are inserted into the hot subset. The cold subset is
not typically written during insertion. Every n nest packing
operations on a subset, both the hot and cold subsets are read.
In memory, these subsets are merged and redivided by object
popularity, as seen in Fig. 9. Any popular objects found in the

Hot-Cold
EU 0

EU L-1

EU L

WRENDRAM

Buffer

Index

…

Logical

Log

Sets

EU N

EU L + 1

EU L + 2
……

1

2a

2c

3

Erase

Write

Read

Read

2b

EU 0

EU L-1

EU L

WREN

…

Merge

EU N

EU L + 1

EU L + 2
…

Hot 

Subset

Cold 

Subset
Hot Objects

Cold Objects

Read Sort

Write

Cold Log

Hot Log

Fig. 9: FWSets is split in two: hot subsets with cold objects and cold
subsets with hot objects. Most of the time objects are inserted into
the hot subset. However, every n subset updates, both subsets are
read, merged, split by object popularity, and then both rewritten.

hot subset are moved into the cold subset, since these objects
are likely to remain in the cache for longer and do not need to
be rewritten as frequently. The least popular objects found in
the cold subset are moved into the hot subset so that FWSets
can evict them if they remain sufficiently unpopular.

Hot-cold object separation can nearly halve FWSets’s write
amplification. If n is 5 and sets are 8 KB (two 4 KB subsets),
FairyWREN without hot-cold object separation would have to
write all 8 KB on each insertion to a set. With hot-cold object
separation, FairyWREN writes 4 KB for the hot subset on
every insertion, but only has to write 4 KB for cold subset on
every fifth insertion. Thus, FWSets writes only 24 KB instead
of 40 KB every five inserts to a set, a 40% reduction.

Theoretically, FairyWREN could further reduce writes by
further dividing sets. However, there are some practical lim-
itations to this, namely that WREN devices only support a
limited number of active EUs, often less than 10. FairyWREN
currently needs 4 active EUs: 1 for LOC, 1 for FWLog, and
2 for FWSets. Using only 4 active EUs allows FairyWREN
to run concurrently with other programs on the flash without
interference and ensures compatibility with a wide range of
WREN devices while still achieving low write rates.

Moreover, separating objects by popularity yields dimin-
ishing returns since it increases miss ratio, which will then
require more cache capacity to reduce the miss ratio. Wrong
object-popularity predictions, which are frequent since very
few bits of metadata are used to track each object’s popular-
ity, can lead to increases in both writes and miss ratio. The
miss ratio will increase if popular objects are placed in hot
subsets and evicted prematurely. This type of error becomes
more frequent as one tries to separate objects by popularity
at finer ganularity. In fact, even our single layer of hot-cold
separations causes a modest increase in miss ratio (Sec. 6.5).

Minimizing DRAM in FWLog by slicing. Like Kanga-
roo [67, 68], FWLog is implemented as 64 slices, i.e., 64
independent log-structured caches that operate in parallel
over subsets of the keyspace. This is done to save log2 64 = 6
bits per flash pointer in the DRAM index.

A naïve implementation of slicing on WREN would require
one active EU for each slice. Many WREN devices do not
permit 64 simultaneously active EUs due to the prohibitively
large DRAM overhead this would impose on the flash device.
Instead, FWLog uses a single active EU and shares segments
among all 64 slices, giving each slice an equal static share of

8



WREN

DRAM

FwLog

Large Object Cache

Buffer Index

EU EUEU …

Logical
Erase

Write

2c
3

2b

2a

DRAM WRENLogical

FwLog

…

…

3
1a

2

Slices
0 1 p…

DRAM

EU 0

EU 1

Logical

FwLog

…

Slices
0 1 p…

…
WREN

Active EU

EU 0

EU 1
…

EU N

(a) Naïve FwLog partitioning.

WREN

DRAM

FwLog

Large Object Cache

Buffer Index

EU EUEU …

Logical
Erase

Write
2c

3

2b

2a
DRAM WRENLogical

FwLog
…

…

3
1

2

Slices
0 1 p…

DRAM

EU 0
EU 1

Logical

FwLog

…

Slices
0 1 p…

…
WREN

AcJve EU

EU 0
EU 1
…

EU N

(b) Inserting to FwLog with overflow memory buffering.

Fig. 10: FWLog uses partitioning to minimize memory and overflow
buffers to ensure the log segments are full.

each segment (Fig. 10a). The downside of sharing FWLog
segments is that one slice could fill up its share of the segment
before the others. In the worst case, one slice fills before the
others contain any objects, causing internal fragmentation in
FWLog. This fragmentation reduces FWLog’s ability to min-
imize WA in FWSets. Via simulation and stochastic models,
we found that fragmentation could exceed 20%.

FWLog reduces fragmentation via double buffering
(Fig. 10b). On insertion, FWLog 1 attempts to insert an object
into its slice in the “primary” segment buffer. If the primary
is full, 2 the object is inserted into its slice in the secondary,
“overflow” segment buffer. 3 When any slice in the overflow
buffer becomes more than half full, FWLog writes the primary
buffer to flash. The overflow buffer then becomes the new
primary buffer and vice versa. Double buffering increases the
number of objects seen before a buffer is written, reducing
the variance in the number of objects in each slice. Using
balls-and-bins [74] to approximate the maximum objects in
a slice, we find that this optimization limits the capacity loss
from fragmentation to <1%, even for small (16 MB) buffers.

Minimizing DRAM in FWSets by slicing. Like FWLog,
FWSets also slices the log-structured store to reduce DRAM
overhead, sharing segments to minimize active EUs and seg-
ment buffers. However, since sets are much larger than indi-
vidual objects, FWSets is more susceptible to internal frag-
mentation than FWLog. FWSets therefore uses only 8 slices.

Reducing DRAM in FWSets by using larger sets. Finally,
FWSets further reduces DRAM by using sets larger than
4 KB, reducing the number of sets that need to be tracked
proportionally. Naïvely, one might expect that increasing set
size would increase flash writes. In a pure set-associative
cache, this would be true. However, FWLog buffers objects,
and the number of objects that hash to a set also increases
proportionally with set size, so FWSets’s writes are roughly
independent of set size. We see only a 5% increase in WA
when going from 8 KB to 16 KB sets with a 4 KB hot subset
and a 12 KB cold subset.

DRAM overhead breakdown. Compared to a LBAD set-
associative cache, FWSets requires additional DRAM to track

sets. Hot-cold object separation compounds this effect, dou-
bling the number of (sub)sets to track.

Component Kangaroo Naïve SOC SOC

Log total 48 bits/obj 48 bits/obj 48 bits/obj

Set index – ≈ 3.1 b ≈ 1.4 b
Sets (other) 4 b 4 b 4 b
Sets total 4 bits/obj 7.1 bits/obj 5.4 bits/obj

Log metadata ≈ 0.8 b ≈ 0.8 b ≈ 0.8 b
Log size 5% = 2.4 b 5% = 2.4 b 5% = 2.4 b
Set size 95% = 3.8 b 95% = 6.7 b 95% = 5.1 b
Total 7.0 bits/obj 9.9 bits/obj 8.3 bits/obj

Table 2: Kangaroo and FairyWREN’s SOC’s DRAM overhead for
a 2 TB small-object cache with a 5% log. Despite tracking sets,
FairyWREN’s SOC still needs fewer than 10 bits per object.

Table 2 shows the per-object DRAM overhead for Kanga-
roo and FairyWREN’s SOC. Due to partitioning and double
buffering, FairyWREN achieves the same log overhead as Kan-
garoo. FairyWREN’s added overhead shows up in FWSets.
Naïvely, when FairyWREN has 4 KB subsets and 200 B ob-
jects, each set would need 8 bytes, for 3.1 bits/obj. However,
since FairyWREN uses 8 KB subsets and slices FWSets in
eighths, FWSets needs just 1.4 bits/obj to track sets.

FairyWREN uses 19% more DRAM than Kangaroo, a
1.5 GB DRAM overhead increase for a 2 TB cache. How-
ever, FairyWREN’s DRAM overhead is still much lower than
a log-structured cache, and this modest DRAM increase al-
lows FairyWREN to greatly decrease flash writes (by 12.5×),
netting large savings in carbon emissions and cost.

6 Evaluation
We compare FairyWREN to prior flash caches and find that:

(1) FairyWREN reduces flash writes by 92% over the research
state-of-the-art Kangaroo, leading to a 33% carbon reduction
and a 35% cost reduction, (2) FairyWREN is within 11% of
the minimum write rate, and (3) FairyWREN is the first cache
design to actually benefit from QLC.

6.1 Experimental setup and model
Implementation. We implement FairyWREN in C++ as a
module in CacheLib [16]. All experiments were run on two
16-core Intel Xeon CPU E5-2698 servers running Ubuntu
18.04 with 64 GB of DRAM, using Linux kernel 5.15. For
WREN experiments, we use a Western Digital Ultrastar DC
ZNS540 1 TB ZNS SSD, using the LOC and ZNS library

Parameter FairyWREN Kangaroo

Interface WREN (ZNS) LBAD
Flash capacity 400 GB 400 GB

Usable flash capacity 383 GB 376 GB
LOC size 10% of flash 10% of flash

SOC log size 5% of SOC 5% of SOC
SOC set size 4 KB hot, 4 KB cold 4 KB

Hot-set write frequency every 5 cold set writes
Set over-provisioning 5%

Table 3: FairyWREN and Kangaroo experiment parameters.

9



SLC MLC TLC QLC PLC

Write endurance 4.4× 4× 1× 0.32× 0.16×
Capacity discount 3× 1.5× 1× 0.75× 0.6×

Table 4: Scaling factors for different flash densities. We optimistically
assume that increasing the bits per cell does not affect emissions or
cost.

written by Western Digital [50]. The ZNS SSD has a zone
(EU) capacity of 1077 MiB. The devices support 3.5 device
writes per day for an expected 5-year lifetime.

We compare to Kangaroo [67] over the first ≈2.5 days of
a production trace from Meta. FairyWREN uses a ZNS SSD
and Kangaroo uses an equivalent LBAD SSD with similar
parameters (Table 3). Both caches use 400 GB of flash capac-
ity and achieve similar miss ratios as Kangaroo’s production
experiments [67]. We overprovision FWSets by 5% to en-
sure forward progress during nest packing, giving several free
EUs to the FWSets log-structured store. Thus, FairyWREN
effectively uses 383 GB. This idle capacity should decrease in
larger flash devices. Kangaroo only uses 376 GB of capacity
due to device-level overprovisioning. We approximate Kan-
garoo’s DLWA based on results in the Kangaroo paper [67].

Simulation. In addition to flash experiments, we imple-
mented a simulator to compare a much wider range of possi-
ble configurations for FairyWREN. The simulator replays a
scaled-down trace to measure writes and misses from each
level of the cache, including the LOC, FWLog, and FWSets.

We evaluate our cache in simulation on a 21-day trace from
Meta [16] and a 7-day trace from Twitter [92]. The Meta trace
accesses 6 TB of unique bytes with a 13.8% compulsory miss
ratio and an average object size of 395 bytes. Small objects
(<2 KB) are 95.2% of requests, and these requests account
for 60.2% of bytes requested. The Twitter trace accesses 3.5
TB of unique bytes, has a 17.2% compulsory miss ratio, and
an average object size of 265 bytes. Small objects are >99%
of requests, and these requests account for >99% of bytes
requested. Both of these traces are higher fidelity than the
open-source traces [16, 92]. We present results for the last 2
days of the trace.

Carbon emissions and cost model. We evaluate carbon
emissions and cost while varying cache configuration, flash
density, and device lifetime. We assume that a flash device
will have the same caching workload for its entire lifetime
and that flash write endurance is the main lifetime constraint.
We normalize all results based on device lifetime and we as-
sume that all required flash is purchased at the beginning of
deployment.

We estimate emissions and cost from the total flash needed
to cover both the cache’s capacity and its writes over the
desired lifetime. For example, a 2 TB cache with a 6-year
lifetime will require at least 2 TBs of flash, but it may require
2.5 TB of flash to accommodate the cache’s write rate over 6
years. LBAD devices use 7% overprovisioning, the standard

on datacenter drives [8].
We base our write endurance and cost projections on Mi-

cron 7300 NVMe U.2 TLC SSDs. For other densities, we
multiply the TLC write endurance by the write-endurance fac-
tors in Table 4, based on [9]. For cost, we interpolate linearly
between flash capacities and include power as the operational
expense. Cost is normalized to Kangaroo with a 30% miss
ratio for the Twitter trace and 20% for Meta. We optimisti-
cally assume that different flash densities will have the same
cost and emissions per cell; e.g., 1 TB of PLC has the same
emissions as 600 GB of TLC (5:3 ratio). Our model can in-
corporate more data on denser flash if it becomes available.

We use the ACT model [38] to estimate operational and em-
bodied emissions from CPUs, DDR4 DRAM, and flash. We
assume the grid is a 50/50 mix of wind and solar, a common
renewable-energy mix [12].

6.2 Carbon emissions of flash caches
We first examine the carbon emissions of different flash

caches for a 6-year deployment. Fig. 11 compares FairyWREN
to three systems: Minimum Writes, Kangaroo, and a Flashield-
like log-structured cache [35]. Minimum Writes is an un-
achievable, idealized cache with WA of 1× and no DRAM
overhead. Flashield also assumes a WA of 1×, but requires
a DRAM:SSD capacity ratio of 1:10, as originally proposed.
Since we cannot faithfully replicate Flashield’s ML eviction
policy (and no working implementation is available), we as-
sume that Flashield achieves FairyWREN’s miss ratios.

� � �� �� 	� 	� 
� 
�

���!!���!�����
�	���"�� �

��

��

���

� 
��

����

���!�

Emojis for figure

!

"

✨

Fig. 11: Yearly carbon emissions for 4 caching systems: mini-
mum writes ( ) with a write amplification of 1 with no additional
DRAM, FairyWREN (

FW – Log Par;;ons

Sets per Log

10 2

0

1

Flash EU

ParAAon in Buffer 1
> 50 %?

…

… … …

Log Par88ons

Log Buffers

EU EU EU …

), Kangaroo ( ), and a Flashield-like log-
structured cache ( ). Our results include the embodied and opera-
tional (hatched) emissions from CPU, DRAM, and flash.

Takeaway 0: Sustainable flash caches must use much less
DRAM than log-structured cache designs.

Although we optimistically assumed that Flashield incurs
no write amplification, Flashield’s overall carbon emissions
are 1.7× higher than Kangaroo’s. These emissions are due
to its high DRAM overhead, despite several optimizations in
Flashield designed to save DRAM. High DRAM overhead is
unfortunately inherent in the design of a log-structured cache.

Kangaroo reduces DRAM overhead through its hierarchical
design. Unfortunately, Kangaroo also incurs a far higher write
rate than a log-structured cache. Kangaroo accounts for its

10



	
 
� 

 �� �
 �� �

� ''���( $����

����

��



��
�

���


	���

	�



	�
�

�$
&"

�!
 +�

��
�#

#)
�!

��
$'

(
�� &*������������� ��#��&$$��������� � # ")"��& (�'��������� ��*' ��!���%�&�( $#���������

Experiments

��� ��� 	�� 	�� 
�� 
��

���

�

��

	��

�
���

��
��

��
���

��
��

������������������
�����������������

��� ��
 ��� ��
 	�� 	�

����

����

��	


��
�

���


����

�
���

��
��

��

�������
����������
�����������������

!

!

✨ !"

20 30 40
Miss Ratio (%)

0

5

10

15

20

Em
iss

io
ns

 (k
g 

CO
2/y

ea
r)

(a) Twitter Carbon Emissions

20 30 40
Miss Ratio (%)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

No
rm

al
ize

d 
An

nu
al

 C
os

t

(b) Twitter Cost

10 20 30
Miss Ratio (%)

0

5

10

15

20

Em
iss

io
ns

 (k
g 

CO
2/y

ea
r)

(c) Meta Carbon Emissions

10 20 30
Miss Ratio (%)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

No
rm

al
ize

d 
An

nu
al

 C
os

t

(d) Meta Cost

Fig. 13: The emissions and cost over six years for Kangaroo ( ), FairyWREN (

FW – Log Par;;ons

Sets per Log

10 2

0

1

Flash EU

ParAAon in Buffer 1
> 50 %?

…

… … …

Log Par88ons

Log Buffers

EU EU EU …

), Min. Writes ( ), and Physical Sep. ( ).

increased writes by overprovisioning flash capacity, increas-
ing embodied carbon emissions. While Kangaroo is far more
sustainable than Flashield, it leaves room for improvement.

FairyWREN maintains Kangaroo’s low memory overhead
while greatly reducing the flash write rate. Consequently,
FairyWREN reduces overall carbon emissions by 21.2% com-
pared to Kangaroo. As this improvement comes from reducing
flash emissions, we focus on flash emissions for the remainder
of the evaluation.

6.3 On-flash experiments
To study how FairyWREN reduces flash writes, we evaluate

FairyWREN on real flash drives using the setup in Sec. 6.1.

	
 
� 

 �� �
 �� �

� ''���( $����

����

��



��
�

���


	���

	�



	�
�

�$
&"

�!
 +�

��
�#

#)
�!

��
$'

(

�� &*������������� ��#��&$$��������� � # ")"��& (�'��������� ��*' ��!���%�&�( $#���������

Experiments

��� ��� 	�� 	�� 
�� 
��

���

�

��

	��

�
���

��
��

��
���

��
��

������������������
�����������������

��� ��
 ��� ��
 	�� 	�

����

����

��	


��
�

���


����

�
���

��
��

��

�������
����������
�����������������

!

!

✨ !"

(a) Write rate (Mean: FairyWREN ≈7.8MB/s, Kangaroo ≈97 MB/s)

	
 
� 

 �� �
 �� �

� ''���( $����

����

��



��
�

���


	���

	�



	�
�

�$
&"

�!
 +�

��
�#

#)
�!

��
$'

(

�� &*������������� ��#��&$$��������� � # ")"��& (�'��������� ��*' ��!���%�&�( $#���������

Experiments

��� ��� 	�� 	�� 
�� 
��

���

�

��

	��

�
���

��
��

��
���

��
��

������������������
�����������������

��� ��
 ��� ��
 	�� 	�

����

����

��	


��
�

���


����

�
���

��
��

��

�������
����������
�����������������

!

!

✨ !"(b) Miss ratio (Mean: FairyWREN ≈ 0.575, Kangaroo ≈ 0.594)

Fig. 12: The miss ratio and write rate for Kangaroo and FairyWREN.

Takeaway 1: FairyWREN greatly reduces flash writes while
maintaining a slightly better miss ratio than Kangaroo.

Fig. 12 plots the flash write rate and miss ratio over time for
Kangaroo and FairyWREN. The figure shows small write rate
spikes in FairyWREN. This is because FairyWREN performs
nest packing at the granularity of an EU, ≈1 GB. Kangaroo’s
write rate appears smooth as it flushes more frequently, at
256 KB granularity.

The main goal of FairyWREN is to reduce writes, enabling

the use of denser flash. In Fig. 12a, FairyWREN reduces writes
by 12.5× over Kangaroo, from 97 MB/s to 7.8 MB/s. To
achieve this, FairyWREN leverages WREN to combine cache
logic and GC and to separate writes of different lifetimes.

However, reducing writes must not increase misses.
Fig. 12b shows that, in fact, FairyWREN and Kangaroo have
very similar miss ratios: on average, 0.575 for FairyWREN
vs 0.594 for Kangaroo. FairyWREN’s small advantage comes
from reducing idle capacity due to overprovisioning.

We see very similar results for write amplification: a 12.2×
reduction, from 23× in Kangaroo to 1.89× in FairyWREN.
The slight difference between the write rate and WA comes
from FairyWREN’s slightly better miss ratio.

Takeaway 2: FairyWREN outperforms Kangaroo for both
throughput and read latency at peak load.

While the primary performance metric for caches is miss
ratio, FairyWREN must provide enough throughput that it does
not require more servers — and thus more carbon emissions
— to handle the same load. In our experiments, FairyWREN’s
throughput is 104 KOps/s whereas Kangaroo’s is 40.5 KOps/s.
FairyWREN’s significant throughput increase is mostly due to
lower write rate, but also due to better engineering that moved
work off the critical path for lookups and inserts.

Similarly, we find that FairyWREN’s and Kangaroo’s 99th-
percentile latencies are 170 µs and 1,370 µs, respectively. But
note that, in practice, the overall tail latency is set by the
backing store, not the flash cache.

6.4 FairyWREN reduces carbon emissions
We now evaluate carbon emissions and cost via simula-

tion, comparing FairyWREN (

FW – Log Par;;ons

Sets per Log

10 2

0

1

Flash EU

ParAAon in Buffer 1
> 50 %?

…

… … …

Log Par88ons

Log Buffers

EU EU EU …

), Kangaroo ( ), Minimum
Writes ( ), and Physical Separation ( ). Physical Separation
represents Kangaroo on WREN, where each cache component
(e.g., LOC, KLog, KSet) is placed in its own EU to separate
traffic and thereby allow LOC and KLog to have WA of 1×.

Takeaway 3: FairyWREN’s reduced writes translate into re-
duced carbon emissions and reduced cost across miss ratios.

Fig. 13 plots emissions and cost for a 6-year lifetime vs.
miss ratio over a wide range of cache configurations. Each
point is labeled with the flash density used (e.g., TLC).

11



���� ���� ���� ��	� ����
����
������
���
������

��
��
��

Intro emoji figures

!

✨

� 
 �� �


���������������
	������

��

��

��!

✨

	 
 � � �� �	 �
 ��
����������!����

�

��

	�


�
���

��
��

��
�
	��
�!
��
��

����������������� ����!��
���������� ����� �����������������
	 
 � � �� �	 �
 ��

����������!����
�

��

	�

�

���
��
��

��
�
	��
�!
��
��

����������������� ����!��
���������� ����� �����������������!

	 
 � � �� �	 �
 ��
����������!����

�

��

	�


�
���

��
��

��
�
	��
�!
��
��

����������������� ����!��
���������� ����� �����������������! ✨

Tw
itt

er

K FW M0
5

10
15
20

Em
iss

io
ns

(C
O

2 /
 y

ea
r)

2 4 6 8 10 12 14 16
Lifetime (year)

0

10

20

Em
iss

io
ns

(k
g 
CO

2 /
 y

ea
r)

2 4 6 8 10 12 14 16
Lifetime (year)

0

10

20

Em
iss

io
ns

(k
g 
CO

2 /
 y

ea
r)

T T T T T M M M M M M M MP Q Q Q Q Q T T T T T T TP P P P P P P P P P P P P

M
et

a

K FW M0
5

10
15
20

Em
iss

io
ns

(C
O

2 /
 y

ea
r)

(a) Impact of density (6 years)

2 4 6 8 10 12 14 16
Lifetime (year)

0

10

20

Em
iss

io
ns

(k
g 
CO

2 /
 y

ea
r)

(b) Impact of lifetime (on QLC)

2 4 6 8 10 12 14 16
Lifetime (year)

0

10

20

Em
iss

io
ns

(k
g 
CO

2 /
 y

ea
r)

Q Q Q T Q T T T T T T T TP P P P P P Q Q Q Q Q Q QP P P P P P P P P P P P P

(c) Impact of lifetime (on best flash density)

Fig. 14: The carbon emissions to achieve a 30% miss ratio on Twitter trace or 20% miss ratio on Meta trace for (a) 6 years on SLC (darkest) to
PLC (lightest), (b) different lifetimes with QLC flash, and (c) different lifetimes with any flash density. For (b) and (c), the darker part of each
bar represents emissions due to overprovisioning.

For the Twitter traces (Fig. 13a, Fig. 13b), Kangaroo is
limited to either MLC or TLC due to its high write rate, and
likewise for Physical Separation because it does not reduce
writes by much (Sec. 6.5). Meanwhile, FairyWREN leverages
its low WA to use mostly QLC across miss ratios, giving
it large carbon and cost reductions vs. Kangaroo. However,
FairyWREN still has too many writes to use PLC. While the
gap between Minimum Writes and FairyWREN grows at low
miss ratios, there is only a 10.1% difference in their emissions
at 20% miss ratio and a 7.7% difference in cost.

The Meta traces (Fig. 13c, Fig. 13d) are less write-intensive.
However, even here we see that FairyWREN reduces cache
emissions and cost compared to both Kangaroo and Physical
Separation. In this case, FairyWREN is able to lower the write
rate sufficiently to use QLC and PLC. As a result, FairyWREN
performs close to Minimum Writes, even at low miss ratios.

Takeaway 4: FairyWREN benefits from using denser flash
when Kangaroo cannot.

Flash devices are becoming denser over time (Sec. 2).
Fig. 14a shows the carbon-optimal cache configurations over
a 6-year lifetime at a target miss ratio of 30% for Twitter
and 20% for Meta, varying flash density from SLC (left) to
PLC (right). Kangaroo performs best when using TLC on
the Twitter trace and QLC on the Meta trace. Using PLC
increases Kangaroo’s emissions due to the excessive over-
provisioning needed to compensate for PLC’s lower write
endurance. FairyWREN’s lower write rate enables it to use
QLC for Twitter and PLC for Meta, reducing emissions and
cost. Since Twitter’s trace is more write-intensive, using PLC
increases carbon emissions by 24% due to overprovisioning.

For Minimum Writes on Twitter, emissions decrease by
17% going from TLC to QLC and by 8% from QLC to PLC.
On Meta, emissions reduce by 18% and 15%. While these
numbers show that denser flash reduces emissions, they sug-
gest diminishing returns even for an optimal cache.

Takeaway 5: FairyWREN’s low WA allows it to avoid massive
overprovisioning on dense flash as lifetime is increased.

To explore the trend of increasing device lifetime (Sec. 2),
Fig. 14b considers the emissions for caches on QLC devices,
showing emissions from overprovisioning in a darker shade.

For a 6-year lifetime, Kangaroo requires 2.2× the emis-
sions of FairyWREN on Twitter and 1.17× on Meta. At 12
years, the gap increases to 2.6× and 1.54×. Due to the DLWA
in LBAD devices, Kangaroo’s emissions are lowest when it
has some amount of overprovisioning. FairyWREN does not
need this overprovisioning due to its lower WA.

Takeaway 6: Increasing flash density does not necessarily
improve sustainability, as lifetime matters more than density.

To minimize emissions, we need to optimize both lifetime
and flash density. Fig. 14c shows each system’s emissions
for all lifetimes, with the best density displayed on each bar.
Kangaroo usually prefers MLC and TLC because, to provide
enough write endurance, QLC and PLC require too much over-
provisioning. FairyWREN has fewer emissions than Kangaroo
at all lifetimes and stays within 30% of Minimum Writes.

The best flash density decreases for longer lifetimes.
FairyWREN prefers PLC on Twitter over 3 years, but TLC
over 9 years. At these long lifetimes, the reduced write en-
durance of denser flash outweighs its sustainability benefits,
and extending lifetime is more important than using denser
flash.

Takeaway 7: For a given flash device, FairyWREN extends
lifetime by at least a couple of years.

So far, we have evaluated emissions when deploying the
optimal drive for a given lifetime and flash density. However,
flash deployments are often constrained to specific devices
with a pre-determined capacity and density. In these situations,
emissions reductions come from extending lifetime. Fig. 15
evaluates device lifetime for a 3.6 TB drive at different miss
ratios. Compared to Kangaroo, FairyWREN is able to extend
the device’s lifetime by at least 2 years and by over 5 years

12



on the Meta trace. By contrast, Physical Separation barely
improves lifetime vs. Kangaroo.

	� 
� ��
��������������

�

�

��

��


�
��
���

��
��
��
��
�

����
����
����

�� 	� 
�
��������������

�

�

��

��

��
��
���

��
��
��

��
�



��
��

Experiments

!
!

!

!

(a) Twitter
	� 
� ��

��������������

�

�

��

��


�
��
���

��
��
��
��
�

����
����
����

�� 	� 
�
��������������

�

�

��

��

��
��
���

��
��
��

��
�



��
��

Experiments

!
!

!

!

(b) Meta

Fig. 15: The lifetimes for a 3.6 TB cache for Kangaroo ( ),
FairyWREN (

FW – Log Par;;ons

Sets per Log

10 2

0

1

Flash EU

ParAAon in Buffer 1
> 50 %?

…

… … …

Log Par88ons

Log Buffers

EU EU EU …

), and Physical Separation ( ).

6.5 Where are benefits coming from?
We next explore how FairyWREN’s optimizations con-

tribute to its write rate reduction. Fig. 16 shows the write
rate on the Twitter trace starting with Kangaroo on LBAD
(Log + Sets). We then add the optimizations of FairyWREN
incrementally. First, we port Kangaroo naively to WREN
(+WREN), then we physically separate the large and small
objects into different erase units (+Physical Sep.). Then we
add nest packing (+Nest Packing), and, finally, hot-cold ob-
ject separation (+Hot-Cold) to realize FairyWREN. We first
present the write rates for the different systems across differ-
ent capacities and miss ratios, showing the emissions-optimal
flash density for one capacity. We then show how the lifetimes
of each design would vary if deployed on a QLC drive.

25 30 35 40 45
Miss Ratio

101

102

103

W
rit

e 
Ra

te
 (M

B/
s)Log + Sets


    (=Kangaroo)
+ WREN
+ Physical Sep.
+ Nest Packing
+ Hot-Cold

    (= FW)

 0

1

2

3

4

5

Lif
et

im
e 

(y
ea

rs
)

Fig. 16: Write rate (log-scale) and lifetime breakdown on the Twitter
trace, incrementally adding optimizations to go from Kangaroo to
FairyWREN.

Takeaway 8: Caches on optimal LBAD devices cannot
achieve the same write rate as FairyWREN.

Three of the lines in Fig. 16 are achievable with LBAD
devices: Log + Sets, +WREN, and +Physical Sep. Log + Sets
represents the current Kangroo implementation on LBAD.
+WREN is a naive port of Kangaroo to WREN devices that
redirects all cache writes to a single log-structured store using
FIFO garbage collection. This naïve port does not attempt
any separation of objects by expected lifetime, and we as-
sume it has the same WA as Kangaroo. However, current
LBAD devices do try to separate objects belonging to dif-
ferent, concurrent streams, so one would expect an LBAD
device to perform, in practice, somewhere between +WREN
and +Physical Sep. But even in the best case, Physical Sep.
still incurs far too many writes, limiting the lifetime of a QLC

device to less than half a year.

Takeaway 9: Both nest packing and hot-cold object separa-
tion are essential to FairyWREN’s write reduction.

The other two systems we compare in this breakdown are
+Nest packing and +Hot-Cold (i.e., FairyWREN with all opti-
mizations). Nest packing reduces writes by at least 3.7× and
hot-cold object separation reduces writes by another 3.4×.
We also observe that, while hot-cold separation can increase
miss ratios, the reduction in write rate outweighs this increase,
leading to a 33× increase in QLC lifetime over the Kangaroo
baseline and a 13× increase over +Physical Sep.

6.6 Operating on a fixed flash device
We now compare Kangaroo and FairyWREN with respect

to miss ratio given a fixed flash capacity. We enforce the
same constraints of a 6-year flash lifetime, TLC flash density,
and 32 GB of DRAM for both systems. Unlike prior figures
where we minimize emissions, FairyWREN cannot not gain
an advantage for using denser flash, and Kangaroo cannot
increase write endurance by using less-dense flash. We show
that FairyWREN under the same capacity constraints, and
thus write rate constraints, improves miss ratio over Kangaroo
through its reduction in writes allowing it to more effectively
use the capacity.

���� ���� ���� ��	� ����
����
������
���
������

��
��
��

Intro emoji figures

!

✨

� 
 �� �


���������������
	������

��

��

��!

✨

	 
 � � �� �	 �
 ��
����������!����

�

��

	�


�
���

��
��

��
�
	��
�!
��
��

����������������� ����!��
���������� ����� �����������������
	 
 � � �� �	 �
 ��

����������!����
�

��

	�


�
���

��
��

��
�
	��
�!
��
��

����������������� ����!��
���������� ����� �����������������!

	 
 � � �� �	 �
 ��
����������!����

�

��

	�


�
���

��
��

��
�
	��
�!
��
��

����������������� ����!��
���������� ����� �����������������! ✨

T
w

itt
er

0 2000 4000 6000
Flash Device Capacity (GB)

15
20
25
30
35
40
45

M
iss

 R
at

io
 (%

)

0 2000 4000 6000
Flash Device Capacity (GB)

0

20

40

60

80

100

W
rit

e 
Ra

te
 (M

B/
s)

0 2000 4000 6000
Flash Device Capacity (GB)

0

5

10

15

20

W
rit

e 
Am

pl
ifi

ca
tio

n

M
et

a

0 2000 4000 6000
Flash Device Capacity (GB)

10

15

20

25

30

35

M
iss

 R
at

io
 (%

)

(a) Capacity

0 2000 4000 6000
Flash Device Capacity (GB)

0

20

40

60

80

100

W
rit

e 
Ra

te
 (M

B/
s)

(b) Write Rate

0 2000 4000 6000
Flash Device Capacity (GB)

0

5

10

15

20

W
rit

e 
Am

pl
ifi

ca
tio

n

(c) WA

Fig. 17: Pareto curve of cache miss ratio at different flash device
sizes and the corresponding write rate and write amplification of
these points. The DRAM capacity is limited to 32 GB, the desired
lifetime is 6 years, and the caches use TLC flash.

Takeaway 10: FairyWREN achieves the same miss ratio at
lower flash capacities than Kangaroo.

Fig. 17 shows the effects of changing the flash capacity
on miss ratio for both traces. For each flash capacity, we
also plot the write rate and WA of both systems. We find
that FairyWREN needs less flash capacity than Kangaroo to
achieve a given miss ratio. FairyWREN also requires less over-
provisioning due to its lower write rate. This trend is more

13



prominent in the Twitter trace than the Meta trace, which is
less write-intensive. For the Twitter trace, Kangaroo’s use of
TLC prevents it from achieving higher miss ratios. Kanga-
roo’s higher write rate requires much more overprovisioning,
increasing the overall flash capacity needed to survive 6 years
above 3.6 TB.

We also see that flash capacity sets the write budget for
the flash device, defining the write rate that the system can
tolerate for a desired lifetime. One might expect a similar
relationship for write amplification. However, the systems
have different miss ratios, causing Kangaroo to need to have
a lower WA through massive overprovisioning.

Takeaway 11: FairyWREN maintains its advantage under a
DRAM constraint.

We investigated how DRAM restrictions affect Kangaroo
and FairyWREN when both caches use 3.6 TB of TLC flash for
a 6-year lifetime. FairyWREN maintains a constant miss ratio
advantage over Kangaroo from 16 GB to 64 GB of DRAM for
both traces. FairyWREN’s miss ratio only begins to increase
when DRAM falls to 8 GB on the Twitter trace. However,
Kangaroo cannot handle the Twitter workload for 6 years with
only 8 GB of DRAM. Hence, FairyWREN always outperforms
Kangaroo in these experiments.

7 Related Work
This section discusses additional related work with similar

techniques and goals to FairyWREN.

Hot-cold objects and deathtime. In caching, hot objects are
the most popular objects. Caches use eviction policies to
retain popular objects [15, 45, 47, 83]. FairyWREN adapts
Kangaroo’s RRIP-based eviction policy [45, 67].

Popularity is different than deathtime, the time when an
object will be deleted [41]. To minimize GC, many stor-
age systems will physically separate objects by their death-
time [26, 28, 41, 54, 76, 94]. Grouping objects with similar
deathtimes reduces WA. Hence, accurately predicting death-
times is vital for minimizing write amplification within LBAD.
Recent work uses ML to make these predictions [26,94]. Un-
fortunately, ML solutions require additional hardware that
can increase emissions and cost.

Caches have more control over deathtimes than storage
systems. Deathtimes are set by the eviction policy, and thus
determining an object’s deathtime is more straightforward.
For instance, in caches that evict based on TTLs, the TTLs
can be used to group objects [93]. FairyWREN leverages its
eviction policy’s popularity rankings and the WREN interface
to physically group objects by deathtime.

Eviction and garbage collection. Prior flash caches have
attempted to reduce in-device garbage collection. Many log-
structured caches [27, 35, 56, 61] group objects into large
segments and trim these segments during eviction to mini-
mize garbage collection. These systems attempt to evict seg-
ments before device-level GC rewrites them. Unfortunately,

this does not ensure GC is prevented on LBAD devices, so
some work has proposed leveraging newer interfaces to guar-
antee alignment. DidaCache [78], for example, uses an Open-
Channel SSD [20] to guarantee its segments will align with
erase units. Other proposals to use more expressive interfaces
re-implement LBAD-like GC on top of a ZNS SSD [29], pro-
hibiting optimizations like FairyWREN’s nest packing. All of
these log-structured approaches suffer from high DRAM over-
heads and cannot evict individual objects without additional
writes.

Grouping by object size. FairyWREN separates objects
into two object size classes, large and small, similar to
Kangaroo [68] and CacheLib [16]. This grouping is used
to minimize memory overhead. Allocating memory using
size-based slab classes is often used to reduce fragmenta-
tion [25, 43, 77, 78, 93]. Introducing additional object size
classes in FairyWREN would result in additional flash ac-
cesses, since FairyWREN does not index the size classes to
save memory. Instead, FairyWREN reduces fragmentation
by grouping objects into either large segments in the LOC
or sets in FWSets. These segments and sets are periodically
rearranged to prevent fragmentation.

8 Conclusion
FairyWREN reduces flash’s carbon emissions and cost by

integrating flash management with cache policies. Doing so
requires redesigning the cache to transition from old LBAD
flash interfaces to a WREN interface. Experiments show that
FairyWREN decreases flash writes by 12.5× vs. the state-
of-the-art, allowing longer flash lifetimes that reduce carbon
emissions by 33% and cost by 35%.

9 Acknowledgements
Sara McAllister is supported by a NDSEG Fellowship. We

thank the members and companies of the PDL Consortium
(Amazon, Google, Hitachi, Honda, IBM Research, Intel, Jane
Street, Meta, Microsoft Research, Oracle, Pure Storage, Sales-
force, Samsung, Two Sigma, Western Digital) for their inter-
est, insights, feedback, and support. We thank our shepherd,
Gala Yadgar, and our anonymous reviewers for their helpful
comments and suggestions. We also thank Western Digital
for providing resources and technical expertise; we especially
thank Matias Bjørling, Ajay Joshi, and Hans Holmberg. We
also specifically thank Javier Gonzalez and Mike Allison, at
Samsung, and Ross Stenfort, at Meta, for providing their tech-
nical expertise on FDP. We thank the PDL staff, particularly
Jason Bowles, for their support.

14



References
[1] Amazon sustainability. https://

sustainability.aboutamazon.com/climate-
solutions.

[2] Climate change is humanity’s next big moonshot.
https://blog.google/outreach-initiatives/
sustainability/dear-earth/.

[3] Fatcache. https://github.com/twitter/fatcache.

[4] Flash prices. https://jcmit.net/flashprice.htm.

[5] Leveldb. https://github.com/google/leveldb.

[6] Memory prices. https://jcmit.net/
memoryprice.htm.

[7] Rocksdb. http://rocksdb.org.

[8] Ssd over-provisioning and its benefits. https:
//www.seagate.com/blog/ssd-over-provisioning-
benefits-master-ti/.

[9] Wd and tosh talk up penta-level cell flash.
https://blocksandfiles.com/2019/08/07/penta-
level-cell-flash/ 5/17/22.

[10] Is there a limited warranty for samsung ssds?
https://semiconductor.samsung.com/us/
consumer-storage/support/faqs/05/, 2023.

[11] Our path to net zero. https://
sustainability.fb.com/wp-content/uploads/
2023/07/Meta-2023-Path-to-Net-Zero.pdf, 2023.

[12] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Ki-
wan Maeng, Udit Gupta, Manoj Chakkaravarthy, David
Brooks, and Carole-Jean Wu. Carbon Explorer: A Holis-
tic Framework for Designing Carbon Aware Datacen-
ters. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pages 118–
132, Vancouver BC Canada, January 2023. ACM.

[13] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D. Davis, Mark Manasse, and Rina Panigrahy. De-
sign tradeoffs for ssd performance. In USENIX 2008 An-
nual Technical Conference, ATC’08, page 57–70, USA,
2008. USENIX Association.

[14] Hanyeoreum Bae, Jiseon Kim, Miryeong Kwon, and
Myoungsoo Jung. What you can’t forget: Exploiting
parallelism for zoned namespaces. In Proceedings of
the 14th ACM Workshop on Hot Topics in Storage and
File Systems, HotStorage ’22, page 79–85, New York,
NY, USA, 2022. Association for Computing Machinery.

[15] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
Lhd: Improving hit rate by maximizing hit density. In
USENIX NSDI, 2018.

[16] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac
Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar,
Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, and
Gregory G. Ganger. The CacheLib caching engine:
Design and experiences at scale. In USENIX OSDI,
2020.

[17] Daniel S. Berger, Fiodar Kazhamiaka, Esha Choukse,
Inigo Goiri, Celine Irvene, Pulkit A. Misra, Alok Kumb-
hare, Rodrigo Fonseca, and Ricardo Bianchini. Research
avenues towards net-zero cloud platforms. Workshop on
NetZero Carbon Computing, 2023.

[18] Daniel S. Berger, Ramesh K. Sitaraman, and Mor
Harchol-Balter. Adaptsize: Orchestrating the hot ob-
ject memory cache in a content delivery network. In
USENIX NSDI, 2017.

[19] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,
Aravind Ramesh, Damien Le Moal, Gregory R. Ganger,
and George Amvrosiadis. ZNS: Avoiding the block
interface tax for flash-based SSDs. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages
689–703. USENIX Association, July 2021.

[20] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
Lightnvm: The linux open-channel ssd subsystem. In
USENIX Conference on File and Storage Technologies,
pages 359–374. USENIX-The Advanced Computing
Systems Association, 2017.

[21] Netflix Technology Blog. Application data caching
using ssds. https://netflixtechblog.com/
application-data-caching-using-ssds-
5bf25df851ef, 2016.

[22] Netflix Technology Blog. Evolution of application data
caching : From ram to ssd. https://bit.ly/3rN73CI,
2018.

[23] Simona Boboila and Peter Desnoyers. Write endurance
in flash drives: Measurements and analysis. In USENIX
FAST, 2010.

[24] Erik Brunvand, Donald Kline, and Alex K. Jones. Dark
silicon considered harmful: A case for truly green com-
puting. In 2018 Ninth International Green and Sustain-
able Computing Conference (IGSC), 2018.

[25] Daniel Byrne, Nilufer Onder, and Zhenlin Wang. Faster
slab reassignment in memcached. In Proceedings of the
International Symposium on Memory Systems, MEM-
SYS ’19, page 353–362, New York, NY, USA, 2019.
Association for Computing Machinery.

15

https://sustainability.aboutamazon.com/climate-solutions
https://sustainability.aboutamazon.com/climate-solutions
https://sustainability.aboutamazon.com/climate-solutions
https://blog.google/outreach-initiatives/sustainability/dear-earth/
https://blog.google/outreach-initiatives/sustainability/dear-earth/
https://github.com/twitter/fatcache
https://jcmit.net/flashprice.htm
https://github.com/google/leveldb
https://jcmit.net/memoryprice.htm
https://jcmit.net/memoryprice.htm
http://rocksdb.org
https://www.seagate.com/blog/ssd-over-provisioning-benefits-master-ti/
https://www.seagate.com/blog/ssd-over-provisioning-benefits-master-ti/
https://www.seagate.com/blog/ssd-over-provisioning-benefits-master-ti/
https://blocksandfiles.com/2019/08/07/penta-level-cell-flash/
https://blocksandfiles.com/2019/08/07/penta-level-cell-flash/
https://semiconductor.samsung.com/us/consumer-storage/support/faqs/05/
https://semiconductor.samsung.com/us/consumer-storage/support/faqs/05/
https://sustainability.fb.com/wp-content/uploads/2023/07/Meta-2023-Path-to-Net-Zero.pdf
https://sustainability.fb.com/wp-content/uploads/2023/07/Meta-2023-Path-to-Net-Zero.pdf
https://sustainability.fb.com/wp-content/uploads/2023/07/Meta-2023-Path-to-Net-Zero.pdf
https://netflixtechblog.com/application-data-caching-using-ssds-5bf25df851ef
https://netflixtechblog.com/application-data-caching-using-ssds-5bf25df851ef
https://netflixtechblog.com/application-data-caching-using-ssds-5bf25df851ef
https://bit.ly/3rN73CI


[26] Chandranil Chakraborttii and Heiner Litz. Reducing
write amplification in flash by death-time prediction of
logical block addresses. In Proceedings of the 14th ACM
International Conference on Systems and Storage, pages
1–12, Haifa Israel, June 2021. ACM.

[27] Badrish Chandramouli, Guna Prasaad, Donald Koss-
mann, Justin Levandoski, James Hunter, and Mike Bar-
nett. Faster: an embedded concurrent key-value store
for state management. VLDB, 2018.

[28] Mei-Ling Chiang, Paul CH Lee, and Ruei-Chuan Chang.
Using data clustering to improve cleaning performance
for flash memory. Software: Practice and Experience,
29(3):267–290, 1999.

[29] Gunhee Choi, Kwanghee Lee, Myunghoon Oh, Jong-
moo Choi, Jhuyeong Jhin, and Yongseok Oh. A new
LSM-style garbage collection scheme for ZNS SSDs. In
12th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 20). USENIX Association,
July 2020.

[30] Amanda Peterson Corio. Five years of 100carbon-free
future. https://cloud.google.com/blog/topics/
sustainability/5-years-of-100-percent-
renewable-energy.

[31] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal navigable key-value store. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD ’17, 2017.

[32] Niv Dayan and Stratos Idreos. Dostoevsky: Better space-
time trade-offs for lsm-tree based key-value stores via
adaptive removal of superfluous merging. In Proceed-
ings of the 2018 International Conference on Manage-
ment of Data, SIGMOD ’18, 2018.

[33] Biplob Debnath, Sudipta Sengupta, and Jin Li. Skimpys-
tash: Ram space skimpy key-value store on flash-based
storage. In ACM SIGMOD, 2011.

[34] Peter Desnoyers. Analytic modeling of ssd write perfor-
mance. In Proceedings of the 5th Annual International
Systems and Storage Conference, pages 1–10, 2012.

[35] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a hybrid key-value cache
that controls flash write amplification. In USENIX NSDI,
2019.

[36] Alex Gartrell, Mohan Srinivasan, Bryan Alger, and
Kumar Sundararajan. Mcdipper: A key-value cache
for flash storage. https://www.facebook.com/notes/
facebook-engineering/mcdipper-a-key-value-
cache-for-flash-storage/10151347090423920/.

[37] Saugata Ghose, Abdullah Giray Yaglikçi, Raghav Gupta,
Donghyuk Lee, Kais Kudrolli, William X. Liu, Hasan
Hassan, Kevin K. Chang, Niladrish Chatterjee, Aditya
Agrawal, Mike O’Connor, and Onur Mutlu. What your
dram power models are not telling you: Lessons from
a detailed experimental study. Proc. ACM Meas. Anal.
Comput. Syst., 2(3), dec 2018.

[38] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei,
Hsien-Hsin S. Lee, David Brooks, and Carole-Jean Wu.
ACT: designing sustainable computer systems with an
architectural carbon modeling tool. In Proceedings of
the 49th Annual International Symposium on Computer
Architecture. ACM, 2022.

[39] Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse,
Hsien-Hsin S Lee, Gu-Yeon Wei, David Brooks, and
Carole-Jean Wu. Chasing carbon: The elusive environ-
mental footprint of computing. In 2021 IEEE Inter-
national Symposium on High-Performance Computer
Architecture (HPCA), pages 854–867. IEEE, 2021.

[40] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Ed-
berg Halim, Henry Hoffmann, and Haryadi S. Gunawi.
LinnOS: Predictability on unpredictable flash storage
with a light neural network. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 173–190. USENIX Association,
November 2020.

[41] Jun He, Sudarsun Kannan, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. The unwritten contract
of solid state drives. In ACM EuroSys, 2017.

[42] Amy Hood, July 2022.

[43] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Ying-
wei Luo, Chen Ding, Song Jiang, and Zhenlin Wang.
LAMA: Optimized locality-aware memory allocation
for key-value cache. In 2015 USENIX Annual Techni-
cal Conference (USENIX ATC 15), pages 57–69, Santa
Clara, CA, July 2015. USENIX Association.

[44] Jian Huang, Anirudh Badam, Laura Caulfield, Suman
Nath, Sudipta Sengupta, Bikash Sharma, and Moinud-
din K. Qureshi. FlashBlox: Achieving both performance
isolation and uniform lifetime for virtualized SSDs. In
15th USENIX Conference on File and Storage Tech-
nologies (FAST 17), pages 375–390, Santa Clara, CA,
February 2017. USENIX Association.

[45] Aamer Jaleel, Kevin Theobald, Simon Steely Jr, and
Joel Emer. High performance cache replacement using
re-reference interval prediction. In ISCA-37, 2010.

[46] Jaeheon Jeong and Michel Dubois. Cache replacement
algorithms with nonuniform miss costs. IEEE Transac-
tions on Computers, 55(4):353–365, 2006.

16

https://cloud.google.com/blog/topics/sustainability/5-years-of-100-percent-renewable-energy
https://cloud.google.com/blog/topics/sustainability/5-years-of-100-percent-renewable-energy
https://cloud.google.com/blog/topics/sustainability/5-years-of-100-percent-renewable-energy
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/


[47] Theodore Johnson and Dennis Shasha. 2q: A low over-
head high performance buffer management replacement
algorithm. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB ’94, page
439–450, San Francisco, CA, USA, 1994. Morgan Kauf-
mann Publishers Inc.

[48] Nicola Jones et al. How to stop data centres from gob-
bling up the world’s electricity. Nature, 561(7722):163–
166, 2018.

[49] Lucas Joppa. Made to measure: Sustain-
ability commitment progress and updates.
https://blogs.microsoft.com/blog/2021/07/14/
made-to-measure-sustainability-commitment-
progress-and-updates/.

[50] Ajay Joshi. Cachelib on zns. https://github.com/
ajaysjoshi/CacheLib-zns, 2022.

[51] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and
Sangyeun Cho. The multi-streamed solid-state drive. In
6th {USENIX} Workshop on Hot Topics in Storage and
File Systems (HotStorage 14), 2014.

[52] Taejin Kim, Duwon Hong, Sangwook Shane Hahn, My-
oungjun Chun, Sungjin Lee, Jooyoung Hwang, Jongyoul
Lee, and Jihong Kim. Fully automatic stream manage-
ment for Multi-Streamed SSDs using program contexts.
In 17th USENIX Conference on File and Storage Tech-
nologies (FAST 19), pages 295–308, Boston, MA, Febru-
ary 2019. USENIX Association.

[53] Bran Knowles. Acm techbrief: Computing and climate
change, 2021.

[54] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2fs: A new file system for flash storage.
In USENIX FAST, 2015.

[55] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. Kvell: The design and implementation of
a fast persistent key-value store. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
SOSP ’19, 2019.

[56] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim,
Stephen Smaldone, and Grant Wallace. Nitro: A
Capacity-Optimized SSD cache for primary storage. In
2014 USENIX Annual Technical Conference (USENIX
ATC 14), 2014.

[57] Cheng Li, Philip Shilane, Fred Douglis, and Grant Wal-
lace. Pannier: Design and analysis of a container-based
flash cache for compound objects. ACM Transactions
on Storage, 13(3):24, 2017.

[58] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst,
Pantea Zardoshti, Stanko Novakovic, Monish Shah,
Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. Pond:
Cxl-based memory pooling systems for cloud platforms.
In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, ASPLOS
2023, page 574–587, New York, NY, USA, 2023. Asso-
ciation for Computing Machinery.

[59] Xin Li, Greg Thompson, and Joseph Beer. How
amazon achieves near-real-time renewable en-
ergy plant monitoring to optimize performance
using aws. https://aws.amazon.com/blogs/
industries/amazon-achieves-near-real-
time-renewable-energy-plant-monitoring-
to-optimize-performance-using-aws/.

[60] Hyeontaek Lim, Bin Fan, David G. Andersen, and
Michael Kaminsky. Silt: A memory-efficient, high-
performance key-value store. In ACM SOSP, 2011.

[61] Jian Liu, Kefei Wang, and Feng Chen. Tscache: An
efficient flash-based caching scheme for time-series data
workloads. 2021.

[62] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Wisckey: Separating keys from values in ssd-conscious
storage. In USENIX FAST, 2016.

[63] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch,
and Onur Mutlu. Improving 3d nand flash memory
lifetime by tolerating early retention loss and process
variation. Proc. ACM Meas. Anal. Comput. Syst., 2(3),
dec 2018.

[64] Jialun Lyu, Jaylen Wang, Kali Frost, Chaojie Zhang, Ce-
line Irvene, Esha Choukse, Rodrigo Fonseca, Ricardo
Bianchini, Fiodar Kazhamiaka, and Daniel S. Berger.
Myths and misconceptions around reducing carbon em-
bedded in cloud platforms. In 2nd Workshop on Sus-
tainable Computer Systems (HotCarbon23). ACM, July
2023.

[65] Jialun Lyu, Marisa You, Celine Irvene, Mark Jung, Tyler
Narmore, Jacob Shapiro, Luke Marshall, Savyasachi
Samal, Ioannis Manousakis, Lisa Hsu, et al. Hyrax:{Fail-
in-Place} server operation in cloud platforms. In 17th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23), pages 287–304, 2023.

[66] Bill Martin, Yoni Shternhell, Mike James, Yeong-Jae
Woo, Hyunmo Kang, Anu Murthy, Erich Haratsch,
Kwok Kong, Andres Baez, Santosh Kumar, and et al.
Nvm express technical proposal 4146 flexible data place-
ment, Nov 2022.

17

https://blogs.microsoft.com/blog/2021/07/14/made-to-measure-sustainability-commitment-progress-and-updates/
https://blogs.microsoft.com/blog/2021/07/14/made-to-measure-sustainability-commitment-progress-and-updates/
https://blogs.microsoft.com/blog/2021/07/14/made-to-measure-sustainability-commitment-progress-and-updates/
https://github.com/ajaysjoshi/CacheLib-zns
https://github.com/ajaysjoshi/CacheLib-zns
https://aws.amazon.com/blogs/industries/amazon-achieves-near-real-time-renewable-energy-plant-monitoring-to-optimize-performance-using-aws/
https://aws.amazon.com/blogs/industries/amazon-achieves-near-real-time-renewable-energy-plant-monitoring-to-optimize-performance-using-aws/
https://aws.amazon.com/blogs/industries/amazon-achieves-near-real-time-renewable-energy-plant-monitoring-to-optimize-performance-using-aws/
https://aws.amazon.com/blogs/industries/amazon-achieves-near-real-time-renewable-energy-plant-monitoring-to-optimize-performance-using-aws/


[67] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias,
Juncheng Yang, Sathya Gunasekar, Jimmy Lu, Daniel S.
Berger, Nathan Beckmann, and Gregory R. Ganger. Kan-
garoo: Caching billions of tiny objects on flash. In ACM
SOSP, 2021.

[68] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias,
Juncheng Yang, Sathya Gunasekar, Jimmy Lu, Daniel S.
Berger, Nathan Beckmann, and Gregory R. Ganger. Kan-
garoo: Theory and practice of caching billions of tiny
objects on flash. ACM Transactions on Storage, 2022.

[69] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind
Krishnamurthy. eZNS: An elastic zoned namespace for
commodity ZNS SSDs. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
23), pages 461–477, Boston, MA, July 2023. USENIX
Association.

[70] Christian Monzio Compagnoni, Akira Goda, Alessan-
dro S. Spinelli, Peter Feeley, Andrea L. Lacaita, and
Angelo Visconti. Reviewing the evolution of the nand
flash technology. Proceedings of the IEEE, 105(9):1609–
1633, 2017.

[71] Melanie Nakagawa. On the road to 2030:
Our 2022 environmental sustainability re-
port. https://blogs.microsoft.com/on-the-
issues/2023/05/10/2022-environmental-
sustainability-report/, 2022.

[72] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. Sdf: Software-
defined flash for web-scale internet storage systems. In
ASPLOS, 2014.

[73] Francisco Pires. Solidigm introduces industry-
first plc nand for higher storage densities.
https://www.tomshardware.com/news/solidigm-
plc-nand-ssd, 2022.

[74] Martin Raab and Angelika Steger. Balls into Bins: A
Simple and Tight Analysis. In Gerhard Goos, Juris Hart-
manis, Jan van Leeuwen, Michael Luby, JosÃ© D. P.
Rolim, and Maria Serna, editors, Randomization and
Approximation Techniques in Computer Science, vol-
ume 1518, pages 159–170. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1998. Series Title: Lecture Notes in
Computer Science.

[75] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. Pebblesdb: Building key-value stores
using fragmented log-structured merge trees. In ACM
SOSP, 2017.

[76] Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured file system. In
ACM SOSP, 1991.

[77] Stephen M. Rumble, Ankita Kejriwal, and John Ouster-
hout. Log-structured memory for DRAM-based stor-
age. In 12th USENIX Conference on File and Storage
Technologies (FAST 14), pages 1–16, Santa Clara, CA,
February 2014. USENIX Association.

[78] Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao.
Didacache: an integration of device and application for
flash-based key-value caching. ACM Transactions on
Storage (TOS), 14(3):1–32, 2018.

[79] Shigeru Shiratake. Scaling and performance challenges
of future dram. In 2020 IEEE International Memory
Workshop (IMW), pages 1–3, 2020.

[80] Billy Tallis. 2021 nand flash updates from
isscc: The leaning towers of tlc and qlc.
https://www.anandtech.com/show/16491/flash-
memory-at-isscc-2021.

[81] Billy Tallis. Micron 3d nand status update.
https://www.anandtech.com/show/10028/micron-
3d-nand-status-update.

[82] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan,
Jonathan Kaldor, Scott Michelson, Thawan Kooburat,
Aravind Anbudurai, Matthew Clark, Kabir Gogia, Long
Cheng, Ben Christensen, Alex Gartrell, Maxim Khutor-
nenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas
Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaish-
navi Venkatesan, and Peter Zhang. Twine: A unified
cluster management system for shared infrastructure. In
USENIX OSDI., 2020.

[83] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar,
and Kai Li. RIPQ: advanced photo caching on flash for
facebook. In USENIX FAST, 2015.

[84] Swamit Tannu and Prashant J Nair. The Dirty Secret of
SSDs: Embodied Carbon. In HotCarbon, 2022.

[85] Amanda Tomlinson and George Porter. Something Old,
Something New: Extending the Life of CPUs in Data-
centers. In HotCarbon, 2022.

[86] Ted Tso. Aligning filesystems to an ssd’s erase
block size. https://tytso.livejournal.com/2009/
02/20/.

[87] Benny Van Houdt. A mean field model for a class of
garbage collection algorithms in flash-based solid state
drives. ACM SIGMETRICS Performance Evaluation
Review, 41(1):191–202, 2013.

[88] Haitao Wang, Zhanhuai Li, Xiao Zhang, Xiaonan Zhao,
Xingsheng Zhao, Weijun Li, and Song Jiang. OC-Cache:
An Open-channel SSD Based Cache for Multi-Tenant
Systems. In 2018 IEEE 37th International Performance

18

https://blogs.microsoft.com/on-the-issues/2023/05/10/2022-environmental-sustainability-report/
https://blogs.microsoft.com/on-the-issues/2023/05/10/2022-environmental-sustainability-report/
https://blogs.microsoft.com/on-the-issues/2023/05/10/2022-environmental-sustainability-report/
https://www.tomshardware.com/news/solidigm-plc-nand-ssd
https://www.tomshardware.com/news/solidigm-plc-nand-ssd
https://www.anandtech.com/show/16491/flash-memory-at-isscc-2021
https://www.anandtech.com/show/16491/flash-memory-at-isscc-2021
https://www.anandtech.com/show/10028/micron-3d-nand-status-update
https://www.anandtech.com/show/10028/micron-3d-nand-status-update
https://tytso.livejournal.com/2009/02/20/
https://tytso.livejournal.com/2009/02/20/


Computing and Communications Conference (IPCCC),
pages 1–6, Orlando, FL, USA, November 2018. IEEE.

[89] Qiuping Wang, Jinhong Li, Patrick P. C. Lee, Tao
Ouyang, Chao Shi, and Lilong Huang. Separating data
via block invalidation time inference for write ampli-
fication reduction in Log-Structured storage. In 20th
USENIX Conference on File and Storage Technologies
(FAST 22), pages 429–444, Santa Clara, CA, February
2022. USENIX Association.

[90] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. Lsm-
trie: An lsm-tree-based ultra-large key-value store for
small data items. In USENIX ATC, 2015.

[91] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao
Tong, Swaminathan Sundararaman, Andrew A. Chien,
and Haryadi S. Gunawi. Tiny-tail flash: Near-perfect
elimination of garbage collection tail latencies in nand
ssds. ACM Trans. Storage, 13(3), oct 2017.

[92] Juncheng Yang, Yao Yue, and KV Rashmi. A large-scale
analysis of hundreds of in-memory key-value cache clus-
ters at twitter. ACM Transactions on Storage (TOS),
17(3):1–35, 2021.

[93] Juncheng Yang, Yao Yue, and Rashmi Vinayak. Seg-
cache: a memory-efficient and scalable in-memory key-
value cache for small objects. In USENIX NSDI, 2021.

[94] Pan Yang, Ni Xue, Yuqi Zhang, Yangxu Zhou, Li Sun,
Wenwen Chen, Zhonggang Chen, Wei Xia, Junke Li, and
Kihyoun Kwon. Reducing garbage collection overhead
in SSD based on workload prediction. In 11th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 19), Renton, WA, July 2019. USENIX As-
sociation.

[95] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung
Park, Jin yong Choi, Eyee Hyun Nam, Eunji Lee,
Sungjin Lee, and Bryan S. Kim. Overcoming the mem-
ory wall with CXL-Enabled SSDs. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23), 2023.

[96] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. De-indirection
for flash-based ssds with nameless writes. In Proceed-
ings of the 10th USENIX Conference on File and Storage
Technologies, FAST’12, page 1, USA, 2012. USENIX
Association.

19



Appendix A Modeling of DLWA Under Ran-
dom Writes

Our goal is to model the effect of EU size on DLWA. Specif-
ically, we want to analyze the performance of the FIFO+ GC
policy, which selects EUs for garbage collection in FIFO or-
der and skips EUs which contain only valid data. Several prior
papers [34,46,87] have noted that DLWA can be approximated
using W Lambert functions, but this prior work tend to focus
on the level of device overprovisioning rather than on the EU
size. We use an approach similar to that of [46] to model the
relationship between EU size and DLWA under FIFO+.

We define X to be the random variable representing the
number of invalid pages an EU that is targeted for garbage
collection. Because FIFO+ will erase an EU only if it contains
invalid pages, our goal is to approximate E [X |X > 0]. This
tells us the number of new pages that can be written every
time GC is performed. Hence, if we let b be the number of
pages in an EU, we can compute the DLWA as

DLWA =
b

E [X |X > 0]
. (1)

Our approximation makes two simplifying assumptions.
First, we assume that each of the b pages in the target

EU is invalid independently with probability p. This is rea-
sonable when writes are random and the total number of
pages in the device is large. This assumption implies that
X ∼ Binomial(b, p). To approximate the expectation of X ,
we must approximate p.

Second, we assume that an EU is targeted for GC every k
writes, where k is a constant. Specifically, we define t to be
the total number of EUs in the device and assume k = tE [X ].
This is a reasonable approximation because k is the expected
number of writes that occur between GC operations on a given
EU and the total number of EUs, t is large. A particular page
will be invalid if at least one of the k writes targets the page.
Hence, the probability p that a page is invalid is

p = 1−
(

1− 1
ub

)k

where u is the number of EUs available to store valid user
data. Note that u is typically smaller than t, and t

u represents
the amount of overprovisioning in the device.

Combining these assumptions yields

E [X ]≈ b · p≈ b

(
1−
(

1− 1
ub

)k
)

(2)

≈ b

(
1−
(

1− 1
ub

)tE[X ]
)
. (3)

We can rewrite (3) using the W Lambert function to get the
following approximation for E [X ]:

E [X ] = b−
W (bt

(
1− 1

ub

)tb
ln
(
1− 1

ub

)
)

t ln
(
1− 1

ub

) .

To compute E [X | X > 0], we note that

E [X | X > 0] =
b

∑
i=1

i · P(X = i)
P(X > 0)

=
1

P(X > 0)

b

∑
i=0

i ·P(X = i)

and thus

E [X | X > 0] =
E [X ]

P(X > 0)
=

E [X ]

1− (1− p)k .

Hence, we now have an approximation that allows us to write
DLWA as defined in (1) in terms of the device parameters t, u,
and b. This approximation is validated against simulation in
Figure 6.

20


	Introduction
	Opportunities in flash caching
	Challenges in flash caching
	Wherefore device write amplification?
	Denser flash has lower write endurance
	Shortcomings of existing solutions

	Write-Read-Erase iNterfaces (WREN)
	Today's interface is LBAD
	Challenges of new interface design
	What makes an interface WREN?
	WREN alone is not a cure for wa

	FairyWren Overview and Design
	Overview
	The LOC
	The SOC
	Optimizing the SOC

	Evaluation
	Experimental setup and model
	Carbon emissions of flash caches
	On-flash experiments
	FairyWren reduces carbon emissions
	Where are benefits coming from?
	Operating on a fixed flash device

	Related Work
	Conclusion
	Acknowledgements
	Modeling of dlwa Under Random Writes

