
BatchIt: Optimizing Message-Passing Allocators for
Producer-Consumer Workloads: An Intellectual

Abstract
Nathaniel Wesley Filardo

Microsoft Azure
Canada

Matthew J. Parkinson
Microsoft Azure Research

UK

Abstract
Modern, high-performance memory allocators must scale
to a wide array of uses, including producer-consumer work-
loads. In such workloads, objects are allocated by one thread
and deallocated by another, which we call remote dealloca-
tions. These remote deallocations lead to contention on the
allocator’s synchronization mechanisms. Message-passing
allocators, such as mimalloc and snmalloc, use message
queues to communicate remote deallocations between threads.
These queues work well for producer-consumer workloads,
but there is room for optimization.

We propose and characterize BatchIt, a conceptually sim-
ple optimization for such allocators: a per-slab cache of
remote deallocations that enables batching of objects des-
tined for the same slab. This optimization aims to exploit
naturally-arising locality of allocations, and it generalizes
across particular implementations; we have implementations
for both mimalloc and snmalloc. Multi-threaded, producer-
consumer benchmarks show improved performance from re-
duced rates of atomic operations and cache misses in the un-
derlying allocator. Experimental results using the mimalloc-
bench suite and a custom message-passing workload show
that some producer-consumer workloads see over 20% per-
formance improvement even based on the high-performance
these allocators already provide.

CCS Concepts: • Software and its engineering→ Alloca-
tion / deallocation strategies; • Theory of computation
→ Data structures design and analysis.

ACM Reference Format:
Nathaniel Wesley Filardo and Matthew J. Parkinson. 2024. BatchIt:
Optimizing Message-Passing Allocators for Producer-Consumer
Workloads: An Intellectual Abstract. In Proceedings of the 2024 ACM
SIGPLAN International Symposium on Memory Management (ISMM

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ISMM ’24, June 25, 2024, Copenhagen, Denmark
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0615-8/24/06.
https://doi.org/10.1145/3652024.3665506

’24), June 25, 2024, Copenhagen, Denmark. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3652024.3665506

1 Introduction
Modern, general-purpose, high-performance memory alloca-
tors must scale to a wide array of uses: allocated heaps may
measure from kilobytes to terabytes, clients may have be-
tween one and hundreds of threads, objects’ lifetimes range
between ephemeral to immortal, and so on. These pressures
have generally caused allocators to evolve hierarchical in-
ternal designs, with a variety of caching and “fast path” ap-
proaches, often with a first client-facing layer whose state is
entirely thread local. The goal is that the majority of client
requests can be serviced cheaply and asynchronously, with
geometrically fewer requests triggering successively heavier
forms of synchronization. This would be especially straight-
forward if objects were always deallocated by their allocating
thread, that is, were they locally deallocated.

Alas, some objects are allocated by one thread and remotely
deallocated by another. In particular, there is a sizable class
of real-world workloads with a “producer-consumer” model:
many objects are allocated by producer thread(s) and flow to
be remotely deallocated by consumer(s). Because a general-
purpose allocator is not told the fate of an object – indeed,
the program may not know ahead of time – it must be pre-
pared for any object to be either locally or remotely deallo-
cated by any other thread. Thus, complex application object
passing necessarily taxes the allocator’s synchronization
mechanisms.
Hoard [1],1 an early and influential design for scalable

allocators, dynamically partitions the heap between threads.
The heap is divided into “superblocks”, and, while the full su-
perblock lifecycle is elaborate, the salient point for us is that
superblocks sourcing allocations are affinitized to (usually
singleton) subsets of threads; only these threads draw their
allocations from their affinitized superblocks. Each (de)allo-
cation locks the relevant superblock; thus, any thread can
deallocate into any superblock, as necessary. The first ver-
sions of jemalloc [2]2 behaved similarly. While attractive,
this approach still incurs the expense of a critical section
entry and exit for each (de)allocation; while most entries are
likely without contention, the requisite lock acquisitions are
1https://emeryberger.github.io/Hoard/
2https://github.com/jemalloc/jemalloc

https://orcid.org/0009-0002-9698-1503
https://orcid.org/0009-0004-3937-1260
https://doi.org/10.1145/3652024.3665506
https://doi.org/10.1145/3652024.3665506
https://emeryberger.github.io/Hoard/
https://github.com/jemalloc/jemalloc


ISMM ’24, June 25, 2024, Copenhagen, Denmark Nathaniel Wesley Filardo and Matthew J. Parkinson

still an expense. Local and remote deallocations differ only
in which lock is involved, with local operations less likely to
experience contention.

Later efforts, such as TCMalloc [3],3 observed that caching
deallocated objects per thread would often allow subsequent
allocations to be serviced entirely locally, without synchro-
nization or even cross-thread cache traffic. For many work-
loads, this approach works admirably: access to the thread-
local cache can be done without atomics, by construction,
and, once caches are warm, few (de)allocations need to syn-
chronize with the shared heap. Unfortunately, producer-
consumer workloads are not well served by this approach:
the producers’ caches run empty and the consumers’ over-
flow, with each such event requiring synchronization with
the underlying, global heap.
The two allocators we study herein, mimalloc [4]4 and

snmalloc [5],5 embody hybrids of the above strategies. Ex-
ploiting locality of the sizes of objects requested by threads,
theymanage “small” objects in slabs, regions ofmany equally-
sized objects. Refining Hoard, these slabs are affinitized to
individual threads,6 and, like tcmalloc, these slabs are ac-
cessed exclusively by their threads, without synchronization.
While this might increase the address space (or even mem-
ory) used by the heap, in practice, we believe the growth is
tolerably small and the gained scalability worth the trade-off.
Both allocators answer the challenge of remote deallocations
with lock-free message passing: a remote deallocation (even-
tually) results in the object being queued for later processing
by the owning thread.
In mimalloc, each slab has its own message queue. The

owning (producer) thread processes incomingmessages (from
consumers), making the messages’ underlying memory avail-
able for reallocation, only occasionally (such as when the
slab empties or when no active slab can service a request).
This processing is inexpensive: a single atomic compare-and-
swap (CAS) claims the message queue, which is then walked
and appended to the slab’s free list. Each remote dealloca-
tion results in an atomic CAS on the slab’s message queue,
promptly making deallocated memory visible to the owner.

snmalloc, by contrast, attaches two message structures,
an inbox queue and an outbox hash table, to each thread.
Each thread consumes the entirety of its inbox, distributing
the objects it owns into its affinitized slabs, only occasion-
ally (such as when one of its active slabs empties or the
outbox grows too large); this requires one atomic exchange
but incurs linear processing time and cache traffic. Each

3https://github.com/google/tcmalloc
4https://github.com/microsoft/mimalloc
5https://github.com/microsoft/snmalloc
6Strictly speaking, snmalloc draws a distinction between “allocator” and
“thread”, with allocators being longer-lived constructs reused across threads’
creation and destruction. In general practice, though, each live thread has
just one associated allocator, and each allocator is in use by at most one
thread, and so we elide the distinction.

thread’s outbox is, like its slabs, manipulated exclusively
by its thread. Remote deallocations are first placed in the
deallocating thread’s outbox, onto a chain keyed on the iden-
tity of the object’s owning thread. Only when the outbox
becomes sufficiently large, each chain is appended, with a
single atomic exchange, to the message queue of the alloca-
tor that owns its head object. Of note, inbox processing may
involve forwarding messages (via the outbox) and deallo-
cated objects may take some time to become visible to their
owning thread, increasing the heap’s total footprint.
These two points in the design space represent a trade-

off. mimalloc promptly returns memory to slabs and its
message queues are especially simple to process, at the cost
of a message queue per slab and an atomic operation per
remote deallocation. snmalloc uses only per-threadmessage
structures and needs only a pair of atomic operations to
return many objects, at the cost of delayed memory reuse
and more complex message queue processing threatening
linear amounts of random-access cache traffic. Both of these
approaches are fully general, in that one stream of remote
deallocations is much like any other: each object is enqueued
in turn without much overt effect on subsequent operations.
In an attempt to reduce the costs associated with these

strategies, we propose BatchIt, the addition of small, per-
thread caches of slabs into which objects have been remotely
deallocated recently. By collecting, in the deallocating thread,
a batch of multiple objects destined for the same slab, BatchIt
enables constant-time operations for each such batch. Ap-
plying BatchIt to mimalloc and snmalloc can be seen as
creating two new strategies that are closer to some mid-
point in the design space. For example, mimalloc can now,
somewhat like snmalloc, return multiple objects with a sin-
gle atomic. On the other hand, the batched objects within
a snmalloc message are, by definition, from same slab, as
with objects in mimalloc’s message queues.

The next sections discuss BatchIt’s common design (sec-
tion 2) and its implementation within each of snmalloc (sec-
tion 3.2) and mimalloc (section 3.1). We measure the perfor-
mance impacts of our changes in section 4. Some possible
avenues of future work are discussed in section 5.

2 Design
The central observation underlying our optimization is that
natural, well-justified, extant optimizations result in local-
ity of objects flowing through a producer-consumer system:
producer(s) will sequentially allocate from their owned al-
location slabs to create application objects, which will then
flow to the consumer(s), wherein we may expect multiple ob-
jects from the same slab to arrive in rapid succession. We can
exploit this locality: by having consumers collect collocated
objects and transmit them back to their owning (producer’s)
allocator in batch, we can reduce the number of messages
that must be sent and processed.

https://github.com/google/tcmalloc
https://github.com/microsoft/mimalloc
https://github.com/microsoft/snmalloc


BatchIt: Optimizing Message-Passing Allocators for Producer-Consumer Workloads ISMM ’24, June 25, 2024, Copenhagen, Denmark

For slab-based allocators such as mimalloc and snmalloc,
there is already a notion of a free list per slab. The most
straightforward granularity of batching, then, is for each
batch to be composed only of objects the same slab, so that it
is a segment of a slab’s free list, built locally by the consumer
without any cross-thread synchronization.7 An owning al-
locator can process such a batched message of arbitrarily
many objects in constant time, and with constant amounts
of cache traffic, if the batch additionally communicates its
size in its head object.

We must recognize that this batch collection is opportunis-
tic; there is no guarantee that a sequence of deallocations nec-
essarily involves two objects from the same slab. We should
expect the efficacy of batching to increase as the messages ar-
riving at a given consumer thread (and, so, the deallocations
it performs) tend towards being increasingly concentrated
within smaller sets of producer slabs. That is, applications
that have 1:1 relationships between producers (or, strictly,
their allocation arenas) and consumers can expect larger
batches than those with more general communication net-
works, more likely to spread a given slab’s contents across
more consumers.
Such batching is quite natural for mimalloc’s existing,

per-slab communication structure, as deallocation paths al-
ready look up the object’s containing slab. For snmalloc,
while it is built around a per-allocator communication de-
sign, its central data structure, the so-called “pagemap”, for-
tuitously already stores the requisite information. In the ex-
isting snmalloc implementation, deallocating threads query
the pagemap to find (pointers to) recipient allocators, which
then query it to find (pointers to) per-slab metadata. For
batching, deallocating threads can also use the existing slab
metadata pointers as cache tags.
BatchIt, all told, then, is the addition, to remote dealloca-

tion paths, of small per-thread caches of objects associated
with recently-seen slabs. Eviction of a slab from this cache
causes all associated objects to be sent as one message: one
atomic append in the case of mimalloc or one append to
the thread’s outbox in snmalloc. Growth of this cache is
limited, both in the maximum number of slabs that may be
present and in the total amount of memory held within. In
snmalloc, the cache’s contents are accounted within the
existing outbox quota. The shape and placement policy of
this cache is subject to experimental tuning; see section 5.1.
For mimalloc, we expect that this collection may signifi-

cantly reduce the number of atomics executed by consumers

7In principle, we could apply such batching to more general heap shapes
than slabs, but constant-time batch processing would be at odds with coalesc-
ing free regions in most shapes. Likely such challenges could be overcome,
but our description herein will focus on the slab case.

While there could be some gain in snmalloc from an orthogonal, per-
allocator batching, which could eliminate the need to consider messages
for forwarding, processing such a batch would still incur linear costs, and
we do not consider it further herein.

· · · 1 2 3 4 5 6 7 8 · · ·

· · · 1
3 4

2
6 8

5 7 · · ·

Figure 1. Schematic representation of a snmalloc message
queue without (top) and with (bottom) BatchIt. While the
original message queue might have spans of objects belong-
ing to the same slab, these will be intermixed with each other,
and so will require the recipient to act on each mesasge. By
contrast, each batched message is guaranteed to be within
one slab and so needs only a constant amount of processing,
regardless of its size. (The message queue may contain mul-
tiple batches for the same slab, from different deallocating
threads or due to contention in BatchIt’s caches.)

(and may slightly speed up the average local deallocation,
having replaced the atomic with a local memory operation),
at the cost of a slight delay in deallocated objects becoming
visible to their owning allocators. For snmalloc, we expect
no reduction in atomics but significant speed-up of message
queue processing, at the cost of a slight slow-down of remote
deallocations due to the cache logic.

3 Implementations
3.1 mimalloc
We implemented a primitive batching system for mimalloc,
aiming to change as little as possible therein. The result is an
approximately 175 LoC patch to the latest, at time of writing,
mimalloc source (commit 2cca58).

We added an allocator local cache that holds a fixed num-
ber (16) free lists for remote slabs. This is organized as a
2-way set associative cache. If we get a collision on the cache,
we simply evict the entry with the longest list back to the
owning thread using a single atomic CAS operation.

We keep the remote free list in mimalloc as a singly linked
list of single objects, rather than a singly linked list of rings
of objects. This means the receiving side must walk the list
to find out how many objects have been added. We could
have used cyclic lists for the batches, but this would have
required deeper changes to the allocator.
The code needs to handle the case where the receiving

slab is not being monitored by the owning thread. In this
case, two messages are required: one to notify the owning
slab that it should monitor, and the second to send the rest
of the free list. This could be optimised to a single send, but
would affect more of the allocator code.

3.2 snmalloc
The existing structure of snmalloc is well suited for BatchIt.
Remote deallocations are already queued locally in each



ISMM ’24, June 25, 2024, Copenhagen, Denmark Nathaniel Wesley Filardo and Matthew J. Parkinson

thread’s outbox, which classifies objects by their owning
allocator; it is a straightforward change to add a cache to first
collate by containing slab and, upon eviction, enqueue the
entire collection for delivery to its owning allocator. The net
effect on the message queue is as depicted in fig. 1. However,
in the interest of pursuing an implementation that might be
worthy of inclusion in future snmalloc releases, we had to
address several small, but interesting, challenges elsewhere
in the codebase.

First, the existing code relies on the fact that (absent heap
corruption) an object is on at most one of a slab free list or a
remote message queue; in particular, the same words within
the object are reused for the link pointer(s) in these two cases.
BatchIt requires that an object can be both part of a free list
segment and on the message queue. We disentangle these
two cases, moving the message queue link pointer(s) to be
after the free list’s.

Second, a thread receiving a message must be able to splice
the message into the target slab’s free list. In order that this
be constant time, the message must convey both the head
and tail of the new segment. This is trivial when messages
are singletons, but threatens to require more space for more
pointers within messages for batching. Instead, our BatchIt
implementation uses cyclic lists (or rings); upon receipt, the
message is treated as the tail of the segment and the object
it points to is treated as the head.

Batched messages must also convey their size so that slabs’
accounting metadata can be updated without traversal to
count. In order to fit both a pointer to the head and this size
into the same message word, our BatchIt implementation
encodes the pointer to the head as a relative displacement,
in bytes, from the message/tail object. This displacement is
guaranteed to be a small value, as both objects are within
the same slab, and the batch size is at most the maximum
capacity of the slab; these two small numbers can be fit in the
footprint of a single pointer. The other links in the batched
message remain encoded as ordinary free list pointers; all
special handling happens only on the single link between
tail and head and is finished before the segment is spliced
back into the slab’s free list.
Third, among snmalloc’s several corruption-detection

mitigations is one that obfuscates the in-band free list and
message queue pointers. The existing obfuscation mecha-
nism is keyed, that is, a different obfuscation function is used,
by each thread for its free lists and globally for all message
queues. If this mitigation is enabled alongside BatchIt, we
continue to use a global key for the message queues, but
move free lists to using a global key and per-slab “tweak”
of that key, so that consumers can compute the obfuscation
without reading from remote threads’ state. The specially
encoded link from above is also subject to this obfuscation.

Fourth, another of snmalloc’s corruption-detection miti-
gations is one that adds obfuscated backwards pointers for
consistency checking. Because BatchIt requires that even the

smallest objects be able to hold two linkages, enabling both
BatchIt and this mitigation requires that we increase the
minimum allocation size from that of two pointers to four.
This may have performance implications, and so we intend
that BatchIt be optional before attempting to get it merged
to snmalloc proper. The specially encoded link discussed
above is also subject to this integrity check.
All told, our implementation changes around 1500 lines

of code, including comments, relative to the latest snmalloc
commit as of this writing (b8e9e99c). It implements a sim-
plistic, lightly-configurable cache of recently seen slabs’ ob-
jects in front of the existing outbox structure and adapts
the existing list and inbox processing logic as described.
The cache uses a light-weight multiply-and-shift hash to
distribute slabs between a power-of-two number of small
associativity sets, with a naïve eviction policy of selecting
the way with the most objects batched.

4 Evaluation
To investigate the performance changes of BatchIt in practice,
we run the mimalloc-bench suite of benchmarks8 (specif-
ically, commit a131c30b). The benchmark suite is a collec-
tion of microbenchmarks, and small applications, that are
designed to stress different aspects of the allocator. We eval-
uate the performance of our BatchIt implementations in four
configurations: each of mimalloc and snmalloc in each of
their default (highest performance) and “secure” (corruption
detecting) configurations. We ran each benchmark 20 times
per configuration, and present results relative to the corre-
sponding baseline mean. We ran all the benchmarks on an
Azure F72s v2 VM with 72 cores and 144GiB of memory;
these are 3rd generation Intel® Xeon® CPUs, and at this size,
Azure allocates an entire physical machine for one customer.
Our machine ran Ubuntu 22.04.3 with the Azure-patched
Linux kernel version 6.5.0-1021-azure. Allocators and
the msgpass benchmark (section 4.3) were built with clang
14.0.0-1ubuntu1.1, while mimalloc-benchwas built with
gcc 11.4.0-1ubuntu1 22.04.

Within the mimalloc-bench suite, we focus especially on
the xmalloc-test benchmark, as it was designed to stress
allocators with an intensive producer-consumer workload.
The benchmark creates a number of producer threads that
allocate memory, which send the memory to the consumer
threads, which then deallocate the memory. Our primary
aim with the evaluation is to show that producer-consumer
workloads can be sped up by batching deallocations. We
also aim to show that the batching does not slow down the
allocator in other workloads.

Both implementations use a 16-way cache of recently seen
slabs, configured as 8 sets with 2-way associativity. Slabs are
mapped to rows through a simple multiply-and-shift hash,
and eviction from a full row selects the largest batch therein.

8https://github.com/daanx/mimalloc-bench

https://github.com/daanx/mimalloc-bench


BatchIt: Optimizing Message-Passing Allocators for Producer-Consumer Workloads ISMM ’24, June 25, 2024, Copenhagen, Denmark

4.1 mimalloc
Our results for mimalloc, shown in fig. 2, also appear promis-
ing. On the standard version of mimalloc, the xmalloc-
testN benchmark shows an approximately 9.9% ± 0.5 re-
duction in time, a little smaller than the improvements seen
in snmalloc. Likely, the cause is that the mimalloc inte-
gration still walks all the objects in the remote free list,
which the snmalloc integration does not. (That is, we be-
lieve the deeper integration suggested in section 3.1 could
yield significant improvements.) BatchIt also has a larger
impact on the behaviour of the allocator. With snmalloc,
the deallocations were always batched, but not in as useful a
way. With mimalloc, the deallocations were not previously
batched, so the change is more significant in terms of frag-
mentation and reuse patterns. We see additional speed-ups
of cache-scratch1 (3.7%± 0.8), glibc-simple (3.4%± 0.5),
and sh8benchN (7.1% ± 2.6), with the only significant slow-
down being glibc-thread (7.3% ± 4.6). We have been un-
able to explain the regression in glibc-thread as the code
changes should not be exercised in this example. There is
no dramatic increase in memory use other than the already-
discussed xmalloc-testN, suggesting that BatchIt’s new de-
lays in memory reuse are not inducing excess fragmentation.

The results for the secure version of mimalloc are striking.
Here we see a 27.6%± 0.2 reduction in time for the xmalloc-
test benchmark when using BatchIt. Likely the cause is
that the CAS loop for posting a message in the secure setting
has a higher overhead than in the non-secure setting, as it
has some arithmetic instructions to encode the next pointer.
This means that the time between reading and performing
the CAS is longer. In a heavily contended scenario, such as
xmalloc-test, this can lead to a significant slow down.With
BatchIt, we can enqueue multiple objects in a single CAS,
which reduces the contention on the remote free list. While
mstressN exhibits a 6.0% ± 2.1 regression in this setting,
it is a stress-test of the allocator and is not intended to be
representative of a real-world workload.

4.2 snmalloc
We present results for snmalloc in fig. 3. Promisingly, the
xmalloc-test benchmark shows 14.7% ± 0.5 speed up with
BatchIt, albeit with significant increase in RSS. The original
snmalloc paper [5] has some discussion of the complexity
of measuring memory in this benchmark. The core issue
is that there is no back pressure, so speeding up allocation
relative to deallocation can increase memory usage. The
other benchmarks mostly are within the noise of the baseline.
The sh8benchN benchmark regresses slightly (8.3% ± 2.8),
but it is a very short micro-benchmark (0.19s) and so may
be more sensitive to the start-up costs of our caching. This
benchmark is designed as a stress test rather than a real-
world workload.

We see smaller regressions with glibc-simple (5.1% ±
1.1), glibc-thread (3.1% ± 2.2), alloc-testN (1.6% ± 0.5)
and alloc-test1 (1.5% ± 0.3). These benchmarks are also
stress tests with tight loops around allocation and dealloca-
tion, so small changes can have a large impact. The other
benchmarks are under 1% and/or within measured noise.

For the secure version of snmalloc, xmalloc-test again
has a 14.7% speed up and we see a maximum run-time re-
gression of 2.1%. In addition to the expected memory usage
increase in the xmalloc-testN benchmark, we see striking
increases in the sh8benchN and alloc-testN benchmarks;
these could be due to the requisite increase in the minimum
allocation size for enabling BatchIt with snmalloc’s security
features.

4.3 A Message Passing Benchmark
Beyond the results shown above, we have written a bespoke
producer-consumer benchmark, which we intend inclusion
into the snmalloc test suite. The benchmark is parametric in
the number of producer and consumer threads, among other
parameters. Unlike xmalloc-test, this test includes back-
pressure and performs a fixed amount of message-passing
“work” per producer, making its memory usage essentially
constant and its behavior slightly easier to analyse in more
depth. Producers repeatedly sample small batches (of be-
tween one and sixteen messages, by default) from one of
four different message sizes (each a different snmalloc size
class, and so sourced from different slabs), to be sent to a
randomly-selected consumer thread; consumers simply free
each received message. Back-pressure is achieved by limiting
the total number of outstanding messages in the system (to
4096, by default).

Figures 4 and 5 show results for some points in this para-
metric space; msgpass-# runs # producer and # consumer
threads. First, note that, BatchIt makes essentially no change
to the memory requirements of this benchmark (barring a
few noisy or many-thread configurations, likely due to in-
teractions of start-up allocations crossing some threshold),
verifying the benchmark’s back-pressure mechanism.

With mimalloc’s high-performance configuration, we see
BatchIt giving up to 20% speedup on msgpass-24, with im-
pact falling off with either more or fewer threads. We believe
this to be the result of a product of effects: as we scale to
more threads, there is increased contention in mimalloc’s
per-slab message queues, but the relative utility of BatchIt’s
reduction in message queue contention increases, until in-
creased contention in the BatchIt caches causes it to become
less effective. The lack of performance gain at 3 or 4 threads
is difficult to explain, but could just be a consequence of a
poor hash function in our implementation.

With mimalloc’s corruption-detection configuration, per-
formance gains are generally more modest. There again ap-
pears to be a product-like interplay resulting in a peak at
msgpass-20; BatchIt also appears to help the uncontended



ISMM ’24, June 25, 2024, Copenhagen, Denmark Nathaniel Wesley Filardo and Matthew J. Parkinson

−25

−20

−15

−10

−5

0

5

10

Pe
rc

en
ta

ge
ch

an
ge

re
la

tiv
e

to
ba

se
lin

e
m

ea
n

3.6
3.6

2.8
1.5 0.0

5
6.3 5.3 1.8

2.0
1.2 1.3 15

.2
5.3 1.8

4.2
5

5.8 2.1 0.0
6

0.1
9

5.0

mimalloc

Tim
e

5.0 4.9 2.9
1.4 0.0

5
8.4

6.1
3.8 2.0

1.2 3.4 17
.0

5.5
7.5 4.2

5
6.1

4.0 0.1
9

0.6
9

5.0

mimalloc-secure
al

lo
c-

te
st

1
al

lo
c-

te
st

N
ba

rn
es

ca
ch

e-
sc

ra
tc

h1
ca

ch
e-

sc
ra

tc
hN

cf
ra

c
es

pr
es

so
gl

ib
c-

sim
pl

e
gl

ib
c-

th
re

ad gs
la

rs
on

N
-s

iz
ed

le
an

N lu
a

m
st

re
ss

N
re

di
s

ro
ck

sd
b

rp
te

st
N

sh
6b

en
ch

N
sh

8b
en

ch
N

xm
al

lo
c-

te
st

N

Benchmark

−10

0

10

20

30

Pe
rc

en
ta

ge
ch

an
ge

re
la

tiv
e

to
ba

se
lin

e
m

ea
n

1.8 4.0
6.5

0.7
2

0.7
2

0.3
9

0.8
0

0.7
4

30
.2 5.1

56
.0

24
.6

7.0 21
7

1.0 12
.7

56
.7

29
.9

38
.0

22
.2

al
lo

c-
te

st
1

al
lo

c-
te

st
N

ba
rn

es
ca

ch
e-

sc
ra

tc
h1

ca
ch

e-
sc

ra
tc

hN
cf

ra
c

es
pr

es
so

gl
ib

c-
sim

pl
e

gl
ib

c-
th

re
ad gs

la
rs

on
N

-s
iz

ed
le

an
N lu
a

m
st

re
ss

N
re

di
s

ro
ck

sd
b

rp
te

st
N

sh
6b

en
ch

N
sh

8b
en

ch
N

xm
al

lo
c-

te
st

N

Benchmark

M
em

ory

2.0
4.0 6.7

0.7
2

0.7
2

0.4
0

0.8
0

0.7
3

30
.2

5.0 57
.5

28
.4

7.0
15

6
1.2 15

.5
54

.3
36

.8
51

.4
17

.6

Figure 2. Relative performance of BatchIt optimisation on mimalloc across the mimalloc-bench suite. To provide a sense of
scale for the benchmarks, absolute values are shown for baseline means: time, in seconds, and memory, in tens of megabytes.
The benchmarks glibc-thread, larson, redis, rptest and xmalloc-testN use a fixed duration of time. We report the fixed duration
as the absolute number of seconds as it is intended to give a sense of the size of benchmark. For these five benchmarks
mimalloc-bench provides a “relative time”, which we use for the calculation of the throughput.

msgpass-1 and low-contention -2 and -4 cases more here
than in mimalloc’s high-performance configuration.The out-
sized performance gain shown by msgpass-40 is likely due

to this benchmark’s 80 threads contending for the machine’s
72 cores.

For snmalloc, regardless of build configuration, we see
BatchIt giving over 30% speedup on some low-thread-count



BatchIt: Optimizing Message-Passing Allocators for Producer-Consumer Workloads ISMM ’24, June 25, 2024, Copenhagen, Denmark

−20

−15

−10

−5

0

5

10

15

Pe
rc

en
ta

ge
ch

an
ge

re
la

tiv
e

to
ba

se
lin

e
m

ea
n

3.6 3.6
2.8

1.4
0.0

5
6.3 5.2 1.6 2.0 1.2

1.3
14

.4
5.3

2.0 4.2
5 5.7

2.3
0.1

3
0.1

9
5.0

snmalloc

Tim
e

3.8 3.8 2.8 1.4 0.0
5

6.6 5.4 2.2 2.0 1.2
1.4 15
.1 5.5 2.2

4.2
5

5.8
3.0

0.5
3

0.5
7

5.0

snmalloc-secure
al

lo
c-

te
st

1
al

lo
c-

te
st

N
ba

rn
es

ca
ch

e-
sc

ra
tc

h1
ca

ch
e-

sc
ra

tc
hN

cf
ra

c
es

pr
es

so
gl

ib
c-

sim
pl

e
gl

ib
c-

th
re

ad gs
la

rs
on

N
-s

iz
ed

le
an

N lu
a

m
st

re
ss

N
re

di
s

ro
ck

sd
b

rp
te

st
N

sh
6b

en
ch

N
sh

8b
en

ch
N

xm
al

lo
c-

te
st

N

Benchmark

−30

−20

−10

0

10

20

30

40

50

Pe
rc

en
ta

ge
ch

an
ge

re
la

tiv
e

to
ba

se
lin

e
m

ea
n

1.5 1.4
6.5 0.5

2
0.5

8
0.2

6
0.5

8
0.2

8
4.3

4.8
84

.2
26

.0
7.1

16
8

0.7
5

10
.2

78
.5

28
.7

28
.0

14
.4

al
lo

c-
te

st
1

al
lo

c-
te

st
N

ba
rn

es
ca

ch
e-

sc
ra

tc
h1

ca
ch

e-
sc

ra
tc

hN
cf

ra
c

es
pr

es
so

gl
ib

c-
sim

pl
e

gl
ib

c-
th

re
ad gs

la
rs

on
N

-s
iz

ed
le

an
N lu
a

m
st

re
ss

N
re

di
s

ro
ck

sd
b

rp
te

st
N

sh
6b

en
ch

N
sh

8b
en

ch
N

xm
al

lo
c-

te
st

N

Benchmark

M
em

ory

1.7 1.8 6.5
0.5

2
0.5

8
0.3

3
1.4

0.2
8

26
.4

5.5
82

.1
37

.3
7.9

17
2

1.1
11

.0
82

.5
54

.1
55

.6
27

.7

Figure 3. Relative performance of BatchIt optimisation on snmalloc across the mimalloc-bench suite. To provide a sense of
scale for the benchmarks, absolute values are shown for baseline means: time, in seconds, and memory, in tens of megabytes.
The benchmarks glibc-thread, larson, redis, rptest and xmalloc-testN use a fixed duration of time. We report the fixed duration
as the absolute number of seconds as it is intended to give a sense of the size of benchmark. For these five benchmarks
mimalloc-bench provides a “relative time”, which we use for the calculation of the throughput.

configurations, with efficacy generally decreasing as thread
count increases, with high-thread-count configurations show-
ing as little as 3% speedup. This general trend is explicable

as increased contention in BatchIt’s caches, causing more
frequent returns of smaller batches of freed objects.



ISMM ’24, June 25, 2024, Copenhagen, Denmark Nathaniel Wesley Filardo and Matthew J. Parkinson

−20

−15

−10

−5

0

5

Pe
rc

en
ta

ge
ch

an
ge

re
la

tiv
e

to
ba

se
lin

e
m

ea
n

0.7
4

1.9 1.7 2.0 3.0 5.4 7.8 8.3 8.7 12
.5

mimalloc

Tim
e

0.9
6

3.0 2.5 2.8 3.5 6.0 8.0 8.3 8.6 13
.0

mimalloc-secure

m
sg

pa
ss

-1

m
sg

pa
ss

-2

m
sg

pa
ss

-3

m
sg

pa
ss

-4

m
sg

pa
ss

-8

m
sg

pa
ss

-1
6

m
sg

pa
ss

-2
0

m
sg

pa
ss

-2
4

m
sg

pa
ss

-3
2

m
sg

pa
ss

-4
0

Benchmark

−0.10

−0.05

0.00

0.05

0.10

0.15

Pe
rc

en
ta

ge
ch

an
ge

re
la

tiv
e

to
ba

se
lin

e
m

ea
n

0.9
3 1.1 1.3 1.5 2.4 4.0

4.8

5.7

7.3 9.0

m
sg

pa
ss

-1

m
sg

pa
ss

-2

m
sg

pa
ss

-3

m
sg

pa
ss

-4

m
sg

pa
ss

-8

m
sg

pa
ss

-1
6

m
sg

pa
ss

-2
0

m
sg

pa
ss

-2
4

m
sg

pa
ss

-3
2

m
sg

pa
ss

-4
0

Benchmark

M
em

ory

0.9
3 1.1 1.3 1.5

2.4

4.0

4.8

5.7 7.3

9.0

Figure 4. Relative performance of BatchIt optimisation on mimalloc sampled at various configurations of our msgpass
benchmark (section 4.3). To provide a sense of scale for the benchmarks, absolute values are shown for baseline means: time,
in seconds, and memory, in tens of megabytes.

5 Future Work
5.1 Cache Policy Exploration
The shape and placement and eviction policies of BatchIt’s
deallocation caches would benefit from additional exper-
imentation. The implementations tested so far have been
merely an educated guess at policy, with no tuning of the

number of lines, the hash used to distribute slabs between
lines, the size of associativity sets, or exploration of evic-
tion policies; LRU or other temporal policies may be a better
choice than the size-based policies of our implementations.



BatchIt: Optimizing Message-Passing Allocators for Producer-Consumer Workloads ISMM ’24, June 25, 2024, Copenhagen, Denmark

−40

−30

−20

−10

0

Pe
rc

en
ta

ge
ch

an
ge

re
la

tiv
e

to
ba

se
lin

e
m

ea
n 0.2

9

1.5 1.5 1.7 2.6 4.7 6.0 6.5 7.2 8.9

snmalloc

Tim
e

0.5
2

1.6 1.6 1.9 2.7 4.9 6.1 6.7 7.5 8.8

snmalloc-secure

m
sg

pa
ss

-1

m
sg

pa
ss

-2

m
sg

pa
ss

-3

m
sg

pa
ss

-4

m
sg

pa
ss

-8

m
sg

pa
ss

-1
6

m
sg

pa
ss

-2
0

m
sg

pa
ss

-2
4

m
sg

pa
ss

-3
2

m
sg

pa
ss

-4
0

Benchmark

−4

−2

0

2

Pe
rc

en
ta

ge
ch

an
ge

re
la

tiv
e

to
ba

se
lin

e
m

ea
n

0.5
2

0.5
2

0.5
2

0.5
2

0.5
2

0.5
2

0.5
3

0.5
8

0.5
8

0.6
5

m
sg

pa
ss

-1

m
sg

pa
ss

-2

m
sg

pa
ss

-3

m
sg

pa
ss

-4

m
sg

pa
ss

-8

m
sg

pa
ss

-1
6

m
sg

pa
ss

-2
0

m
sg

pa
ss

-2
4

m
sg

pa
ss

-3
2

m
sg

pa
ss

-4
0

Benchmark

M
em

ory

0.5
3

0.5
3

0.5
3

0.5
3

0.5
3

0.5
3

0.5
7

0.5
7

0.5
9

0.6
6

Figure 5. Relative performance of BatchIt optimisation on snmalloc sampled at various configurations of our msgpass
benchmark (section 4.3). To provide a sense of scale for the benchmarks, absolute values are shown for baseline means: time,
in seconds, and memory, in tens of megabytes.

5.2 Allocator Budget Tuning
A consequence of BatchIt in snmalloc is that allocations are
on average faster, since time spent servicing the message
queue is now dominated by the number of batches, rather
than the number of objects, and remote deallocations are on
average a little slower, due to the new caching logic in the

outbox. As mentioned above, this shift in costs can cause
producer-consumer workloads without back-pressure to in-
crease their memory usage. It may be possible to compensate
for this increase by explicitly treating the allocator itself as
a back-pressure mechanism, perhaps by making its “budget”
of how many allocations it will grant between processing



ISMM ’24, June 25, 2024, Copenhagen, Denmark Nathaniel Wesley Filardo and Matthew J. Parkinson

its message queues either configurable and/or dynamically
tuned. (It may also be desirable to have snmalloc process
message queues more “smoothly”, in stages, rather than, as
it does at the moment, all at once.)

6 Conclusion
We have designed, implemented, and evaluated BatchIt, a
straightforward potential optimization for message-passing
allocators under producer-consumerworkloads. BatchIt aims
to exploit the locality of allocations that naturally arise in
modern, high-performance allocator design, and experimen-
tal results show that producer-consumer workloads can be
sped up by 10% to 28%, with other workloads largely undis-
turbed.

References
[1] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R.

Wilson. Hoard: a scalable memory allocator for multithreaded appli-
cations. In Proceedings of the Ninth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS IX, page 117–128, New York, NY, USA, 2000. Association for
Computing Machinery. doi:10.1145/378993.379232.

[2] Jason Evans. A scalable concurrent malloc(3) implementation for
FreeBSD. 4 2006. URL: https://www.bsdcan.org/2006/papers/jemalloc.
pdf.

[3] Sanjay Ghemawat and Paul Menage. TCMalloc: Thread-caching malloc.
URL: https://goog-perftools.sourceforge.net/doc/tcmalloc.html.

[4] Daan Leijen, Ben Zorn, and Leonardo de Moura. Mimalloc: Free list
sharding in action. Technical Report MSR-TR-2019-18, Microsoft, June
2019. URL: https://www.microsoft.com/en-us/research/publication/
mimalloc-free-list-sharding-in-action/.

[5] Paul Liétar, Theodore Butler, Sylvan Clebsch, Sophia Drossopoulou,
Juliana Franco, Matthew J. Parkinson, Alex Shamis, Christoph M.
Wintersteiger, and David Chisnall. snmalloc: a message passing
allocator. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on Memory Management, ISMM 2019, page 122–135,
New York, NY, USA, 2019. Association for Computing Machinery.
URL: https://www.microsoft.com/en-us/research/uploads/prod/2020/
04/snmalloc.pdf, doi:10.1145/3315573.3329980.

https://doi.org/10.1145/378993.379232
https://www.bsdcan.org/2006/papers/jemalloc.pdf
https://www.bsdcan.org/2006/papers/jemalloc.pdf
https://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action/
https://www.microsoft.com/en-us/research/publication/mimalloc-free-list-sharding-in-action/
https://www.microsoft.com/en-us/research/uploads/prod/2020/04/snmalloc.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/04/snmalloc.pdf
https://doi.org/10.1145/3315573.3329980

	Abstract
	1 Introduction
	2 Design
	3 Implementations
	3.1 mimalloc
	3.2 snmalloc

	4 Evaluation
	4.1 mimalloc
	4.2 snmalloc
	4.3 A Message Passing Benchmark

	5 Future Work
	5.1 Cache Policy Exploration
	5.2 Allocator Budget Tuning

	6 Conclusion
	References

