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ABSTRACT

Token-level serialized output training (t-SOT) was recently proposed
to address the challenge of streaming multi-talker automatic speech
recognition (ASR). T-SOT effectively handles overlapped speech by
representing multi-talker transcriptions as a single token stream with
⟨cc⟩ symbols interspersed. However, the use of a naive neural trans-
ducer architecture significantly constrained its applicability for text-
only adaptation. To overcome this limitation, we propose a novel
t-SOT model structure that incorporates the idea of factorized neu-
ral transducers (FNT). The proposed method separates a language
model (LM) from the transducer’s predictor and handles the unnatu-
ral token order resulting from the use of ⟨cc⟩ symbols in t-SOT. We
achieve this by maintaining multiple hidden states and introducing
special handling of the ⟨cc⟩ tokens within the LM. The proposed t-
SOT FNT model achieves comparable performance to the original
t-SOT model while retaining the ability to reduce word error rate
(WER) on both single and multi-talker datasets through text-only
adaptation.

Index Terms— factorized neural transducer, multi-talker speech
recognition, token-level serialized output training, text-only adapta-
tion

1. INTRODUCTION

Multi-talker speech recognition continues to pose a significant chal-
lenge because of the serious performance drop on overlapping
speech for a conventional single-talker ASR model [1]. The im-
pact of overlapping speech is significant even with a small ratio
of speech overlaps [2, 3]. With the advances of the end-to-end
(E2E) ASR technique [4, 5, 6, 7], several efforts have been made
for development of the E2E streaming multi-talker ASR model, e.g.,
SURT [8, 9], MS-RNN-T [10], MT-RNN-T [11] and t-SOT [12].
Compared with the earlier modular systems [13, 14, 15], where a
speech separation module was employed to address overlapping
speech, those E2E ASR solutions transcribe the multi-speaker audio
directly, which makes the model simple for both optimization and
deployment and potentially brings the better performance.

Among the recent studies, t-SOT models with a Transformer
[16] transducer [17] structure achieved the state-of-the-art (SOTA)
recognition results in multi-talker recognition on several datasets in-
cluding LibriCSS [2, 12] and AMI [18, 19]. Unlike the prior models
[8, 9, 11] that used two branches for the simultaneous transcriptions
of the overlapping speech, t-SOT has only a single output branch
to generate the token sequence from multiple speakers. To distin-
guish the token streams from different speakers, a special “chan-
nel change” token, ⟨cc⟩, is inserted when adjacent tokens belong
to different speakers. This simple framework achieved a stream-
ing multi-talker ASR with a simpler model architecture and lower
decoding cost. Meanwhile, it also achieved comparable WER on

non-overlapping speech with a single-speaker ASR model, evading
the performance degradation witnessed in other ASR [9] and earlier
cascaded approaches [20, 21].

While t-SOT models achieved promising results, it still faces a
challenge when we adapt it to a specific domain by using only text
data. The challenge stems from its E2E architecture as well as the
introduction of special token ⟨cc⟩ to distinguish overlapping speak-
ers. Firstly, it is known that the E2E ASR model is difficult to adapt
by only using only text data, and many researches have been con-
ducted. Among them, the most popular approach is the language
model (LM) fusion [22, 23, 24, 25] that incorporates an external LM
score on the target domain. However, the performances of these ap-
proaches are sensitive to the weight tuning on a development set.
Recently, factorized neural transducer (FNT) [26, 27] was proposed
to address this issue. In the FNT model, the prediction network for
the regular vocabulary tokens acts as a standard LM. Therefore, var-
ious LM adaptation techniques could be applied with the text-only
corpus. However, it is not straightforward to integrate neither the
LM fusion nor FNT with t-SOT. Specifically, a t-SOT model gen-
erates tokens spoken by all the speakers in a chronological order
together with ⟨cc⟩ token. The intermingled word sequences from
various speakers, along with the ⟨cc⟩ token, disrupt the inherent or-
der of natural language. Consequently, it leads challenges for the
standard LM to handle the decoding sequence of the t-SOT model
properly, either through LM fusion or FNT.

In this paper, we proposed a novel factorized neural transducer
structure named t-SOT FNT to enable the text-only adaptation while
maintaining the advantages of the t-SOT based multi-talker ASR.
Our changes include two aspects. Firstly, we change the joint net-
work of FNT to output not only the probability of ⟨blank⟩ token but
also that of ⟨cc⟩ token. Secondly, N hidden states are maintained
within the vocabulary predictor for switching among N concurrent
speakers, where N = 2 in this work. When ⟨cc⟩ token is emitted,
vocabulary predictor will turn to use the other hidden state for the
future inference and give all-zero output for the current step. Our
experiments show that, compared to a naive t-SOT model, the pro-
posed t-SOT FNT model can achieve comparable performance on
meeting conversation data, while achieving better WER on general
single-talker ASR set by leveraging a better initialization of the vo-
cabulary predictor network. Moreover, we observe that further WER
reduction on both single and multi-talker datasets can be achieved
through the text-only adaptation on vocabulary prediction network.

2. RELATED WORKS

2.1. Token-level Serialized Output Training (t-SOT)

The basic idea of the t-SOT is to generate the tokens of all the speak-
ers in a single sequence with a streaming fashion, according to the
order of the token emission time in the audio. To achieve this, the
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Fig. 1. Illustration of the factorized neural transducer structure. xenc
t

is the t-th frame feature from encoder and yu−1 is the predicted to-
ken of the previous step. Only green blocks have the trainable pa-
rameters.

serialized transcriptions are generated as the supervision of the t-
SOT model. In the case of up to 2 concurrent speakers, a special
token ⟨cc⟩ is inserted between the consecutive two tokens once they
are spoken by different speakers, indicating the change of the virtual
channel, i.e. active speaker. During inference, a post-processing step
can be employed to form the transcriptions of two channels from the
t-SOT decoding result by switching the output channel index when
⟨cc⟩ is emitted. For example, a decoding sequence of “hello how are
⟨cc⟩ i am ⟨cc⟩ you ⟨cc⟩ fine thank ⟨cc⟩ good ⟨cc⟩ you” can be refor-
matted to “hello how are you good” and “I am fine thank you” for the
further processing. As the t-SOT only changes the supervised label
of the ASR model, with the network structure, training loss function
consistent as in conventional ASR. Various improvements from one
speaker ASR can be easily integrated into t-SOT framework for fur-
ther performance improvement, such as better network architecture,
training scheduler etc. Meanwhile, we can generalize the t-SOT to
support the mixed audio of up to more than 2 concurrent speakers by
adding more special “channel change” tokens. However, given the
overlaps of two speakers are the most common case in the real en-
vironment, we continue to prioritize our efforts on the scenario with
up to 2 concurrent speakers.

2.2. Factorized Neural Transducer (FNT)

FNT decomposes the posterior prediction of the output token set O
into two parts, i.e., O = {V ∪ S}, where V and S refer to reg-
ular vocabulary tokens and special non-vocabulary token ⟨blank⟩,
respectively. As shown in Figure.1, given the t-th frame output from
the acoustic encoder xenc

t and the predicted token yu−1 in the pre-
vious step, the prediction of the ⟨blank⟩ token follows the standard
transducer framework by estimating zst,u as

zst,u = Joint(xenc
t , gsu), (1)

where gsu is the output of the special prediction network with a input
of yu−1. The regular vocabulary prediction zvt,u is computed from
xenc
t and the vocabulary predictor output hv

u as followings.

hv
t = Linear(xenc

t ),

zvu = LogSoftmax(hv
u),

zvt,u = hv
t + zvu.

(2)

Finally, zst,u and zvt,u are concatenated to form the distribution over
O for the training with the transducer loss LRNNT. Besides, a neg-
ative log likelihood (NLL) loss is also applied on zvu to enforce the

Fig. 2. The behavior of the vocabulary predictor in proposed in-
tegrated t-SOT FNT. {y0, · · · , y14} are input tokens and c0, c1 are
two hidden states. The green block indicates one processing step of
the vocabulary predictor. ⟨cc⟩ serves as the “switch” of two hidden
states used for the vocabulary predictor and once it’s emitted, the
output of the vocabulary predictor is assigned as all-zero vector.

vocabulary predictor to act as a standalone LM 1. As a result, the
final objective function for FNT is defined as

LFNT = LRNNT + λ · LNLL, (3)

where λ is a hyper-parameter to control the weight of the LM loss.
During the text only adaptation, the vocabulary predictor is adapted
to a target domain based on the available text data. As prior work
[27] has shown that adding Kullback-Leibler (KL) divergence loss
between the outputs of the adapted vocabulary predictor and original
ones can help to avoid the performance degradation on the general
domain, the final objective function for text-only adaptation of the
vocabulary predictor is

Ladapt = LNLL + ω · LKLD, (4)

where ω is the weight of the KL divergence loss.

3. T-SOT FNT

A naive way to incorporate t-SOT framework into FNT architec-
ture is training FNT by using t-SOT based transcription by treating
⟨cc⟩ token as a member of regular vocabulary tokens V . We refer
this combination as “naive t-SOT FNT”. The naive t-SOT FNT can
achieve multi-talker ASR while keep using the original FNT archi-
tecture. However, there are two obstacles in this naive combination.
Firstly, t-SOT transcription includes an additional channel switching
token, i.e ⟨cc⟩, which does not contain semantic meaning and will
potentially introduce disruption to the LM. Secondly, as the serial-
ized outputs in t-SOT mixes transcription from multiple speakers,
which breaks the inherent order of natural language and conflicts
with the standard LM optimized for single speaker data. As such, the
naive combination of FNT and t-SOT will results in inferior perfor-
mance and difficulty to incorporate external LM into the vocabulary
predictor.

To address the above limitations, we propose a new variant of
FNT, named “integrated t-SOT FNT”. In the integrated t-SOT FNT
framework, we treat ⟨cc⟩ as a member of special non-vocabulary to-
kens S, and predict it by the joint network instead of the vocabulary
predictor. In addition, to enable effective integration of external LM
into the vocabulary predictor, we introduce the special procedure to
handle multiple LM states in the vocabulary predictor.

The behavior of the proposed vocabulary predictor is exempli-
fied in Figure 2. Unlike the conventional FNT as well as the naive
t-SOT FNT, the integrated t-SOT FNT maintains multiple hidden

1It’s equivalent to the way adopted in previous FNT work [26, 27] that
applied cross entropy (CE) loss on vocabulary predictor’s output hv

u.



Algorithm 1 Inference process of the vocabulary predictor in t-SOT
FNT with up to two concurrent speakers
1: Input: Y = {y0, · · · , yU−1}
2: Initialize: c0 = ∅, c1 = ∅,H = {}, j = 0
3: for u in {0, · · · , U − 1} do
4: if u = 0 then
5: hv

u, c0 = PredictorV(yu, c0)
6: c1 = c0
7: else
8: if yu = ⟨cc⟩ then
9: j = 1− j

10: hv
u = ∅

11: else
12: hv

u, cj = PredictorV(yu, cj)
13: Append hv

u → H
14: return H

states within the vocabulary predictor. The number of states to main-
tain is equal to the maximum number of concurrently active speaker,
which is pre-defined to be 2 in this work. The ⟨cc⟩ from the decoded
sequence serves as the “switch” of two hidden states used for the
vocabulary predictor, which enables each hidden state to capture the
semantic transition of tokens from single speaker, as in the standard
LM. In this way, an external LM can be smoothly integrated into the
t-SOT framework.

More concretely, the inference process of the vocabulary pre-
dictor on the intermingled token sequence Y = {y0, · · · , yU−1} is
defined in the Algorithm 1, where the current hidden state cj alter-
nates between c0 and c1. In transducer, as Y always starts with the
⟨blank⟩, i.e., y0 = ⟨blank⟩, we reset the hidden states c0, c1 at the
initial inference step (line 5 and 6). Later when ⟨cc⟩ is emitted, the
output of the vocabulary predictor hv

u is assigned as all-zero vector
and the current hidden state cj for the future inference is switched to
c1−j (line 9). For regular vocabulary token, hv

u is calculated through
vocabulary predictor based on the current token yu and hidden state
cj , as shown in line 12. With this design, vocabulary predictor still
acts like a standard LM even with the intermingled token sequence
that consists of ⟨cc⟩.

In the training stage of the t-SOT FNT, we still use equation (3)
as the objective function except that all-zero hv

u with the ⟨cc⟩ input
are masked in the calculation of LM loss, i.e., LNLL. Thanks to the
multi-state design, the text-only adaptation scheme of the integrated
t-SOT FNT is same as the standard FNT, which only adapts the vo-
cabulary predictor on the text corpus following the equation (4).

4. EXPERIMENTS SETUP

4.1. Model Structure

We used the same encoder structure for all the ASR models in this
work, which contained 2 convolution layers and an 18-layer Con-
former [6] encoder with the chunk-wise streaming mask, resulting
in a latency of 160 msec. The attention dimension of the multi-head
self-attention (MHSA) layer in each Conformer block was set to 512
with 8 heads and the 2048-dim feed-forward network (FFN) layer
was adopted with the Gaussian error linear unit (GELU).

The prediction network of the single-talker ASR model (referred
as “CT”) and t-SOT model (referred as “t-SOT CT”) consisted of a
2-layer 1024 dimensional long short-term memory (LSTM). In both
naive and integrated t-SOT FNT models, the non-vocabulary predic-
tion network was a 2-layer 512-dim LSTM and vocabulary predictor
was a 2-layer 1536-dim LSTM. We applied a dropout rate of 0.1 to
those prediction networks. The dimension of the joint network were

Table 1. WER (%) comparison between t-SOT FNT and other mod-
els on general ASR set and AMI and ICSI test set, respectively.

Model Seed General AMI ICSI
Enc. Pred. dev eval dev eval

CT - - 11.9 32.9 35.9 31.7 30.9
t-SOT CT CT CT 12.6 21.8 24.6 19.7 17.4

Naive t-SOT FNT t-SOT CT - 12.8 21.9 24.8 19.6 17.5

Integrated t-SOT FNT

CT - 13.0 22.5 25.3 19.9 17.7
t-SOT CT - 12.7 21.8 24.9 19.2 17.2

CT LM 12.8 22.6 25.6 20.1 18.3
t-SOT CT LM 12.2 21.8 24.6 19.3 17.1

all set to 512. The regular vocabulary contained 4003 word pieces
thus the output size of single talker model and t-SOT models were
4004 and 4005, respectively.

4.2. Data and Metric

We used 30 thousand (K) hours Microsoft in-house data, with the
personally identifiable information removed, for the training of the
single-talker ASR model. For t-SOT CT and t-SOT FNT model
training, we used the combination of the multi-talker simulation data
based on the 30K data and real meeting corpus from the training set
of AMI [18] and ICSI [28] as well as the Microsoft internal meet-
ing recordings. In the multi-talker simulation using the 30K data, we
randomly mixed two utterances on-the-fly with a probability of 67%.
For the rest of 33%, the original single-talker utterance was used. Fi-
nally, we used LibriSpeech text data (18 million (M) words), which
was not included in the transcriptions of 30K training data, for the
text-only adaptation experiments.

We evaluated our models on several datasets, including the gen-
eral single-talker ASR test set, single-distant microphone audio from
AMI and ICSI, and LibriSpeech-style datasets (LibriSpeech [29],
LibriSpeechMix [30], LibriCSS [2]). Our general single-talker ASR
test set covers various different application scenarios and consists
of a total of 9.9M words. It is used to evaluate the single-speaker
ASR accuracy before domain adaptation. On the other hand, AMI
and ICSI were used to evaluate the multi-talker ASR accuracy be-
fore domain adaptation. We applied a causal logarithmic-loop-based
automatic gain control (AGC) on AMI and ICSI to normalize audio
volume. Finally, the LibriSpeech-style datasets were used to evalu-
ate the effect of text-only adaptation in both single-talker and multi-
talker ASR scenarios. We measured WER as an evaluation metric.
For multi-talker test sets, we computed WER based on the algorithm
proposed in [31, 19].

4.3. Training and Evaluation

The 80-dim log mel-filterbank using 25 msec window and 10 msec
hop size was extracted as the input feature for ASR models. We ap-
plied global mean and variance normalization. All the ASR models
were trained on 16 NVIDIA V100 GPUs with AdamW optimizer.
For CT model, we performed 500K-step training with a linear decay
learning rate scheduler. 50K warm-up steps were used and the peak
learning rate was set to 1.5e−3. t-SOT CT model was trained for
275K steps, using the CT model as the seed. Warm-up steps were
removed and the peak learning rate was set to 2e−4.

To simplify the training scheme of t-SOT FNT, the encoder
parameters were initialized from the well-trained CT or t-SOT CT
models, and the peak learning rate was set to 4e−4 and 2e−4, respec-
tively. Other configurations were kept same as t-SOT CT, including



Table 2. Text-only adaptation results of t-SOT FNT on LibriSpech (LS), LibriSpeechMix (LS-Mix) and LibriCSS datasets. We used the
integrated t-SOT FNT in this experiment, and refer it as t-SOT FNT.

Model Seed Adapt LS LS-Mix LibriCSS
Enc. Pred. clean other dev-2spk test-2spk 0L 0S OV10 OV20 OV30 OV40 Avg.

CT - - × 5.9 11.9 - - 8.8 11.7 19.3 26.3 33.2 38.6 23.0
t-SOT CT CT CT × 5.9 12.1 10.9 11.0 8.8 9.3 11.7 15.7 19.9 22.6 14.7

t-SOT FNT t-SOT CT
- × 6.2 12.6 11.6 11.8 9.1 10.0 12.2 15.6 20.5 23.1 15.1

✓ 5.0 10.7 10.3 10.4 7.9 8.6 11.1 14.4 18.9 22.1 13.8

LM × 5.5 10.9 11.0 10.6 8.6 9.0 11.2 15.4 19.9 22.5 14.5
✓ 4.7 10.4 10.1 10.1 7.9 8.2 10.5 14.5 18.8 21.8 13.6

the training steps and batch size. Following the previous FNT work
[27], in order to utilize more text data, we can also initialized vo-
cabulary predictor of the FNT from a pre-trained LM with same
architecture but was trained independently on a much larger text
corpus. In this work, the text corpus for LM training contains 29
Billion words. When it comes with text-only adaptation, we adapt
the vocabulary predictor of the integrated t-SOT FNT model for 10K
steps on 4 V100 GPUs with a learning rate decayed from 1e−4 to 0.
ω was set to 1 to keep the performance on general ASR test set. For
ASR decoding, we used a beam size of 16.

5. RESULTS

In this section, we first discuss the performance of the t-SOT FNT
before adaptation on single and multi-talker test sets in Section 5.1.
We then discuss the text-only adaptation results in Section 5.2.

5.1. Performance of single and multi-talker ASR

The WERs on the general single-talker ASR set, AMI and ICSI
are reported in Table 1, where four model structures are listed and
compared. With the same training configuration, our proposed in-
tegrated t-SOT FNT model outperformed the naive t-SOT FNT on
ICSI dataset while achieving comparable WERs on AMI and general
single-talker ASR test sets. This result illustrates that the proposed
multi-state vocabulary predictor of the integrated t-SOT FNT works
on par with the vocabulary predictor of the conventional FNT, while
the former provides a way to naturally integrating external LM into
the vocabulary predictor.

Among the integrated t-SOT FNT variants, we observed that
starting training from t-SOT CT encoder leads better performance
than that from CT. This is expected as the former one has been op-
timized on multi-talker data. On the other hand, initializing the vo-
cabulary predictor with a pre-trained LM on the larger scale text data
resulted better WER on general ASR set, but the improvement was
limited on AMI and ICSI. The reason might be that the training cor-
pus of the LM covers the scenarios of the general ASR set but lacks
sufficient meeting conversation data.

On general single-talker ASR test set, the best t-SOT FNT model
(last row) achieved better result than t-SOT CT, closing the WER
gap from the single-talker CT from 0.7% (=12.6%-11.9%) to only
0.3% (=12.2%-11.9%). On AMI data, t-SOT FNT achieved similar
performance with t-SOT CT while on ICSI, it outperformed t-SOT
CT model by a 0.4% and 0.3% on development and evaluation sets,
respectively. These results demonstrated the capability to convert
an existing t-SOT CT model to a t-SOT FNT model by keeping the
accuracy of the original t-SOT CT model.

5.2. Results of the text-only adaptation

We picked the top two integrated t-SOT FNT models from Table 1
and performed text-only adaptation using text data from LibriSpeech
training set. The results were reported in Table 2, where three data
sets, LibriSpeech, LibriSpeechMix, and LibriCSS, were evaluated.
The performance of the t-SOT FNT were improved after adaptation,
not only on single-talker audio, but also on the multi-talker data re-
gardless of if the data is simulated mixture (LibriSpeechMix) or real
mixture (LibriCSS). Overall, the t-SOT FNT with LM initialization
achieved best performance. Compared with t-SOT CT, t-SOT FNT
brought a relative WER reduction of 8.4% and 7.5% on LibriSpeech-
Mix and LibriCSS, respectively. In addition, compared with CT that
achieved 5.9% and 11.9% on LibriSpeech, t-SOT FNT achieved sig-
nificantly better WERs of 4.7% and 10.4% by enjoying the text-only
adaptation capability.

Among the t-SOT FNT models, we observed that the text-only
adaptation closed the gap between the LM initialization on all the
three test sets. For example, the relative averaged WER difference
on LibriSpeechMix was reduced from 8.3% to 2.5%, and that on
LibriSpeech was reduced from 14.6% to 4.0%. Overall, our results
demonstrated that the proposed t-SOT FNT enjoyed the advantage
of the vocabulary predictor where the general single-talker ASR ac-
curacy was improved by utilizing a powerful LM, and the accuracy
was further improved by the text-only domain adaptation.

6. CONCLUSIONS

In this paper, we proposed the t-SOT FNT model to incorporate
the text-only adaption capability into the multi-talker ASR. A set
of the hidden states were maintained within the vocabulary predic-
tor to keep track the natural token transition from non-overlapping
speakers. Compared with t-SOT CT model, the proposed t-SOT
FNT achieved comparable WER on AMI and ICSI data sets and
better WER on general single-talker ASR set. The experiments on
LibriSpeech-style test set further demonstrated that significant WER
reduction can be obtained by text-only domain adaptation on both
single-talker and multi-talker audio.
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