
Exploring Training Mechanism in Transformers
via the Lens of Training Dynamics

Yuandong Tian
Research Scientist Director

Meta GenAI

Large Language Models (LLMs)

Conversational AI Content Generation AI Agents

Reasoning Planning

Transformers

Attention mechanism

[A. Vaswani et al, Attention is all you need, NeurIPS’17]

Key 𝐾

Query 𝑄

How does Transformer work?

Input Output

“Some Nonlinear Transformation”This is an apple

Black-box versus White-box

Black box White box

Three Angles

Understanding how
Deep Models work

Expressibility

Optimization

Generalization

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

“Gradient vanishing/exploding”
“Gradient Descent might get stuck at saddle point / local minima”
“Can GD/SGD go to global optima? How fast?”

“Does zero training error often lead to overfitting?”
“More parameters might lead to overfitting.”

+ -
+-

Three Angles

Understanding how
Deep Models work

Expressibility

Optimization

Generalization

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

“Gradient vanishing/exploding”
“Gradient Descent might get stuck at saddle point / local minima”
“Can GD/SGD go to global optima? How fast?”

“Does zero training error often lead to overfitting?”
“More parameters might lead to overfitting.”

+ -
+-

Which path should we take?

Rethinking Generalization

[C. Zhang et al, Understanding deep learning requires rethinking generalization, ICLR 2017]

Generalization bound failed: 𝑇𝑒𝑠𝑡 𝐸𝑟𝑟𝑜𝑟 ≤ 𝑇𝑟𝑎𝑖𝑛 𝐸𝑟𝑟𝑜𝑟+? ? ?

Inductive Bias Really Matters

[N. Saunshi et al, Understanding Contrastive Learning Requires Incorporating Inductive Biases, ICML 2022]

SSL Pertraining loss doesn’t
really reflect downstream loss

A self-supervised contrastive learning example

Inductive Bias Really Matters

[N. Saunshi et al, Understanding Contrastive Learning Requires Incorporating Inductive Biases, ICML 2022]

Lesson learned?

Expressibility

Optimization

Generalization

+ -
+-

Architecture ✓

training dynamics ✘

Architecture ✘

training dynamics ✓

Architecture ✘

training dynamics ✘

How about

Architecture ✓

training dynamics ✓

Start From the First Principle

• Training follows Gradient and its variants (SGD, Adams, etc)

• First principle → Understand the behavior of the neural networks by
checking the gradient dynamics induced by the neural architectures.

• Sounds complicated.. Is that possible? Yes

ሶ𝒘 ≔
d𝒘

d𝑡
= −∇𝒘𝐽(𝒘)

Architecture ✓

training dynamics ✓

Roadmap of Theoretical Analysis

Fix Representation, check
how Self-attention works

Check what
representation it learns

Roadmap of Theoretical Analysis

Fix Representation, check
how Self-attention works

Check what
representation it learns

Understanding Attention in 1-layer Setting

Contextual tokens

𝑥1 𝑥2 𝑥𝑇−1 𝑥𝑇 𝑥𝑇+1

Last/query token Next token

Self-attention

Normalization

Decoding & Softmax

ෝ𝒖𝑇 = ෍

𝑡=1

𝑇−1

𝑏𝑡𝑇𝒖𝑥𝑡
= 𝑈𝑇𝑋𝑇𝒃𝑇

Self-attention

𝑈 = 𝒖1, 𝒖2, … 𝒖𝑀
𝑇: token embedding matrix

Normalized version ෥𝒖𝑇 = 𝑈𝑇LN(𝑋𝑇𝒃𝑇)

max
𝑊𝐾,𝑊𝑄,𝑊𝑉,𝑈

𝐽 = 𝔼𝐷 𝒖𝑥𝑇+1
𝑇 𝑊𝑉 ෥𝒖𝑇 − log ෍

𝑙

exp(𝒖𝑙
𝑇𝑊𝑉 ෥𝒖𝑇)

Objective:

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS’23]

Reparameterization

• Parameters 𝑊𝐾 , 𝑊𝑄 , 𝑊𝑉 , 𝑈 makes the dynamics complicated.

• Reparameterize the problem with independent variable 𝑌 and 𝑍
• 𝑌 = 𝑈𝑊𝑉

𝑇𝑈𝑇

• 𝑍 = 𝑈𝑊𝑄𝑊𝐾
𝑇𝑈𝑇 (pairwise logits of self-attention matrix)

• Then the dynamics becomes easier to analyze

Major Assumptions

• No positional encoding

• Sequence length 𝑇 → +∞

• Learning rate of decoder 𝑌 larger than self-attention layer Z (𝜂𝑌 ≫
𝜂𝑍)

• Other technical assumptions

Data Distribution

ℙ(𝑙|𝑚1, 𝑛1)
𝑚1

𝑛1

𝑛2

𝑚2

𝑛3

𝑛4

Last token 𝑥𝑇 Next token 𝑥𝑇+1

Contextual tokens 𝑥𝑡 (1 ≤ 𝑡 ≤ 𝑇 − 1)

Sequence
Classes

Question: Given the data distribution, how does the self-attention layer behave?

Assumption: 𝑚 = 𝜓(𝑛), i.e., no next token shared among different last tokens

ℙ 𝑙 𝑚, 𝑛 = ℙ 𝑙 𝑛 is the
conditional probability of
token 𝑙 given last token 𝑥𝑇 = 𝑚
and 𝑥𝑇+1 = 𝑛

𝑥𝑡 ∈ [𝑀] for 1 ≤ 𝑡 ≤ 𝑇
𝑥𝑇+1 ∈ [𝐾]
𝐾 ≪ 𝑀

Common tokens: There exists multiple 𝑛 so that ℙ(𝑙|𝑛) > 0

Distinct tokens: There exists unique 𝑛 so that ℙ(𝑙|𝑛) > 0

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛1)

Seq class
(𝑚, 𝑛2)

Distinct
Token

Common
Token

ǁ𝑐𝑙|𝑛1

ǁ𝑐𝑙|𝑛2

ǁ𝑐𝑙|𝑛1
: = ℙ 𝑙 𝑚, 𝑛1 exp(𝑧𝑚𝑙)

At initialization

Initial condition: 𝑧𝑚𝑙 0 = 0

𝑍 =
𝒛𝑚

𝒛𝑚: All logits of the contextual tokens
when attending to last token 𝑥𝑇 = 𝑚

Co-occurrence probability

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛1)

Seq class
(𝑚, 𝑛2)

ǁ𝑐𝑙|𝑛1

ǁ𝑐𝑙|𝑛2

Common Token Suppression

(a) ሶ𝑧𝑚𝑙 < 0, for common token 𝑙

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛1)

Seq class
(𝑚, 𝑛2)

ǁ𝑐𝑙|𝑛1

ǁ𝑐𝑙|𝑛2

(a) ሶ𝑧𝑚𝑙 < 0, for common token 𝑙

(b) ሶ𝑧𝑚𝑙 > 0, for distinct token 𝑙

Winners-emergence

Learnable TF-IDF (Term Frequency,
Inverse Document Frequency)

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛1)

Seq class
(𝑚, 𝑛2)

ǁ𝑐𝑙|𝑛1

ǁ𝑐𝑙|𝑛2

Winners-emergence

(a) ሶ𝑧𝑚𝑙 < 0, for common token 𝑙

(b) ሶ𝑧𝑚𝑙 > 0, for distinct token 𝑙

(c) 𝑧𝑚𝑙(𝑡) grows faster with
larger ℙ 𝑙 𝑚, 𝑛

Attention looks for discriminative tokens that
frequently co-occur with the query.

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛1)

Seq class
(𝑚, 𝑛2)

ǁ𝑐𝑙|𝑛1

ǁ𝑐𝑙|𝑛2

Theorem 3 Relative gain 𝑟𝑙/𝑙′|𝑛 𝑡 ≔
ǁ𝑐𝑙|𝑛
2 𝑡

ǁ𝑐
𝑙′|𝑛
2 𝑡

− 1 has a

close form:

𝑟𝑙/𝑙′|𝑛 𝑡 = 𝑟𝑙/𝑙′|𝑛 0 𝜒𝑙(𝑡)

If 𝑙0 is the dominant token: 𝑟𝑙0/𝑙|𝑛 0 > 0 for all 𝑙 ≠ 𝑙0

then

𝑒2𝑓𝑛𝑙0
2 (0)𝐵𝑛 𝑡 ≤ 𝜒𝑙0

(𝑡) ≤ 𝑒2𝐵𝑛 𝑡

where 𝐵𝑛 𝑡 ≥ 0 monotonously increases, 𝐵𝑛 0 = 0

(c) 𝑧𝑚𝑙(𝑡) grows faster with larger ℙ 𝑙 𝑚, 𝑛
Winners-emergence

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛1)

Seq class
(𝑚, 𝑛2)

ǁ𝑐𝑙|𝑛1

ǁ𝑐𝑙|𝑛2

Theorem 3 Relative gain 𝑟𝑙/𝑙′|𝑛 𝑡 ≔
ǁ𝑐𝑙|𝑛
2 𝑡

ǁ𝑐
𝑙′|𝑛
2 𝑡

− 1 has a

close form:

𝑟𝑙/𝑙′|𝑛 𝑡 = 𝑟𝑙/𝑙′|𝑛 0 𝜒𝑙(𝑡)

If 𝑙0 is the dominant token: 𝑟𝑙0/𝑙|𝑛 0 > 0 for all 𝑙 ≠ 𝑙0

then

𝑒2𝑓𝑛𝑙0
2 (0)𝐵𝑛 𝑡 ≤ 𝜒𝑙0

(𝑡) ≤ 𝑒2𝐵𝑛 𝑡

where 𝐵𝑛 𝑡 ≥ 0 monotonously increases, 𝐵𝑛 0 = 0

(c) 𝑧𝑚𝑙(𝑡) grows faster with larger ℙ 𝑙 𝑚, 𝑛Contextual
Sparsity
(query-dependent)

Winners-emergence

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛1)

Seq class
(𝑚, 𝑛2)

ǁ𝑐𝑙|𝑛1

ǁ𝑐𝑙|𝑛2

Attention frozen
Theorem 4 When 𝑡 → +∞,

𝐵𝑛 𝑡 ∼ ln 𝐶0 + 2𝐾
𝜂𝑧

𝜂𝑌
ln2

𝑀𝜂𝑌𝑡

𝐾

Attention scanning:
 When training starts, 𝐵𝑛 𝑡 = 𝑂(ln 𝑡)

Attention snapping:

 When 𝑡 ≥ 𝑡0 = 𝑂
2𝐾 ln 𝑀

𝜂𝑌
, 𝐵𝑛 𝑡 = 𝑂(ln ln 𝑡)

(1) 𝜂𝑧 and 𝜂𝑌 are large, 𝐵𝑛 𝑡 is large and attention is sparse

(2) Fixing 𝜂𝑧, large 𝜂𝑌 leads to slightly small 𝐵𝑛 𝑡 and
denser attention

Contextual
Sparsity
(query-dependent)

Overall Picture of the Training Dynamics

Seq class
(𝑚, 𝑛1)

Seq class
(𝑚, 𝑛2)

ǁ𝑐𝑙|𝑛1

ǁ𝑐𝑙|𝑛2

Attention frozen

Larger learning rate 𝜂𝑧 leads to faster phase transition

𝐵𝑛 𝑡 ∼ ln 𝐶0 + 2𝐾
𝜂𝑧

𝜂𝑌
ln2

𝑀𝜂𝑌𝑡

𝐾

Simple Real-world Experiments

WikiText2
(original parameterization)

Further study of sparse attention
 → Deja Vu, H2O and StreamingLLM

[Z. Liu et al, Deja vu: Contextual sparsity for efficient LLMs at inference time, ICML’23 (oral)]

[Z. Zhang et al, H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, NeurIPS’23]

[G. Xiao et al, Efficient Streaming Language Models with Attention Sinks, ICLR’24]

Deal with Reversal Curse

[L. Berglund et al, The Reversal Curse: LLMs trained on "A is B" fail to learn "B is A", ICLR 2024]

How to explain “Reversal Curse”?

[H. Zhu et al, Towards a Theoretical Understanding of the 'Reversal Curse' via Training Dynamics, NeurIPS’24]

𝑍 =
𝒛𝑚

𝒛𝑚: All logits of the contextual tokens
when attending to last token 𝑥𝑇 = 𝑚

𝑍 = 𝑈𝑊𝑄𝑊𝐾
𝑇𝑈𝑇 pairwise logits of self-

attention matrix,

is not symmetric

You only learn what you see in the training
set

[H. Zhu et al, Towards a Theoretical Understanding of the 'Reversal Curse' via Training Dynamics, NeurIPS’24]

“Chain-of-thoughts” reasoning

[H. Zhu et al, Towards a Theoretical Understanding of the 'Reversal Curse' via Training Dynamics, NeurIPS’24]

How to get rid of the assumptions?

• A few annoying assumptions in the analysis
• No residual connections

• No embedding vectors

• The decoder needs to learn faster than the self-attention (𝜂𝑌 ≫ 𝜂𝑍).

• Single layer analysis

• How to get rid of them?

• New research work: JoMA

JoMA: JOint Dynamics of MLP/Attention layers

[Y. Tian et al, JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention, ICLR’24]

Modified MLP
(lower layer)

Activation 𝜙

MLP
(lower layer)

Self-
attention

Activation 𝜙

JoMA

Main Contributions:

1. Find a joint dynamics that connects
 MLP with self-attention.
2. Understand self-attention behaviors for
 linear/nonlinear activations.
3. Explain how data hierarchy is learned in
 multi-layer Transformers.

JoMA Settings
ℎ𝑘 = 𝜙(𝒘𝑘

⊤𝒇)

𝒇 = 𝑈𝐶𝒃 + 𝒖𝑞

 𝑈𝐶 and 𝒖𝑞 are embeddings

𝒃 = 𝜎 𝒛𝑞 ∘ 𝒙/𝐴

Self-
attention

Nonlinearity 𝜙(⋅)

MLP
(lower layer)

𝒙

𝒖𝑞

𝑥𝑞

𝒃

ExpAttn: 𝑏𝑙 = 𝑥𝑙𝑒𝑧𝑞𝑙

SoftmaxAttn: 𝑏𝑙 =
𝑥𝑙𝑒

𝑧𝑞𝑙

σ𝑙 𝑥𝑙𝑒
𝑧𝑞𝑙

LinearAttn: 𝑏𝑙 = 𝑥𝑙𝑧𝑞𝑙

𝒇

“This is an apple”

𝒘𝑘
⊤𝒇

ℎ𝑘

Assumption (Orthogonal Embeddings
[𝑈𝐶 , 𝑢𝑞])

Cosine similarity between embedding vectors at different layers.

JoMA Dynamics

There is residual connection.
Joint dynamics works for any learning rates between self-attention and MLP layer.
No assumption on the data distribution.

Verification of JoMA dynamics

𝒛𝑚 𝑡 : Real attention logits
ො𝒛𝑚 𝑡 : Estimated attention logits by JoMA ො𝒛𝑚 𝑡 =

1

2
෍

𝑘

𝒗𝑘
2 𝑡 − 𝒗𝑘 𝑡 2

2ഥ𝒃𝑚 + 𝒄

ො𝒛𝑚1 𝑡 ො𝒛𝑚2 𝑡

Linear case (𝜙 = Id, 𝐾 = 1)

Key idea: folding self-attention into MLP
 → A Transformer block becomes a modified MLP

Modified MLP
(lower layer)

Activation 𝜙

MLP
(lower layer)

Self-attention

Activation 𝜙

JoMA

Nonlinear case (𝜙 nonlinear, 𝐾 = 1)

Most salient feature takes all
(Attention becomes sparser)

Most salient feature grows, and others catch up
(Attention becomes sparser and denser)

Saliency is defined as Δ𝑙𝑚 = 𝔼 𝑔 𝑙, 𝑚 ⋅ ℙ 𝑙 𝑚

𝐃𝐢𝐬𝐜𝐫𝐢𝐦𝐢𝐧𝐚𝐧𝐜𝐲 𝐂𝐨𝐎𝐜𝐜𝐮𝐫𝐫𝐞𝐧𝐜𝐞

Implication of Theorem
1

Δ𝑙𝑚 ≈ 0: Common tokens

Δ𝑙𝑚 large: Distinct tokens

JoMA for Linear Activation

Attention becomes sparser
(Consistent with Scan&Snap)

Modified
MLP

(lower layer)

Linear

ሶ𝒗 = 𝚫𝑚 ∘ exp
𝒗2

2

erf 𝑣𝑙(𝑡)/2

Δ𝑙𝑚
=

erf 𝑣𝑙′(𝑡)/2

Δ𝑙′𝑚

We can prove erf 𝑥 =
2

𝜋
න

0

𝑥

𝑒−𝑡2
d𝑡 ∈ [−1,1]

Only the most salient token 𝑙∗ = argmax |Δ𝑙𝑚| of 𝒗 goes to +∞
other components stay finite.

Theorem 2

[Y. Tian et al, Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer, NeurIPS’23]

What if we have more nodes (𝐾 > 1)?

• 𝑉 = 𝑈𝐶
⊤𝑊 ∈ ℝ𝑀𝑐×𝐾 and the dynamics becomes

ሶ𝑉 =
1

𝐴
diag exp

𝑉 ∘ 𝑉

2
𝟏 Δ Δ = Δ1, Δ2, … , Δ𝐾 , Δ𝑘 = 𝔼[𝑔𝑘𝒙]

We can prove that 𝑉 gradually becomes low rank
• The growth rate of each row of 𝑉 varies widely.

Due to exp
𝑉∘𝑉

2
, the weight gradient ሶ𝑽 can be even more low-rank → GaLore

𝑉(𝑡) →

GaLore: Pre-training 7B model on RTX 4090
(24G)

Third-party evaluation by @llamafactory_ai

* SVD takes around 10min for 7B model, but runs every T=500-1000 steps.

[J. Zhao et al, GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection, ICML’24 (Oral)]

Memory Saving with GaLore

Memory Usage Weight (𝑊) Optim States (𝑀𝑡, 𝑉𝑡) Projection (𝑃) Total

Full-rank 𝑚𝑛 2𝑚𝑛 0 3𝑚𝑛

Low-rank adaptor 𝑚𝑛 + 𝑚𝑟 + 𝑛𝑟 2(𝑚𝑟 + 𝑛𝑟) 0 𝑚𝑛 + 3(𝑚𝑟 + 𝑛𝑟)

GaLore 𝑚𝑛 2𝑛𝑟 𝑚𝑟 𝑚𝑛 + 𝑚𝑟 + 2𝑛𝑟

𝐺𝑡 ← −∇W𝜙(𝑊𝑡)
If t % T == 0:
 Compute 𝑃𝑡 = SVD 𝐺𝑡 ∈ ℝ𝑚×𝑟
𝑅𝑡 ← 𝑃𝑡

𝑇𝐺𝑡 {project}
෨𝑅𝑡 ← 𝜌 𝑅𝑡 {Adam in low-rank}
෨𝐺𝑡 ← 𝑃𝑡

෨𝑅𝑡 {project-back}
𝑊𝑡+1 ← 𝑊𝑡 + 𝜂 ෨𝐺𝑡

GaLore

𝑅𝑡 𝑊𝑡
𝑃𝑡

Pre-training Results (LLaMA 7B)

* Experiments are conducted on 8 x 8 A100

* On LLaMA 1B, ppl is better (~14.97) with ½ rank (1024/2048)

What does the dynamics look like?

If 𝒙 is sampled from a mixture of 𝐶 isotropic distributions,
(i.e., “local salient/non-salient map”), then

ሶ𝒗 =
1

𝒗 2
෍

𝑐

𝑎𝑐𝜃1 𝑟𝑐 ഥ𝒙𝑐 +
1

𝒗 2
3 ෍

𝑐

𝑎𝑐𝜃2 𝑟𝑐 𝒗

Here 𝑎𝑐 ≔ 𝔼𝑞=𝑚,𝑐 𝑔ℎ𝑘
ℙ 𝑐 , 𝑟𝑐 = 𝒗⊤ഥ𝒙𝑐 + 0׬

𝑡
𝔼𝑞=𝑚 𝑔ℎ𝑘

ℎ𝑘
′ d𝑡,

and 𝜃1 and 𝜃2 depends on nonlinearity

ഥ𝒙1

ഥ𝒙2

ഥ𝒙3

ሶ𝒗 = 𝝁 − 𝒗 ∘ exp
𝒗2

2

𝝁 ∼ ഥ𝒙𝑐 : Critical point due to nonlinearity
(one of the cluster centers)

JoMA for Nonlinear Activation
Theorem 3

JoMA for Nonlinear activation
Modified

MLP
(lower layer)

Nonlinear

ሶ𝒗 = 𝝁 − 𝒗 ∘ exp
𝒗2

2

Salient components grow much faster than non-salient ones:

ConvergenceRate(𝑗)

ConvergenceRate(𝑘)
~

exp 𝜇𝑗
2/2

exp 𝜇𝑘
2/2

ConvergenceRate 𝑗 ≔ ln 1/𝛿𝑗(𝑡)

𝛿𝑗 𝑡 ≔ 1 − 𝑣𝑗(𝑡)/𝜇𝑗

Theorem 4

#iterations

JoMA for Nonlinear activation
Modified

MLP
(lower layer)

Nonlinear

ሶ𝒗 = 𝝁 − 𝒗 ∘ exp
𝒗2

2

Attention becomes sparser
and then denser!

“bounce back”

Real-world Experiments

Wikitext2

Wikitext103

Real-world Experiments

Stable Rank of the lower layer of MLP shows the “bouncing back” effects as well.

Why is this “bouncing back” property useful?

It seems that it only slows down the training??

Not useful in 1-layer, but useful in multiple Transformer layers!

Data Hierarchy & Multilayer Transformer

𝑙′

𝑦0

𝑙

𝑦𝛽

ℙ[𝑚|𝑧𝛽]

𝑦𝛼

𝑚

Class label
(observed)

Tokens
(observed)

Latent binary
variables
(not observed)

Strong attention

Weak attention

CLA(m, l)

CLA(m, l’)

Data Hierarchy & Multilayer Transformer

𝑙′

𝑦0

𝑙

𝑦𝛽

ℙ[𝑚|𝑧𝛽]

𝑦𝛼

𝑚

Class label
(observed)

Tokens
(observed)

Latent binary
variables
(not observed)

Strong attention

Weak attention

ℙ 𝑙 𝑚 ≈ 1 −
𝐻

𝐿

𝐻: height of the common latent
 ancestor (CLA) of 𝑙 & 𝑚

𝐿: total height of the hierarchy

CLA(m, l)

CLA(m, l’)

Theorem 5

Deep Latent
Distribution

𝑙′ 𝑚′

𝑦𝛽′

𝑦0

𝑙

𝑦𝛽

𝑦𝛼

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙, 𝑚)CLA(𝑙′, 𝑚′)

Strong Attention

Weak Attention

Learning the current hierarchical structure by
slowing down the association of tokens that are not directly correlated

Shallow Latent Distribution

𝑦𝛼

𝑙′ 𝑚′ 𝑙 𝑚

𝑦0

Strong Attention

Weak Attention

𝑙′ 𝑚′

𝑦𝛽′

𝑦0

𝑙

𝑦𝛽

𝑦𝛼

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙, 𝑚)CLA(𝑙′, 𝑚′)

Hierarchy-agnostic Learning

𝑦𝛼

𝑙′ 𝑚′ 𝑙 𝑚

𝑦0

Strong Attention

Weak Attention

𝑙′ 𝑚′

𝑦𝛽′

𝑦0

𝑙

𝑦𝛽

𝑦𝛼

𝑚

CLA(𝑙’, 𝑚)

CLA(𝑙, 𝑚)CLA(𝑙′, 𝑚′) Self-attention enables Hierarchy-agnostic Learning!

Verification of Hierarchical Intuitions

Take away messages

• Architecture ✓ training dynamics ✓

• Nonlinearity is not formidable!
• Transformer can be analyzed following gradient descent rules

• Property of self-attention
• Attention becomes sparse over training
• Inductive bias

• Favor the learning of strong co-occurred tokens
• Deter the learning of weakly co-occurred tokens, avoiding spurious correlation.

• Key insights lead to broad applications

Roadmap of Theoretical Analysis

Fix Representation, check
how Self-attention works

Check what
representation it learns

Dichotomy: Symbolic and Neural
Representation

Neural
Representation

Symbolic
Representation

Unification of Symbolic and Neural
Representation

Neural
Representation

Symbolic
Representation

Deep Models

Emerging Symbolic Structure

https://medium.com/@fenjiro/large-language-models-llms-emergent-abilities-chatgpt-talks-moroccan-dialect-as-an-example-c945f93aa63a

LLM shows emergent behaviors!!

Debate: Is LLM doing retrieval or true
reasoning?

https://medium.com/@fenjiro/large-language-models-llms-emergent-abilities-chatgpt-talks-moroccan-dialect-as-an-example-c945f93aa63a

Debate: Is LLM doing retrieval or true
reasoning?

LLM is just doing retrievals!!

Concrete Example: Modular Addition

𝑎 + 𝑏 = 𝑐 mod 𝑑

Does neural network have an implicit table to do retrieval?

Concrete Example: Modular Addition

Learned representation = Fourier basis

Why?
[T. Zhou et al, Pre-trained Large Language Models Use Fourier Features to Compute Addition, NeurIPS’24]
[S. Kantamneni, Language Models Use Trigonometry to Do Addition, arXiv’25]

𝑎 + 𝑏 = 𝑐 mod 𝑑

Does neural network have an implicit table to do retrieval?

Problem Setup

One-hot(a) One-hot(𝒃) 𝒂 + 𝒃 = 𝒄 mod 𝑑

𝑞 hidden nodes
(Quadratic Activation)

Bottom layer

Top layer

MSE Loss: 𝑀𝑖𝑛 Output – one−hot(𝒄) 2

𝒘𝑎𝑗 𝒘𝑏𝑗

𝒘𝑐𝑗

𝑗

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

(Scaled) Fourier Transform

𝑧𝑎𝑘𝑗 = ෍
𝑚=0

𝑑−1

𝑤𝑎𝑚𝑗𝑒i𝑚𝑘/𝑑

𝑧𝑏𝑘𝑗 = ෍
𝑚=0

𝑑−1

𝑤𝑏𝑚𝑗𝑒i𝑚𝑘/𝑑

𝑧𝑐𝑘𝑗 = ෍
𝑚=0

𝑑−1

𝑤𝑐𝑚𝑗𝑒i𝑚𝑘/𝑑

𝑘: frequency

𝑊𝑎 , 𝑊𝑏 , 𝑊𝑐 are real

Hermitian condition holds

𝑧𝑎𝑘𝑗 = 𝑧𝑎,−𝑘,𝑗

𝑧𝑏𝑘𝑗 = 𝑧𝑏,−𝑘,𝑗

𝑧𝑐𝑘𝑗 = 𝑧𝑐,−𝑘,𝑗

What a Gradient Descent Solution look like?

Frequency

Hidden node index

𝑑 = 7, 𝑞 = 20

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Symmetry due to
Hermitian condition

Order-6
solutions

What a Gradient Descent Solution look like?

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Order-6
Order-4

What a Gradient Descent Solution look like?

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Order-4 and order-6
solutions really happen!

More Statistics on Gradient Descent Solutions

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Stronger
weight decay

Effect of Weight Decay

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Why?

Structure of Loss Functions

MSE loss ℓ(𝒛) = 𝑑−1 σ𝑘≠0 ℓ𝑘(𝒛) + 1 − 1/𝑑

ℓ𝑘(𝒛) = −2𝑟𝑘𝑘𝑘 + ෍

𝑘1𝑘2

𝑟𝑘1𝑘2𝑘
2

+
1

4
෍

𝑝∈{𝑎,𝑏}

෍

𝑘′

𝑟𝑝,𝑘′,−𝑘′,𝑘

2

+
1

4
෍

𝑚≠0

෍

𝑝∈{𝑎,𝑏}

෍

𝑘′

𝑟𝑝,𝑘′,𝑚−𝑘′,𝑘

2

Term 𝑟𝑘1𝑘2𝑘 𝒛 ≔ σ𝑗 𝑧𝑎𝑘1𝑗𝑧𝑏𝑘2𝑗𝑧𝑐𝑘𝑗 and 𝑟𝑝𝑘1𝑘2𝑘 𝒛 ≔ σ𝑗 𝑧𝑝𝑘1𝑗𝑧𝑝𝑘2𝑗𝑧𝑐𝑘𝑗

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Structure of Loss Functions

MSE loss ℓ(𝒛) = 𝑑−1 σ𝑘≠0 ℓ𝑘(𝒛) + 1 − 1/𝑑

ℓ𝑘(𝒛) = −2𝑟𝑘𝑘𝑘 + ෍

𝑘1𝑘2

𝑟𝑘1𝑘2𝑘
2

+
1

4
෍

𝑝∈{𝑎,𝑏}

෍

𝑘′

𝑟𝑝,𝑘′,−𝑘′,𝑘

2

+
1

4
෍

𝑚≠0

෍

𝑝∈{𝑎,𝑏}

෍

𝑘′

𝑟𝑝,𝑘′,𝑚−𝑘′,𝑘

2

Sufficient conditions of Global Optimizers:

𝑅g 𝑅c 𝑅n 𝑅∗

𝑟𝑘𝑘𝑘 = 1 𝑟𝑘1𝑘2𝑘 = 0 𝑟𝑝𝑘′,−𝑘′,𝑘 = 0 𝑟𝑝𝑘′,𝑚−𝑘′,𝑘 = 0

Term 𝑟𝑘1𝑘2𝑘 𝒛 ≔ σ𝑗 𝑧𝑎𝑘1𝑗𝑧𝑏𝑘2𝑗𝑧𝑐𝑘𝑗 and 𝑟𝑝𝑘1𝑘2𝑘 𝒛 ≔ σ𝑗 𝑧𝑝𝑘1𝑗𝑧𝑝𝑘2𝑗𝑧𝑐𝑘𝑗

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

How to Optimize?
The objective is highly nonlinear !!
However, nice algebraic structures exist!

How to Optimize?

𝒵1 𝒵2 𝒵3

The objective is highly nonlinear !!
However, nice algebraic structures exist!

𝒵 = 𝑞≥0ڂ 𝒵𝑞 : All 2-layer networks with different number of hidden nodes

How to Optimize?

𝒵1 𝒵2 𝒵3

The objective is highly nonlinear !!
However, nice algebraic structures exist!

⟨𝒵, +, ∗⟩ is a semi-ring

𝒵 = 𝑞≥0ڂ 𝒵𝑞 : All 2-layer networks with different number of hidden nodes

 Ring addition +: Concatenate hidden nodes

 Ring multiplication *: Kronecker production along the hidden dimensions

Ring Homomorphism

A function 𝑟 𝒛 : 𝒵 ↦ ℂ is a ring homomorphism, if

• 𝑟 𝟏 = 1
• 𝑟 𝒛1 + 𝒛2 = 𝑟 𝒛1 + 𝑟 𝒛2

• 𝑟 𝒛1 ∗ 𝒛2 = 𝑟 𝒛1 𝑟 𝒛2

Ring Homomorphism

𝑟𝑘1𝑘2𝑘(𝒛) and 𝑟𝑝𝑘1𝑘2𝑘 𝒛 are ring

homomorphisms!

A function 𝑟 𝒛 : 𝒵 ↦ ℂ is a ring homomorphism, if

• 𝑟 𝟏 = 1
• 𝑟 𝒛1 + 𝒛2 = 𝑟 𝒛1 + 𝑟 𝒛2

• 𝑟 𝒛1 ∗ 𝒛2 = 𝑟 𝒛1 𝑟 𝒛2

Ring Homomorphism

𝑟𝑘1𝑘2𝑘(𝒛) and 𝑟𝑝𝑘1𝑘2𝑘 𝒛 are ring

homomorphisms!

ℓ𝑘(𝒛) = −2𝑟𝑘𝑘𝑘 + ෍

𝑘1𝑘2

𝑟𝑘1𝑘2𝑘
2

+
1

4
෍

𝑝∈{𝑎,𝑏}

෍

𝑘′

𝑟𝑝,𝑘′,−𝑘′,𝑘

2

+
1

4
෍

𝑚≠0

෍

𝑝∈{𝑎,𝑏}

෍

𝑘′

𝑟𝑝,𝑘′,𝑚−𝑘′,𝑘

2

A function 𝑟 𝒛 : 𝒵 ↦ ℂ is a ring homomorphism, if

• 𝑟 𝟏 = 1
• 𝑟 𝒛1 + 𝒛2 = 𝑟 𝒛1 + 𝑟 𝒛2

• 𝑟 𝒛1 ∗ 𝒛2 = 𝑟 𝒛1 𝑟 𝒛2

MSE Loss

Ring Homomorphism

𝑟𝑘1𝑘2𝑘(𝒛) and 𝑟𝑝𝑘1𝑘2𝑘 𝒛 are ring

homomorphisms!

ℓ𝑘(𝒛) = −2𝑟𝑘𝑘𝑘 + ෍

𝑘1𝑘2

𝑟𝑘1𝑘2𝑘
2

+
1

4
෍

𝑝∈{𝑎,𝑏}

෍

𝑘′

𝑟𝑝,𝑘′,−𝑘′,𝑘

2

+
1

4
෍

𝑚≠0

෍

𝑝∈{𝑎,𝑏}

෍

𝑘′

𝑟𝑝,𝑘′,𝑚−𝑘′,𝑘

2

Partial solution 𝒛1 satisfies 𝑟𝑘1𝑘2𝑘 𝒛1 = 0

Partial solution 𝒛2 satisfies 𝑟𝑝𝑘′,−𝑘′,𝑘 𝒛2 = 0

A function 𝑟 𝒛 : 𝒵 ↦ ℂ is a ring homomorphism, if

• 𝑟 𝟏 = 1
• 𝑟 𝒛1 + 𝒛2 = 𝑟 𝒛1 + 𝑟 𝒛2

• 𝑟 𝒛1 ∗ 𝒛2 = 𝑟 𝒛1 𝑟 𝒛2

MSE Loss

Ring Homomorphism

𝑟𝑘1𝑘2𝑘(𝒛) and 𝑟𝑝𝑘1𝑘2𝑘 𝒛 are ring

homomorphisms!

ℓ𝑘(𝒛) = −2𝑟𝑘𝑘𝑘 + ෍

𝑘1𝑘2

𝑟𝑘1𝑘2𝑘
2

+
1

4
෍

𝑝∈{𝑎,𝑏}

෍

𝑘′

𝑟𝑝,𝑘′,−𝑘′,𝑘

2

+
1

4
෍

𝑚≠0

෍

𝑝∈{𝑎,𝑏}

෍

𝑘′

𝑟𝑝,𝑘′,𝑚−𝑘′,𝑘

2

Partial solution 𝒛1 satisfies 𝑟𝑘1𝑘2𝑘 𝒛1 = 0

Partial solution 𝒛2 satisfies 𝑟𝑝𝑘′,−𝑘′,𝑘 𝒛2 = 0
𝒛 = 𝒛1 ∗ 𝒛2 satisfies both 𝑟𝑘1𝑘2𝑘 𝒛 = 𝑟𝑝𝑘′,−𝑘′,𝑘 𝒛 = 0

A function 𝑟 𝒛 : 𝒵 ↦ ℂ is a ring homomorphism, if

• 𝑟 𝟏 = 1
• 𝑟 𝒛1 + 𝒛2 = 𝑟 𝒛1 + 𝑟 𝒛2

• 𝑟 𝒛1 ∗ 𝒛2 = 𝑟 𝒛1 𝑟 𝒛2

MSE Loss

Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Better solution

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

∈ 𝑅c ∩ 𝑅n ∩ 𝑅∗

Compositing
solutions using
ring multiplication ∗

Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Better solution

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

∈ 𝑅c ∩ 𝑅n ∩ 𝑅∗

Global Optimizer to MSE
loss ℓ(𝒛) !

𝒛𝐹6 =
𝟏

𝟑
6

෍
𝑘

𝒛syn
(𝑘)

∗ 𝒛𝜈
(𝑘)

Compositing
solutions using
ring multiplication ∗

Compositing
solutions using
ring addition +

Partial solution #1

𝒛syn
(𝑘)

∈ 𝑅c ∩ 𝑅n but 𝒛syn
(𝑘)

∉ 𝑅∗

Partial solution #2

𝒛𝜈
(𝑘)

∈ 𝑅∗

Composing Global Optimizers from Partial Ones

[Y. Tian, Composing Global Optimizers to Reasoning Tasks via Algebraic Objects in Neural Nets, arXiv’24]

Exemplar constructed global optimizers

Order-6 𝒛𝐹6 (2*3)

Order-4 (2*2, mixed with order-
6)

Perfect memorization
(order-d per frequency)

Exemplar constructed global optimizers

Order-4 𝒛𝐹4/6 (2*2)

(mixed with order-6)

Perfect memorization
(order-d per frequency)

Order-6 𝒛𝐹6 (2*3)

Exemplar constructed global optimizers

Perfect memorization
(order-d per frequency)

Order-4 𝒛𝐹4/6 (2*2)

(mixed with order-6)

Order-6 𝒛𝐹6 (2*3)

Gradient Descent solutions matches with
construction

𝑞 = 512, 𝑤𝑑 = 5 ⋅ 10−5

Gradient Descent solutions matches with
construction

100% of the per-freq
solutions are order-4/6

Gradient Descent solutions matches with
construction

95% of the solutions are
factorizable into “2*3” or “2*2”

Gradient Descent solutions matches with
construction

Factorization error is very small

Gradient Descent solutions matches with
construction

98% of the solutions can be
factorizable into the constructed forms

Gradient Descent solutions matches with
construction

Distribution of the parameters in the solutions

Gradient
Dynamics

𝒛 = 𝒚 ∗ 𝒛′

𝒆 ∗ 𝒛′

Theorem [The Occam’s Razer] If 𝒛 = 𝒚 ∗ 𝒛’ and both 𝒛 and 𝒛’ are global
optimal, then there exists a path of zero loss connecting 𝒛 and 𝒛’.

𝑙 𝒛 = 0
𝒆 = [1, 0, 0, . . , 0]
is a “pseudo” identity

Gradient
Dynamics

𝒛 = 𝒚 ∗ 𝒛′

𝒆 ∗ 𝒛′

Theorem [The Occam’s Razer] If 𝒛 = 𝒚 ∗ 𝒛’ and both 𝒛 and 𝒛’ are global
optimal, then there exists a path of zero loss connecting 𝒛 and 𝒛’.

𝑙 𝒛 = 0

L2 regularization will push the solution to 𝒆 ∗ 𝒛’ (simpler solutions),
since 𝒆 ∗ 𝒛′

2 ≤ 𝒚 ∗ 𝒛′
2

𝒆 = [1, 0, 0, . . , 0]
is a “pseudo” identity

Another Example: Symbolic from Neural
Representation

[A. Cohen et al, Spectral Journey: How Transformers Predict the Shortest Path, arXiv’25]

Task: Learn a 2-layer Transformer for predicting shortest path in the graph

<bos> 1 2 <e> ... <q> [source] [target] <p> [source] [node 1] [node 2] … [target]

1

2

3

4

5

6

7

source

target

Context Predicted Shortest path

What representations it
learns?

1
2

3

4

5

6

7 Line graph

𝑒𝑎
𝑒𝑎

𝑒𝑏 𝑒𝑐

𝑒𝑑

𝑒𝑓

𝑒𝑔

𝑒ℎ

𝑒𝑙

𝑒𝑏 𝑒𝑐

𝑒𝑑 𝑒𝑓

𝑒𝑔

𝑒𝑙

𝑒ℎ

Normalized
Graph Laplacian

𝐿 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2

Edge Embedding

<bos> 1 2 <e> ... <q> [source] [target] <p> [source] [node 1] [node 2] … [target]

Representation after the
first Transformer layer

(averaged over random edge order)

What representations it
learns?

Graph Edge Embedding
of various dimensions

Computed edge embedding with trained Transformers

Normalized Correlation > 0.9

Spectral Line Navigator (SLN)

Simple Algorithms of Graph Shortest Path

1. Compute Line Graph ෨𝐺 of existing graph 𝐺
2. Compute eigenvectors of normalized

Laplacian 𝐿(෨𝐺)
3. 𝑖 = 𝑠𝑜𝑢𝑟𝑐𝑒
4. While 𝑖 ≠ 𝑡𝑎𝑟𝑔𝑒𝑡 do

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑗, 𝑘; 𝑖 ≔ 𝑣𝑖𝑗 − 𝑣𝑘,𝑡𝑎𝑟𝑔𝑒𝑡 2

 Find 𝑗 = argmin𝑗,𝑘 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑗, 𝑘; 𝑖)

 Let 𝑖 = 𝑗

o3-mini-high implementation: https://chatgpt.com/share/67b027f9-fb28-8012-aa64-a1f7479134b7

>99% optimal for small
random graph (size < 10)

https://chatgpt.com/share/67b027f9-fb28-8012-aa64-a1f7479134b7

Possible Implications

Do neural networks end up learning more efficient
symbolic representations that we don’t know?

Does gradient descent lead to a solution that
can be reached by advanced algebraic operations?

Will gradient descent become obsolete, eventually?

Thanks!
101

Thanks!

	Slide 1: Exploring Training Mechanism in Transformers via the Lens of Training Dynamics
	Slide 2: Large Language Models (LLMs)
	Slide 3: Transformers
	Slide 4: How does Transformer work?
	Slide 5: Black-box versus White-box
	Slide 6: Three Angles
	Slide 7: Three Angles
	Slide 8: Rethinking Generalization
	Slide 9: Inductive Bias Really Matters
	Slide 10: Inductive Bias Really Matters
	Slide 11: Lesson learned?
	Slide 12: Start From the First Principle
	Slide 13: Roadmap of Theoretical Analysis
	Slide 14: Roadmap of Theoretical Analysis
	Slide 15: Understanding Attention in 1-layer Setting
	Slide 16: Reparameterization
	Slide 17: Major Assumptions
	Slide 18: Data Distribution
	Slide 19: Overall Picture of the Training Dynamics
	Slide 20: Overall Picture of the Training Dynamics
	Slide 21: Overall Picture of the Training Dynamics
	Slide 22: Overall Picture of the Training Dynamics
	Slide 23: Overall Picture of the Training Dynamics
	Slide 24: Overall Picture of the Training Dynamics
	Slide 25: Overall Picture of the Training Dynamics
	Slide 26: Overall Picture of the Training Dynamics
	Slide 27: Simple Real-world Experiments
	Slide 28: Deal with Reversal Curse
	Slide 29: How to explain “Reversal Curse”?
	Slide 30: You only learn what you see in the training set
	Slide 31: “Chain-of-thoughts” reasoning
	Slide 32: How to get rid of the assumptions?
	Slide 33: JoMA: JOint Dynamics of MLP/Attention layers
	Slide 34: JoMA Settings
	Slide 35: Assumption (Orthogonal Embeddings , U , , C ,u q)
	Slide 36: JoMA Dynamics
	Slide 37: Verification of JoMA dynamics
	Slide 38: Implication of Theorem 1
	Slide 39: JoMA for Linear Activation
	Slide 40: What if we have more nodes (K 1)?
	Slide 41: GaLore: Pre-training 7B model on RTX 4090 (24G)
	Slide 42: Memory Saving with GaLore
	Slide 43: Pre-training Results (LLaMA 7B)
	Slide 44: JoMA for Nonlinear Activation
	Slide 45: JoMA for Nonlinear activation
	Slide 46: JoMA for Nonlinear activation
	Slide 47: Real-world Experiments
	Slide 48: Real-world Experiments
	Slide 49: Why is this “bouncing back” property useful?
	Slide 50: Data Hierarchy & Multilayer Transformer
	Slide 51: Data Hierarchy & Multilayer Transformer
	Slide 52: Deep Latent Distribution
	Slide 53: Shallow Latent Distribution
	Slide 54: Hierarchy-agnostic Learning
	Slide 55: Verification of Hierarchical Intuitions
	Slide 56: Take away messages
	Slide 57: Roadmap of Theoretical Analysis
	Slide 58: Dichotomy: Symbolic and Neural Representation
	Slide 59: Unification of Symbolic and Neural Representation
	Slide 60: Debate: Is LLM doing retrieval or true reasoning?
	Slide 61: Debate: Is LLM doing retrieval or true reasoning?
	Slide 62: Concrete Example: Modular Addition
	Slide 63: Concrete Example: Modular Addition
	Slide 64: Problem Setup
	Slide 65: (Scaled) Fourier Transform
	Slide 66: What a Gradient Descent Solution look like?
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: Why? 🤔
	Slide 72: Structure of Loss Functions
	Slide 73: Structure of Loss Functions
	Slide 74: How to Optimize?
	Slide 75: How to Optimize?
	Slide 76: How to Optimize?
	Slide 77: Ring Homomorphism
	Slide 78: Ring Homomorphism
	Slide 79: Ring Homomorphism
	Slide 80: Ring Homomorphism
	Slide 81: Ring Homomorphism
	Slide 82: Composing Global Optimizers from Partial Ones
	Slide 83: Composing Global Optimizers from Partial Ones
	Slide 84: Composing Global Optimizers from Partial Ones
	Slide 85: Exemplar constructed global optimizers
	Slide 86: Exemplar constructed global optimizers
	Slide 87: Exemplar constructed global optimizers
	Slide 88: Gradient Descent solutions matches with construction
	Slide 89: Gradient Descent solutions matches with construction
	Slide 90: Gradient Descent solutions matches with construction
	Slide 91: Gradient Descent solutions matches with construction
	Slide 92: Gradient Descent solutions matches with construction
	Slide 93: Gradient Descent solutions matches with construction
	Slide 94: Gradient Dynamics
	Slide 95: Gradient Dynamics
	Slide 96: Another Example: Symbolic from Neural Representation
	Slide 97: What representations it learns?
	Slide 98: What representations it learns?
	Slide 99: Spectral Line Navigator (SLN)
	Slide 100
	Slide 101: Thanks!
	Slide 102: Thanks!

