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Large Language Models (LLMs)
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Standard Prompting Chain of Thought Prompting
- ™ E 2 '
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of ;
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many

tennis balls does he have now? tennis balls does he have now?

G = E)
! : ! ; ’ | 3 y
A: Tha answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls 57 N

each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to ( V‘SIO“)
do they have? make lunch and bought 6 more, how many apples
do they have? / /
) ; A 1115 cafeteria had 23 i
A: The answer is 27. x ) iy Somm;'ahzﬁmw ¥
ht 6 more apples, so they have 3 + 6= 9. The
Cnswer is9. & Y, A

Reasoning Planning
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Transformers
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[A. Vaswani et al, Attention is all you need, NeurlPS’17]
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Attention mechanism



How does Transformer work?

This is an apple
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Foreand

Formares

Embeddng

“Some Nonlinear Transformation”



Black-box versus White-box

Black box White box
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Three Angles

Understanding how

ol -

Expressibility . 4

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

Deep Models work

Optimization

“Gradient vanishing/exploding”
“Gradient Descent might get stuck at saddle pomt / local minima”
“Can GD/SGD go to global optima? How fast?”

Generalization

“Does zero training error often lead to overfitting?”
“More parameters might lead to overfitting.”



Three Angles

Understanding how

ol -

Expressibility . 4

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

Deep Models work

Which path should we take?

Optimization

“Gradient vanishing/exploding” 4
“Gradient Descent might get stuck at saddle point / local minima”
“Can GD/SGD go to global optima? How fast?”

Generalization

“Does zero training error often lead to overfitting?”
“More parameters might lead to overfitting.”



Rethinking Generalization

model # params randomcrop weight decay train accuracy test accuracy
yes yes 100.0 89.05
. yes no 100.0 89.31
55 Inception 1,649,402 no yes 100.0 86.03
' : ' ‘ no no 100.0 85.75
B=—8 true labels (fitting random labels) no no | 100.0 9.78 |
2.0 e—o random labels |4 Inception w/o | <40 40 no yes 100.0 83.00
. BatchNorm R no no 100.0 82.00
" #« shuffled pixels (fitting random labels) no no [[100.0 10.12_]
O .
= 15k random pIXE|S . yes yes 99.90 81.22
) ' yes no 99.82 79.66
% gaussian Alexnet 1,387,786 o yes 100.0 7736
GL) 1.0 no no 100.0 76.07
> (fitting random labels) no no | 99.82 9.86 |
C
no yes 100.0 53.35
(fitting random labels) no no | 100.0 10.48 |
0.0 MLP 1x512 1,209,866 no yes 99.80 20.39
(fitting random labels) no no | 99.34 10.61 |

thousand steps

() learnlng curves Generalization bound failed: Test Error < Train Error+?7?7?

[C. Zhang et al, Understanding deep learning requires rethinking generalization, ICLR 2017]



Inductive Bias Really Matters

A self-supervised contrastive learning example

data & o o ¢

\ /augs z AT . P

i 1 / o ¢
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SSL Pertraining loss doesn’t
| | o * ., really reflect downstream loss
o
. . 8(Z) °
o o ®

Pretraining: L, () ~ L_o(f)
Downstream: L (g) > L_(f)

[N. Saunshi et al, Understanding Contrastive Learning Requires Incorporating Inductive Biases, ICML 2022]



Downstream accuracy

Inductive Bias Really Matters

Boolean hypercube example

Representation

Contrastive loss

Accuracy (%)

df (perfect)
dg (spurious)
MLP + Adam
MLP + Adam + wd
Linear

4.939
4.939
5.039 £ 0.001
5.040 £ 0.002
5.134 £ 0.002

100

50
74.1 £ 4.3
89.5 =+ 4.9
99.5 £ 0.1

100 1 linear ¢ perfect rep f’

90 - = - #

//
80 1
70 - %
2-layer MLP
—— Adam
50 - Adam+wd spurious rep g o
5.20 5.15 5.10 5.05 5.00 4.95

Contrastive loss

[N. Saunshi et al, Understanding Contrastive Learning Requires Incorporating Inductive Biases, ICML 2022]




Lesson learned?

Generalization

Expressibility . 4

Optimization

Architecture X
training dynamics X

Architecture \/
training dynamics X

Architecture X
training dynamics v

How about

Architecture v/
training dynamics v




Start From the First Principle

* Training follows Gradient and its variants (SGD, Adams, etc)

. ._dw_ v
W= == =V, ] (W)

* First principle =2 Understand the behavior of the neural networks by
checking the gradient dynamics induced by the neural architectures.

e Sounds complicated.. Is that possible? Yes _
Architecture v/

training dynamics v
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Roadmap of Theoretical Analysis

/ N\

Fix Representation, check Check what

how Self-attention works representation it learns
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Roadmap of Theoretical Analysis

/

Fix Representation, check

how Self-attention works
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Understanding Attention in 1-layer Setting

U= [uy,u,, .. uyl": token embedding matrix

Self-attention

Decoding & Softmax T-1
5 P
Ur = z thuxt = UTXTbT
t=1

Normalization

T
Self-attention eXp(uIT WQW;U%/\/E)
t t t bir == =7 = N
® @D @ @
Contextual tokens Last/query token  Next token

Normalized version iy = UTLN(XTh;)

Objective:

T ~ E T, =

max =E, |u Wyu, —lo exp(u; Wyu

WK’WQ’WV’U] D |Ux,, , WyUT 8 p(u; Wyur)
l

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurlPS’23]



Reparameterization

* Parameters Wy, Wy, Wy, U makes the dynamics complicated.

* Reparameterize the problem with independent variable Y and Z
Y =UWUT
¢ / = UWQWKTUT (pairwise logits of self-attention matrix)

* Then the dynamics becomes easier to analyze



Major Assumptions

* No positional encoding
e Sequence length T = 40

* Learning rate of decoder Y larger than self-attention layer Z (ny >
Nz)
e Other technical assumptions



Xt €E[M]for1<t<T

Data Distribution K]

K<KM
Contextual tokens x; (1 <t <T —1)
~ A ~, Last token x7 Next token x7,4
P(l|mq,ny) nq

- -
n
Sequence 2

ms
v Ny
Distinct tokens: There exists unique n so that P({|n) > 0 P(llm.n) = P(n) is the
Common tokens: There exists multiple n so that P({|n) > 0 conditional probability of

token [ given last token x; = m
andxry =n

Assumption: m = ¥ (n), i.e., no next token shared among different last tokens

Question: Given the data distribution, how does the self-attention layer behave?
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Overall Picture of the Training Dynamics

At initialization

c
lng Distinct
A Token

Seq class
(m,nq)

Common
Token

(m' le)

v

Cln,
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v

=
Seq class

Co-occurrence probability

Ciin,: = P(llm, ny) exp(zp;)

Initial condition: z,,,;(0) = 0

Z,,: All logits of the contextual tokens
when attending to last token xr = m



Overall Picture of the Training Dynamics

Common Token Suppression

Clin,

Seq class 1
(m,nq)

Seq class
(m, nZ)

Cln,
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() z;,; < 0, for common token [



Overall Picture of the Training Dynamics

Winners-emergence

Clin,

Seq class
(m,nq)

Seq class
(m, nZ)

A u

Cln,
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»
»

() z;,; < 0, for common token [

(b) z,,,; > 0, for distinct token [

Learnable TF-IDF (Term Frequency,
Inverse Document Frequency)



Overall Picture of the Training Dynamics

Winners-emergence

Clin,

Seq class
(m,nq)

Seq class
(m, le)

A u

Cln,
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[ﬁk
=

() z;,; < 0, for common token [
(b) z,,,; > 0, for distinct token [

(c) z,,,;(t) grows faster with
larger P(1|m, n)

Attention looks for discriminative tokens that
frequently co-occur with the query.



Overall Picture of the Training Dynamics

Winners-emergence

(c) z,,,; (t) grows faster with larger P(l|m, n)

61 n
4 -
Seq class 1 Theorem 3 Relative gain 7, 1|, (£) = O —1lhasa
(m,ny) close form:
ii T (8) =771, (0) 3, ()
m = " If Iy is the dominant token: 1 /1, (0) > 0 forall I # [,
! then

Seq class
(m' le) 2

v ezfnlo(O)Bn(t) < Xlo (t) < QZBn(t)

Cl|n,

where B, (t) = 0 monotonously increases, B,,(0) = 0



Overall Picture of the Training Dynamics

Winners-emergence

N Contextual () z,,; (t) grows faster with larger P(l|m, n)
Cl|n1 Sparsity
-d dent R
Seq class I A/’/(query Ependent] Theorem 3 Relative gain 7, 1|, (£) = ;lé’ll ((?) —lhasa
(m,n) / close form:
ii Tl/l’|n(t) — Tl/l’|n(0))(l(t)
m = " If Iy is the dominant token: 1 /1, (0) > 0 forall I # [,
! then
Seq class
(m, nZ)
62f,flo(0)Bn(t) < y.(t) < 0 2Bn(0)
U / — lO ==
Cl|n,

where B, (t) = 0 monotonously increases, B,,(0) = 0



Overall Picture of the Training Dynamics

Attention frozen

Clin,

Seq class 1
(m,nq)

Seq class
(m, nZ)

v

Cln,
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Theorem 4 Whent - +oo,

Mnyt
B,(t) ~ In CO+2K"—Zln2( "Y)
Ny K

Attention scanning:
When training starts, B, (t) = O(Int)

Attention snapping:

Whent =ty = O(ZKlnM

), B,(t) = O(Inlnt)

(1) n, and ny are large, B,,(t) is large and attention is sparse

(2) Fixing n,, large ny leads to slightly small B, (t) and
denser attention



Overall Picture of the Training Dynamics

v=1.0,M=10000

. 1.6 - — -
Attention frozen P
1.4 -
I I I
C 1 1 !
Clin, 1.2 e !
:.- i :
A 1.0 - ) | |
Seq class N/ |
— | 1 | 1
(m,nq) < os- i/ . :
i : l :
0.6 1 1 | 1
1 ] | I
I ] | ]
0.4 - : : : —— Nz=05,ny=05
. o i : nz=1.0,ny=1.0
- o2 f[1 + l —— Nz=2.0,1y=2.0
- |:| 1 g L | : — Nz=4.0,ny=4.0
I 004 ¥ 1 1 I —— Nz=8.0,ny=8.0
11 - — : i i .
Seq class 0 10 20 30 40 50
t
(m, nZ)
v Larger learning rate 7, leads to faster phase transition
ClIn,

Mnyt
B,(t) ~In C0+2K&ln2< "Y)
Ny K
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Simple Real-world Experiments

iter-0 iter-500 iter-1000 iter-1500

o

10 20 30

WikiText2
(original parameterization)

iter-500 iter-1000 iter-1500

0 10 20 30 Q 10 20 30 0 10 20 30 0 10 20 30
Figure 7: Attention patterns in the lowest self-attention layer for 1-layer (top) and 3-layer (bottom) Trans-
former trained on WikiText2 using SGD (learning rate is 5). Attention becomes sparse over training.

Further study of sparse attention
— Deja Vu, H20 and StreamingLLM

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]
[Z Zhang et al, H20: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, NeurlPS'23]
[G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR'24]



Deal with Reversal Curse

A->B B->A

- : o -
O Who is Tom Cruise’s mother? O Who is Mary Lee Pfeiffer’s son?

As of September 2021, there is no widely-
known information about a person named

Tom Cruise's mother is Mary Lee Pfeiffer.

Mary Lee Pfeiffer having a notable son.

Figure 1: Inconsistent knowledge in GPT-4. GPT-4 correctly gives the name of Tom Cruise’s
mother (left). Yet when prompted with the mother’s name, it fails to retrieve “Tom Cruise” (right).
We hypothesize this ordering effect is due to the Reversal Curse. Models trained on “A is B” (e.g.
“Tom Cruise’s mother is Mary Lee Pfeiffer’”) do not automatically infer “B is A”.

facebook Artificial Intelligence [L. Berglund et al, The Reversal Curse: LLMs trained on "A is B" fail to learn "B is A", ICLR 2024]



How to explain “Reversal Curse”?

Z = UWWy UT pairwise logits of self- Z =
attention matrix,

is NOt symmetric ,
Z,,: All logits of the contextual tokens

when attending to last token x = m

[H. Zhu et al, Towards a Theoretical Understanding of the 'Reversal Curse'via Training Dynamics, NeurlPS’24]



You only learn what you see in the training
set

Theorem 3 (Reversal curse). Assume we run SGD with batch size 1, and assume M > 100 and

W Lny <1. Lett 2 JV;LYM denote the time step which also satisfies Int 2 In(NM/ny). For

training sequence ($1,LL‘2,5L‘3) € Dirain ot time t, we have

M -1 t—00
Po) (z3|T1,T2) > 1 — X (Mnyt)c 1

N

for some constant ¢ > 0, and for any test sequence (x1,x2,%3) € Diest that is not included the
training set Dipgin, we have

1

pe(t)($3|$1a$2) < M

[H. Zhu et al, Towards a Theoretical Understanding of the 'Reversal Curse'via Training Dynamics, NeurlPS’24]



“Chain-of-thoughts” reasoning

Theorem 4 (Necessity of chain-of-thought). Assume we run SGD with batch size 1, and assume
M > 100 and MO 55 LK Ny < 1. Lett 2 N %HM denote the time step which also satisfies Int 2

In(NM/ny). For any test index i € Liest, we have
M -1 M-—-1

2 (MJ’:’[Yt)Cﬁ

Por)(Bildi =) = 1 —

for some constant ¢ > 0 and

==

t)(c |4; ~) <

[H. Zhu et al, Towards a Theoretical Understanding of the 'Reversal Curse'via Training Dynamics, NeurlPS’24]



How to get rid of the assumptions?

* A few annoying assumptions in the analysis
* No residual connections
* No embedding vectors
* The decoder needs to learn faster than the self-attention (ny > n5).
* Single layer analysis

* How to get rid of them?

e New research work: JoMA



JoMA: JOint Dynamics of MLP/Attention layers

Main Contributions:

1. Find a joint dynamics that connects
MLP with self-attention.
2. Understand self-attention behaviors for
Modified MLP linear/nonlinear activations.
attseen'gon (lower layer) 3. Explain how data hierarchy is learned in
multi-layer Transformers.

(lower layer)

facebook Artificial Intelligence , Y , o _ . )
[Y. Tian et al, JOMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention, ICLR'24]



JOMA Settings **

hy
hie = d(Wif)
f = Ucb + uq
f Uc and u, are embeddings

b = a(zq) ox/A

Self- . b — xje”al
attention (~ SoftmaxAttn: L= 3, xel

< ExpAttn: bl = xlequ

X

uThiS iS an app|e" \ LinearAttn: bl - leCIl
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Assumption (Orthogonal Embeddings
Uc, uq

Cosine similarity between embedding vectors at different layers.

facebook Artificial Intellig

Cosine Similarity

Cosine Similarity
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JoOMA Dynamics

Theorem 1 (JoMA). Let vy, := U(_'; wy, then the dynamics of Eqn. K satisfies the invariants:

e Linear attention. The dynamics satisfies z2 (t) = >, vi(t) + c.

e Ezp attention. The dynamics satisfies zm,(t) = 3 >, vi(t) + c.

e Softmaz attention. If b, := E;,[b] is a constant over time and
Eq=m |k 9re BLbb | = binEg—m [D_x gni b} ], then the dynamics satisfies zm (t) =
3 2k VR (t) — [lve(®)|3bm + c.

Under zero-initialization (wi(0) = 0, 2,,(0) = 0), then the time-independent constant ¢ = 0.

There is residual connection.
Joint dynamics works for any learning rates between self-attention and MLP layer.
No assumption on the data distribution.



Verification of JoMA dynamics

Contextual token index /

Class label y

Normalized Correlation

1.00 a2
I,
0.75 A ]
;
0.50 + .
— NC(Zpn(t), Zm(t))
0.259 — = NC(Zn1(1), Zm(D)
0004 === NC(Zm2(t), zn(t) —___.
] /’
—0.25-} ,',
—0.504 .7
0 500 1000 1500 2000

Number of Batches

z,,(t): Real attention logits

Z,,,(t): Estimated attention logits by JOMA
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Contextual token index /

Class label y

1.00

0.75 A

0.50 A1

0.25 A1

0.00 A

Normalized Correlation

—0.25 A

‘\/_/

Zm1(t)

------ ===
/"‘-—

r'd

7/

/

[

I e D

1 S~

1.7 T--
Jl
I A~
|l m— NC(Z, (1), Zm(L))
|' === NC(Zm1(t), Zm(t))
'a === NC(Zma(t), Zn(1))
0 500 1000 1500 2000

Number of Batches

1 _
2n () =5 ) VRO ~ 0 (D13, + €
k

\/J

Zp(t)



Implication of Theorem

1 (lower layer) Modified MLP

Key idea: folding self-attention into MLP i (lower layer)
- A Transformer block becomes a modified MLP —

Linear case (p = 1d, K = 1) Nonlinear case (¢ nonlinear, K = 1)

-4
camponantD L 15 ,r"—
componentl I
—— Component2 I|' _— —_— ;
— component3 L 1.0 -~
S H 2
— component O
component 1 1
—— component 2
1 o0 — component 3 Lo

0 1000 2000 3000 4000 5000
#iterations
Most salient feature grows, and others catch up

(Attention becomes sparser and denser)

|

|

|

|

|

|

|

0.5 |
I

T T T T T I
0 500 1000 1500 2000 |
Number of MiniBatches |

Most salient feature takes all |
(Attention becomes sparser) |
|

Saliency is defined as A, = Elg|l, m] - P[l|m] A}, = 0: Common tokens

1 f | A | large: Distinct tokens

. : Discriminancy CoOccurrence
facebook Artificial Intelligence



Linear

2 Modified

JoOMA for Linear Activation b= oexp( =) L

(lower layer)

Theorem 2

erf(v(t)/2)  erf(v;(t)/2)

Im Al’m

2 X
We can prove erf(x) = — j e t’dt € [-1,1]
v g

Only the most salient token [* = argmax |A;,,| of v goes to +oo

other components stay finite.
Attention becomes sparser

_ V(t) initialization V(t) after convergence (Consistent with Scan&Snap)
2 0.02 —— component0 L 15
% ' componentl
Jé 0.01 — component2
- — component3 i
ﬁ _ 1.0
2 0.00 S
g >
S ~0.01
u ) = = 0.5
s
= ~0.02
£
- 4 0.0
3 ~0.03 .

4] 56& 1000 1500 2000
Number of MiniBatches

facebook Artificial Intelligence [Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurlPS'23]



What if we have more nodes (K > 1)?

*V = U/W € RMc*X and the dynamics becomes

1 VoV
v = diag (exp(——) 1) & A=[Apdy o Bgl, A = Elge]

We can prove that IV gradually becomes low rank
 The growth rate of each row of V varies widely.

Due to exp (%), the weight gradient V can be even more low-rank > Galore



Galore: Pre-training 7B model on RTX 4090

Memory Comparsion

Memory cost (GB)

60 - 1 BFI6 — Rank Retaingrad Memory  Token/s
50 4 [—1 Adafactor — 8-bit Adamw Yes 40GB 1434
1 8-bit Adam 8-bit GaLore 16 Yes 28GB 1532
40 1 EEZA 8-bit GaLore (retaining grad) _
BEE S-bit GaLore 8-bit GalLore 128 Yes 29GB 1532
30 7 = 16-bit GaLore ~ 128  Yes 30GB 1615
20 A 16-bit Galore 128 No 18GB 1587
10 8-bit GalLore 1024 Yes 36GB 1238
* SVD takes around 10min for 7B model, but runs every T=500-1000 steps.
0 .
350M 1B 3B 7B . . _
Model Size Third-party evaluation by @llamafactory_ai

[J. Zhao et al, Galore: Memory-Efficient LLM Training by Gradient Low-Rank Projection, ICML 24 (Oral)]



Memory Saving with Galore

Gal.ore
Algorithm 1: GaLore, PyTorch-like
for we:";lght iI? r}rlidel.];;arameters (): Gt &« _VW¢(Wt)
grad = weight.gra 0 —— (-
# original space -> compact space Ift /OT )
lor_grad = project (grad) Compute P; = SVD(G;) € R™"
# update by Adam, Adafactor, etc. T :
lor_update = update (lor_grad) Et < Pt Gt {pl’Oj@Ct}
# compact space —-> original space Rt — p(Rt) {Adam in /OW—rank}
update = project back (lor_update) ~ = .
weight.data += update Gt o Pth {pI;OjeCt-bGCk}

Wip1 < We + G

Memory Usage Weight (W) Optim States (M;,V;) | Projection (P)

Galore mn 2nr mr mn + mr + 2nr

facebook Artificial Intelligence W, R, P;



Params Hidden Intermediate Heads Layers Steps Data amount
60M 512 1376 8 8 10K 1.3B

130M 768 2048 12 12 20K 2.6B

Pre-training Results (LLaMA 7B) &' = = & @ & o

Mem | 40K 80K 120K 150K

(€Y 8-bit GaLore | 18G | 17.94 1539 1495 14.65
8-bit Adam 26G | 18.09 1547 14.83 14.61

Tokens (B) 5.2 10.5 15.7 19.7

* Experiments are conducted on 8 x 8 A100

60M 130M 350M 1B

Full-Rank 34.06 (0.36G) 25.08 (0.76G) 18.80 (2.06G) 15.56 (7.80G)
Gal.ore 34.88 (0.24G) 25.36 (0.52G) 18.95(1.22G) 15.64 (4.38G)
Low-Rank 78.18 (0.26G) 45.51 (0.54G) 37.41(1.08G) 142.53 (3.57G)
LoRA 34.99 (0.36G) 33.92 (0.80G) 25.58 (1.76G) 19.21 (6.17G)
ReLoRA 37.04 (0.36G) 29.37 (0.80G) 29.08 (1.76G) 18.33 (6.17G)
7/ dmodel 128 /256 256 /768 256 /1024 512 /2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

* On LLaMA 1B, ppl is better (~14.97) with % rank (1024/2048)



JOMA for Nonlinear Activation

Theorem 3

If x is sampled from a mixture of C isotropic distributions,

(i.e., “local salient/non-salient map”), then g OO
(@) OO o
1 1 o _ ° o
V= z a.0,(r.)x; + —32 a.0,(r.)v 1 0%
vl Ivll3 0©_
(o C x3
_ T— t / © o
Here a; == Eg=m ¢ _ghk]IP’[c], .=v X, + fo Iqum[ghkhk]dt, L0,
and 6, and 6, depends on nonlinearity 0 OEZ
What does the dynamics look like?
2 — " : : :
. (4 U ~ X : Critical point due to nonlinearity
v=(-v)e exp( 2 ) (one of the cluster centers)



Modified

JOMA for Nonlinear activation e

(lower layer)

Theorem 4

Salient components grow much faster than non-salient ones:

Colored line: dynamics of v(t). Dashed line: target p

ConvergenceRate(j) exp(u5/2)

5000

ConvergenceRate(k) exp(uz/2) ;] [ 4000

, L 3000

ConvergenceRate(j) := In1/5;(t) ” " - 2000

6;(t) =1—v;(t ; 1-

i(t) (/1 o Ilooo
01 : ' , : 0

0 2 4 6 8 Hiterations

Sorted index of v components
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Nonlinear

JoMA for Nonlinear activation |s=w-»-eo(%) B

Entropy changes over time

2.25 A \
Colored line: dynamics of v(t). Dashed Iine target H:mnu 5 00 Attention becomes sparser
3] 4000 = and then denser!
2 1.75 -
3000 -
& ) S
2000 < 1.50 1
1 2 “bounce back”
1000 Wl
1.25 A
01 T T T T 0
0 2 4 6 8
Sorted index of v components 1.00 7
0 1000 2000 3000 4000 5000
#iteration
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Real-world Experiments

Layers: 1, val_loss: 5.357

Layers: 2, val_loss: 5.255

Layers: 5, val loss: 5.169

250 — layer0 : — layer0
> : layerl
32.25- -}
< 2.001 ‘l |
. . | |
Wikitext2 51751 |
o
£ 1.501
< '
1.251
1.00 = . : - - - . . - - - - - ; -
0 10 20 30 40 50 0 10 20 30 40 50 0 20 40
Minibatch (k) Minibatch (k) Minibatch (k)
Layers: 1, val_loss: 5.047 Layers: 2, val_loss: 4.912 Layers: 5, val_loss: 4.762
2.5 — layerQ M
>
o
o
£ 2.0
L
[ ] ] :
Wikitext103 S
c 1.5
2
g —— layer0
1.0 layerl
0 50 100 150 200 50 100 150 200 0 100 200
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Minibatch (k)

Minibatch (k)

Minibatch (k)

Layers: 10, val_loss: 5.110

s
PRI = NEA AN

0 20 40
Minibatch (k)
Layers: 10, val_loss: 4.679

200

0 100
Minibatch (k)



Real-world Experiments

Pythia-70M, Layers: &, val_loss: 4.021 5 Pythia-70M, Layers: &, val_loss: 4.021 . OPT-2.7B, Layers: 32, val_loss: 3.274 0.0 E:PT-E‘.?B, Layers: 32, val_loss: 3.274
i T 6.0 4 .04 T
6 0144 | 30 I 30
i 5.3 1 0.0359 |
51 4 0124 4 5.0 25 i 25
' e — ' 0.030 |
éiq | , 0.10 II s —— , g-;_s- 20 & : i —— e 20
& 2 0.081 p. LA ST & a.0- T 00251 i! Tl
53 2P TNl < 5 52 i ”
= 2 in 0,06 4 'l!'r _{ L“"--._, 2 s 3.5 = 0.020 4 ! jnl—..-—r'_ = .':-.'::‘.':1.'-_,____,‘
E- 3 &5 ]' ."\‘I e 1“- 10 * | Pt .--""-F-‘ ‘‘‘‘‘‘‘ - 10
277 onad % Z 309 0.0151 | fr'-"_r"" e
: ¥ L T e
! 1 .31 e e
14 0.02 2o > oowq @HCTC 5
™ 9 |I" ——————
- - - 0 0.00 L . . ] . T - . . . (1] 0.005 1~ - - - T - 0
o 50 100 [i] 50 100 0 50 100 150 200 250 ] 50 100 150 200 250
Minibateh (k) Minibatch (k) Minibateh (k) Minibatch (k)
Pythia-1.48, Layers: 24, val_loss: 2.625 DPﬂgthia-l.-‘lB, Layers: 24, val_loss: 2,625 Pythia-6.9B, Layers: 32, val_loss: 2.358 0 ul;gthia—ﬁ.ﬁ&, Layers: 32, val_loss: 2.358
. i a0 ’ i 30
20 1 20 T
0051 1 51 s 0030] | 25
1 et 1N
g o0a] U e~ 2 i i
a2 - — i 5
% ® 5 (] s 15 % N 0 5 0.025 1 20
(' a “ L &
[ = 0,03 49 T - —— . c =]
8 = i > = 3 5 24 13 & 13
: 0 E ig;_;' £ — w0 2 £ 0.020+
E & 0.02 = \‘--_-..-_._-___ § N 10 % 10
N~ T 5 0.015 4
0.01 1 N 5 5
O 5 1 -
. . . 0 0.00 +- . . 0 . . : o 0001 - . 0
1] 50 100 0 50 100 ] 50 100 1] 50 100
Mimibatch (k) Minibatch (k) Minibatch (k) Minibatch (k)

facebook Artificial Intelligence Stable Rank of the lower layer of MLP shows the “bouncing back” effects as well.



Why is this “bouncing back” property useful?

It seems that it only slows down the training??

Not useful in 1-layer, but useful in multiple Transformer layers!



Data Hierarchy & Multilayer Transformer

Class label

(observed) i yo | CLA(mM, I')

e o o Ya

Latent binary E
variables .
(not observed) :

CLA(m, /)

P[m|zg]

Tokens | I’ :

(observed) m

Strong attention

| S

Weak attention



Data Hierarchy & Multilayer Transformer

Class label

(observed)

Latent binary

variables

(not observed) i

Tokens
(observed)

Yo

ll

Weak attention

CLA(m, I)

Ya

Yp

CLA(m, /)
P[m|zg]

[

m

Strong attention

| S

Theorem 5

H
P ~1——
lm] ~ 1 -~

H: height of the common latent
ancestor (CLA) of [l & m

L: total height of the hierarchy



Deep Latent
Distribution
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Yo

Q

Strong Attention

Weak Attention

Layers: 2, val_loss: 5.255

— layer0
layerl

0 10 20 30 40 50
Minibatch (k)
Layers: 2, val loss: 4.912

— layer0
layerl

50 100 150 200
Minibatch (k)

Learning the current hierarchical structure by
slowing down the association of tokens that are not directly correlated

Layers: 10, val _loss: 5.110

@Ej‘ vi&'}-",-m_,\/\‘\. A
- 'A"'-—"\,___M
- e TP

M
0 20 40

Minibatch (k)
Layers: 10, val loss: 4.679

0 100 200
Minibatch (k)




Shallow Latent Distribution

g

Strong Attention

Weak Attention




Hierarchy-agnostic Learning

Self-attention enables Hierarchy-agnostic Learning!



Verification of Hierarchical Intuitions

C =20, Nep, = 2 C =20, Nep = 3 C =30, Nep = 2
(No, N7) (10, 20) (20, 30) (10, 20) (20, 30) (10, 20) (20, 30)
NCorr (s =0) | 0.99+0.01 | 0.97+0.02 | 1.00+0.00 | 0.96+0.02 | 0.99 4 0.01 | 0.94 & 0.04
NCorr (s =1) | 0.81+0.05 | 0.80+0.05 | 0.69 +0.05 | 0.68+0.04 | 0.73+0.08 | 0.74 & 0.03

C =30 Now = 3 C =50, Nep = 2 C =50, Nop =3
(No, V1) (10, 20) (20, 30) (10, 20) (20, 30) (10, 20) (20, 30)
NCorr (s =0) | 0.99+0.01 | 0.95+0.03 | 0.99+0.01 | 0.95+0.03 | 0.99 4 0.01 | 0.95 =+ 0.03
NCorr (s=1) | 0.72+0.04 | 0.66 +0.02 | 0.58+0.02 | 0.55+0.01 | 0.6440.02 | 0.61 & 0.04

Table 1: Normalized correlation between the latents and their best matched hidden node in MLP
of the same layer. All experiments are run with 5 random seeds.



Take away messages

« Architecture v/ training dynamics V4

* Nonlinearity is not formidable!
* Transformer can be analyzed following gradient descent rules

* Property of self-attention
* Attention becomes sparse over training
* Inductive bias
* Favor the learning of strong co-occurred tokens
* Deter the learning of weakly co-occurred tokens, avoiding spurious correlation.

* Key insights lead to broad applications
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Roadmap of Theoretical Analysis

Check what
representation it learns
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Dichotomy: Symbolic and Neural
Representation

224 ] ¢ 7 ,» % - >
. ! v . ¥ ,' i o g
Re presentation : - A4 W = = =
A 4 convs
4 5 Bl 2 = 512 512 512
Y ] 7 S
7 Gl | Pl convd

ccccc

v.E=£ (Gauss' Law)

Sy mbolic V-H=0 (Gauss'Law for Magnetism)
CH

Representation VXE = g (Faraday's Law)
GE
VxH=J+¢ = (Ampere's Law)
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Unification of Symbolic and Neural
Representation

Emerging Symbolic Structure

Neural
Repres

tism)

Symbo
Repres

Deep Models eestaw
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Debate: Is LLM doing retrieval or true
reasoning?

LLM shows emergent behaviors!!

facebook Artificial Intel “8€ nce https://medium.com/@fenjiro/large-language-models-lims-emergent-abilities-chatgpt-talks-moroccan-dialect-as-an-example-c945f93aa63a



https://medium.com/@fenjiro/large-language-models-llms-emergent-abilities-chatgpt-talks-moroccan-dialect-as-an-example-c945f93aa63a

Debate: Is LLM doing retrieval or true
reasoning?

Yann LeCun & «
@ylecun

Do LLMs perform reasoning or approximate retrieval?
There is a continuum between the two, and Auto-Regressive LLMs are

largely on the retrieval side.

Z Subbarao Kambhampati (S0250a°¢3 a5 \o°af)) &

@5 @rao2z

Emergent Abilities (noun): The preferred euphemism for what your LLM
does, when saying "approximate retrieval" sounds too unsexy.

#AlAphorisms

facebook Artificial Intelligence

LLM is just doing retrievals!!

Models

ol-preview -17.5

Gemma-T7b-it |—20.6

Mistral-7b-v0.3-24.0]

Mistral-7b-v0.1 ~ -28.3]

01-mini -29.1|

Mistral-7b-instruct-v0.1 | -29.6

Gemma2-2b-it —31.8|

GPT-40 -32.0|

Gemma2-2b -38.6 |

GPT-40-mini -40.0|
Mistral-7b-instruct-v0.3 —4(].3|

Phi-2 -44.9|
Llama3-8b-instruct -57.4 |
Phi-3-medium-128k-instruct -97.8 |
Mathstral-7b-v0.1 —59.7|
Gemma2-27b-it —59.7|
Phi-3.5-mini-instruct —62.5|
Gemma2-9b-it —63.0|
Gemma2-9b —63.0|
Phi-3-small-128k-instruct -64.0)
Phi-3-mini-128k-instruct —65.7|

0 —10 —20 30 —40 —50 —60
GSM8K — GSM-NoOp Accuracy Drop(%)



Concrete Example: Modular Addition

a+b=cmodd

Does neural network have an implicit table to do retrieval?



Concrete Example: Modular Addition

Logits for Top Fourier Components

—— Period 520.00
—— Period 47.27
—— Period 10.00
—— Period 5.00

i

a+b=cmodd

Magnitude
(@)

———

~N

Learned representation = Fourier basis @ 6

85 90 95 100 108 115 120 125 130
Number Space

W hy? @ (a) Final logits for top Fourier components

[T. Zhou etal, Pre-trained Large Language Models Use Fourier Features to Compute Addition, NeurlPS'24]
[S. Kantamneni, Language Models Use Trigonometry to Do Addition, arXiv’'25]
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Problem Setup

MSE Loss:

Top layer

Bottom layer

Min ||Output —one-hot(c)||,

WCj

J

O-0O-0O--- g hidden nodes

(Quadratic Activation)

ij

One-hot(a)

One-hot(b) a+b=cmodd

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



(Scaled) Fourier Transform

d—1
— E imk/d
Zakj = Wamj€ /

m=0
d—1
— imk/d
Zpkj = z Whmj€ /
m=0
d—1
— imk/d
Zckj = E Wemj€ /
m=0
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k: frequency

W, Wy, W.} are real

$

Hermitian condition holds

Zakj — Za,—k,j

Zbkj = Zb,~k,j

chj Zc,—k,j



What a Gradient Descent Solution look like?

|2, d=7,q=20
0
2
X
4
6
Frequency O 2 4 6 8 10 12 14 16 18

J
e eeeeeeeee®> Hid d €N NOd € iNdEX

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



What a Gradient Descent Solution look like?

Order-6
solutions

Symmetry due to
Hermitian condition

o 2 4 o6 8 10 12 14 16 18
J

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



What a Gradient Descent Solution look like?

zc| at t =2900

Order-6
Order-4

O 2 4 o6 8 10 12 14 16 18
J

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



MSE Loss

More Statistics on Gradient Descent Solutions

Training/test loss/accuracy ford = 23

Distribution of Solution order at 10k epochs

facebook Artificial Intelligence

1.0 6 1
L 0.8 5 1
—-—=- test loss > 4 -
~—- train_loss [ 90 ® E
3 3 .
— test acc L 04 O S
—— train_acc < 5
05 Order-4 and order-6
it S ' 1 solutions really happen!
. = Y — B BN .
150 200 0 2 4 6 8 10

Solution order at all frequencies

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



Effect of Weight Decay

Stronger

d=23, wd=1e-05

40 A

20 A

Counts

d=71, wd=1e-05

50 A

Counts

d=127, wd=1e-05

200 - !
I
I
I

100 A

Counts

Solution order
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d=23, wd=5e-05

20 A

d=23, wd=0.0001

20 -

10 -

d=71, wd=5e-05

100 A

50 A

d=71, wd=0.0001

100 -

50 1

d=127, wd=5e-05

200 -

100 A

0 5
Solution order

10

d=127, wd=0.0001

100 -

5

10

Solution order

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]

d=23, wd=0.0002

> weight decay

d=23, wd=0.0005

! I
20 1 20 -
0 - 0
d=71, wd=0.0002 d=71, wd=0.0005
"B HE
100 - I b
: 1001 !
50 A 1 1 1
| |
| |
0 - 0 - —t
d=127, wd=0.0002 d=127, wd=0.0005
I I
1 1 1 1
200 - L 200 - .
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
O - 1 T 1 T 0' 1 T 1 T
0 5 10 0 5 10

Solution order

Solution order



Why? )



Structure of Loss Functions

MSE loss #(z) =d 1Y, .0 fk(2) +1—1/d

2 2
2 1 1
O (2) = —27rppp + Z |Tk1k2k| + 2 Z z Tpi! -k k| T 4 7 7 7 Tp k' m-k'k
kik, p€{a,b} k' m#0 pe{a,b} | k'

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



Structure of Loss Functions

MSEloss £(z) =d~ 'Y, .0fk(2)+1—1/d

2 2
2 1 1
tr(z) = =21 + Z |7”k1k2k| - Z Z Tok'—k'k| T 4 Z Z z Ty k' m—k'k
kik, p€{a,b} k' m#0 pe{a,b} | k'

Sufficient conditions of Global Optimizers:

Tk = 1 Tklkzk—o Tok! - k_O rpkmkk_O

facebook Artificial Intelligence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’'24]



How to Optimize?

The objective is highly nonlinear !!
However, nice algebraic structures exist!



How to Optimize?

The objective is highly nonlinear !!
However, nice algebraic structures exist!

< > < >~ < 2 X X

Z = Ugs0 44 All 2-layer networks with different number of hidden nodes



How to Optimize?

The objective is highly nonlinear !!
However, nice algebraic structures exist!

- N B - B

< > < >~ < 2 X X

V4 Z5 Z3

Z = Ugs0 44 All 2-layer networks with different number of hidden nodes

Ring addition +: Concatenate hidden nodes
Ring multiplication *: Kronecker production along the hidden dimensions

(Z,+, *)is asemi-ring



Ring Homomorphism

A function r(z): Z — Cis a ring homomorphism, if
r(1) =1
r(zy +2;) =1(zy) +7(2;,)
r(z, x z;) = 1(z)7(2;)



Ring Homomorphism

@rklkzk(z) and 7, 1, (Z) are ring
homomorphisms!




Ring Homomorphism

homomorphisms!
MSE Loss )
. 1 2 1
£(2) = =27y + 2 |7”k1k2k| + 4 z z i~k k| T 4 7 7 7 Tp k' m-k'k
ki1k, pe{a,b} k' m#0 pe{a,b} | k'




Ring Homomorphism

homomorphisms!
MSE Loss
2 1
tyx(2) = —2rp + 2 |7”k1k2k| + 4 z zrp,k’,—k’,k
kik; pe{a,b} k'

Partial solution z; satisfies 1y, . x(z;) = 0

Partial solution z,, satisfies 7,/ 1, (z,) = 0

FE Y
4/ .

S“ Tpk' m-k'k

m=+0 pe{a,b}

kl

2



Ring Homomorphism

homomorphisms!
MSE Loss )
2
2 1 1
Ox(2) = —27ppp + 2 |7”k1k2k| + 4 z zrp,k’,—k’,k + 4 7 7 7 Tpk' m-k'k
ki1k, pe{a,b} k' m#0 pe{a,b} | k'

Partial solution z; satisfies 1y, . x(z;) = 0 N
z = z, * z, satisfies both 1y ;. (2) = Tok! —k' (z) =0
Partial solution z,, satisfies 7,/ 1, (z,) = 0



Composing Global Optimizers from Partial Ones

Partial solution #1

(k) ¢ R,

syn

= R.NR,butz

syn
Partial solution #2

zgk) € R,

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv'24]



Composing Global Optimizers from Partial Ones

Compositing
solutions using
ring multiplication *

Partial solution #1 Better solution
z{5) € Re N Ry but 255, & R, 23+ 2,0 € Re.NRy NR,

Partial solution #2

zgk) € R,

facebook Artificial Intelli gence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv' 24]



Composing Global Optimizers from Partial Ones

Compositing Compositing
solutions using solutions using
ring multiplication * ring addition +

Partial solution #1 Better solution Global Optimizer to MSE
loss £(z) !
A erenRybutzl R, 220 eRonR R, ol
» z (), 5 ()
Partial solution #2 F6 = \/— Zsyn *
zf,k) € R,

facebook Artificial Intelli gence [Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv' 24]



Exemplar constructed global optimizers

 (d21)/2
Order-6 zg¢ (2*3) Zpe = 6 Z zéﬁ& * 257 * Yy
k=1



Exemplar constructed global optimizers

Order-6 zp (2*3)

Order-4 zp, 6 (2%2)
(mixed with order-6)

(d—1)/2
1
o= g 2. Heetu,
k=1



Exemplar constructed global optimizers

Order-6 zp (2*3)

Order-4 zp, 6 (2%2)
(mixed with order-6)

Perfect memorization
(order-d per frequency)

1 (d—1)/2
_ (k) (k)
zF6_3_ Z zsyn*zu * Yk
A
1 1 (d—1)/2
s (ko) (k)
ZF4/6 = 552 F6 + K7 D Zri
kzl,k#k{]
d—1 | d—1
zazz'u,ﬁl, zbzz'u:g
7=0 7=0



Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
d k) . B[k . (k) | (k) . (k)
order-4/6| order-4 | order-6 || order-4 | order-6 ||z, *x 2, |2, * 2., ,5|%v  * Zsyn| others
23 || 0.040.0 {0.0040.00/5.71+5.71{|0.05+0.01|4.804+0.96(|47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 (| 0.040.0 {0.004+0.00[{0.00+0.00{{0.0340.00/5.02+0.25||72.57+0.70| 4.00+1.14 |21.144+2.14|2.2941.07
127|| 0.040.0 {1.5040.92|0.00+0.00[{0.2640.14|0.93+0.18(|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

g=512,wd=5-107°



Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
order-4/6| order-4 | order-6 || order-4 | order-6 z,(f":)i * zék) z,(/k’:)i * zs(;fr)l’a 5 25 « zS(IBfr)l others
23 Il 0.040.0 |0.0040.00/5.71+5.71{|0.05+0.01|4.804+0.96(|47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 [l 0.040.0 ]0.0040.00[{0.00+0.00{{0.0340.00/5.02+0.25||72.57+0.70| 4.00+1.14 [21.144+2.14|2.2941.07
1270 0.040.0 |1.504+0.92|0.00+0.00[{0.2640.14|0.93+0.18(|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

100% of the per-freq
solutions are order-4/6




Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
d k) . ()| (k) . (k) | (k) . _(K)
order-4/6| order-4 | order-6 || order-4 | order-6 ||z, *x 2. |2, * 2., ,5|%v  * Zsyn| others
23 || 0.040.0 [0.0040.00/5.71+5.7110.05+0.01|4.804+0.96(|47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 (| 0.040.0 ]0.0040.00[{0.00+0.00[{0.034+0.00/5.02+0.25||72.57+0.70| 4.00+1.14 |21.144+2.14|2.2941.07
127|| 0.040.0 |1.5040.92|0.00+0.00[{0.2640.14|0.93+0.18(|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

95% of the solutions are
factorizable into “2*3” or “2*2”




Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
d k) . ()| (k) . (k) | (k) . _(K)
order-4/6| order-4 | order-6 || order-4 | order-6 ||z,”; *x 2. |2, * 2., ,5|%v  * Zsyn| others
23 || 0.040.0 {0.0040.00/5.71+5.71(10.05+0.01|4.804+0.96||47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 (| 0.040.0 {0.0040.00[{0.00+0.00({10.0340.00/5.02+0.25|| 72.57+0.70| 4.00+1.14 |21.144+2.14|2.2941.07
127|| 0.040.0 [1.504+0.92|0.00+0.00[]0.264+0.14|0.93+0.18|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

Factorization error is very small




Gradient Descent solutions matches with

construction
Jonot Jonon-factorable error (x1072) solution distribution (%) in factorable ones
d k) . ()| (k) . (k) | (k) . _(K)
order-4/6| order-4 | order-6 || order-4 | order-6 |z,2; *x 2. (2,2 * 2., ,5|%v  * Zsyn| others
23 || 0.040.0 {0.0040.00/5.71+5.71{|0.05+0.01|4.804+0.96}|47.07+1.88| 11.31+1.76 [39.80+2.11({1.82+1.82
71 (| 0.040.0 {0.0040.00[{0.00+0.00{{0.034+0.00/5.02+0.25)| 72.57+0.70| 4.00+1.14 |21.144+2.14|2.2941.07
127|| 0.040.0 [{1.5040.92|0.00+0.00[{0.2640.14|0.93+0.18)|82.96+0.39| 2.25+0.64 |14.13+0.87|0.66+0.66

98% of the solutions can be
factorizable into the constructed forms




Gradient Descent solutions matches with
construction

Distribution of the parameters in the solutions

Zy)= * Zsyn, ap

Z,-*2¢ Z,* Zsyn
—3n/4 | —n/4 1 11/4 w3r1/4 _ I i
50| —3m4 -/ / /41104 —2n/3 3 /3] g
8 - —m2
= P 0 -
840 6_.

QO 4 - 41
20 1 .
2_

0- 0- 0

-3 -2 -1 0o 1 2 3 -3 -2 -1 o0 1
Angle of & Angle of v
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Gradient
Dynamics

Theorem [The Occam’s Razer] If z = y * 2" and both z and z’ are global
optimal, then there exists a path of zero loss connecting z and Z'.

‘
B e N

[(z) =0

e =[1,0,0,..,0]

!/
= *
Z=y*x2 is a “pseudo” identity



Gradient
Dynamics

Theorem [The Occam’s Razer] If z = y * 2" and both z and z’ are global
optimal, then there exists a path of zero loss connecting z and Z'.

@
B e N

[(z) =0

Z=yxZ

L2 regularization will push the solution to e * z’ (simpler solutions),
since [le x Z'||, < [ly = 2’|,



Another Example: Symbolic from Neural
Representation

Task: Learn a 2-layer Transformer for predicting shortest path in the graph

source

target

<bos>1 2 <e> ... <qg> [source] [target] <p> [source] [node 1] [node 2] ... [target]

_ AN /
~ ~

Context Predicted Shortest path

facebook Artificial Intelligence [A. Cohen et al, Spectral Journey: How Transformers Predict the Shortest Path, arXiv’'25]



What representations it
learns?

:> L=1-D"124p~1/2

Normalized
Graph Laplacian

Representation after the N -
first Transformer layer ()  Eoge Embedding

(averaged over random edge order)

I

<bos>1 2 <e> ... <qg> [source] [target] <p> [source] [node 1] [node 2] ... [target]

facebook Artificial Intelligence



What representations it
learns?

Heads 1 Heads 2

20 20
15 149
18 18
0 17 17
5 16 16
‘- 15 15
£ 14 14
w 13 1=
5 12 12
. - 11
Graph Edge Embedding 5 1 10
. . . 5 g 9
of various dimensions T 5
5 7 7
=2 ]
L 5 5
# 4 4
3 3
2 2
14 1

1234567 8 910111215314151617181920 123456 78 9101112153141516171819 20

# PCA Coefficients # PCA Coefficients

Computed edge embedding with trained Transformers

facebook Artificial Intelligence Norma IlZEd CO rrelat|on > 0.9

0.8

0.6

0.4

0.2

0.0



Spectral Line Navigator (SLN)

Simple Algorithms of Graph Shortest Path

1. Compute Line Graph G of existing graph G
2. Compute eiggnvectors of normalized >99% optimal for small
Laplacian L(G)

3. I = source

4. While i # target do
distance(j, k; i) = ||v,;j = Wy, gesrare ||2
Find j = argmin;  distance(j, k; i)
Leti = j§

random graph (size < 10)

03-mini-high implementation: https://chatgpt.com/share/67b027f9-fb28-8012-aa64-a1f7479134b7



https://chatgpt.com/share/67b027f9-fb28-8012-aa64-a1f7479134b7

Possible Implications

Do neural networks end up learning more efficient
symbolic representations that we don’t know?

Does gradient descent lead to a solution that
can be reached by advanced algebraic operations?

Will gradient descent become obsolete, eventually?



Thanks!

facebook Artificial Intelligence 101



Thanks!
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